JP5520861B2 - Copper alloy fine particle dispersion, method for producing sintered conductor, sintered conductor, and conductive connecting member - Google Patents

Copper alloy fine particle dispersion, method for producing sintered conductor, sintered conductor, and conductive connecting member Download PDF

Info

Publication number
JP5520861B2
JP5520861B2 JP2011058937A JP2011058937A JP5520861B2 JP 5520861 B2 JP5520861 B2 JP 5520861B2 JP 2011058937 A JP2011058937 A JP 2011058937A JP 2011058937 A JP2011058937 A JP 2011058937A JP 5520861 B2 JP5520861 B2 JP 5520861B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy fine
particle dispersion
fine particle
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011058937A
Other languages
Japanese (ja)
Other versions
JP2011219862A (en
Inventor
智紘 石井
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2011058937A priority Critical patent/JP5520861B2/en
Publication of JP2011219862A publication Critical patent/JP2011219862A/en
Application granted granted Critical
Publication of JP5520861B2 publication Critical patent/JP5520861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銅−亜鉛からなる銅合金微粒子分散液、該分散液を加熱・焼結する焼結導電体の製造方法、及び該製造方法により得られる焼結導電体、並びに導電接続部材に関する。   The present invention relates to a copper alloy fine particle dispersion comprising copper-zinc, a method for producing a sintered conductor for heating and sintering the dispersion, a sintered conductor obtained by the production method, and a conductive connecting member.

ナノメートルサイズ(1μm未満のサイズをいう。以下同じ)の金属微粒子は、比表面積が大きく、粒子径が小さくなるにつれて融点が除々に低下する性質を有し、新しい形態の物質として近年注目されつつある。このナノメートルサイズの金属微粒子は、粒子の種類によって、樹脂との複合化のための微粒子表面修飾、薄膜化技術・粒子の配列、機能素子向けの研究開発が行われ、回路配線、インターコネクター、触媒、電池電極、光機能素子、可視光LED素子などへの応用も検討されている。これらの微粒子の中でも銅−亜鉛からなる銅合金微粒子は、バルク状態でも融点が低いので、ナノメートルサイズの該合金微粒子が商業的に得られれば電気・電子部品等に使用される焼結導電体として有用である。   Metal fine particles of nanometer size (referring to a size of less than 1 μm; hereinafter the same) have a property that the specific surface area is large and the melting point gradually decreases as the particle diameter decreases. is there. This nanometer-sized metal fine particle is subjected to fine particle surface modification for compounding with resin, thin film technology / particle arrangement, research and development for functional elements, depending on the type of particle, circuit wiring, interconnector, Applications to catalysts, battery electrodes, optical functional elements, visible light LED elements, and the like are also being studied. Among these fine particles, copper alloy fine particles made of copper-zinc have a low melting point even in a bulk state, so if nanometer-sized fine particles are commercially obtained, sintered conductors used for electric / electronic parts and the like Useful as.

このようなナノサイズの金属微粒子を製造する方法としては、大きく気相合成法と液相合成法の2種類の製法が知られている。ここで気相合成法とは、気相中に導入した金属蒸気から固体の金属微粒子を形成する方法であり、他方、液相合成法とは、溶液中に分散させた金属イオンを還元することにより金属微粒子を析出させる方法である。また、液相合成法においては、一般にその金属イオンを還元するための還元剤を使用する方法と、電気化学的にカソード電極上で還元を行う方法とが知られている。   As methods for producing such nano-sized metal fine particles, two types of production methods, a gas phase synthesis method and a liquid phase synthesis method, are widely known. Here, the gas phase synthesis method is a method of forming solid metal fine particles from metal vapor introduced into the gas phase, while the liquid phase synthesis method is to reduce metal ions dispersed in a solution. This is a method of depositing metal fine particles. In addition, in the liquid phase synthesis method, there are generally known a method using a reducing agent for reducing the metal ions and a method of electrochemical reduction on the cathode electrode.

また、最近では、金属微粒子を含有するインクを使用して、配線パターンをインクジェットプリンタにより印刷し、焼成して配線を形成する技術が注目されている。しかし、インクジェットプリンタのインクとして、金属微粒子を含有するインクを使用する場合、インク中において分散性を長期間保つことが重要である。そのため、インク中において分散性を長期間保つ金属微粒子の製造方法が提案されている。   In recent years, attention has been paid to a technique for forming a wiring by printing a wiring pattern by an ink jet printer using an ink containing metal fine particles and baking it. However, when ink containing metal fine particles is used as ink for an ink jet printer, it is important to maintain dispersibility in the ink for a long period of time. For this reason, a method for producing fine metal particles that maintains dispersibility in ink for a long period of time has been proposed.

また、金属微粒子分散液を乾燥後に焼成して金属薄膜又は金属細線を得る方法として下記の特許文献が公開されている。銅微粒子を得る方法として、核生成のためのパラジウムイオンを添加すると共に、分散剤としてポリエチレンイミンを添加してポリエチレングリコール又はエチレングリコール溶液中でパラジウムを含有する粒子径50nm以下の銅微粒子を形成し、ついでこの銅微粒子分散液を用いて、基板上にパターン印刷を行うために、4%H−N気流中において250℃/3時間の熱処理を行うことによって、微細な銅の導電膜を形成したことが開示されている(特許文献1)。 Further, the following patent documents are disclosed as a method for obtaining a metal thin film or a metal fine wire by drying a metal fine particle dispersion and then baking it. As a method for obtaining copper fine particles, palladium ions for nucleation are added and polyethylene imine is added as a dispersant to form copper fine particles having a particle diameter of 50 nm or less containing palladium in a polyethylene glycol or ethylene glycol solution. Then, in order to perform pattern printing on the substrate using this copper fine particle dispersion, a fine copper conductive film is formed by performing heat treatment at 250 ° C./3 hours in a 4% H 2 —N 2 stream. The formation is disclosed (Patent Document 1).

1次粒子径が100nm以下である金属酸化物微粒子を含むインクジェット用インクをインクジェット法により基板上に塗布した後、水素ガス雰囲気下で350℃/1時間の熱処理を施して、酸化第一銅の還元を行い、金属配線のパターンを得たことが開示されている(特許文献2)。金属の周りに分散剤として有機金属化合物が付着している金属ナノ粒子をスピンコート法により、基板(ガラス)上に塗布し、100℃で乾燥し、250℃での焼成により銀の薄膜を作製したことが開示されている(特許文献3)。また、ジエチレングリコール中に懸濁された、2次粒子の平均粒子径500nmの酢酸銅を濃度が30質量%になるように濃縮し、さらに超音波処理を施して、導電性インクとした後、スライドガラス上に塗布して、還元雰囲気で350℃/1時間加熱して銅薄膜を得たことが記載されている(特許文献4)。特許文献5には、ピロリン酸金属塩類から有機分散剤の存在下で液相還元反応により得られた、銅−スズ合金微粒子及び銅−スズ−リン合金微粒子をエチレングリコールに分散させた銅合金微粒子分散溶液が開示されている。   An ink-jet ink containing metal oxide fine particles having a primary particle diameter of 100 nm or less was applied on a substrate by an ink-jet method, and then heat-treated at 350 ° C. for 1 hour in a hydrogen gas atmosphere to obtain cuprous oxide. It is disclosed that a metal wiring pattern is obtained by performing reduction (Patent Document 2). Metal nanoparticles with an organometallic compound attached as a dispersant around the metal are applied onto a substrate (glass) by spin coating, dried at 100 ° C., and then fired at 250 ° C. to produce a silver thin film. (Patent Document 3). Further, copper acetate having an average particle diameter of 500 nm suspended in diethylene glycol was concentrated to a concentration of 30% by mass, further subjected to ultrasonic treatment to obtain a conductive ink, and then slides It is described that it was coated on glass and heated in a reducing atmosphere at 350 ° C./1 hour to obtain a copper thin film (Patent Document 4). Patent Document 5 discloses copper alloy fine particles obtained by dispersing copper-tin alloy fine particles and copper-tin-phosphorous alloy fine particles in ethylene glycol obtained by a liquid phase reduction reaction from metal pyrophosphate in the presence of an organic dispersant. Dispersion solutions are disclosed.

特許文献6には、銅合金微粒子が(i)少なくとも、アミド基を有する有機溶媒5〜90体積%、常圧における沸点が20〜100℃である低沸点の有機溶媒5〜45体積%、並びに常圧における沸点が100℃を超え、かつ分子中に1又は2以上のヒドロキシル基を有するアルコール及び/もしくは多価アルコールからなる有機溶媒5〜90体積%含む有機溶媒(1)、(ii)少なくとも、アミド基を有する有機溶媒5〜95体積%、及び常圧における沸点が100℃を超え、かつ分子中に1又は2以上のヒドロキシル基を有するアルコール及び/もしくは多価アルコールからなる有機溶媒5〜95体積%含む有機溶媒(2)、並びに(iii)常圧における沸点が100℃を超え、かつ分子中に1又は2以上のヒドロキシル基を有するアルコール及び/もしくは多価アルコールからなる有機溶媒(3)、にそれぞれ分散された銅微粒子分散溶液が開示されている。   In Patent Document 6, copper alloy fine particles are (i) at least 5 to 90% by volume of an organic solvent having an amide group, 5 to 45% by volume of a low boiling organic solvent having a boiling point of 20 to 100 ° C. at normal pressure, and Organic solvent (1), (ii) containing at least 5 to 90% by volume of an organic solvent composed of an alcohol and / or a polyhydric alcohol having a boiling point of more than 100 ° C. at normal pressure and having one or more hydroxyl groups in the molecule 5 to 95% by volume of an organic solvent having an amide group, and 5 to 10% of an organic solvent composed of an alcohol and / or a polyhydric alcohol having a boiling point exceeding 100 ° C. and having one or more hydroxyl groups in the molecule. An organic solvent (2) containing 95% by volume, and (iii) an alcohol having a boiling point of more than 100 ° C. at normal pressure and one or more hydroxyl groups in the molecule The organic solvent consisting of Le and / or polyhydric alcohol (3), copper particulate dispersion solution dispersed respectively is disclosed.

特開2005−330552号公報JP 2005-330552 A 特開2004−277627号公報JP 2004-277627 A 特開2005−081501号公報Japanese Patent Laying-Open No. 2005-081501 特開2004−323568号公報JP 2004-323568 A 特開2008−248267号公報JP 2008-248267 A 特開2009−030084号公報JP 2009-030084

上記した特許文献1、2をはじめ、特許文献3及び特許文献4における従来の製造方法では、250〜300℃に近い高温で焼結をしなければ、導電性の焼結金属を得ることができず、また、熱処理のときに、水素ガス等の還元剤を使用しなければならないという問題点もあった。特許文献5には液相還元法により得られた銅−スズ合金微粒子及び銅−スズ−リン合金微粒子分散溶液が開示されているが、銅−亜鉛からなる銅合金微粒子は開示されていない。特許文献6には前記3種類の分散溶液が開示されているが、窒素ガス雰囲気中180〜300℃で焼結して焼結膜を得たことが開示されているが、合金微粒子をより低温で焼成できることが望ましい。また、従来の金属又は合金微粒子に使用する還元性有機溶媒として、ヒドロキシル基を2以上有する、高い沸点を有する多価アルコールを多く含む分散溶媒を使用する必要があった。   In the conventional manufacturing methods in Patent Documents 1 and 2 described above, Patent Document 3 and Patent Document 4, a conductive sintered metal can be obtained if sintering is not performed at a high temperature close to 250 to 300 ° C. In addition, there is a problem that a reducing agent such as hydrogen gas must be used during the heat treatment. Patent Document 5 discloses copper-tin alloy fine particles and copper-tin-phosphorus alloy fine particle dispersion obtained by a liquid phase reduction method, but does not disclose copper alloy fine particles composed of copper-zinc. Patent Document 6 discloses the above three types of dispersion solutions. However, it is disclosed that a sintered film was obtained by sintering at 180 to 300 ° C. in a nitrogen gas atmosphere. It is desirable that it can be fired. Further, as a reducing organic solvent used for conventional metal or alloy fine particles, it is necessary to use a dispersion solvent containing a large amount of polyhydric alcohol having two or more hydroxyl groups and having a high boiling point.

本発明者らは、上記従来技術に鑑みて、銅系合金の中でも融点が低く、比較的低温でも還元触媒活性が高い銅−亜鉛からなる銅合金微粒子を使用して焼結する際に、少なくとも1つのヒドロキシル基を有するアルコールを含む分散溶媒を使用しても、該溶媒が還元性を発現して、低温における焼結でも高い結晶子径を有することに起因する、優れた導電性を有する銅−亜鉛からなる銅合金微粒子が得られることを見出し、本発明を完成するに至った。   In view of the above prior art, the present inventors have at least a copper alloy having a low melting point and a copper alloy fine particle composed of copper-zinc having a high reduction catalytic activity even at a relatively low temperature. Even if a dispersion solvent containing an alcohol having one hydroxyl group is used, the solvent exhibits excellent reducibility, and has excellent conductivity due to having a high crystallite size even when sintered at a low temperature. -It discovered that the copper alloy fine particle which consists of zinc was obtained, and came to complete this invention.

即ち、本発明は、以下の(1)〜(10)に記載する発明を要旨とする。
(1)銅−亜鉛からなる銅合金微粒子中に3〜32質量%の亜鉛が固溶している、平均一次粒子径が1〜80nmの銅合金微粒子が、少なくとも1つのヒドロキシル基を有する有機化合物(S1)を含有している有機溶媒(S)中に分散していることを特徴とする、銅合金微粒子分散液(以下、第1の態様ということがある)。
)前記有機溶媒(S)の常圧における沸点が140℃以上であることを特徴とする、前記(1)に記載の銅合金微粒子分散液。
That is, this invention makes the summary the invention described in the following (1)-( 10 ).
(1) An organic compound in which copper alloy fine particles having an average primary particle diameter of 1 to 80 nm have at least one hydroxyl group, in which 3 to 32% by mass of zinc is solid-solved in copper alloy fine particles composed of copper- zinc. A copper alloy fine particle dispersion liquid (hereinafter sometimes referred to as a first embodiment) characterized by being dispersed in an organic solvent (S) containing (S1).
( 2 ) The copper alloy fine particle dispersion described in (1) above, wherein the boiling point of the organic solvent (S) at normal pressure is 140 ° C. or higher.

)前記有機化合物(S1)がヒドロキシル基の結合している炭素原子に1又は2の水素原子が結合している有機化合物であることを特徴とする、前記(1)又は(2)に記載の銅合金微粒子分散液。
)前記有機溶媒(S)の常圧における沸点が300℃以下であることを特徴とする、前記(1)から()のいずれかに記載の銅合金微粒子分散液。
)前記有機溶媒(S)が1つのヒドロキシル基を有する有機化合物(S11)に2つ以上のヒドロキシル基を有する有機化合物(S12)を配合することにより、有機溶媒(S)の常圧における沸点が140℃以上300℃以下に調整された有機溶媒とすることを特徴とする、前記(1)から()のいずれかに記載の銅合金微粒子分散液。
)前記1つのヒドロキシル基を有する有機化合物(S11)がメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、2,2−ジメチル−1−プロパノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、3−メチル−1−ブタノール、2−メチル−1−ブタノール、2,2ジメチル−1−プロパノール、3−メチル−2−ブタノール、2−メチル−2−ブタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2−メチル−2−ヘキサノール、2−メチル−3−ヘキサノール、1−ヘプタノール、2−ヘプタノール、4−ヘプタノール、2−エチル−1−ヘキサノール、1−オクタノール、及び2−オクタノールから選択される1種又は2種以上であることを特徴とする、前記()に記載の銅合金微粒子分散液。
( 3 ) In the above (1) or (2) , the organic compound (S1) is an organic compound in which one or two hydrogen atoms are bonded to a carbon atom to which a hydroxyl group is bonded. The copper alloy fine particle dispersion described.
( 4 ) The copper alloy fine particle dispersion according to any one of (1) to ( 3 ), wherein the organic solvent (S) has a boiling point of 300 ° C. or less at normal pressure.
( 5 ) The organic solvent (S) is mixed with the organic compound (S12) having two or more hydroxyl groups in the organic compound (S11) having one hydroxyl group, so that the organic solvent (S) at normal pressure The copper alloy fine particle dispersion according to any one of (1) to ( 3 ), wherein the organic solvent has a boiling point adjusted to 140 ° C. or higher and 300 ° C. or lower.
( 6 ) The organic compound (S11) having one hydroxyl group is methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2- Propanol, 2,2-dimethyl-1-propanol, 1-pentanol, 2-pentanol, 3-pentanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 2,2 dimethyl-1- Propanol, 3-methyl-2-butanol, 2-methyl-2-butanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-2-hexanol, 2-methyl-3-hexanol, 1-heptanol, 2-heptanol, 4-heptanol, 2-ethyl-1-hexanol, 1-octanol, And wherein the at least one selected from the beauty octanol, copper alloy particulate dispersion according to (5).

)前記2つ以上のヒドロキシル基を有する有機化合物(S12)がエチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2−ブテン−1,4−ジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセロール、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、及び1,2,4−ブタントリオールの中から選択される1種又は2種以上であることを特徴とする、前記()に記載の銅合金微粒子分散液。
)前記(1)から()までのいずれかに記載の銅合金微粒子分散液を基板に塗布し、大気雰囲気中、もしくは不活性ガス雰囲気中で、有機溶媒(S)の沸点よりも50〜40℃低い温度範囲で加熱・焼結することにより、基板上に銅合金微粒子の導電体を形成することを特徴とする焼結導電体の製造方法(以下、第2の態様ということがある)。
)前記()に記載の導電体の製造方法によって製造された、結晶子径が30nm以上であることを特徴とする焼結導電体(以下、第3の態様ということがある)。
10)前記(1)から()のいずれかに記載の銅合金微粒子分散液を電子部品における半導体素子もしくは回路基板の電極端子又は導電性基板の接合面に載せた後、該銅合金微粒子分散液上に更に接続する他方の電極端子又は導電性基板の接合面を配置して加熱処理により焼結して形成された導電接続部材(以下、第4の態様ということがある)。
( 7 ) The organic compound (S12) having two or more hydroxyl groups is ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol. 1,4-butanediol, 2-butene-1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, glycerol, 1,1,1-trishydroxymethylethane, 2-ethyl One or two selected from 2-hydroxymethyl-1,3-propanediol, 1,2,6-hexanetriol, 1,2,3-hexanetriol, and 1,2,4-butanetriol The copper alloy fine particle dispersion according to ( 5 ) above, wherein the copper alloy fine particle dispersion is a seed or more.
( 8 ) The copper alloy fine particle dispersion according to any one of (1) to ( 7 ) above is applied to a substrate, and in an air atmosphere or an inert gas atmosphere, the boiling point of the organic solvent (S) is exceeded. A method for producing a sintered conductor (hereinafter referred to as a second embodiment), characterized in that a copper alloy fine particle conductor is formed on a substrate by heating and sintering in a temperature range lower by 50 to 40 ° C. is there).
( 9 ) A sintered conductor produced by the method for producing a conductor according to ( 8 ) above, having a crystallite diameter of 30 nm or more (hereinafter sometimes referred to as a third embodiment).
( 10 ) After placing the copper alloy fine particle dispersion according to any one of (1) to ( 7 ) on a semiconductor element or an electrode terminal of a circuit board in an electronic component or a bonding surface of a conductive substrate, the copper alloy fine particle A conductive connecting member formed by disposing a bonding surface of the other electrode terminal or the conductive substrate to be further connected on the dispersion and sintering by heat treatment (hereinafter sometimes referred to as a fourth aspect).

(イ)前記(1)に記載の銅合金微粒子分散液は、銅−亜鉛からなる銅合金微粒子の表面の触媒活性が著しく高いので、焼結の際にヒドロキシル基を1つ有する有機化合物を含む分散溶液を使用した場合でも、該有機化合物から水素ガスを発生させて還元性ガス雰囲気を形成する。従って、これまで不活性雰囲気中での焼成工程においてヒドロキシル基を2つ以上有する有機化合物を多く含む分散溶液を使用することが不可欠であったが、ヒドロキシル基を少なくとも1つ有する有機化合物を含む分散溶液中でも、150℃以下の低温における焼結でも導電性の高い焼結導電体を得ることが可能になる。
(ロ)前記()に記載の焼結導電体の製造方法は、前記の通り、銅−亜鉛からなる銅合金微粒子の表面の触媒活性が著しく高いので、焼結の際に還元性ガス雰囲気を形成するので有機溶媒(S)の沸点よりも50〜40℃低い温度範囲で焼結することが可能となる。
(ハ)前記()に記載の銅−亜鉛合金からなる焼結導電体は、銅合金微粒子表面で還元と焼結が促進されて焼結される結果、結晶子が成長して結晶子径が30nm以上となり、抵抗率が300μΩcm以下程度の高い導電性を有している。また、銅−亜鉛からなる合金は熱欠陥、比抵抗値、付着力等の特性に優れ、配線材料としての特性に優れ、更に、ガラス基板との高い付着力を有していることが知られている(日本金属学会誌、72巻No.9、P.703〜707参照)。
(ニ)前記(10)に記載の銅−亜鉛合金からなる導電接続部材は、200℃以下の低温で焼結させても導電性が高く、電極端子、導電性基板等の接合面との付着力にも優れている。
(A) Since the copper alloy fine particle dispersion described in (1) has a remarkably high catalytic activity on the surface of copper alloy fine particles made of copper-zinc, it contains an organic compound having one hydroxyl group during sintering. Even when a dispersion solution is used, hydrogen gas is generated from the organic compound to form a reducing gas atmosphere. Therefore, it has been essential to use a dispersion solution containing a large amount of an organic compound having two or more hydroxyl groups in the baking step in an inert atmosphere until now. A sintered conductor having high conductivity can be obtained even in a solution or even at a low temperature of 150 ° C. or lower.
(B) As described above, the method for producing a sintered conductor according to ( 8 ) has a remarkably high catalytic activity on the surface of the copper alloy fine particles made of copper-zinc. Therefore, sintering can be performed in a temperature range lower by 50 to 40 ° C. than the boiling point of the organic solvent (S).
(C) The sintered conductor made of the copper-zinc alloy according to ( 9 ) is sintered by promoting reduction and sintering on the surface of the copper alloy fine particles. Is 30 nm or more, and has a high conductivity of about 300 μΩcm or less in resistivity. Also, copper-zinc alloys are known to have excellent characteristics such as thermal defects, specific resistance values, adhesion, etc., excellent properties as wiring materials, and high adhesion to glass substrates. (Refer to the Journal of the Japan Institute of Metals, Vol. 72, No. 9, pages 703-707).
(D) The conductive connecting member made of the copper-zinc alloy described in ( 10 ) has high conductivity even when sintered at a low temperature of 200 ° C. or less, and is attached to the joint surface of an electrode terminal, a conductive substrate or the like. Excellent wearing power.

以下、本発明の〔1〕第1の態様である「銅合金微粒子分散液」、〔2〕第2の態様である「焼結導電体の製造方法」、〔3〕第3の態様である「焼結導電体」、及び〔4〕第4の態様である「導電接続部材」について詳述する。
〔1〕第1の態様である「銅合金微粒子分散液」について
本発明の第1の態様である、銅合金微粒子分散液は、銅−亜鉛からなる銅合金微粒子中に3〜32質量%の亜鉛が固溶している、平均一次粒子径が1〜80nmの銅合金微粒子が、少なくとも1つのヒドロキシル基を有する有機化合物(S1)を含有している有機溶媒(S)中に分散していることを特徴とする。
(1)銅合金微粒子について
銅合金微粒子は、銅−亜鉛からなる、平均一次粒子径が1〜80nmの銅合金微粒子である。銅合金微粒子は、常温付近で該合金中の亜鉛量が〜32質量%の範囲固有している合金を形成する。銅に亜鉛が含有された合金は、触媒活性を有している。このような触媒活性は合金中の亜鉛濃度が20質量%で最も大きくなるので(NIREニュース、工業技術院資源環境技術研究所、No.6、2000年、P.5〜8参照)、銅−亜鉛からなる銅合金微粒子を焼結する際には、銅合金微粒子中に好ましくは5〜20質量%の亜鉛が固溶していると、銅単独よりは高い触媒活性が発揮される。これにより、アルコール、ポリオール等の還元能がより高くなり、焼結された導電体の導電性がより高いものを得ることができる。
Hereinafter, [1] “Copper alloy fine particle dispersion” according to the first aspect of the present invention, [2] “Method for producing sintered conductor” according to the second aspect, and [3] Third aspect. The “sintered conductor” and [4] “conductive connection member” as the fourth aspect will be described in detail.
[1] About the “copper alloy fine particle dispersion” as the first aspect The copper alloy fine particle dispersion as the first aspect of the present invention is 3 to 32 mass% in the copper alloy fine particles composed of copper- zinc . Copper alloy fine particles having an average primary particle diameter of 1 to 80 nm in which zinc is dissolved are dispersed in an organic solvent (S) containing an organic compound (S1) having at least one hydroxyl group. It is characterized by that.
(1) About copper alloy fine particles Copper alloy fine particles are copper alloy fine particles comprising copper-zinc and having an average primary particle diameter of 1 to 80 nm. The copper alloy fine particles form an alloy having an intrinsic zinc content in the range of 3 to 32% by mass in the vicinity of room temperature. An alloy containing zinc in copper has catalytic activity. Such catalytic activity is the highest when the zinc concentration in the alloy is 20% by mass (see NIRE News, National Institute of Advanced Industrial Science and Technology, No. 6, 2000, P. 5-8). When sintering copper alloy fine particles made of zinc, when 5 to 20% by mass of zinc is preferably dissolved in the copper alloy fine particles, higher catalytic activity than copper alone is exhibited. Thereby, reducing ability, such as alcohol and polyol, becomes higher, and a sintered conductor having higher conductivity can be obtained.

平均一次粒子径が1〜80nmの銅合金微粒子は、例えば還元反応水溶液として下記(i)〜(iv)の還元反応水溶液1〜4のいずれかを選択して、pH4.5〜13とすれば、通常の電解還元反応により製造することが可能である。
(i)少なくとも硫酸銅、硫酸亜鉛、錯化剤(a)、有機分散剤、及び無機分散剤を含む、還元反応水溶液(還元反応水溶液1)、
(ii)少なくとも塩化第一銅、水溶性亜鉛化合物、錯化剤(b)、有機分散剤、及び無機分散剤を含む、還元反応水溶液(還元反応水溶液2)、
(iii)少なくとも酒石酸銅、酸化亜鉛、有機分散剤、及び無機分散剤を含む、還元反応水溶液(還元反応水溶液3)、又は
(iv)少なくとも酢酸銅、酢酸亜鉛、有機分散剤、及び無機分散剤を含む、還元反応水溶液(還元反応水溶液4)
尚、銅合金微粒子を電解還元反応で製造する際、一次粒子の平均粒径の制御は、電極間の電圧、金属イオン濃度、有機分散剤、無機分散剤、温度、時間、pH等の調整により行うことが可能である。
尚、上記錯化剤(a)としてはグリセリン、トリエタノールアミン等、錯化剤(b)としてはチオ硫酸ナトリウム等、を使用でき、有機分散剤、及び無機分散剤は特許文献5、6に記載されているものを使用することができる。
上記製造方法により製造が可能である、本発明の銅−亜鉛からなる銅合金微粒子は、平均一次粒子径が1〜80nmであり、また平均アスペクト比は好ましくは10以下、より好ましくは5以下である。尚、一次粒子の平均一次粒子径と平均アスペクトは、透過型電子顕微鏡(TEM)で観察して求めることができる。本発明において平均一次粒子径は透過型電子顕微鏡で観察可能な粒子の数平均粒子径である。
If the copper alloy fine particles having an average primary particle diameter of 1 to 80 nm are, for example, selected from the following (i) to (iv) reduction reaction aqueous solutions 1 to 4 as the reduction reaction aqueous solution, the pH is 4.5 to 13: It can be produced by a usual electrolytic reduction reaction.
(I) A reduction reaction aqueous solution (reduction reaction aqueous solution 1) containing at least copper sulfate, zinc sulfate, a complexing agent (a), an organic dispersant, and an inorganic dispersant,
(Ii) a reduction reaction aqueous solution (reduction reaction aqueous solution 2) containing at least cuprous chloride, a water-soluble zinc compound, a complexing agent (b), an organic dispersant, and an inorganic dispersant;
(Iii) Reduction reaction aqueous solution (reduction reaction aqueous solution 3) containing at least copper tartrate, zinc oxide, an organic dispersing agent, and an inorganic dispersing agent, or (iv) At least copper acetate, zinc acetate, an organic dispersing agent, and an inorganic dispersing agent. Reduction reaction aqueous solution (reduction reaction aqueous solution 4)
When producing copper alloy fine particles by electrolytic reduction reaction, the average particle size of primary particles is controlled by adjusting the voltage between electrodes, metal ion concentration, organic dispersant, inorganic dispersant, temperature, time, pH, etc. Is possible.
As the complexing agent (a), glycerin, triethanolamine and the like can be used, and as the complexing agent (b), sodium thiosulfate and the like can be used, and organic dispersants and inorganic dispersants are disclosed in Patent Documents 5 and 6. What is described can be used.
The copper alloy fine particles comprising copper-zinc of the present invention that can be produced by the above production method have an average primary particle diameter of 1 to 80 nm and an average aspect ratio of preferably 10 or less, more preferably 5 or less. is there. In addition, the average primary particle diameter and average aspect of a primary particle can be calculated | required by observing with a transmission electron microscope (TEM). In the present invention, the average primary particle diameter is the number average particle diameter of particles observable with a transmission electron microscope.

(2)有機溶媒(S)について
有機溶媒(S)は、少なくとも1つのヒドロキシル基を有する有機化合物(S1)を含有している有機溶媒である。このような有機溶媒を選択することにより、本発明の銅合金微粒子を焼結する際に、有機化合物(S1)が還元雰囲気を形成して150℃以下の比較的低温でも焼結が可能となる。このような還元性雰囲気は、銅−亜鉛からなる銅合金微粒子を焼結する際に、有機化合物(S1)に結合しているヒドロキシル基部分が該銅合金微粒子の触媒作用により還元されて水素ガスを発生することにより形成されると推定される。この場合、銅−亜鉛からなる銅合金微粒子以外で、触媒活性を示さないか低い触媒活性しか有しない金属、合金の場合には、1つのヒドロキシル基を有する有機化合物(S11)では還元性雰囲気が形成されず、2つ以上のヒドロキシル基を有する有機化合物(S12)を多く含む有機溶媒(S)の使用が必要となる。
(2) Organic solvent (S) The organic solvent (S) is an organic solvent containing an organic compound (S1) having at least one hydroxyl group. By selecting such an organic solvent, when the copper alloy fine particles of the present invention are sintered, the organic compound (S1) forms a reducing atmosphere and can be sintered even at a relatively low temperature of 150 ° C. or lower. . In such a reducing atmosphere, when the copper alloy fine particles made of copper-zinc are sintered, the hydroxyl group bonded to the organic compound (S1) is reduced by the catalytic action of the copper alloy fine particles so that hydrogen gas It is presumed that it is formed by generating In this case, in the case of a metal or alloy having no catalytic activity or low catalytic activity other than copper alloy fine particles composed of copper-zinc, the reducing compound has a reducing atmosphere in the organic compound (S11) having one hydroxyl group. It is not formed, and it is necessary to use an organic solvent (S) containing a large amount of an organic compound (S12) having two or more hydroxyl groups.

有機溶媒(S)中の、少なくとも1つのヒドロキシル基を有する有機化合物(S1)の含有量は、5体積%以上が好ましく、より好ましくは20体積%以上、更に好ましくは40体積%以上である。有機溶媒(S)中の、少なくとも1つのヒドロキシル基を有する有機化合物(S1)濃度の上限範囲は特に制限されるものではなく、他の有機溶媒との組合せなどにより適宜設定することができる。又、有機溶媒(S)の常圧における沸点は、前記銅−亜鉛からなる銅合金微粒子の触媒活性と銅合金微粒子の焼結温度を考慮すると、140℃以上が好ましい。又、250℃以下の低温で熱処理する事が望ましい点から有機溶媒(S)の常圧における沸点が300℃以下であることが好ましい。このような有機溶媒(S)の沸点は、1つのヒドロキシル基を有する有機化合物(S11)に2つ以上のヒドロキシル基を有する有機化合物(S12)を配合して、有機溶媒(S)の常圧における沸点が140℃以上300℃以下に調整することが可能である。   The content of the organic compound (S1) having at least one hydroxyl group in the organic solvent (S) is preferably 5% by volume or more, more preferably 20% by volume or more, and still more preferably 40% by volume or more. The upper limit of the concentration of the organic compound (S1) having at least one hydroxyl group in the organic solvent (S) is not particularly limited, and can be appropriately set depending on the combination with other organic solvents. Further, the boiling point of the organic solvent (S) at normal pressure is preferably 140 ° C. or higher in consideration of the catalytic activity of the copper alloy fine particles made of copper-zinc and the sintering temperature of the copper alloy fine particles. Moreover, it is preferable that the boiling point in the normal pressure of an organic solvent (S) is 300 degrees C or less from the point that it is desirable to heat-process at a low temperature of 250 degrees C or less. The boiling point of such an organic solvent (S) is obtained by blending an organic compound (S12) having two or more hydroxyl groups into an organic compound (S11) having one hydroxyl group, and the normal pressure of the organic solvent (S). The boiling point in can be adjusted to 140 ° C. or more and 300 ° C. or less.

前記有機化合物(S1)中にヒドロキシル基が結合している炭素原子に1又は2の水素原子が結合している有機化合物が含有されていると、銅−亜鉛合金微粒子による触媒作用を受けて、水素ガスを発生し易くなるので、銅−亜鉛合金微粒子の焼結が促進される。
前記1つのヒドロキシル基を有する有機化合物(S11)として、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、2,2−ジメチル−1−プロパノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、3−メチル−1−ブタノール、2−メチル−1−ブタノール、2,2ジメチル−1−プロパノール、3−メチル−2−ブタノール、2−メチル−2−ブタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2−メチル−2−ヘキサノール、2−メチル−3−ヘキサノール、1−ヘプタノール、2−ヘプタノール、4−ヘプタノール、2−エチル−1−ヘキサノール、1−オクタノール、及び2−オクタノールから選択される1種又は2種以上が挙げられる。
When the organic compound (S1) contains an organic compound in which one or two hydrogen atoms are bonded to a carbon atom to which a hydroxyl group is bonded, the organic compound (S1) is catalyzed by copper-zinc alloy fine particles, Since hydrogen gas is easily generated, sintering of copper-zinc alloy fine particles is promoted.
As the organic compound having one hydroxyl group (S11), methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 2,2-dimethyl-1-propanol, 1-pentanol, 2-pentanol, 3-pentanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 2,2 dimethyl-1-propanol, 3-methyl-2-butanol, 2-methyl-2-butanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-2-hexanol, 2-methyl-3-hexanol, 1-heptanol, 2- Heptanol, 4-heptanol, 2-ethyl-1-hexanol, 1-octanol, and One or more selected from 2-octanol and the like.

前記2つ以上のヒドロキシル基を有する有機化合物(S12)として、エチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2−ブテン−1,4−ジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセロール、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、及び1,2,4−ブタントリオールの中から選択される1種又は2種以上が挙げられる。   Examples of the organic compound (S12) having two or more hydroxyl groups include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, , 4-butanediol, 2-butene-1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, glycerol, 1,1,1-trishydroxymethylethane, 2-ethyl-2 One or more selected from hydroxymethyl-1,3-propanediol, 1,2,6-hexanetriol, 1,2,3-hexanetriol, and 1,2,4-butanetriol Is mentioned.

また、有機溶媒(S12)として、トレイトール、エリトリト−ル、ペンタエリスリト−ル、ペンチト−ル、キシリトール、リビトール、アラビトール、ヘキシト−ル、マンニトール、ソルビトール、ズルシトール、グリセルアルデヒド、ジオキシアセトン、トレオース、エリトルロース、エリトロース、アラビノース、リボース、リブロース、キシロース、キシルロース、リキソース、グルコ−ス、フルクト−ス、マンノース、イドース、ソルボース、グロース、タロース、タガトース、ガラクトース、アロース、アルトロース、ラクト−ス、キシロ−ス、アラビノ−ス、イソマルト−ス、グルコヘプト−ス、ヘプト−ス、マルトトリオース、ラクツロース、及びトレハロース、等の糖類も使用することが可能であるが、これらの中で融点が高いものについては他の有機溶媒と混合して使用することができる。
有機化合物(S1)は、優れた分散性を有しており、一般に時間の経過により分散溶液中の微粒子同士は接合する傾向にあるが、有機化合物(S1)を混合溶媒中に存在させるとこのような接合をより効果的に抑制して、分散液の一層の長期安定化を図ることが可能になる。また有機化合物(S1)を有機溶媒(S)中に存在させると、その微粒子分散液を基板上に塗布して焼結した際、その焼結膜の均一性が向上し、導電性の高い焼成膜を得ることが出来る。
Further, as the organic solvent (S12), threitol, erythritol, pentaerythritol, pentitol, xylitol, ribitol, arabitol, hexitol, mannitol, sorbitol, dulcitol, glyceraldehyde, dioxyacetone, Throse, erythrulose, erythrose, arabinose, ribose, ribulose, xylose, xylulose, lyxose, glucose, fructose, mannose, idose, sorbose, gulose, talose, tagatose, galactose, allose, altrose, lactose, xylo -Sugars such as sucrose, arabinose, isomaltose, glucoheptose, heptose, maltotriose, lactulose and trehalose can also be used, of which the melting point For high it can be used as a mixture with other organic solvents.
The organic compound (S1) has excellent dispersibility, and generally the fine particles in the dispersion solution tend to join with the passage of time. However, when the organic compound (S1) is present in the mixed solvent, Such bonding can be suppressed more effectively, and further long-term stabilization of the dispersion can be achieved. In addition, when the organic compound (S1) is present in the organic solvent (S), when the fine particle dispersion is applied on the substrate and sintered, the uniformity of the sintered film is improved, and the fired film having high conductivity. Can be obtained.

有機溶媒(S)として、有機化合物(S1)以外に使用できる溶媒は特に限定されるものではないが、以下に記載する有機溶媒(A)、有機溶媒(B)等が挙げられる。
有機溶媒(A)は、アミド基(−CONH−)を有する化合物であり、特に比誘電率が高いものが好ましい。アミド基を有する有機溶媒(A)として、N−メチルアセトアミド(191.3 at 32℃)、N−メチルホルムアミド(182.4 at 20℃)、N−メチルプロパンアミド(172.2 at 25℃)、ホルムアミド(111.0 at 20℃)、N,N−ジメチルアセトアミド(37.78 at 25℃)、1,3−ジメチル−2−イミダゾリジノン(37.6 at 25℃)、N,N−ジメチルホルムアミド(36.7 at 25℃)、1−メチル−2−ピロリドン(32.58 at 25℃)、ヘキサメチルホスホリックトリアミド(29.0 at 20℃)、2−ピロリジノン、ε−カプロラクタム、アセトアミド等が挙げられるが、これらを混合して使用することもできる。尚、上記アミド基を有する化合物名の後の括弧中の数字は各溶媒の測定温度における比誘電率を示す。これらの中でも比誘電率が100以上である、N−メチルアセトアミド、N−メチルホルムアミド、ホルムアミド、アセトアミドなどが好適に使用できる。尚、N−メチルアセトアミド(融点:26〜28℃)のように常温で固体の場合には他の溶媒と混合して作業温度で液状として使用することができる。有機溶媒(A)は、混合溶媒中で微粒子の分散性と保存安定性を向上する作用を有し、また本発明の微粒子分散液を基板上に塗布後焼成して得られる焼成膜の導電性を向上する作用をも有する。
As the organic solvent (S), a solvent that can be used other than the organic compound (S1) is not particularly limited, and examples thereof include the organic solvent (A) and the organic solvent (B) described below.
The organic solvent (A) is a compound having an amide group (—CONH—), and preferably has a high relative dielectric constant. As an organic solvent (A) having an amide group, N-methylacetamide (191.3 at 32 ° C.), N-methylformamide (182.4 at 20 ° C.), N-methylpropanamide (172.2 at 25 ° C.) , Formamide (111.0 at 20 ° C.), N, N-dimethylacetamide (37.78 at 25 ° C.), 1,3-dimethyl-2-imidazolidinone (37.6 at 25 ° C.), N, N— Dimethylformamide (36.7 at 25 ° C.), 1-methyl-2-pyrrolidone (32.58 at 25 ° C.), hexamethylphosphoric triamide (29.0 at 20 ° C.), 2-pyrrolidinone, ε-caprolactam, Acetamide and the like can be mentioned, but these can also be mixed and used. The number in parentheses after the name of the compound having an amide group indicates the relative dielectric constant at the measurement temperature of each solvent. Among these, N-methylacetamide, N-methylformamide, formamide, acetamide and the like having a relative dielectric constant of 100 or more can be preferably used. In addition, when it is solid at normal temperature like N-methylacetamide (melting point: 26-28 degreeC), it can mix with another solvent and can be used as a liquid state at working temperature. The organic solvent (A) has the effect of improving the dispersibility and storage stability of the fine particles in the mixed solvent, and the conductivity of the fired film obtained by applying the fine particle dispersion of the present invention to the substrate and baking it. It also has the effect of improving.

有機溶媒(B)として、一般式R−O−R(R、Rは、それぞれ独立にアルキル基で、炭素原子数は1〜4である。)で表されるエーテル系化合物(B1)、一般式R−C(=O)−R(R、Rは、それぞれ独立にアルキル基で、炭素原子数は1〜2である。)で表されるケトン系化合物(B2)、及び一般式R−(N−R)−R(R、R、Rは、それぞれ独立にアルキル基、又は水素原子で、炭素原子数は0〜2である。)で表されるアミン系化合物(B3)、の中から選択される1種又は2種以上が挙げられる。
前記エーテル系化合物(B1)としては、ジエチルエーテル(35℃)、メチルプロピルエーテル(31℃)、ジプロピルエーテル(89℃)、ジイソプロピルエーテル(68℃)、メチル−t−ブチルエーテル(55.3℃)、t−アミルメチルエーテル(85℃)、ジビニルエーテル(28.5℃)、エチルビニルエーテル(36℃)、アリルエーテル(94℃)等が例示出来る。
前記ケトン系化合物(B2)としては、アセトン(56.5℃)、メチルエチルケトン(79.5℃)、ジエチルケトン(100℃)等が例示できる。
また、前記アミン系化合物(B3)としては、トリエチルアミン(89.7℃)、ジエチルアミン(55.5℃)等が例示できる。
As the organic solvent (B), an ether compound represented by the general formula R 1 —O—R 2 (wherein R 1 and R 2 are each independently an alkyl group and has 1 to 4 carbon atoms). B1), a ketone compound represented by the general formula R 4 —C (═O) —R 5 (wherein R 4 and R 5 are each independently an alkyl group and has 1 to 2 carbon atoms). B2), and the general formula R 6 - (N-R 7 ) -R 8 (R 6, R 7, R 8 each independently represent an alkyl group, or a hydrogen atom, the number of carbon atoms is 0-2. 1 type (s) or 2 or more types selected from among the amine compounds (B3) represented by
Examples of the ether compound (B1) include diethyl ether (35 ° C.), methyl propyl ether (31 ° C.), dipropyl ether (89 ° C.), diisopropyl ether (68 ° C.), methyl-t-butyl ether (55.3 ° C.). ), T-amyl methyl ether (85 ° C.), divinyl ether (28.5 ° C.), ethyl vinyl ether (36 ° C.), allyl ether (94 ° C.) and the like.
Examples of the ketone compound (B2) include acetone (56.5 ° C.), methyl ethyl ketone (79.5 ° C.), diethyl ketone (100 ° C.) and the like.
Examples of the amine compound (B3) include triethylamine (89.7 ° C.) and diethylamine (55.5 ° C.).

有機溶媒(B)は、混合溶媒中で溶媒分子間の相互作用を低下させ、分散粒子の溶媒に対する親和性を向上する作用を有していると考えられる。このような効果は一般に沸点の低い溶媒において期待され、特に常温における沸点が100℃以下の有機溶媒は、有効な溶媒分子間の相互作用を低減する効果が得られることから好ましい。有機溶媒(B)の中でも特にエーテル系化合物(B1)が、その溶媒分子間の相互作用を低減する効果が大きいことから好ましい。
更に、上記以外の他の有機溶媒成分を配合する場合には、テトラヒドロフラン、ジグライム、エチレンカルボナート、プロピレンカルボナート、スルホラン、ジメチルスルホキシド等の極性有機溶媒を使用することができる。
The organic solvent (B) is considered to have an action of reducing the interaction between solvent molecules in the mixed solvent and improving the affinity of the dispersed particles to the solvent. Such an effect is generally expected in a solvent having a low boiling point. Particularly, an organic solvent having a boiling point of 100 ° C. or less at normal temperature is preferable because an effect of reducing the interaction between effective solvent molecules is obtained. Among the organic solvents (B), ether compounds (B1) are particularly preferable because they have a large effect of reducing the interaction between the solvent molecules.
Furthermore, when other organic solvent components other than the above are blended, polar organic solvents such as tetrahydrofuran, diglyme, ethylene carbonate, propylene carbonate, sulfolane, dimethyl sulfoxide, and the like can be used.

〔2〕第2の態様である「焼結導電体の製造方法」について
第2の態様である「焼結導電体の製造方法」は、第1の態様である「銅合金微粒子分散液」を基板に塗布し、大気雰囲気中、もしくは不活性ガス雰囲気中で、有機溶媒(S)の沸点よりも50〜40℃低い温度範囲で焼結することにより、基板上に銅合金微粒子の導電体を形成することを特徴とする。
第1の態様である、銅−亜鉛からなる銅合金微粒子中に3〜32質量%の亜鉛が固溶している、平均一次粒子径が1〜80nmの銅合金微粒子が、有機溶媒(S)に分散されている銅合金微粒子分散液は、例えば百数拾℃から200℃程度の比較的低温でかつ水素ガス等の還元剤を使用することなくインクジェット等により基板上に配置して焼成し、導電性を有する焼結導電体を形成することが可能である。
前述の通り、銅−亜鉛からなる銅合金微粒子はその合金表面の触媒活性度が著しく高いので、有機化合物(S1)から水素ガスを発生させる還元作用を発揮するので、150℃以下での焼結温度でも焼結導電体を形成することが可能となる。
上記基板は特に制限はなく使用目的等により、ガラス、ポリイミド等が使用でき、焼成前に予め乾燥工程を設けることが望ましい。乾燥条件は、使用する有機溶媒(S)にもよるが例えば100〜200℃で15〜30分程度であり、焼成条件は、塗布厚みにもよるが有機溶媒(S)の沸点よりも50〜40℃低い温度範囲で焼結することが望ましい。例えば190〜250℃、20〜40分間程度で焼結することができる。






[2] About “Method for Producing Sintered Conductor” as Second Aspect “Method for Producing Sintered Conductor” as Second Aspect is the “Copper Alloy Fine Particle Dispersion” as the first aspect. The conductor of copper alloy fine particles is applied on the substrate by applying it to the substrate and sintering it in an air atmosphere or in an inert gas atmosphere at a temperature range lower by 50 to 40 ° C. than the boiling point of the organic solvent (S). It is characterized by forming.
The copper alloy fine particles having an average primary particle diameter of 1 to 80 nm, in which 3 to 32% by mass of zinc is solid-solved in copper alloy fine particles made of copper-zinc , which is the first aspect, are an organic solvent (S). The copper alloy fine particle dispersion dispersed in the substrate is fired by placing it on the substrate by inkjet or the like without using a reducing agent such as hydrogen gas at a relatively low temperature of, for example, hundreds of degrees Celsius to 200 ° C., It is possible to form a sintered conductor having conductivity.
As described above, the copper alloy fine particles made of copper-zinc have a remarkably high catalytic activity on the surface of the alloy, so that the reduction effect of generating hydrogen gas from the organic compound (S1) is exhibited. A sintered conductor can be formed even at a temperature.
There is no restriction | limiting in particular in the said board | substrate, Glass, a polyimide, etc. can be used by a use purpose etc., It is desirable to provide a drying process previously before baking. Although drying conditions depend on the organic solvent (S) to be used, it is, for example, about 15 to 30 minutes at 100 to 200 ° C., and the firing conditions are 50 to 50% higher than the boiling point of the organic solvent (S), depending on the coating thickness. It is desirable to sinter at a temperature range as low as 40 ° C. For example, sintering can be performed at 190 to 250 ° C. for about 20 to 40 minutes.






〔3〕第3の態様である「焼結導電体」について
第3の態様である「焼結導電体」は、第2の態様の「焼結導電体の製造方法」によって製造された、結晶子径が30nm以上であることを特徴とする。第2の態様である「焼結導電体の製造方法」により得られた第3の態様の焼結導電体は、前記銅合金微粒子の表面での還元と焼結が促進されて焼結された結晶粒子が成長する結果、結晶子径が30nm以上の焼結導電体となる。このような結晶子径の大きい焼結導電体は、抵抗率が300μΩcm以下程度の高い導電性を有する。銅−亜鉛合金微粒子焼結体は、前述の通り、銅−スズ合金微粒子焼結体よりも耐酸化性、電気伝導率、熱伝導率、および基板との密着力が高い。
[3] About the “sintered conductor” as the third aspect The “sintered conductor” as the third aspect is a crystal manufactured by the “method for manufacturing a sintered conductor” according to the second aspect. The child diameter is 30 nm or more. The sintered conductor of the third aspect obtained by the “method for producing a sintered conductor” which is the second aspect was sintered by promoting reduction and sintering on the surface of the copper alloy fine particles. As a result of the growth of crystal grains, a sintered conductor having a crystallite diameter of 30 nm or more is obtained. Such a sintered conductor having a large crystallite diameter has high conductivity with a resistivity of about 300 μΩcm or less. As described above, the copper-zinc alloy fine particle sintered body has higher oxidation resistance, electrical conductivity, thermal conductivity, and adhesion to the substrate than the copper-tin alloy fine particle sintered body.

〔4〕第4の態様である「導電接続部材」について
第4の態様の「導電接続部材」は、前記第1の態様に記載された銅合金微粒子分散液(以下、銅合金微粒子分散液(A)ということがある)を電子部品における半導体素子もしくは回路基板の電極端子又は導電性基板の接合面に載せた後、該銅合金微粒子分散液上に更に接続する他方の電極端子又は導電性基板の接合面を配置して加熱処理により焼結して形成された導電接続部材である。
[4] About the “conductive connection member” according to the fourth aspect The “conductive connection member” according to the fourth aspect is the copper alloy fine particle dispersion described in the first aspect (hereinafter, copper alloy fine particle dispersion ( A)) is placed on the electrode surface of the semiconductor element or circuit board of the electronic component or the bonding surface of the conductive substrate, and the other electrode terminal or conductive substrate further connected on the copper alloy fine particle dispersion This is a conductive connection member formed by arranging the joint surfaces and sintering by heat treatment.

(1)導電接続部材の作製
導電接続部材としては半導体素子間を接合するための導電性バンプ、半導体素子と導電性基板間を接合するための導電性ダイボンド部等が挙げられるがこれらに限定されない。
導電性バンプは、銅合金微粒子分散液(A)を電子部品における半導体素子もしくは回路基板の電極端子の接合面に載せ(塗布、印刷等も含まれる)、該銅合金微粒子分散液(A)上に更に接続する他方の電極端子の接合面を配置した後、加熱処理、又は加圧下に加熱処理により焼結して形成される。前記接続する他方の電極端子にはワイヤボンディングを行う場合の金ワイヤ等のワイヤも含まれる。尚、前記銅合金微粒子分散液(A)上に更に接続する他方の電極端子の接合面を配置する際に位置合わせを行うことが望ましい。
導電性ダイボンド部は、通常、銅合金微粒子分散液(A)を電子部品における回路基板の接合面に載せ(塗布、印刷等も含まれる)、該銅合金微粒子分散液(A)上に更に接続する他方の電極端子の接合面を配置した後、加熱処理、又は加圧下に加熱処理により焼結して形成される。
(1) Production of conductive connection member Examples of the conductive connection member include, but are not limited to, a conductive bump for bonding between semiconductor elements, and a conductive die bond part for bonding between a semiconductor element and a conductive substrate. .
The conductive bump is formed by placing the copper alloy fine particle dispersion (A) on the bonding surface of the electrode terminal of the semiconductor element or circuit board in the electronic component (including coating and printing), and on the copper alloy fine particle dispersion (A). After the bonding surface of the other electrode terminal to be further connected is arranged, it is formed by sintering by heat treatment or heat treatment under pressure. The other electrode terminal to be connected includes a wire such as a gold wire when wire bonding is performed. In addition, it is desirable to perform alignment when arranging the joining surface of the other electrode terminal to be further connected on the copper alloy fine particle dispersion (A).
The conductive die bond part usually places the copper alloy fine particle dispersion (A) on the bonding surface of the circuit board in the electronic component (including coating and printing) and further connects on the copper alloy fine particle dispersion (A). After the bonding surface of the other electrode terminal to be arranged is disposed, the heat treatment is performed or the heat treatment is performed under pressure and the heat treatment is performed.

前記加圧下の加熱処理は、両電極端子間、又は電極端子と基板間の加圧により導電接続部材前躯体と両電極端子接合面、又は電極端子と導電性基板間との接合を確実にするか、または導電接続部材前躯体に適切な変形を生じさせて電極端子接合面との確実な接合を行うことができるとともに、導電接続部材前躯体と電極端子接合面との接合面積が大きくなり、接合信頼性を一層向上することができる。また、半導体素子と導電接続部材前躯体間を加圧型ヒートツ−ル等を用いて加圧下で焼成すると、接合部での焼結性が向上してより良好な接合部が得られる。
前記両電極端子間、又は電極端子と基板間の加圧は、0.5〜15MPaが好ましい。
The heat treatment under pressure ensures the bonding between the conductive connecting member precursor and both electrode terminal bonding surfaces, or between the electrode terminals and the conductive substrate by pressing between the electrode terminals or between the electrode terminals and the substrate. Or, it is possible to cause an appropriate deformation in the conductive connection member precursor and perform reliable bonding with the electrode terminal joint surface, and the joint area between the conductive connection member precursor and the electrode terminal joint surface is increased. Bonding reliability can be further improved. Further, when the semiconductor element and the conductive connecting member precursor are fired under pressure using a pressure-type heat tool or the like, the sinterability at the joint is improved and a better joint is obtained.
The pressure between the electrode terminals or between the electrode terminal and the substrate is preferably 0.5 to 15 MPa.

銅合金微粒子分散液(A)を半導体素子の電極端子等の上に載せて導電性バンプ前躯体、導電性ダイボンド部前躯体等の導電接続部材前躯体を形成する手段としては、例えば公知のスクリーン印刷、後述するレジスト等により、電極端子の接続部に開口部を形成して該開口部に銅合金微粒子分散液(A)を載せるために塗布する方法等が挙げられる。スクリーン印刷を使用する場合には、半導体素子の電極端子等の上に版膜(レジスト)が設けられたスクリーン版を配置して、その上に銅合金微粒子分散液(A)を載せてスキージで該分散液(A)を摺動すると、銅合金微粒子分散液(A)はレジストのない部分のスクリーンを通過して、電極端子等の上に転移して、導電性バンプ前躯体、導電性ダイボンド部前躯体等の導電接続部材前躯体が形成される。
銅合金微粒子分散液(A)を充填するための開口部形成方法としては、露光・現像工程を経て感光性樹脂層にパターンを形成するフォトリソグラフィー方法、レーザー光、電子線、イオンビーム等の高エネルギー線を素子上に設けた絶縁樹脂層に照射して、加熱による溶融もしくは樹脂の分子結合を切断するアブレーションにより該樹脂層に開口部を形成する方法がある。これらの中で、実用性の点からフォトリソグラフィー法、又はレーザー光を用いたアブレーションによる開口部形成方法が好ましい。加熱処理(焼結)後に、半導体素子上の電極端子と、回路基板の電極端子とが電気的接続を確保できるように接触させるための位置合わせは、例えば、半導体素子上の電極端子と、テープリール等で搬送されてきた導電性基板の接続電極端子部とを光学装置等を用いて行うことができる。
As a means for forming a conductive connection member precursor such as a conductive bump precursor or a conductive die bond part precursor by placing the copper alloy fine particle dispersion (A) on an electrode terminal or the like of a semiconductor element, for example, a known screen Examples thereof include a method of forming an opening at the connection portion of the electrode terminal by printing, a resist described later, and applying the copper alloy fine particle dispersion (A) on the opening. When screen printing is used, a screen plate provided with a plate film (resist) is placed on an electrode terminal or the like of a semiconductor element, and a copper alloy fine particle dispersion (A) is placed on the screen plate with a squeegee. When the dispersion liquid (A) is slid, the copper alloy fine particle dispersion liquid (A) passes through the screen where there is no resist and is transferred onto the electrode terminal or the like to form a conductive bump precursor, a conductive die bond. A conductive connecting member precursor such as a part precursor is formed.
As an opening forming method for filling the copper alloy fine particle dispersion (A), a photolithographic method in which a pattern is formed on the photosensitive resin layer through an exposure / development process, a laser beam, an electron beam, an ion beam, etc. There is a method of irradiating an insulating resin layer provided on an element with an energy beam and forming an opening in the resin layer by ablation that melts by heating or breaks a molecular bond of the resin. Among these, from the viewpoint of practicality, a photolithography method or an opening formation method by ablation using laser light is preferable. After the heat treatment (sintering), the electrode terminal on the semiconductor element and the electrode terminal on the circuit board are aligned so as to ensure electrical connection, for example, the electrode terminal on the semiconductor element and the tape The connection electrode terminal portion of the conductive substrate conveyed by a reel or the like can be performed using an optical device or the like.

半導体素子の電極端子上等の上に形成され、対となる端子電極と接している状態のバンプ前駆体、ダイボンド部前駆体等の導電接続部材前駆体は、好ましくは200℃以下の、有機溶媒(S)の沸点よりも50〜40℃低い温度範囲で加熱処理(焼結)して導電接続部材を形成することにより、半導体素子の電極端子等と相対する端子電極等を該導電接続部材を介して電気的、機械的に接合する。   Conductive connection member precursors such as bump precursors and die bond part precursors formed on the electrode terminals of the semiconductor element and in contact with the paired terminal electrodes are preferably an organic solvent at 200 ° C. or lower. The conductive connection member is formed by heat treatment (sintering) in a temperature range lower by 50 to 40 ° C. than the boiling point of (S), so that the terminal electrode facing the electrode terminal of the semiconductor element is connected to the conductive connection member. It is joined electrically and mechanically.

以下に本発明を実施例により具体的に説明するが、本発明は以下の実施例に記載される方法に限定されるものではない。
[実施例1]
まず、銅イオンとして酢酸銅0.1モル/L、亜鉛イオンとして酢酸亜鉛0.003モル/L、無機分散剤として酢酸ナトリウム0.01モル/L、有機分散剤としてポリビニルピロリドン(数平均分子量:3500)5g/Lを含有する1000mlの還元反応水溶液を調製した。pHは約5.0であった。
次にこの溶液中で2cm四方の銅シートからなる陽極(アノード電極)と白金基板からなる陰極(カソード電極)間を浴温25℃、電流密度15A/dmで30分間通電を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅と亜鉛からなる合金微粒子を得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the methods described in the following examples.
[Example 1]
First, copper acetate 0.1 mol / L as copper ions, zinc acetate 0.003 mol / L as zinc ions, sodium acetate 0.01 mol / L as inorganic dispersant, polyvinylpyrrolidone as organic dispersant (number average molecular weight: 3500) A 1000 ml reduction reaction aqueous solution containing 5 g / L was prepared. The pH was about 5.0.
Next, in this solution, a current was applied between an anode (anode electrode) made of a 2 cm square copper sheet and a cathode (cathode electrode) made of a platinum substrate at a bath temperature of 25 ° C. and a current density of 15 A / dm 2 for 30 minutes. The obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain alloy fine particles composed of copper and zinc.

その後、得られた銅合金微粒子と50mlのエタノールとを試験管に入れ、超音波ホモジナイザーを用いてよく撹拌した後、遠心分離機で粒子成分を回収するエタノール洗浄を3回、続いて、同じく試験管中で、得られた銅合金微粒子と50mlの1−ブタノールとを入れよく撹拌した後、遠心分離機で銅合金微粒子を回収する1−ブタノール洗浄を3回行った。
上記の方法によって得られた銅合金微粒子を、分散溶媒である1−オクタノールに添加、超音波ホモジナイザーを用いて攪拌し、本発明の銅合金微粒子分散液が得られた。得られた銅合金微粒子分散液をカーボン蒸着された銅メッシュ上に塗布後、乾燥し、上記透過型電子顕微鏡(TEM)で観察を行ったところ、粒子の90%以上の一次粒子径は5〜50nmの範囲で、平均アスペクト比は1.5であった。また、エネルギー分散型X線分析装置(EDS)による分析結果、合金組成は、銅97質量%、亜鉛3質量%の合金(以下、銅−3%亜鉛合金のように表示することがある。)であった。また、動的光散乱型粒度分布測定装置による測定で、二次凝集サイズが500nm以下であることが確認できた。
After that, the obtained copper alloy fine particles and 50 ml of ethanol are put in a test tube, stirred well using an ultrasonic homogenizer, and then washed with ethanol three times to collect the particle components with a centrifuge, followed by the same test. In a tube, the obtained copper alloy fine particles and 50 ml of 1-butanol were put and stirred well, and then 1-butanol washing for recovering the copper alloy fine particles with a centrifuge was performed three times.
The copper alloy fine particles obtained by the above method were added to 1-octanol as a dispersion solvent and stirred using an ultrasonic homogenizer to obtain a copper alloy fine particle dispersion of the present invention. The obtained copper alloy fine particle dispersion was applied onto a carbon-deposited copper mesh, dried, and observed with the transmission electron microscope (TEM). The primary particle diameter of 90% or more of the particles was 5 to 5%. In the range of 50 nm, the average aspect ratio was 1.5. Further, as a result of analysis by an energy dispersive X-ray analyzer (EDS), the alloy composition is an alloy of 97% by mass of copper and 3% by mass of zinc (hereinafter sometimes referred to as a copper-3% zinc alloy). Met. Moreover, it was confirmed by the measurement with a dynamic light scattering type particle size distribution measuring device that the secondary aggregation size was 500 nm or less.

[実施例2]
酢酸亜鉛濃度を0.01モル/Lとした以外は実施例1と同様に、還元反応水溶液を調製し、電解還元反応を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅と亜鉛からなる合金微粒子を得た。
その後、得られた銅合金微粒子と50mlのエタノールとを試験管に入れ、超音波ホモジナイザーを用いてよく撹拌した後、遠心分離機で粒子成分を回収するエタノール洗浄を3回、続いて、同じく試験管中で、得られた銅合金微粒子と50mlの1−ブタノールとを入れよく撹拌した後、遠心分離機で銅合金微粒子を回収する1−ブタノール洗浄を3回行った。
上記の方法によって得られた銅合金微粒子を、分散溶媒である1−オクタノールに添加、超音波ホモジナイザーを用いて攪拌し、本発明の銅合金微粒子分散液が得られた。
得られた銅合金微粒子分散液をカーボン蒸着された銅メッシュ上に塗布後、乾燥し、上記透過型電子顕微鏡(TEM)で観察を行ったところ、粒子の90%以上の一次粒子径は5〜50nmの範囲で、平均アスペクト比は1.5であった。また、エネルギー分散型X線分析装置(EDS)による分析結果、合金組成は、銅90質量%、亜鉛10質量%の合金であった。
また、動的光散乱型粒度分布測定装置による測定で、二次凝集サイズが500nm以下であることが確認できた。
[Example 2]
A reduction reaction aqueous solution was prepared and an electrolytic reduction reaction was performed in the same manner as in Example 1 except that the zinc acetate concentration was 0.01 mol / L. The obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain alloy fine particles composed of copper and zinc.
After that, the obtained copper alloy fine particles and 50 ml of ethanol are put in a test tube, stirred well using an ultrasonic homogenizer, and then washed with ethanol three times to collect the particle components with a centrifuge, followed by the same test. In a tube, the obtained copper alloy fine particles and 50 ml of 1-butanol were put and stirred well, and then 1-butanol washing for recovering the copper alloy fine particles with a centrifuge was performed three times.
The copper alloy fine particles obtained by the above method were added to 1-octanol as a dispersion solvent and stirred using an ultrasonic homogenizer to obtain a copper alloy fine particle dispersion of the present invention.
The obtained copper alloy fine particle dispersion was applied onto a carbon-deposited copper mesh, dried, and observed with the transmission electron microscope (TEM). The primary particle diameter of 90% or more of the particles was 5 to 5%. In the range of 50 nm, the average aspect ratio was 1.5. As a result of analysis by an energy dispersive X-ray analyzer (EDS), the alloy composition was an alloy of 90% by mass of copper and 10% by mass of zinc.
Moreover, it was confirmed by the measurement with a dynamic light scattering type particle size distribution measuring device that the secondary aggregation size was 500 nm or less.

[実施例3]
酢酸亜鉛濃度を0.05モル/Lとした以外は実施例1と同様に、還元反応水溶液を調製し、電解還元反応を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅と亜鉛からなる合金微粒子を得た。
その後、得られた銅合金微粒子と50mlのエタノールとを試験管に入れ、超音波ホモジナイザーを用いてよく撹拌した後、遠心分離機で粒子成分を回収するエタノール洗浄を3回、続いて、同じく試験管中で、得られた銅合金微粒子と50mlの1−ブタノールとを入れよく撹拌した後、遠心分離機で銅合金微粒子を回収する1−ブタノール洗浄を3回行った。
上記の方法によって得られた銅合金微粒子を、分散溶媒である1−オクタノールに添加、超音波ホモジナイザーを用いて攪拌し、本発明の銅合金微粒子分散液が得られた。
得られた銅合金微粒子分散液をカーボン蒸着された銅メッシュ上に塗布後、乾燥し、上記透過型電子顕微鏡(TEM)で観察を行ったところ、粒子の90%以上の一次粒子径は5〜50nmの範囲で、平均アスペクト比は1.5であった。また、エネルギー分散型X線分析装置(EDS)による分析結果、合金組成は、銅70質量%、亜鉛30質量%の合金であった。また、動的光散乱型粒度分布測定装置による測定で、二次凝集サイズが500nm以下であることが確認できた。
[Example 3]
A reduction reaction aqueous solution was prepared and an electrolytic reduction reaction was performed in the same manner as in Example 1 except that the zinc acetate concentration was 0.05 mol / L. The obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain alloy fine particles composed of copper and zinc.
After that, the obtained copper alloy fine particles and 50 ml of ethanol are put in a test tube, stirred well using an ultrasonic homogenizer, and then washed with ethanol three times to collect the particle components with a centrifuge, followed by the same test. In a tube, the obtained copper alloy fine particles and 50 ml of 1-butanol were put and stirred well, and then 1-butanol washing for recovering the copper alloy fine particles with a centrifuge was performed three times.
The copper alloy fine particles obtained by the above method were added to 1-octanol as a dispersion solvent and stirred using an ultrasonic homogenizer to obtain a copper alloy fine particle dispersion of the present invention.
The obtained copper alloy fine particle dispersion was applied onto a carbon-deposited copper mesh, dried, and observed with the transmission electron microscope (TEM). The primary particle diameter of 90% or more of the particles was 5 to 5%. In the range of 50 nm, the average aspect ratio was 1.5. As a result of analysis by an energy dispersive X-ray analyzer (EDS), the alloy composition was an alloy of 70 mass% copper and 30 mass% zinc. Moreover, it was confirmed by the measurement with a dynamic light scattering type particle size distribution measuring device that the secondary aggregation size was 500 nm or less.

[実施例4]
酢酸亜鉛濃度を0.01モル/Lとした以外は実施例1と同様に、還元反応水溶液を調製し、電解還元反応を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅と亜鉛からなる合金微粒子を得た。
その後、得られた銅合金微粒子と50mlのエタノールとを試験管に入れ、超音波ホモジナイザーを用いてよく撹拌した後、遠心分離機で粒子成分を回収するエタノール洗浄を3回、続いて、同じく試験管中で、得られた銅合金微粒子と50mlの1−ブタノールとを入れよく撹拌した後、遠心分離機で銅合金微粒子を回収する1−ブタノール洗浄を3回行った。
上記の方法によって得られた銅合金微粒子を、分散溶媒であるエタノール10体積%とエチレングリコール90体積%の混合溶媒に添加、超音波ホモジナイザーを用いて攪拌し、本発明の銅合金微粒子分散液が得られた。
得られた銅合金微粒子分散液をカーボン蒸着された銅メッシュ上に塗布後、乾燥し、上記透過型電子顕微鏡(TEM)で観察を行ったところ、粒子の90%以上の一次粒子径は5〜50nmの範囲で、平均アスペクト比は1.5であった。また、エネルギー分散型X線分析装置(EDS)による分析結果、合金組成は、銅90質量%、亜鉛10質量%の合金であった。
また、動的光散乱型粒度分布測定装置による測定で、二次凝集サイズが500nm以下であることが確認できた。
[Example 4]
A reduction reaction aqueous solution was prepared and an electrolytic reduction reaction was performed in the same manner as in Example 1 except that the zinc acetate concentration was 0.01 mol / L. The obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain alloy fine particles composed of copper and zinc.
After that, the obtained copper alloy fine particles and 50 ml of ethanol are put in a test tube, stirred well using an ultrasonic homogenizer, and then washed with ethanol three times to collect the particle components with a centrifuge, followed by the same test. In a tube, the obtained copper alloy fine particles and 50 ml of 1-butanol were put and stirred well, and then 1-butanol washing for recovering the copper alloy fine particles with a centrifuge was performed three times.
The copper alloy fine particles obtained by the above method are added to a mixed solvent of 10% by volume of ethanol and 90% by volume of ethylene glycol, which is a dispersion solvent, and stirred using an ultrasonic homogenizer. Obtained.
The obtained copper alloy fine particle dispersion was applied onto a carbon-deposited copper mesh, dried, and observed with the transmission electron microscope (TEM). The primary particle diameter of 90% or more of the particles was 5 to 5%. In the range of 50 nm, the average aspect ratio was 1.5. As a result of analysis by an energy dispersive X-ray analyzer (EDS), the alloy composition was an alloy of 90% by mass of copper and 10% by mass of zinc.
Moreover, it was confirmed by the measurement with a dynamic light scattering type particle size distribution measuring device that the secondary aggregation size was 500 nm or less.

[比較例1]
下記方法により、評価用の銅微粒子分散液を調製した。
酢酸亜鉛濃度を0モル/Lとした以外は実施例1と同様に、還元反応水溶液を調製し、電解還元反応を行った。得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去して、銅微粒子を得た。
その後、得られた銅微粒子と50mlのエタノールとを試験管に入れ、超音波ホモジナイザーを用いてよく撹拌した後、遠心分離機で粒子成分を回収するエタノール洗浄を3回、続いて、同じく試験管中で、得られた銅微粒子と50mlの1−ブタノールとを入れよく撹拌した後、遠心分離機で銅微粒子を回収する1−ブタノール洗浄を3回行った。
上記の方法によって得られた銅微粒子を、分散溶媒である1−オクタノールに添加、超音波ホモジナイザーを用いて攪拌し、評価用の銅微粒子分散液が得られた。
得られた銅微粒子分散液をカーボン蒸着された銅メッシュ上に塗布後、乾燥し、上記透過型電子顕微鏡(TEM)で観察を行ったところ、粒子の90%以上の一次粒子径は5〜50nmの範囲で、平均アスペクト比は1.5であった。また、動的光散乱型粒度分布測定装置による測定で、二次凝集サイズが500nm以下であることが確認できた。
[Comparative Example 1]
A copper fine particle dispersion for evaluation was prepared by the following method.
A reduction reaction aqueous solution was prepared and an electrolytic reduction reaction was performed in the same manner as in Example 1 except that the zinc acetate concentration was changed to 0 mol / L. The obtained colloid solution was collected on an aluminum mesh to which a carbon support film was attached, and the solvent was removed by drying to obtain copper fine particles.
After that, the obtained copper fine particles and 50 ml of ethanol are put into a test tube, stirred well using an ultrasonic homogenizer, and then washed with ethanol three times to collect the particle components with a centrifuge, followed by the same test tube. Inside, the obtained copper fine particles and 50 ml of 1-butanol were put and stirred well, and then 1-butanol was washed three times to collect the copper fine particles with a centrifuge.
The copper fine particles obtained by the above method were added to 1-octanol as a dispersion solvent and stirred using an ultrasonic homogenizer to obtain a copper fine particle dispersion for evaluation.
The obtained copper fine particle dispersion was applied onto a carbon-deposited copper mesh, dried, and observed with the transmission electron microscope (TEM). The primary particle size of 90% or more of the particles was 5 to 50 nm. In this range, the average aspect ratio was 1.5. Moreover, it was confirmed by the measurement with a dynamic light scattering type particle size distribution measuring device that the secondary aggregation size was 500 nm or less.

[実施例5、比較例2]
上記実施例1〜4で得られた銅合金微粒子分散液、及び比較例1で得られた銅微粒子分散液をスピンコータでガラス基板(サイズ:2cm×2cm)に塗布して、窒素ガス雰囲気中150℃で30分間加熱・焼成して塗膜を乾燥させた後、熱処理炉中でゆっくりと室温まで炉冷した。以上の工程により、銅−亜鉛からなる合金で構成された導電部材(焼成膜)と銅のみで構成された焼成膜が形成された。直流四端子法(使用測定機:三菱化学製、ロレスターGP(四端子電気抵抗測定モード))にて該焼成膜の抵抗値を測定した。
比較例1で得たサンプルから調製した焼成膜についての比抵抗値は、50Ωcmと高い値であったのに対し、実施例1で得たサンプルから調製した焼成膜についての比抵抗値は、300μΩcm、実施例2で得たサンプルから調製した焼成膜についての比抵抗値は、25μΩcm、実施例3で得たサンプルから調製した焼成膜についての比抵抗値は、80μΩcm、実施例4で得たサンプルから調製した焼成膜についての比抵抗値は、15μΩcm、と小さい比抵抗値を示した。このように、銅と亜鉛からなる合金微粒子分散液を用いることで、150℃程度の低い温度の焼成でも導電性を示す導電部材が形成可能であり、微粒子中の合金組成によって、焼成した導電部材の電気抵抗が調整できることが判った。
[Example 5, Comparative Example 2]
The copper alloy fine particle dispersions obtained in Examples 1 to 4 and the copper fine particle dispersion obtained in Comparative Example 1 were applied to a glass substrate (size: 2 cm × 2 cm) with a spin coater, and 150 in a nitrogen gas atmosphere. The coating film was dried by heating and baking at 30 ° C. for 30 minutes, and then slowly cooled to room temperature in a heat treatment furnace. Through the above steps, a conductive member (fired film) made of an alloy made of copper-zinc and a fired film made only of copper were formed. The resistance value of the fired film was measured by a direct current four-terminal method (use measuring machine: Mitsubishi Chemical, Lorester GP (four-terminal electric resistance measurement mode)).
The specific resistance value for the fired film prepared from the sample obtained in Comparative Example 1 was as high as 50 Ωcm, whereas the specific resistance value for the fired film prepared from the sample obtained in Example 1 was 300 μΩcm. The specific resistance value for the fired film prepared from the sample obtained in Example 2 is 25 μΩcm, the specific resistance value for the fired film prepared from the sample obtained in Example 3 is 80 μΩcm, and the sample obtained in Example 4 The specific resistance value of the fired film prepared from No. 1 was as small as 15 μΩcm. In this way, by using an alloy fine particle dispersion composed of copper and zinc, a conductive member exhibiting conductivity can be formed even when firing at a low temperature of about 150 ° C., and depending on the alloy composition in the fine particles, the fired conductive member It was found that the electrical resistance can be adjusted.

[実施例6]
上記実施例1〜4で得られた銅合金微粒子分散液、及び比較例1で得られた銅微粒子分散液を銅基板(サイズ:2cm×2cm)に焼結後の導電接続部材の厚みが80μmとなるようにそれぞれ塗布した後、熱処理炉中で、半導体シリコンチップ(サイズ:4mm×4mm)を塗布膜上に押し付けて、窒素ガス雰囲気中200℃で30分間加熱・焼成させた後、ゆっくりと室温まで炉冷した。以上の工程により、銅−亜鉛からなる合金で構成された焼結体を介して半導体素子と導体基板が接合された。基板表面に接合されたシリコンチップを米国MIL‐STD‐883に準拠したダイシェア強度評価装置を用いて、25℃において、ダイシェア強度を評価したところ、実施例1で得られた銅合金微粒子分散液を用いて基板表面に接合されたシリコンチップのダイシェア強度は15N/mm、実施例2で得られた銅合金微粒子分散液を用いて基板表面に接合されたシリコンチップのダイシェア強度は25N/mm、実施例3で得られた銅合金微粒子分散液を用いて基板表面に接合されたシリコンチップのダイシェア強度は20N/mm、実施例4で得られた銅合金微粒子分散液を用いて基板表面に接合されたシリコンチップのダイシェア強度は40N/mmであった。比較として、上記比較例1で得られた銅微粒子分散液を用いて基板表面に接合されたシリコンチップのダイシェア強度を評価したところ、5N/mmであった。このように、銅と亜鉛からなる合金微粒子分散液を用いることで、200℃程度の低い温度の焼成でも半導体素子と導体基板を接合できることが判った。
[Example 6]
The thickness of the conductive connecting member after sintering the copper alloy fine particle dispersion obtained in Examples 1 to 4 and the copper fine particle dispersion obtained in Comparative Example 1 on a copper substrate (size: 2 cm × 2 cm) is 80 μm. After each coating, a semiconductor silicon chip (size: 4 mm × 4 mm) was pressed onto the coating film in a heat treatment furnace, heated and fired at 200 ° C. for 30 minutes in a nitrogen gas atmosphere, and then slowly The furnace was cooled to room temperature. Through the above steps, the semiconductor element and the conductor substrate were joined through the sintered body made of an alloy made of copper-zinc. When the die shear strength of the silicon chip bonded to the substrate surface was evaluated at 25 ° C. using a die shear strength evaluation device compliant with US MIL-STD-883, the copper alloy fine particle dispersion obtained in Example 1 was obtained. die shear strength of the silicon chip bonded to the substrate surface using the 15N / mm 2, the die shear strength of the silicon chip bonded to the substrate surface using a copper alloy particle dispersion obtained in example 2 25 N / mm 2 The die shear strength of the silicon chip bonded to the substrate surface using the copper alloy fine particle dispersion obtained in Example 3 is 20 N / mm 2 , and the substrate surface using the copper alloy fine particle dispersion obtained in Example 4 is used. The die shear strength of the silicon chip bonded to was 40 N / mm 2 . As a comparison, the die shear strength of the silicon chip bonded to the substrate surface using the copper fine particle dispersion obtained in Comparative Example 1 was evaluated to be 5 N / mm 2 . Thus, it was found that the semiconductor element and the conductor substrate can be joined even by firing at a low temperature of about 200 ° C. by using the alloy fine particle dispersion liquid composed of copper and zinc.

Claims (10)

銅−亜鉛からなる銅合金微粒子中に3〜32質量%の亜鉛が固溶している、平均一次粒子径が1〜80nmの銅合金微粒子が、少なくとも1つのヒドロキシル基を有する有機化合物(S1)を含有している有機溶媒(S)中に分散していることを特徴とする、銅合金微粒子分散液。 Copper - zinc 3 to 32% by weight of copper alloy fine particles comprising zinc were contained in solid solution, an average primary particle diameter of copper alloy fine particles of 1 to 80 nm, an organic compound having at least one hydroxyl group (S1) Dispersed in an organic solvent (S) containing a copper alloy fine particle dispersion. 前記有機溶媒(S)の常圧における沸点が140℃以上であることを特徴とする、請求項1に記載の銅合金微粒子分散液。   The copper alloy fine particle dispersion according to claim 1, wherein the boiling point of the organic solvent (S) at normal pressure is 140 ° C or higher. 前記有機化合物(S1)がヒドロキシル基の結合している炭素原子に1又は2の水素原子が結合している有機化合物であることを特徴とする、請求項1又は2に記載の銅合金微粒子分散液。 The copper alloy fine particle dispersion according to claim 1 or 2 , wherein the organic compound (S1) is an organic compound in which one or two hydrogen atoms are bonded to a carbon atom to which a hydroxyl group is bonded. liquid. 前記有機溶媒(S)の常圧における沸点が300℃以下であることを特徴とする、請求項1かのいずれかに記載の銅合金微粒子分散液。 The boiling point at atmospheric pressure of the organic solvent (S) is equal to or is 300 ° C. or less, the copper alloy particle dispersion according to any one of claims 1 or 3. 前記有機溶媒(S)が1つのヒドロキシル基を有する有機化合物(S11)に2つ以上のヒドロキシル基を有する有機化合物(S12)を配合することにより、有機溶媒(S)の常圧における沸点が140℃以上300℃以下に調整された有機溶媒とすることを特徴とする、請求項1からのいずれかに記載の銅合金微粒子分散液。 By blending the organic compound (S12) having two or more hydroxyl groups with the organic compound (S11) having one hydroxyl group, the organic solvent (S) has a boiling point of 140 at atmospheric pressure. The copper alloy fine particle dispersion according to any one of claims 1 to 3 , wherein the organic solvent is adjusted to a temperature of not lower than 300 ° C and not higher than 300 ° C. 前記1つのヒドロキシル基を有する有機化合物(S11)がメタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、2,2−ジメチル−1−プロパノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、3−メチル−1−ブタノール、2−メチル−1−ブタノール、2,2ジメチル−1−プロパノール、3−メチル−2−ブタノール、2−メチル−2−ブタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2−メチル−2−ヘキサノール、2−メチル−3−ヘキサノール、1−ヘプタノール、2−ヘプタノール、4−ヘプタノール、2−エチル−1−ヘキサノール、1−オクタノール、及び2−オクタノールから選択される1種又は2種以上であることを特徴とする、請求項に記載の銅合金微粒子分散液。 The organic compound (S11) having one hydroxyl group is methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 2 , 2-dimethyl-1-propanol, 1-pentanol, 2-pentanol, 3-pentanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 2,2 dimethyl-1-propanol, 3 -Methyl-2-butanol, 2-methyl-2-butanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-2-hexanol, 2-methyl-3-hexanol, 1-heptanol, 2-heptanol 4-heptanol, 2-ethyl-1-hexanol, 1-octanol, and 2- And wherein the at least one selected from Kutanoru, copper alloy particle dispersion according to claim 5. 前記2つ以上のヒドロキシル基を有する有機化合物(S12)がエチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2−ブテン−1,4−ジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、グリセロール、1,1,1−トリスヒドロキシメチルエタン、2−エチル−2−ヒドロキシメチル−1,3−プロパンジオール、1,2,6−ヘキサントリオール、1,2,3−ヘキサントリオール、及び1,2,4−ブタントリオールの中から選択される1種又は2種以上であることを特徴とする、請求項に記載の銅合金微粒子分散液。 The organic compound (S12) having two or more hydroxyl groups is ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1, 4-butanediol, 2-butene-1,4-diol, 2,3-butanediol, pentanediol, hexanediol, octanediol, glycerol, 1,1,1-trishydroxymethylethane, 2-ethyl-2- One or more selected from hydroxymethyl-1,3-propanediol, 1,2,6-hexanetriol, 1,2,3-hexanetriol, and 1,2,4-butanetriol The copper alloy fine particle dispersion according to claim 5 , wherein the copper alloy fine particle dispersion is provided. 請求項1からのいずれかに記載の銅合金微粒子分散液を基板に塗布し、大気雰囲気中、もしくは不活性ガス雰囲気中で、有機溶媒(S)の沸点よりも50〜40℃低い温度範囲で加熱・焼結することにより、基板上に銅合金微粒子の導電体を形成することを特徴とする焼結導電体の製造方法。 A copper alloy fine particle dispersion according to any one of claims 1 to 7 is applied to a substrate, and the temperature is lower by 50 to 40 ° C than the boiling point of the organic solvent (S) in an air atmosphere or an inert gas atmosphere. A method for producing a sintered conductor, comprising forming a conductor of copper alloy fine particles on a substrate by heating and sintering in step (a). 請求項に記載の導電体の製造方法によって製造された、結晶子径が30nm以上であることを特徴とする焼結導電体。 A sintered conductor produced by the method for producing a conductor according to claim 8 , wherein the crystallite diameter is 30 nm or more. 請求項1からのいずれかに記載の銅合金微粒子分散液を電子部品における半導体素子もしくは回路基板の電極端子又は導電性基板の接合面に載せた後、該銅合金微粒子分散液上に更に接続する他方の電極端子又は導電性基板の接合面を配置して加熱処理により焼結して形成された導電接続部材。
The copper alloy fine particle dispersion according to any one of claims 1 to 7 is placed on an electrode terminal of a semiconductor element or a circuit board in an electronic component or a bonding surface of a conductive substrate, and further connected onto the copper alloy fine particle dispersion. A conductive connecting member formed by placing the other electrode terminal or the bonding surface of the conductive substrate and sintering by heat treatment.
JP2011058937A 2010-03-26 2011-03-17 Copper alloy fine particle dispersion, method for producing sintered conductor, sintered conductor, and conductive connecting member Expired - Fee Related JP5520861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058937A JP5520861B2 (en) 2010-03-26 2011-03-17 Copper alloy fine particle dispersion, method for producing sintered conductor, sintered conductor, and conductive connecting member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010071733 2010-03-26
JP2010071733 2010-03-26
JP2011058937A JP5520861B2 (en) 2010-03-26 2011-03-17 Copper alloy fine particle dispersion, method for producing sintered conductor, sintered conductor, and conductive connecting member

Publications (2)

Publication Number Publication Date
JP2011219862A JP2011219862A (en) 2011-11-04
JP5520861B2 true JP5520861B2 (en) 2014-06-11

Family

ID=45037194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058937A Expired - Fee Related JP5520861B2 (en) 2010-03-26 2011-03-17 Copper alloy fine particle dispersion, method for producing sintered conductor, sintered conductor, and conductive connecting member

Country Status (1)

Country Link
JP (1) JP5520861B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000011B2 (en) * 2012-07-31 2016-09-28 古河電気工業株式会社 Copper fine particle dispersion and conductive material
KR102118308B1 (en) * 2012-11-26 2020-06-03 미쓰이금속광업주식회사 Copper powder and method for producing same
JP5922561B2 (en) * 2012-11-29 2016-05-24 株式会社ノリタケカンパニーリミテド Conductive paste preparation condition evaluation system
US8946894B2 (en) * 2013-02-18 2015-02-03 Triquint Semiconductor, Inc. Package for high-power semiconductor devices
JP6037893B2 (en) * 2013-02-26 2016-12-07 新日鉄住金化学株式会社 Metal fine particle composition, bonding material, electronic component, method for forming bonding layer, method for forming conductor layer, and ink composition
JP6032110B2 (en) * 2013-04-17 2016-11-24 株式会社豊田中央研究所 Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
WO2015118982A1 (en) * 2014-02-04 2015-08-13 株式会社村田製作所 Electronic component module, and manufacturing method of electronic component module
JP2015209575A (en) * 2014-04-28 2015-11-24 住友電気工業株式会社 Metal fine particle dispersion, production method of metal fine particle dispersion, production method of metal film and metal film
JP7014664B2 (en) * 2018-03-30 2022-02-01 日揮触媒化成株式会社 Alloy particle dispersion and its manufacturing method
EP3950175A1 (en) 2019-03-29 2022-02-09 Mitsui Mining & Smelting Co., Ltd. Bonding material and bonded structure

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238505A (en) * 1988-07-27 1990-02-07 Furukawa Electric Co Ltd:The Manufacture of metal super fine powder
JP2001118424A (en) * 1999-10-19 2001-04-27 Kawatetsu Mining Co Ltd Copper alloy powder for conductive paste
JP2004143571A (en) * 2001-11-22 2004-05-20 Fuji Photo Film Co Ltd Board and ink for drawing conductive pattern and method for forming conductive pattern
JP2004335149A (en) * 2003-04-30 2004-11-25 Nof Corp Conductive paste, manufacturing method of wiring board, and wiring board
JP4449676B2 (en) * 2004-03-25 2010-04-14 住友金属鉱山株式会社 Method for producing copper fine particles
JP2005298921A (en) * 2004-04-13 2005-10-27 Masami Nakamoto Composite metal ultrafine particle and method for producing the same
JP2007095526A (en) * 2005-09-29 2007-04-12 Tokai Rubber Ind Ltd Conductive paste
JP2009068054A (en) * 2007-09-12 2009-04-02 Ricoh Co Ltd Method for producing metal particulate-containing dispersion medium, production device for metal particulate-containing dispersion medium, metal particulate-containing dispersion medium, and metal ink
JP2009158441A (en) * 2007-12-28 2009-07-16 Namics Corp Conductive paste, and formation method of copper film using the same
JP5041440B2 (en) * 2008-01-24 2012-10-03 古河電気工業株式会社 Method for producing fine particle dispersion, and fine particle dispersion
JP2009286934A (en) * 2008-05-30 2009-12-10 Toshiba Corp INK COMPOSITION HAVING Cu NANOPARTICLES DISPERSED THEREIN
JP5566743B2 (en) * 2010-03-26 2014-08-06 古河電気工業株式会社 Method for producing copper alloy fine particles

Also Published As

Publication number Publication date
JP2011219862A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5520861B2 (en) Copper alloy fine particle dispersion, method for producing sintered conductor, sintered conductor, and conductive connecting member
US8337726B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP5041454B2 (en) Conductive connection member
WO2011114751A1 (en) Conductive connecting member and manufacturing method of same
US8277693B2 (en) Method for producing fine particle dispersion and fine particle dispersion
JP6016664B2 (en) Copper fine particle dispersion, sintered conductor manufacturing method, and conductive connecting member manufacturing method
JP6324237B2 (en) Fine particles, method for producing fine particles, and fine particle dispersion solution
JP6372978B2 (en) Conductive paste
KR20180004853A (en) Binding material, binding body, and binding method
JP4279329B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP5255223B2 (en) Method for producing copper alloy fine particles, and copper alloy fine particles obtained by the production method
JP2012207250A (en) Copper fine particle dispersion liquid, and method for producing copper fine particle sintered compact
JP5041440B2 (en) Method for producing fine particle dispersion, and fine particle dispersion
JP6072117B2 (en) Copper fine particle paste and method for producing the same
JP6097578B2 (en) Method for producing copper fine particles, copper fine particle dispersion, and method for storing copper fine particle dispersion
JP2017123326A (en) Dispersion solution of metal particles
Liu et al. Surfactant-stabilized copper paticles for low-temperature sintering: Paste preparation using a milling with small zirconia beads: Effect of pre-treatment with the disperse medium
JP5764452B2 (en) Method for manufacturing metal structure, metal structure, and metal part
JP6839568B2 (en) Dispersion solution of copper fine particle aggregate, method for manufacturing sintered conductor, and method for manufacturing sintered conductive bonding member
CN114829042B (en) Silver paste, method for producing same, and method for producing joined body
JP6605848B2 (en) Dispersion solution of surface-coated metal fine particles, and method for producing sintered conductor and conductive connecting member, including steps of applying and sintering this dispersion solution
JP4248002B2 (en) Fine particle dispersion and method for producing fine particle dispersion
US20140127409A1 (en) Method for producing fine particle dispersion
JP4931063B2 (en) Method for producing metal nanoparticle paste
JP6490856B1 (en) Surface-coated metal fine particles and dispersions thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130829

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R151 Written notification of patent or utility model registration

Ref document number: 5520861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees