JP6032110B2 - Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same - Google Patents

Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same Download PDF

Info

Publication number
JP6032110B2
JP6032110B2 JP2013086839A JP2013086839A JP6032110B2 JP 6032110 B2 JP6032110 B2 JP 6032110B2 JP 2013086839 A JP2013086839 A JP 2013086839A JP 2013086839 A JP2013086839 A JP 2013086839A JP 6032110 B2 JP6032110 B2 JP 6032110B2
Authority
JP
Japan
Prior art keywords
nanoparticles
bonding
copper
nickel oxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013086839A
Other languages
Japanese (ja)
Other versions
JP2014210947A (en
Inventor
佐藤 敏一
敏一 佐藤
明渡 邦夫
邦夫 明渡
敏孝 石崎
敏孝 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2013086839A priority Critical patent/JP6032110B2/en
Publication of JP2014210947A publication Critical patent/JP2014210947A/en
Application granted granted Critical
Publication of JP6032110B2 publication Critical patent/JP6032110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、銅ナノ粒子を含有する金属ナノ粒子材料、それを含有する接合材料、および前記接合材料を用いた半導体装置に関する。   The present invention relates to a metal nanoparticle material containing copper nanoparticles, a bonding material containing the material, and a semiconductor device using the bonding material.

半導体素子の電極接合などにおいては、従来、Sn−Pb系はんだが用いられていたが、近年、環境保全の観点から、鉛フリーはんだといった新規な接合材料が求められている。また、半導体素子の接合技術においては、半導体素子への負荷を低減するために、低温での接合や無加圧での接合が可能な材料が求められている。   Conventionally, Sn—Pb-based solder has been used for electrode bonding of semiconductor elements, but recently, a new bonding material such as lead-free solder has been demanded from the viewpoint of environmental protection. Also, in semiconductor element bonding technology, materials that can be bonded at a low temperature or without pressure are required to reduce the load on the semiconductor element.

銀、銅、ニッケルなどの金属ナノ粒子は、粒径が、例えば20nm以下のように、ナノメートルサイズまで小さくなると、その融点よりはるかに低い温度(焼結温度200℃以下)で焼結させることが可能となるため、半導体素子の低温接合などへの応用が期待されている。   Metal nanoparticles such as silver, copper, nickel, etc. should be sintered at a temperature much lower than their melting point (sintering temperature 200 ° C. or less) when the particle size is reduced to nanometer size, for example 20 nm or less. Therefore, application to low temperature bonding of semiconductor elements is expected.

しかしながら、このような金属ナノ粒子は、表面が高活性であり、凝集しやすいため、通常、界面活性剤やポリマーなどで被覆して分散安定性を確保している。このため、このような金属ナノ粒子を用いて半導体素子の接合を行う際に加熱処理を施すと、金属ナノ粒子が焼結するとともに界面活性剤やポリマーなどの被膜が分解され、ガスが発生し、金属ナノ粒子間に空隙が生じる。その結果、無加圧や低温では焼結組織が密にならず、十分に高い接合強度が得られなかった。   However, such metal nanoparticles have a highly active surface and are likely to aggregate, so that they are usually coated with a surfactant or a polymer to ensure dispersion stability. For this reason, when heat treatment is performed when joining semiconductor elements using such metal nanoparticles, the metal nanoparticles are sintered and the coating of surfactant, polymer, etc. is decomposed and gas is generated. , Voids are generated between the metal nanoparticles. As a result, the sintered structure did not become dense at no pressure or low temperature, and a sufficiently high bonding strength could not be obtained.

また、銅ナノ粒子は、低コストで耐熱性および耐マイクレーション性に優れた金属ナノ粒子であるが、一般に、酸化されやすく、表面の酸化被膜により焼結が阻害されるという問題があった。   In addition, copper nanoparticles are metal nanoparticles that are low in cost and excellent in heat resistance and microphone resistance, but generally have a problem that they are easily oxidized, and sintering is hindered by an oxide film on the surface.

そこで、銅ナノ粒子の表面酸化を抑制するために、ニッケルにより被覆した銅ナノ粒子(特開2008−24969号公報(特許文献1))、中心部は銅の割合が高く、表層部がニッケル−銅合金で形成されたニッケル−銅ナノ粒子(特開2011−63828号公報(特許文献2))、銅と窒素とニッケルとを含む膜で被覆した銅ナノ粒子(特開2012−79933号公報(特許文献3))が提案されている。   Therefore, in order to suppress the surface oxidation of the copper nanoparticles, copper nanoparticles coated with nickel (Japanese Patent Laid-Open No. 2008-24969 (Patent Document 1)), the central portion has a high copper ratio, and the surface layer portion is nickel- Nickel-copper nanoparticles (Japanese Patent Laid-Open No. 2011-63828 (Patent Document 2)) formed of a copper alloy, and copper nanoparticles coated with a film containing copper, nitrogen and nickel (Japanese Patent Laid-Open No. 2012-79933 ( Patent Document 3)) has been proposed.

しかしながら、このようなニッケル系被膜を有する銅ナノ粒子は製造しにくく、高コストであり、さらに、このニッケル系被膜が銅ナノ粒子の焼結阻害要因となるため、無加圧や低温では十分に高い接合強度が得られなかった。   However, copper nanoparticles having such a nickel-based coating are difficult to manufacture and costly. Further, since this nickel-based coating is a factor that inhibits sintering of copper nanoparticles, it is sufficient at no pressure and at low temperatures. High bonding strength was not obtained.

また、特開2012−46779号公報(特許文献4)には、炭素数8以上の脂肪酸と脂肪族アミンとを含有する有機被膜を表面に備える金属ナノ粒子が開示されており、前記有機被膜が低温で熱分解されることも記載されている。   Japanese Patent Application Laid-Open No. 2012-46779 (Patent Document 4) discloses metal nanoparticles having an organic coating containing a fatty acid having 8 or more carbon atoms and an aliphatic amine on the surface. It is also described that it is pyrolyzed at low temperatures.

一方、金属ナノ粒子を用いた半導体素子の実装技術においては、従来、半導体素子と基板との接合を加圧下で行なっていたが、チップの破壊による歩留まりの低下や生産工程の追加によるコストアップといった問題があり、無加圧接合による実装技術の開発が強く求められていた。   On the other hand, in the semiconductor device mounting technology using metal nanoparticles, conventionally, the bonding between the semiconductor device and the substrate has been performed under pressure, but the yield is reduced due to chip destruction and the cost is increased due to the addition of production processes. There was a problem, and there was a strong demand for the development of mounting technology by pressureless bonding.

特開2008−24969号公報JP 2008-24969 A 特開2011−63828号公報JP 2011-63828 A 特開2012−79933号公報JP 2012-79933 A 特開2012−46779号公報JP 2012-46779 A

しかしながら、特許文献4に記載の表面被覆銅ナノ粒子を用いると、低温での焼結は可能であるが、銅ナノ粒子が酸化されやすいため、接合強度は必ずしも十分に高いものではなかった。   However, when the surface-coated copper nanoparticles described in Patent Document 4 are used, sintering at a low temperature is possible, but since the copper nanoparticles are easily oxidized, the bonding strength is not always sufficiently high.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、接合強度が高い接合層を低温(例えば、400℃以下)で形成することが可能な金属ナノ粒子材料を提供することを目的とする。   This invention is made | formed in view of the subject which the said prior art has, and provides the metal nanoparticle material which can form a joining layer with high joining strength at low temperature (for example, 400 degrees C or less). Objective.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、銅ナノ粒子と酸化ニッケルナノ粒子とを特定の割合で含有する金属ナノ粒子材料を用いることによって、接合強度が高い接合層を低温(例えば、400℃以下)で形成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors have used a metal nanoparticle material containing copper nanoparticles and nickel oxide nanoparticles at a specific ratio, thereby providing a bonding layer having high bonding strength. Has been found to be formed at a low temperature (for example, 400 ° C. or lower), and the present invention has been completed.

すなわち、本発明の金属ナノ粒子材料は、全金属ナノ粒子に対して、銅ナノ粒子を99.995〜97質量%且つ酸化ニッケルナノ粒子を0.005〜3質量%含有することを特徴とするものである。このような金属ナノ粒子材料において、直径が1〜1000nmの範囲にある金属ナノ粒子は個数基準で全金属粒子の99%以上であることが好ましい。本発明の接合材料はこのような本発明の金属ナノ粒子材料を含有するものである。   That is, the metal nanoparticle material of the present invention is characterized by containing 99.995 to 97% by mass of copper nanoparticles and 0.005 to 3% by mass of nickel oxide nanoparticles with respect to all metal nanoparticles. Is. In such a metal nanoparticle material, the number of metal nanoparticles having a diameter in the range of 1 to 1000 nm is preferably 99% or more of the total metal particles on a number basis. The bonding material of the present invention contains such a metal nanoparticle material of the present invention.

また、本発明の半導体装置は、半導体素子、基板、および前記半導体素子と前記基板との間に配置された接合層を備えており、前記接合層が前記本発明の接合材料により形成された銅と酸化ニッケルとの混合物層であることを特徴とするものである。このような半導体装置においては、前記混合物層の両面にニッケル、コバルトおよび銀からなる群から選択される少なくとも1種の金属からなる密着層を更に備えており、一方の密着層が半導体素子の接合部に接するように配置され、他方の密着層が前記基板の接合部に接するように配置されていることが好ましい。   The semiconductor device of the present invention includes a semiconductor element, a substrate, and a bonding layer disposed between the semiconductor element and the substrate, and the bonding layer is formed of the bonding material of the present invention. And a nickel oxide layer. In such a semiconductor device, an adhesive layer made of at least one metal selected from the group consisting of nickel, cobalt, and silver is further provided on both surfaces of the mixture layer, and one adhesive layer is a junction of semiconductor elements. It is preferable that the contact layer is disposed so as to be in contact with the portion, and the other adhesive layer is disposed so as to be in contact with the bonding portion of the substrate.

なお、本発明の金属ナノ粒子材料によって、接合強度が高い接合層を低温で形成することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の金属ナノ粒子材料は銅ナノ粒子と酸化ニッケルナノ粒子を含むものである。この酸化ニッケルは主としてNiOであると推察される。NiOは加熱されると酸化銅を還元しやすいため、銅ナノ粒子の表面の酸化物層は容易に還元されると推察される。このため、本発明の金属ナノ粒子材料を含有する接合材料により形成された接合層においては、銅ナノ粒子が焼結しやすいため、焼結密度が向上し、ナノ粒子同士が点ではなく面で結合した状態が形成されると推察される。その結果、接合強度が高い接合層を形成することが可能になると推察される。   The reason why the metal nanoparticle material of the present invention makes it possible to form a bonding layer having high bonding strength at a low temperature is not necessarily clear, but the present inventors speculate as follows. That is, the metal nanoparticle material of the present invention includes copper nanoparticles and nickel oxide nanoparticles. This nickel oxide is presumed to be mainly NiO. Since NiO tends to reduce copper oxide when heated, it is assumed that the oxide layer on the surface of the copper nanoparticles is easily reduced. For this reason, in the joining layer formed of the joining material containing the metal nanoparticle material of the present invention, the copper nanoparticles are easily sintered, so that the sintering density is improved and the nanoparticles are not points but points. It is inferred that a combined state is formed. As a result, it is presumed that a bonding layer having high bonding strength can be formed.

一方、銅ナノ粒子のみを用いて比較的低温での熱処理や無加圧での熱処理により接合層を形成すると、銅ナノ粒子表面の酸化物層が十分に還元されず、銅ナノ粒子の焼結が酸化物層により阻害されると推察される。その結果、銅ナノ粒子同士は点でのみ結合した状態(リンキング状態)が多く存在し、焼結密度が低い組織構造が形成されると推察される。このため、銅ナノ粒子のみを用いた場合には、接合強度は低下し、抵抗率は高くなると推察される。   On the other hand, when the bonding layer is formed by heat treatment at a relatively low temperature or heat treatment without pressure using only copper nanoparticles, the oxide layer on the surface of the copper nanoparticles is not sufficiently reduced, and the copper nanoparticles are sintered. Is presumed to be inhibited by the oxide layer. As a result, it is inferred that a large number of copper nanoparticles bonded to each other only at a point (linking state) exist and a structure having a low sintered density is formed. For this reason, when only copper nanoparticles are used, it is guessed that joint strength falls and resistivity becomes high.

本発明によれば、接合強度が高い接合層を低温(例えば、400℃以下)で形成することが可能な金属ナノ粒子材料を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the metal nanoparticle material which can form a joining layer with high joining strength at low temperature (for example, 400 degrees C or less).

本発明の半導体装置の一実施態様を示す模式図である。It is a schematic diagram which shows one embodiment of the semiconductor device of this invention. 本発明の半導体装置の他の一実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the semiconductor device of this invention. 本発明の半導体装置の他の一実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the semiconductor device of this invention. 本発明の半導体装置の他の一実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the semiconductor device of this invention. 実施例で作製したせん断強度測定用接合体を示す模式図である。It is a schematic diagram which shows the joined body for shear strength measurement produced in the Example. 接合材料中の酸化ニッケル含有量と接合強度との関係を示すグラフである。It is a graph which shows the relationship between nickel oxide content in joining material, and joining strength.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明の金属ナノ粒子材料およびそれを含有する接合材料について説明する。本発明の金属ナノ粒子材料は、銅ナノ粒子と酸化ニッケルナノ粒子とを所定の割合で含有するものである。本発明の金属ナノ粒子材料、低温(例えば、400℃以下)での熱処理により焼結し、接合強度が高い接合層を形成することができる。また、本発明の金属ナノ粒子材料を用いると、熱処理時に無加圧でも、接合強度が高い接合層を形成することができる。   First, the metal nanoparticle material of the present invention and the bonding material containing it will be described. The metal nanoparticle material of the present invention contains copper nanoparticles and nickel oxide nanoparticles at a predetermined ratio. The metal nanoparticle material of the present invention can be sintered by heat treatment at a low temperature (for example, 400 ° C. or lower) to form a bonding layer having high bonding strength. In addition, when the metal nanoparticle material of the present invention is used, a bonding layer having high bonding strength can be formed even without pressure during heat treatment.

(銅ナノ粒子)
本発明においては、直径が1〜1000nmの範囲にある銅粒子を「銅ナノ粒子」という。銅粒子の直径は、透過型電子顕微鏡(TEM)観察において測定することができ、本発明においては、以下に示す全銅粒子に対する銅ナノ粒子の割合および銅粒子(銅ナノ粒子を含む)の平均粒子径を、前記TEM観察において、無作為に200個の銅粒子を抽出し、これらの直径を測定することによって求められる値とする。
(Copper nanoparticles)
In the present invention, copper particles having a diameter in the range of 1 to 1000 nm are referred to as “copper nanoparticles”. The diameter of the copper particles can be measured by observation with a transmission electron microscope (TEM). In the present invention, the ratio of the copper nanoparticles to the total copper particles and the average of the copper particles (including copper nanoparticles) shown below. The particle diameter is set to a value obtained by randomly extracting 200 copper particles and measuring these diameters in the TEM observation.

本発明の金属ナノ粒子材料においては、このような銅ナノ粒子(直径が1〜1000nmの範囲にあるもの)が個数基準で全銅粒子の99%以上であることが好ましく、全ての銅粒子が前記銅ナノ粒子であることが特に好ましい。銅ナノ粒子の割合が前記下限未満になると、銅粒子の焼結温度が高くなるため、低温(例えば、400℃以下)での加熱による銅粒子同士の結合が起こりにくく、その結果、接合強度が低下する傾向にある。   In the metal nanoparticle material of the present invention, it is preferable that such copper nanoparticles (having a diameter in the range of 1 to 1000 nm) are 99% or more of the total copper particles on a number basis, and all the copper particles are The copper nanoparticles are particularly preferable. When the ratio of the copper nanoparticles is less than the lower limit, the sintering temperature of the copper particles becomes high, so that the copper particles are hardly bonded by heating at a low temperature (for example, 400 ° C. or less), and as a result, the bonding strength is high. It tends to decrease.

また、本発明の金属ナノ粒子材料に含まれる銅粒子(銅ナノ粒子を含む)の平均粒子径としては、10〜1000nmが好ましく、30〜500nmがより好ましく、50〜250nmが特に好ましい。銅粒子の平均粒子径が前記下限未満になると、バルクに対する表面比率が大きくなるため、銅ナノ粒子の表面が大気中で酸化されやすく、その結果、金属ナノ粒子材料中で銅ナノ粒子同士の凝集が起こったり、接合時の熱処理で十分に酸化成分を除去できず、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。ただし、銅ナノ粒子を不活性ガスまたは還元性ガス雰囲気下で取り扱えば、銅ナノ粒子表面の酸化が起こりにくく、上記の不具合が起こりにくくなるため、平均粒子径が前記下限未満の銅ナノ粒子も本発明の接合材料に使用することが可能である。また、有機被膜を備える銅ナノ粒子を使用する場合には、有機被膜の割合が銅ナノ粒子に比べて多くなるため、有機被膜が接合時の熱処理で十分に分解されずに残存し、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。他方、銅粒子の平均粒子径が前記上限を超えると、粒子サイズ効果が小さいため、銅粒子の焼結温度が高くなり、低温(例えば、400℃以下)での加熱による銅粒子同士の結合が起こりにくく、その結果、接合強度が低下する傾向にある。   Moreover, as an average particle diameter of the copper particle (a copper nanoparticle is included) contained in the metal nanoparticle material of this invention, 10-1000 nm is preferable, 30-500 nm is more preferable, 50-250 nm is especially preferable. When the average particle diameter of the copper particles is less than the above lower limit, the surface ratio to the bulk increases, so that the surface of the copper nanoparticles is easily oxidized in the atmosphere, and as a result, the copper nanoparticles are aggregated in the metal nanoparticle material. Or the oxidation component cannot be sufficiently removed by heat treatment at the time of bonding, and the characteristics of the bonding material such as bonding strength, conductivity, and thermal conductivity tend to be deteriorated. However, if the copper nanoparticles are handled in an inert gas or reducing gas atmosphere, the copper nanoparticle surface is less likely to be oxidized and the above problems are less likely to occur. It can be used for the bonding material of the present invention. In addition, when using copper nanoparticles with an organic coating, the proportion of the organic coating increases compared to the copper nanoparticles, so the organic coating remains without being sufficiently decomposed by the heat treatment during bonding, and the bonding strength There is a tendency that characteristics of the bonding material such as conductivity, thermal conductivity and the like are deteriorated. On the other hand, when the average particle diameter of the copper particles exceeds the above upper limit, the particle size effect is small, so the sintering temperature of the copper particles increases, and the bonding between the copper particles by heating at a low temperature (for example, 400 ° C. or less) occurs. It is difficult to occur, and as a result, the bonding strength tends to decrease.

このような銅ナノ粒子としては、例えば、銅ナノ粒子と、この銅ナノ粒子の表面に配置された、脂肪酸および脂肪族アミンを含有する有機被膜とを備える表面被覆銅ナノ粒子が挙げられる。前記有機被膜は低温(例えば、400℃以下)で熱分解させることができるものである。この表面被覆銅ナノ粒子は、特開2012−46779号公報に記載された方法に準じて製造することができる。すなわち、アルコール系溶媒中、脂肪酸および脂肪族アミンの共存下で、前記アルコール系溶媒に不溶な銅塩を還元せしめることによって銅ナノ粒子を形成させ、且つ、この銅ナノ粒子の表面に前記脂肪酸および脂肪族アミンを含有する有機被膜を形成させることによって前記表面被覆銅ナノ粒子を製造することができる。ここで、銅塩としては炭酸銅、水酸化銅が挙げられる。また、脂肪酸としてはオクタン酸、デカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸などの飽和脂肪酸やオレイン酸などの不飽和脂肪酸が挙げられ、脂肪族アミンとしてはオクチルアミン、デシルアミン、ドデシルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミンなどの飽和脂肪族アミンやオレイルアミンなどの不飽和脂肪族アミンが挙げられ、脂肪酸および脂肪族アミンの炭化水素鎖の炭素数を変更することによって銅ナノ粒子の粒子径を調整することができる。   Examples of such copper nanoparticles include surface-coated copper nanoparticles including copper nanoparticles and an organic coating containing a fatty acid and an aliphatic amine disposed on the surface of the copper nanoparticles. The organic coating can be thermally decomposed at a low temperature (for example, 400 ° C. or lower). The surface-coated copper nanoparticles can be produced according to the method described in JP 2012-46779 A. That is, copper nanoparticles are formed by reducing a copper salt insoluble in the alcohol solvent in the coexistence of a fatty acid and an aliphatic amine in an alcohol solvent, and the fatty acid and the surface of the copper nanoparticles are formed. The surface-coated copper nanoparticles can be produced by forming an organic coating containing an aliphatic amine. Here, copper carbonate and copper hydroxide are mentioned as a copper salt. Examples of fatty acids include saturated fatty acids such as octanoic acid, decanoic acid, dodecanoic acid, myristic acid, palmitic acid and stearic acid, and unsaturated fatty acids such as oleic acid. Aliphatic amines include octylamine, decylamine and dodecylamine. , Saturated aliphatic amines such as myristylamine, palmitylamine, stearylamine and unsaturated aliphatic amines such as oleylamine, and by changing the carbon number of fatty acid and aliphatic amine hydrocarbon chain The particle size can be adjusted.

また、本発明においては、(株)テックサイエンス製の銅ナノ粒子粉末などの市販の銅ナノ粒子を使用することもできる。さらに、溶媒中に分散された銅ナノ粒子を使用することもできる。このような銅ナノ粒子の分散液としては、(株)イオックス製「Cu60−BtTP」、立山科学工業(株)製の銅ナノ粒子分散液、大研化学工業(株)製「NCU−09」、ハリマ化成グループ(株)製の銅ナノ粒子分散液などの市販品が挙げられる。   In the present invention, commercially available copper nanoparticles such as copper nanoparticle powder manufactured by Tech Science Co., Ltd. can also be used. Furthermore, copper nanoparticles dispersed in a solvent can also be used. As a dispersion liquid of such copper nanoparticles, “Cu60-BtTP” manufactured by IOX Co., Ltd., a copper nanoparticle dispersion liquid manufactured by Tateyama Kagaku Kogyo Co., Ltd., and “NCU-09” manufactured by Daiken Chemical Industry Co., Ltd. And commercial products such as copper nanoparticle dispersions manufactured by Harima Chemical Group Co., Ltd.

(酸化ニッケルナノ粒子)
本発明においては、直径が1〜1000nmの範囲にある酸化ニッケル粒子を「酸化ニッケルナノ粒子」という。酸化ニッケル粒子の直径は、透過型電子顕微鏡(TEM)観察において測定することができ、本発明においては、以下に示す全酸化ニッケル粒子に対する酸化ニッケルナノ粒子の割合および酸化ニッケル粒子(酸化ニッケルナノ粒子を含む)の平均粒子径は、前記TEM観察において、無作為に200個の酸化ニッケル粒子を抽出し、これらの直径を測定することによって求められる値とする。
(Nickel oxide nanoparticles)
In the present invention, nickel oxide particles having a diameter in the range of 1 to 1000 nm are referred to as “nickel oxide nanoparticles”. The diameter of the nickel oxide particles can be measured by transmission electron microscope (TEM) observation. In the present invention, the ratio of nickel oxide nanoparticles to the total nickel oxide particles shown below and nickel oxide particles (nickel oxide nanoparticles) In the TEM observation, the average particle diameter is a value obtained by randomly extracting 200 nickel oxide particles and measuring these diameters.

本発明の金属ナノ粒子材料においては、このような酸化ニッケルナノ粒子(直径が1〜1000nmの範囲にあるもの)が個数基準で全酸化ニッケル粒子の99%以上であることが好ましく、全ての酸化ニッケル粒子が前記酸化ニッケルナノ粒子であることが特に好ましい。酸化ニッケルナノ粒子の割合が前記下限未満になると、酸化ニッケル粒子の焼結温度が高くなるため、低温(例えば、400℃以下)での加熱による酸化ニッケル粒子同士の結合が起こりにくく、その結果、酸化ニッケル粒子を添加しても接合強度が十分に向上しない傾向にある。   In the metal nanoparticle material of the present invention, such nickel oxide nanoparticles (having a diameter in the range of 1 to 1000 nm) are preferably 99% or more of the total nickel oxide particles on a number basis, and all oxidized It is particularly preferable that the nickel particles are the nickel oxide nanoparticles. When the ratio of the nickel oxide nanoparticles is less than the lower limit, the sintering temperature of the nickel oxide particles increases, so that the nickel oxide particles are not easily bonded to each other by heating at a low temperature (for example, 400 ° C. or less). Even if nickel oxide particles are added, the bonding strength tends not to be sufficiently improved.

また、本発明の金属ナノ粒子材料に含まれる酸化ニッケル粒子(酸化ニッケルナノ粒子を含む)の平均粒子径としては、1000nm以下が好ましく、500nm以下がより好ましい。酸化ニッケル粒子の平均粒子径が前記上限を超えると、粒子サイズ効果が小さいため、酸化ニッケル粒子の焼結温度が高くなり、低温(例えば、400℃以下)での加熱による酸化ニッケル粒子同士の結合が起こりにくく、その結果、酸化ニッケル粒子を添加しても接合強度が十分に向上しない傾向にある。なお、酸化ニッケル粒子の平均粒子径の下限については、酸化ニッケル粒子の表面が大気中で酸化されにくく、物性低下が起こりにくいことから、特に制限はないが、通常1nm以上である。   Moreover, as an average particle diameter of the nickel oxide particle (a nickel oxide nanoparticle is included) contained in the metal nanoparticle material of this invention, 1000 nm or less is preferable and 500 nm or less is more preferable. When the average particle diameter of the nickel oxide particles exceeds the above upper limit, the particle size effect is small, so the sintering temperature of the nickel oxide particles increases, and the nickel oxide particles are bonded to each other by heating at a low temperature (for example, 400 ° C. or less). As a result, even if nickel oxide particles are added, the bonding strength tends not to be sufficiently improved. The lower limit of the average particle diameter of the nickel oxide particles is not particularly limited because the surface of the nickel oxide particles is not easily oxidized in the air and the physical properties are not easily lowered, but is usually 1 nm or more.

本発明に用いられる酸化ニッケルナノ粒子としては、NiOナノ粒子が主成分(例えば、90質量%以上、より好ましくは95質量%以上)であるものが好ましい。NiOナノ粒子が主成分である酸化ニッケルナノ粒子を用いると、加熱による銅ナノ粒子表面の酸化物層の還元が起こりやすく、接合強度が高い接合層を形成することが可能となる。このような酸化ニッケルナノ粒子は、A.Zabet−Khosousiら、Chem.Rev.、2008年、第108巻、4072〜4124頁;C.Burdaら、Chem.Rev.2005年、第105巻、1025〜1102頁;S.C.Halimら、Material Matters、2009年、第4巻、第1号、4〜9頁に記載された方法に準じて製造することができる。また、シグマ−アルドリッチ社製の酸化ニッケル(II)ナノ粒子、イオリテック社製の酸化ニッケル(II)ナノ粒子、(株)イオックス製酸化ニッケルナノ粒子などの市販の酸化ニッケルナノ粒子を使用してもよい。さらに、ニッケルナノ粒子を酸化したものを使用することも可能である。なお、本発明においては、酸化ニッケルナノ粒子の表面の少なくとも一部が水酸化ニッケルになっていてもよい。また、酸化ニッケルナノ粒子の分散性を高めるために、表面が有機被膜で覆われた酸化ニッケルナノ粒子を使用してもよいが、酸化ニッケルナノ粒子は酸化による物性低下が起こりにくいため、必ずしも、表面が有機被膜で覆われた酸化ニッケルナノ粒子を使用する必要はない。   The nickel oxide nanoparticles used in the present invention are preferably those in which NiO nanoparticles are the main component (for example, 90% by mass or more, more preferably 95% by mass or more). When nickel oxide nanoparticles whose main component is NiO nanoparticles are used, the oxide layer on the surface of the copper nanoparticles is easily reduced by heating, and a bonding layer having high bonding strength can be formed. Such nickel oxide nanoparticles are described in A.I. Zabet-Khosousi et al., Chem. Rev. 2008, 108, 4072-4124; Burda et al., Chem. Rev. 2005, 105, 1025-1102; C. It can be produced according to the method described in Halim et al., Material Matters, 2009, Vol. 4, No. 1, pages 4-9. Also, using commercially available nickel oxide nanoparticles such as nickel oxide (II) nanoparticles manufactured by Sigma-Aldrich, nickel oxide (II) nanoparticles manufactured by Iritech, nickel oxide nanoparticles manufactured by Iox Co., Ltd. Also good. Furthermore, it is also possible to use an oxidized nickel nanoparticle. In the present invention, at least a part of the surface of the nickel oxide nanoparticles may be nickel hydroxide. Further, in order to increase the dispersibility of nickel oxide nanoparticles, nickel oxide nanoparticles whose surface is covered with an organic coating may be used, but nickel oxide nanoparticles are not easily deteriorated in physical properties due to oxidation. It is not necessary to use nickel oxide nanoparticles whose surface is covered with an organic coating.

(金属ナノ粒子材料)
本発明の金属ナノ粒子材料は、このような銅ナノ粒子と酸化ニッケルナノ粒子とを所定の割合で含有するものである。本発明の金属ナノ粒子材料における銅ナノ粒子と酸化ニッケルナノ粒子の割合は、全金属ナノ粒子に対して、銅ナノ粒子が99.995〜97質量%であり且つ酸化ニッケルナノ粒子が0.005〜3質量%である。酸化ニッケルナノ粒子の含有量が前記下限未満になる(すなわち、銅ナノ粒子の含有量が前記上限を超える)と、酸化ニッケルナノ粒子の添加効果が十分に得られず、銅ナノ粒子の表面が大気中で酸化されやすく、その結果、金属ナノ粒子材料中で銅ナノ粒子同士の凝集が起こったり、接合時の熱処理で十分に酸化成分を除去できず、接合強度が低下する。他方、酸化ニッケルナノ粒子の含有量が前記上限を超える(すなわち、銅ナノ粒子の含有量が前記下限未満になる)と、本発明の金属ナノ粒子材料の焼結密度が高くなりすぎ、接合時に接合層内部で応力によるクラックといった接合層破壊が発生する。また、接合強度がより高くなるという観点から、銅ナノ粒子の含有量が99.95〜99質量%であり且つ酸化ニッケルナノ粒子の含有量が0.05〜1質量%であることが好ましく、銅ナノ粒子の含有量が99.9〜99質量%であり且つ酸化ニッケルナノ粒子の含有量が0.1〜1質量%であることがより好ましい。なお、銅ナノ粒子と酸化ニッケルナノ粒子の割合において、これらの合計量は全金属ナノ粒子に対して100質量%である。
(Metal nanoparticle material)
The metal nanoparticle material of the present invention contains such copper nanoparticles and nickel oxide nanoparticles at a predetermined ratio. The ratio of the copper nanoparticles to the nickel oxide nanoparticles in the metal nanoparticle material of the present invention is 99.995 to 97% by mass of the copper nanoparticles and 0.005 of the nickel oxide nanoparticles with respect to the total metal nanoparticles. ˜3 mass%. When the content of nickel oxide nanoparticles is less than the lower limit (that is, the content of copper nanoparticles exceeds the upper limit), the effect of adding nickel oxide nanoparticles is not sufficiently obtained, and the surface of the copper nanoparticles is As a result, the copper nanoparticles are easily agglomerated in the metal nanoparticle material. As a result, the oxidizing component cannot be sufficiently removed by the heat treatment at the time of bonding, and the bonding strength is lowered. On the other hand, when the content of nickel oxide nanoparticles exceeds the upper limit (that is, the content of copper nanoparticles becomes less than the lower limit), the sintered density of the metal nanoparticle material of the present invention becomes too high, and at the time of joining Bonding layer destruction such as cracks due to stress occurs inside the bonding layer. Further, from the viewpoint of higher bonding strength, it is preferable that the content of copper nanoparticles is 99.95 to 99% by mass and the content of nickel oxide nanoparticles is 0.05 to 1% by mass, It is more preferable that the content of copper nanoparticles is 99.9 to 99% by mass and the content of nickel oxide nanoparticles is 0.1 to 1% by mass. In addition, in the ratio of a copper nanoparticle and a nickel oxide nanoparticle, these total amount is 100 mass% with respect to all the metal nanoparticles.

また、本発明の金属ナノ粒子材料においては、金属ナノ粒子(直径が1〜1000nmの範囲にあるもの、銅ナノ粒子+酸化ニッケルナノ粒子)が個数基準で全金属粒子(銅粒子+酸化ニッケル粒子)の99%以上であることが好ましく、全ての金属粒子が前記金属ナノ粒子であることが特に好ましい。金属ナノ粒子の割合が前記下限未満になると、金属粒子の焼結温度が高くなるため、低温(例えば、400℃以下)での加熱による金属粒子同士の結合が起こりにくく、その結果、接合強度が低下する傾向にある。   Further, in the metal nanoparticle material of the present invention, metal nanoparticles (thickness in the range of 1 to 1000 nm, copper nanoparticles + nickel oxide nanoparticles) are all metal particles (copper particles + nickel oxide particles) on a number basis. 99) or more, and it is particularly preferable that all the metal particles are the metal nanoparticles. When the ratio of the metal nanoparticles is less than the lower limit, the sintering temperature of the metal particles becomes high, so that the metal particles are hardly bonded by heating at a low temperature (for example, 400 ° C. or less). It tends to decrease.

このような本発明の金属ナノ粒子材料は、例えば、銅ナノ粒子と酸化ニッケルナノ粒子とが所定の割合となるように、両者を混合し、得られた混合ナノ粒子を有機溶媒などの溶剤と混合したり、銅ナノ粒子と酸化ニッケルナノ粒子とが所定の割合となるように、銅ナノ粒子分散液と酸化ニッケルナノ粒子分散液とを混合したりすることによって製造することができる。また、本発明の金属ナノ粒子材料はペースト状やインク状であることが好ましく、これらを調製する場合、ペースト状やインク状となるように、前記混合ナノ粒子と溶剤とを混合してもよいし、ペースト状やインク状の銅ナノ粒子および酸化ニッケルナノ粒子を調製し、これらを混合してもよいし、前記混合ナノ粒子の分散液を調製した後、ペースト状やインク状になるまでエバポレータなどを用いて濃縮してもよい。   Such a metal nanoparticle material of the present invention is prepared by, for example, mixing copper nanoparticles and nickel oxide nanoparticles so that a predetermined ratio is obtained, and mixing the obtained mixed nanoparticles with a solvent such as an organic solvent. It can manufacture by mixing a copper nanoparticle dispersion liquid and a nickel oxide nanoparticle dispersion liquid so that a copper nanoparticle and a nickel oxide nanoparticle may become a predetermined ratio. In addition, the metal nanoparticle material of the present invention is preferably in the form of a paste or an ink. When these are prepared, the mixed nanoparticles and the solvent may be mixed so as to be in a paste or an ink. Then, paste-like or ink-like copper nanoparticles and nickel oxide nanoparticles may be prepared, and these may be mixed, or after preparing a dispersion of the mixed nanoparticles, the evaporator is used until it becomes paste-like or ink-like You may concentrate using etc.

銅ナノ粒子分散液および酸化ニッケルナノ粒子分散液は、銅ナノ粒子および酸化ニッケルナノ粒子をそれぞれ有機溶媒などの溶剤に分散させて調製してもよいし、前述したような市販の銅ナノ粒子分散液や酸化ニッケルナノ粒子分散液を使用してもよい。   The copper nanoparticle dispersion and the nickel oxide nanoparticle dispersion may be prepared by dispersing the copper nanoparticles and nickel oxide nanoparticles in a solvent such as an organic solvent, or the commercially available copper nanoparticle dispersion as described above. A liquid or nickel oxide nanoparticle dispersion may be used.

本発明の金属ナノ粒子材料に用いられる有機溶媒としては特に制限はないが、例えば、テトラデカン、ヘキサデカン、ドデカン、デカンなどのアルカン類;1−ブタノール、デカノール、オクタノール、ヘキサノール、イソプロピルアルコールなどのモノアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのジオール類;グリセリンなどのトリオール類;α−テルピネオール、シクロヘキサノールなどの環状アルコール類;アセトン、メチルエチルケトン、ジエチルケトンなどのケトン類;テトラヒドロフラン、ジエチルエーテル、ブチルカルビトールなどのエーテル類;酢酸エチル、ブチルカルビトールアセテートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族化合物などが挙げられる。また、本発明の金属ナノ粒子材料には、必要に応じて、セルロース誘導体(例えば、エチルセルロース、ヒドロキシエチルセルロース)やグリセリド(例えば、ヒマシ油)といった粘度調整剤、界面活性剤などの添加剤を添加してもよい。   The organic solvent used in the metal nanoparticle material of the present invention is not particularly limited. For example, alkanes such as tetradecane, hexadecane, dodecane, and decane; monoalcohols such as 1-butanol, decanol, octanol, hexanol, and isopropyl alcohol Diols such as ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol; triols such as glycerol; cyclic alcohols such as α-terpineol and cyclohexanol; ketones such as acetone, methyl ethyl ketone and diethyl ketone; tetrahydrofuran; Ethers such as diethyl ether and butyl carbitol; Esters such as ethyl acetate and butyl carbitol acetate; benzene, toluene, xylene, etc. And aromatic compounds. In addition, additives such as a viscosity modifier such as a cellulose derivative (for example, ethyl cellulose, hydroxyethyl cellulose) or a glyceride (for example, castor oil) and a surfactant are added to the metal nanoparticle material of the present invention as necessary. May be.

ナノ粒子と溶剤との混合方法としては特に制限はないが、例えば、自転・公転ミキサー、ボールミル、スターラーなどの公知の撹拌装置を用いる方法が挙げられる。   The mixing method of the nanoparticles and the solvent is not particularly limited, and examples thereof include a method using a known stirring device such as a rotation / revolution mixer, a ball mill, or a stirrer.

<半導体装置>
次に、本発明の半導体装置について説明する。本発明の半導体装置は、半導体素子、基板、および前記半導体素子と前記基板とを接合する接合層を備えており、前記接合層が本発明の金属ナノ粒子材料を含有する接合材料(以下、「本発明の接合材料」という)により形成された銅と酸化ニッケルとの混合物層である。また、本発明の半導体装置においては、前記混合物層の両面に、ニッケル、コバルトおよび銀のうちの少なくとも1種の金属からなる密着層を更に備えていることが好ましい。この場合、一方の密着層は前記半導体素子の接合部に接するように配置され、他方の密着層は前記基板の接合部に接するように配置されている。
<Semiconductor device>
Next, the semiconductor device of the present invention will be described. The semiconductor device of the present invention includes a semiconductor element, a substrate, and a bonding layer that bonds the semiconductor element and the substrate, and the bonding layer contains the metal nanoparticle material of the present invention (hereinafter, “ It is a mixture layer of copper and nickel oxide formed by “the bonding material of the present invention”. In the semiconductor device of the present invention, it is preferable that an adhesive layer made of at least one of nickel, cobalt, and silver is further provided on both surfaces of the mixture layer. In this case, one adhesion layer is disposed so as to contact the bonding portion of the semiconductor element, and the other adhesion layer is disposed so as to contact the bonding portion of the substrate.

本発明の半導体装置を構成する半導体素子としては特に制限はなく、例えば、パワー素子、LSI、抵抗、コンデンサなどが挙げられる。また、基板としては特に制限はなく、例えば、リードフレーム、電極が形成されたセラミック基板、実装基板などが挙げられる。リードフレームとしては、例えば、銅合金リードフレームが挙げられる。また、電極が形成されたセラミックス基板としては、例えば、DBC(Direct Bond Copper:登録商標)基板、活性金属接合(AMC:Active Metal Copper)基板が挙げられる。また、実装基板としては、例えば、電極が形成されたアルミナ基板、低温同時焼成セラミックス(LTCC:Low Temperature Co−fired Ceramics)基板、ガラスエポキシ基板などが挙げられる。   There is no restriction | limiting in particular as a semiconductor element which comprises the semiconductor device of this invention, For example, a power element, LSI, resistance, a capacitor | condenser etc. are mentioned. Moreover, there is no restriction | limiting in particular as a board | substrate, For example, a lead frame, the ceramic substrate in which the electrode was formed, a mounting substrate, etc. are mentioned. An example of the lead frame is a copper alloy lead frame. Examples of the ceramic substrate on which the electrode is formed include a DBC (Direct Bond Copper: registered trademark) substrate and an active metal bonded (AMC: Active Metal Copper) substrate. Examples of the mounting substrate include an alumina substrate on which electrodes are formed, a low temperature co-fired ceramics (LTCC) substrate, a glass epoxy substrate, and the like.

以下、図面を参照しながら本発明の半導体装置の好適な実施形態について詳細に説明するが、本発明の半導体装置は前記図面に限定されるものではない。なお、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the semiconductor device of the present invention will be described in detail with reference to the drawings. However, the semiconductor device of the present invention is not limited to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted.

図1は、本発明の半導体装置の一実施形態を示す模式図である。この半導体装置は、半導体素子1、上部基板2a、下部基板2b、接合層3aおよび3b、信号端子5、ボンディングワイヤ6、ならびにモールド樹脂7を備えるものである。半導体素子1の上表面には、接合層3aを介して上部基板2aが接合されている。半導体素子1の下表面には、接合層3bを介して下部基板2bが接合されている。また、半導体素子1の上表面の一部と信号素子5とは、ボンディングワイヤ6によって電気的に接続されている。半導体素子1、上部基板2aの一部、下部基板2bの一部、接合層3aおよび3b、信号端子5の一部、ならびにボンディングワイヤ6は、モールド樹脂7に覆われている。また、上部基板2aの突出部2c、下部基板2bの突出部2d、および信号端子5の一部は、モールド樹脂7の外部に突出している。   FIG. 1 is a schematic view showing an embodiment of a semiconductor device of the present invention. This semiconductor device includes a semiconductor element 1, an upper substrate 2a, a lower substrate 2b, bonding layers 3a and 3b, a signal terminal 5, a bonding wire 6, and a molding resin 7. An upper substrate 2a is bonded to the upper surface of the semiconductor element 1 via a bonding layer 3a. A lower substrate 2b is bonded to the lower surface of the semiconductor element 1 through a bonding layer 3b. A part of the upper surface of the semiconductor element 1 and the signal element 5 are electrically connected by a bonding wire 6. The semiconductor element 1, a part of the upper substrate 2 a, a part of the lower substrate 2 b, the bonding layers 3 a and 3 b, a part of the signal terminal 5, and the bonding wire 6 are covered with the mold resin 7. Further, the protruding portion 2 c of the upper substrate 2 a, the protruding portion 2 d of the lower substrate 2 b, and a part of the signal terminal 5 protrude outside the mold resin 7.

このような半導体装置は、以下のようにして製造することができる。すなわち、先ず、半導体素子1の上表面および上部基板2aの下表面のいずれか一方に本発明の接合材料を塗布して接合材料層を形成する。また、半導体素子1の下表面および下部基板2bの上表面のいずれか一方に本発明の接合材料を塗布し接合材料層を形成する。これらの接合材料層の厚さとしては特に制限はないが、生産性や接合抵抗を考慮すると、1〜500μmが好ましく、50〜400μmがより好ましく、100〜300μmが特に好ましい。接合材料の塗布方法としては、例えば、スクリーン印刷法、インクジェット法、ディップ法、フレキソ印刷法などが挙げられる。また、このような塗布は、大気中もしくは不活性ガス雰囲気中で行うことができる。   Such a semiconductor device can be manufactured as follows. That is, first, the bonding material of the present invention is applied to either the upper surface of the semiconductor element 1 or the lower surface of the upper substrate 2a to form a bonding material layer. Also, the bonding material of the present invention is applied to either the lower surface of the semiconductor element 1 or the upper surface of the lower substrate 2b to form a bonding material layer. Although there is no restriction | limiting in particular as thickness of these joining material layers, When productivity and joining resistance are considered, 1-500 micrometers is preferable, 50-400 micrometers is more preferable, 100-300 micrometers is especially preferable. Examples of the method for applying the bonding material include a screen printing method, an ink jet method, a dip method, and a flexographic printing method. Moreover, such application | coating can be performed in air | atmosphere or inert gas atmosphere.

次に、半導体素子1の上表面と上部基板2aの下表面との間に接合材料層が配置されるように、半導体素子1と上部基板2aとを貼り合わせ、また、半導体素子1の下表面と下部基板2bの上表面との間に接合材料層が配置されるように、半導体素子1と下部基板2bとを貼り合わせる。このとき、接合材料層に気泡が入り込まないように、加圧してもよい。また、貼り合わせは真空中で行なってもよいが、本発明の接合材料は大気中での銅ナノ粒子の酸化が抑制されているため、大気中で貼り合わせを行うことができる。   Next, the semiconductor element 1 and the upper substrate 2a are bonded together so that the bonding material layer is disposed between the upper surface of the semiconductor element 1 and the lower surface of the upper substrate 2a. The semiconductor element 1 and the lower substrate 2b are bonded together so that the bonding material layer is disposed between the upper surface of the lower substrate 2b. At this time, pressure may be applied so that bubbles do not enter the bonding material layer. The bonding may be performed in a vacuum, but the bonding material of the present invention can be bonded in the air because the oxidation of the copper nanoparticles in the air is suppressed.

このようにして半導体素子1と上部基板2aおよび半導体素子1と下部基板2bとを貼り合わせた接合体に加熱処理を施して接合材料を焼結させ、接合層3aおよび3bを形成する。これにより、半導体素子1と上部基板2aとが接合層3aを介して接合され、半導体素子1と下部基板2bとが接合層3bを介して接合される。本発明の接合材料により形成された前記接合層3aおよび3bは、銅と酸化ニッケルとの混合物層であり、銅−ニッケル合金が形成されにくいため、接合強度に優れている。   In this way, the bonded body in which the semiconductor element 1 and the upper substrate 2a and the semiconductor element 1 and the lower substrate 2b are bonded together is subjected to heat treatment to sinter the bonding material, thereby forming the bonding layers 3a and 3b. Thereby, the semiconductor element 1 and the upper substrate 2a are bonded via the bonding layer 3a, and the semiconductor element 1 and the lower substrate 2b are bonded via the bonding layer 3b. The bonding layers 3a and 3b formed of the bonding material of the present invention are a mixture layer of copper and nickel oxide, and since a copper-nickel alloy is hardly formed, the bonding strength is excellent.

加熱処理の温度としては特に制限はないが、150〜450℃が好ましく、250〜400℃がより好ましい。加熱処理温度が前記下限未満になると、接合材料に含まれていた溶剤や有機被膜成分が接合層3aおよび3b中に残存しやすく、十分な接合強度が得られない傾向にあり、他方、前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にある。   Although there is no restriction | limiting in particular as temperature of heat processing, 150-450 degreeC is preferable and 250-400 degreeC is more preferable. When the heat treatment temperature is less than the lower limit, the solvent and organic coating components contained in the bonding material tend to remain in the bonding layers 3a and 3b, and sufficient bonding strength tends not to be obtained. If it exceeds, the heat resistance temperature of the semiconductor element may be exceeded, thermal stress increases, and warping and peeling tend to occur.

また、このような加熱処理は、不活性ガスまたは還元性ガス雰囲気中で行うことが好ましい。さらに、本発明の接合材料を用いると、無加圧で接合することができるが、加圧しながら接合することによって接合強度が向上する傾向にある。   Such heat treatment is preferably performed in an inert gas or reducing gas atmosphere. Furthermore, when the bonding material of the present invention is used, bonding can be performed without applying pressure, but bonding strength tends to be improved by bonding while applying pressure.

また、本発明の半導体装置においては、図2に示すように、半導体素子1と接合層3aとの間、上部基板2aと接合層3aとの間、半導体素子1と接合層3bとの間、下部基板2bと接合層3aとの間に、ニッケル、コバルトおよび銀のうちの少なくとも1種の金属からなる密着層4aおよび4bが配置されていることが好ましい。このような密着層を形成することによって、接合強度がさらに向上する傾向にある。   In the semiconductor device of the present invention, as shown in FIG. 2, between the semiconductor element 1 and the bonding layer 3a, between the upper substrate 2a and the bonding layer 3a, between the semiconductor element 1 and the bonding layer 3b, It is preferable that adhesion layers 4a and 4b made of at least one of nickel, cobalt, and silver are disposed between the lower substrate 2b and the bonding layer 3a. By forming such an adhesion layer, the bonding strength tends to be further improved.

このような密着層の厚さについては、1nm以上であれば高い接合強度が得られるため特に制限はないが、半導体装置の生産コストや密着層の電気抵抗などを考慮すると10μm以下が好ましい。また、生産コストをより低減するという観点から200nm以下がより好ましい。   The thickness of such an adhesion layer is not particularly limited because high bonding strength can be obtained if it is 1 nm or more, but it is preferably 10 μm or less in consideration of the production cost of the semiconductor device, the electric resistance of the adhesion layer, and the like. Moreover, 200 nm or less is more preferable from a viewpoint of reducing production cost more.

このような半導体装置は、以下のようにして製造することができる。すなわち、先ず、半導体素子1の両面、上部基板2aの下表面、および下部基板2bの上表面に前記密着層を形成する。密着層の形成方法としては、スパッタ法、メッキ法、塗布法などが挙げられる。   Such a semiconductor device can be manufactured as follows. That is, first, the adhesion layer is formed on both surfaces of the semiconductor element 1, the lower surface of the upper substrate 2a, and the upper surface of the lower substrate 2b. Examples of the method for forming the adhesion layer include a sputtering method, a plating method, and a coating method.

スパッタ法により密着層を形成する場合には、先ず、半導体素子や基板などの被塗布物を真空チャンバーに挿入し、チャンバー内を減圧する。チャンバー内が真空状態になった後、アルゴンガスを導入し、被塗布物側にRFプラズマを生成して被塗布物表面の不純物の除去を行う。その後、形成する密着層の材料(例えば、ニッケル、コバルトまたは銀)のターゲットを用いてRFスパッタ法を行う。これにより、被塗布物表面に密着層を形成することができる。密着層を形成する際の被塗布物の温度としては特に制限はないが、例えば、室温(25℃程度)〜450℃が好ましい。被塗布物の温度が前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にある。   In the case of forming an adhesion layer by sputtering, first, an object to be coated such as a semiconductor element or a substrate is inserted into a vacuum chamber, and the inside of the chamber is decompressed. After the inside of the chamber is in a vacuum state, argon gas is introduced, and RF plasma is generated on the object to be coated to remove impurities on the surface of the object to be coated. Thereafter, RF sputtering is performed using a target of the material of the adhesion layer to be formed (for example, nickel, cobalt, or silver). Thereby, an adhesion layer can be formed on the surface of an object to be coated. Although there is no restriction | limiting in particular as a temperature of the to-be-coated object at the time of forming a contact | glue layer, For example, room temperature (about 25 degreeC)-450 degreeC are preferable. If the temperature of the object to be coated exceeds the upper limit, the heat resistance temperature of the semiconductor element may be exceeded, the thermal stress increases, and warping or peeling tends to occur.

また、塗布法により密着層を形成する場合には、先ず、半導体素子や基板などの被塗布物に、大気中もしくは不活性ガス雰囲気中でメタルマスク法、インクジェット法、スピンコート法、ディップ法、スクリーン印刷法などの手法によって、形成する密着層の材料(例えば、ニッケル、コバルトまたは銀)を含むペーストまたはインクを塗布する。ペーストやインクとしては、金属粒子と溶剤などを混合して調製したものを使用してもよいし、金属粒子を含む市販のペーストを使用してもよい。ニッケル粒子を含む市販のペーストとしては、例えば、立山科学工業(株)製のニッケルナノ粒子分散液、大研化学工業(株)製「MM12−800TO」などが挙げられる。コバルト粒子を含む市販のペーストとしては、例えば、立山科学工業(株)製のコバルトナノ粒子分散液などが挙げられる。銀粒子を含む市販のペーストとしては、例えば、住友電気工業(株)製「AGIN−W4A」、ハリマ化成(株)製「NPS−J−HTB」などが挙げられる。このようにペーストを塗布した被塗布物を不活性ガスまたは還元性ガス雰囲気中で加熱処理することにより前記密着層が形成される。なお、不活性ガスまたは還元性ガス雰囲気中での加熱処理の前に酸化雰囲気中で加熱処理を行なってもよい。加熱処理における雰囲気温度としては特に制限はないが、150〜450℃が好ましい。雰囲気温度が前記下限未満になると、ペースト中の有機成分(例えば、有機溶媒、有機修飾剤)の揮発除去が不十分となり、密着層中の有機成分の含有量が多くなる傾向にある。他方、前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にある。   In the case of forming an adhesion layer by a coating method, first, a metal mask method, an ink jet method, a spin coating method, a dip method, an object to be coated such as a semiconductor element or a substrate in the air or an inert gas atmosphere, A paste or ink containing the material of the adhesion layer to be formed (for example, nickel, cobalt, or silver) is applied by a technique such as screen printing. As the paste or ink, a paste prepared by mixing metal particles and a solvent may be used, or a commercially available paste containing metal particles may be used. Examples of commercially available pastes containing nickel particles include nickel nanoparticle dispersions manufactured by Tateyama Kagaku Kogyo Co., Ltd., “MM12-800TO” manufactured by Daiken Chemical Industries, Ltd., and the like. Examples of commercially available pastes containing cobalt particles include cobalt nanoparticle dispersions manufactured by Tateyama Science Co., Ltd. Examples of commercially available pastes containing silver particles include “AGIN-W4A” manufactured by Sumitomo Electric Industries, Ltd. and “NPS-J-HTB” manufactured by Harima Chemical Co., Ltd. The adhesion layer is formed by heat-treating the object to which the paste is applied in this manner in an inert gas or reducing gas atmosphere. Note that heat treatment may be performed in an oxidizing atmosphere before heat treatment in an inert gas or reducing gas atmosphere. Although there is no restriction | limiting in particular as atmospheric temperature in heat processing, 150-450 degreeC is preferable. When the atmospheric temperature is lower than the lower limit, the organic components (for example, organic solvent and organic modifier) in the paste are not sufficiently volatilized and removed, and the content of the organic components in the adhesion layer tends to increase. On the other hand, when the upper limit is exceeded, the heat resistance temperature of the semiconductor element may be exceeded, the thermal stress increases, and warping and peeling tend to occur.

次に、このようにして形成した密着層の表面に、図1に示した半導体装置の場合と同様に、本発明の接合材料を用いて接合材料層を形成し、半導体素子1と上部基板2a、半導体素子1と下部基板2bとを貼り合わせ、得られた接合体に加熱処理を施して接合材料を焼結させ、接合層3aおよび3bを形成する。これにより、半導体素子1と上部基板2aとが接合層3aおよび密着層4aおよび4bを介して接合され、半導体素子1と下部基板2bとが接合層3bおよび密着層4aおよび4bを介して接合される。このようにニッケル、コバルトおよび銀のうちの少なくとも1種の金属からなる密着層を形成することによって、接合強度がさらに向上する傾向にある。   Next, as in the case of the semiconductor device shown in FIG. 1, a bonding material layer is formed on the surface of the adhesion layer thus formed using the bonding material of the present invention, and the semiconductor element 1 and the upper substrate 2a. Then, the semiconductor element 1 and the lower substrate 2b are bonded together, and the obtained bonded body is subjected to heat treatment to sinter the bonding material, thereby forming the bonding layers 3a and 3b. Thereby, the semiconductor element 1 and the upper substrate 2a are bonded via the bonding layer 3a and the adhesion layers 4a and 4b, and the semiconductor element 1 and the lower substrate 2b are bonded via the bonding layer 3b and the adhesion layers 4a and 4b. The Thus, by forming an adhesion layer made of at least one metal of nickel, cobalt, and silver, the bonding strength tends to be further improved.

なお、前記密着層を形成することによって、接合強度がさらに向上する理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、ニッケルなどの金属表面に形成されている不働態の酸化物層は薄く、容易に還元されるとともに、ニッケルなどの金属層には銅ナノ粒子表面の酸化物層を還元する作用もある。また、ニッケルなどの金属層は焼結時の銅ナノ粒子との濡れ性が非常に大きいため、無加圧でも高い接合強度を有する密着層を形成することができる、と推察される。   The reason why the bonding strength is further improved by forming the adhesion layer is not necessarily clear, but the present inventors infer as follows. That is, the passive oxide layer formed on the metal surface such as nickel is thin and easily reduced, and the metal layer such as nickel also has an action of reducing the oxide layer on the surface of the copper nanoparticles. Moreover, since metal layers, such as nickel, have very high wettability with the copper nanoparticle at the time of sintering, it is guessed that the contact | adherence layer which has high joint strength can be formed even without a pressurization.

以上、半導体素子を上部電極と下部電極とで挟持する場合(図1および図2)を例に本発明の半導体装置を説明したが、本発明の半導体装置はこれらに限定されるものではなく、例えば、図3および図4に示すように、半導体素子の一方の面のみを接合層を介して基板と接合した半導体装置などが挙げられる。   As described above, the semiconductor device of the present invention has been described by taking the case where the semiconductor element is sandwiched between the upper electrode and the lower electrode (FIGS. 1 and 2) as an example, but the semiconductor device of the present invention is not limited to these. For example, as shown in FIGS. 3 and 4, a semiconductor device in which only one surface of a semiconductor element is bonded to a substrate through a bonding layer can be given.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例および比較例で使用した銅ナノ粒子は以下の方法により調製した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. In addition, the copper nanoparticle used by the Example and the comparative example was prepared with the following method.

(調製例1)
<銅ナノ粒子の調製>
銅ナノ粒子は、特開2012−46779号公報に記載の方法に従って調製した。すなわち、フラスコにエチレングリコール(HO(CHOH)600mlを入れ、これに炭酸銅(CuCO・Cu(OH)・HO)120mmolを添加したところ、炭酸銅はエチレングリコールにほとんど溶解せずに沈殿した。これに、デカン酸(C19COOH)180mmolおよびデシルアミン(C1021NH)60mmolを添加した後、窒素ガスを0.5L/minで流しながら、エチレングリコールの沸点で1時間加熱還流させたところ、微粒子が生成した。得られた微粒子をヘキサン中に分散させて回収し、アセトンおよびエタノールを順次添加して洗浄した後、遠心分離(3000rpm、20min)により回収し、真空乾燥(35℃、30min)を施した。
(Preparation Example 1)
<Preparation of copper nanoparticles>
Copper nanoparticles were prepared according to the method described in JP 2012-46779 A. That is, when 600 ml of ethylene glycol (HO (CH 2 ) 2 OH) was placed in a flask and 120 mmol of copper carbonate (CuCO 3 · Cu (OH) 2 · H 2 O) was added thereto, the copper carbonate was hardly added to ethylene glycol. It precipitated without dissolving. To this, 180 mmol of decanoic acid (C 9 H 19 COOH) and 60 mmol of decylamine (C 10 H 21 NH 2 ) were added, and then heated to reflux at the boiling point of ethylene glycol for 1 hour while flowing nitrogen gas at 0.5 L / min. As a result, fine particles were formed. The obtained fine particles were recovered by dispersing in hexane, washed with acetone and ethanol sequentially added, recovered by centrifugation (3000 rpm, 20 min), and vacuum-dried (35 ° C., 30 min).

得られた微粒子について、X線回折装置(ブルカー社製「全自動多目的X線回折装置D8 ADVANCE」)を用い、X線源:CuKα線(λ=0.15418nm)、加速電圧:35kV、加速電流:40mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、銅が主成分であることを確認した。   About the obtained fine particles, using an X-ray diffractometer (“Fully automatic multipurpose X-ray diffractometer D8 ADVANCE” manufactured by Bruker), X-ray source: CuKα ray (λ = 0.15418 nm), acceleration voltage: 35 kV, acceleration current : Powder X-ray diffraction (XRD) measurement was performed under the condition of 40 mA. The metal component was identified from the obtained XRD spectrum, and it was confirmed that copper was the main component.

また、得られた銅微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個の銅微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にある銅ナノ粒子は全銅微粒子の100%(個数基準)であった。また、これらの平均粒子径は200nmであった。   Further, the obtained copper fine particles were dispersed in toluene, and this dispersion was dispersed into an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)) Cu microgrid (Oken Corporation ( The sample for observation was produced by dripping on the product) and air-drying. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 copper fine particles were randomly extracted and the diameter thereof was measured. As a result, the copper nanoparticles having a diameter in the range of 1 to 1000 nm were 100% (number basis) of the total copper fine particles. Moreover, these average particle diameters were 200 nm.

(実施例1)
調製例1で調製した銅ナノ粒子と酸化ニッケルナノ粒子(シグマアルドリッチジャパン合同会社製「酸化ニッケル(II)(NiO)ナノ粒子」)、平均粒子径:<50nm、直径1〜1000nmの範囲にあるナノ粒子の含有率:100%(個数基準))とを乳鉢ですりつぶして混合し、全金属ナノ粒子に対して99.995質量%の銅ナノ粒子と0.005質量%の酸化ニッケルナノ粒子を含有する混合粉末を調製した。この混合粉末10gにデカノール500μlおよびテルピネオール500μlを添加し、自転・公転ミキサーにより撹拌して接合材料ペーストを調製した。
Example 1
Copper nanoparticles and nickel oxide nanoparticles prepared in Preparation Example 1 ("Nickel (II) (NiO) nanoparticles" manufactured by Sigma-Aldrich Japan LLC), average particle size: <50 nm, in the range of 1-1000 nm in diameter The content of nanoparticles: 100% (based on the number) is ground and mixed in a mortar, and 99.995 mass% copper nanoparticles and 0.005 mass% nickel oxide nanoparticles are added to all metal nanoparticles. A mixed powder containing was prepared. To 10 g of this mixed powder, 500 μl of decanol and 500 μl of terpineol were added and stirred by a rotating / revolving mixer to prepare a bonding material paste.

<接合強度測定>
リードフレームや半導体素子などにより構成される半導体装置において、接合層の接合強度を直接測定することは困難である。従って、得られた接合材料により形成される接合層の接合強度は、図5に示すせん断強度測定用接合体を用いて、以下の方法により測定した。
<Bonding strength measurement>
In a semiconductor device composed of a lead frame, a semiconductor element, etc., it is difficult to directly measure the bonding strength of the bonding layer. Therefore, the bonding strength of the bonding layer formed of the obtained bonding material was measured by the following method using the bonded body for measuring shear strength shown in FIG.

先ず、無酸素銅(C1020)からなる試験片8a(直径5mmφ×高さ2mm)の一方の面および無酸素銅(C1020)からなる試験片8b(10mm×22mm×3mm)の一方の面にそれぞれRFスパッタリング法により厚さ40nmのNi密着層10aおよび10bを形成した。   First, on one surface of a test piece 8a (diameter 5 mmφ × height 2 mm) made of oxygen-free copper (C1020) and on one surface of a test piece 8b (10 mm × 22 mm × 3 mm) made of oxygen-free copper (C1020), respectively. Ni adhesion layers 10a and 10b having a thickness of 40 nm were formed by RF sputtering.

次に、試験片8b上のNi密着層10bの表面に、メタルマスク(直径5mmφ×厚さ0.15mm)を用いてスクリーン印刷法により接合材料ペーストを塗布し、接合材料層(直径5mmφ×厚さ150μm)を形成した。この接合材料層と試験片8a上のNi密着層10aとが接するように試験片8aと試験片8bとを貼り合わせ、水素雰囲気中、無加圧の条件下、200℃で10分間予備加熱した後、接合温度350℃で5分間の加熱処理を施し、試験片8aと試験片8bが接合層9により接合された、せん断強度測定用接合体(図5)を作製した。   Next, a bonding material paste is applied to the surface of the Ni adhesion layer 10b on the test piece 8b by a screen printing method using a metal mask (diameter 5 mmφ × thickness 0.15 mm), and the bonding material layer (diameter 5 mmφ × thickness). 150 μm) was formed. The test piece 8a and the test piece 8b were bonded so that the bonding material layer and the Ni adhesion layer 10a on the test piece 8a were in contact with each other, and preheated at 200 ° C. for 10 minutes in a hydrogen atmosphere under no pressure. Then, the heat processing for 5 minutes were performed at the joining temperature of 350 degreeC, and the joined body for a shear strength measurement (FIG. 5) in which the test piece 8a and the test piece 8b were joined by the joining layer 9 was produced.

このようにして3個のせん断強度測定用接合体を作製し、これらのせん断強度を、インストロン型万能試験機(インストロン社製)を用いて、20℃、剪断速度1mm/分でそれぞれ測定し、これらの平均値を接合材料により形成された接合層の接合強度とした。その結果を表1および図6に示す。   In this way, three joined bodies for measuring shear strength were prepared, and these shear strengths were measured at 20 ° C. and a shear rate of 1 mm / min using an Instron universal testing machine (Instron). These average values were used as the bonding strength of the bonding layer formed of the bonding material. The results are shown in Table 1 and FIG.

(実施例2〜8)
銅ナノ粒子および酸化ニッケルナノ粒子の含有量を表1に示す割合に変更した以外は実施例1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1および図6に示す。
(Examples 2 to 8)
A bonding material paste was prepared in the same manner as in Example 1 except that the contents of copper nanoparticles and nickel oxide nanoparticles were changed to the ratios shown in Table 1, and a bonded body for measuring shear strength was further prepared to form a bonding layer. The bonding strength was determined. The results are shown in Table 1 and FIG.

(実施例9)
実施例7と同様にして接合材料ペースト(酸化ニッケルナノ粒子含有量:1質量%)を調製し、これに、平均粒子径が1.2μmの銅粉を前記接合材料ペースト中の全ナノ粒子:銅粉=31:69の質量比で添加し、全銅粒子に対する直径1〜1000nmの範囲にある銅ナノ粒子の割合が99.0%(個数基準)の接合材料ペースト(酸化ニッケルナノ粒子含有量:0.31質量%)を調製した。この接合材料ペーストを用いた以外は実施例1と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1に示す。
Example 9
A bonding material paste (nickel oxide nanoparticle content: 1% by mass) was prepared in the same manner as in Example 7, and copper powder having an average particle diameter of 1.2 μm was added to all the nanoparticles in the bonding material paste: Copper powder = a bonding material paste (nickel oxide nanoparticle content) added at a mass ratio of 31:69 and having a ratio of copper nanoparticles in the range of 1 to 1000 nm in diameter to the total copper particles of 99.0% (number basis) : 0.31% by mass). Except for using this bonding material paste, a bonded body for measuring shear strength was prepared in the same manner as in Example 1 to determine the bonding strength of the bonding layer. The results are shown in Table 1.

(比較例1)
酸化ニッケルナノ粒子を混合しなかった以外は実施例1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1および図6に示す。
(Comparative Example 1)
A bonding material paste was prepared in the same manner as in Example 1 except that the nickel oxide nanoparticles were not mixed, and a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 1 and FIG.

(比較例2〜3)
銅ナノ粒子および酸化ニッケルナノ粒子の含有量を表1に示す割合に変更した以外は実施例1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1および図6に示す。
(Comparative Examples 2-3)
A bonding material paste was prepared in the same manner as in Example 1 except that the contents of copper nanoparticles and nickel oxide nanoparticles were changed to the ratios shown in Table 1, and a bonded body for measuring shear strength was further prepared to form a bonding layer. The bonding strength was determined. The results are shown in Table 1 and FIG.

Figure 0006032110
Figure 0006032110

表1および図6に示した結果から明らかなように、全金属ナノ粒子に対して99.995〜97質量%の銅ナノ粒子と0.005〜3質量%の酸化ニッケルナノ粒子を含有する接合材料により形成された接合層(実施例1〜9)の接合強度は、酸化ニッケルナノ粒子を含まない接合材料により形成された接合層(比較例1)および酸化ニッケルナノ粒子の含有量が3質量%を超える接合材料により形成された接合層(比較例2〜3)の接合強度に比べて、高くなることが確認された。   As is apparent from the results shown in Table 1 and FIG. 6, the joint contains 99.995-97 mass% copper nanoparticles and 0.005-3 mass% nickel oxide nanoparticles with respect to the total metal nanoparticles. The bonding strength of the bonding layers (Examples 1 to 9) formed of the material is such that the content of the bonding layer (Comparative Example 1) formed of the bonding material not containing nickel oxide nanoparticles and the nickel oxide nanoparticles is 3 mass. It was confirmed that the bonding strength of the bonding layer (Comparative Examples 2 to 3) formed of the bonding material exceeding% was higher.

以上説明したように、本発明によれば、接合強度が高い接合層を無加圧、低温(例えば、400℃以下)で形成することが可能な接合材料を得ることができる。したがって、本発明の金属ナノ粒子材料は、低温や無加圧での半導体素子の接合技術において有用な材料である。   As described above, according to the present invention, it is possible to obtain a bonding material capable of forming a bonding layer with high bonding strength at no pressure and at a low temperature (for example, 400 ° C. or lower). Therefore, the metal nanoparticle material of the present invention is a useful material in a semiconductor element bonding technique at low temperature or no pressure.

1:半導体素子、2:基板、2a:上部基板、2b:下部基板、2c,2d:各基板の突出部、3,3a,3b:接合層、4a,4b:密着層、5:信号端子、6:ボンディングワイヤ、7:モールド樹脂、8a,8b:試験片、9:接合層、10a,10b:密着層   1: semiconductor element, 2: substrate, 2a: upper substrate, 2b: lower substrate, 2c, 2d: protruding portion of each substrate, 3, 3a, 3b: bonding layer, 4a, 4b: adhesion layer, 5: signal terminal, 6: bonding wire, 7: mold resin, 8a, 8b: test piece, 9: bonding layer, 10a, 10b: adhesion layer

Claims (5)

全金属ナノ粒子に対して、銅ナノ粒子を99.995〜97質量%且つ酸化ニッケルナノ粒子を0.005〜3質量%含有することを特徴とする金属ナノ粒子材料。   A metal nanoparticle material comprising 99.995 to 97% by mass of copper nanoparticles and 0.005 to 3% by mass of nickel oxide nanoparticles with respect to all metal nanoparticles. 直径が1〜1000nmの範囲にある金属ナノ粒子が、個数基準で全金属粒子の99%以上であることを特徴とする請求項1に記載の金属ナノ粒子材料。   2. The metal nanoparticle material according to claim 1, wherein the metal nanoparticles having a diameter in a range of 1 to 1000 nm are 99% or more of all metal particles based on the number. 請求項1または2に記載の金属ナノ粒子材料を含有することを特徴とする接合材料。   A bonding material comprising the metal nanoparticle material according to claim 1. 半導体素子、基板、および前記半導体素子と前記基板との間に配置された接合層を備えており、
前記接合層が請求項3に記載の接合材料により形成された銅と酸化ニッケルとの混合物層であることを特徴とする半導体装置。
Comprising a semiconductor element, a substrate, and a bonding layer disposed between the semiconductor element and the substrate;
A semiconductor device, wherein the bonding layer is a mixture layer of copper and nickel oxide formed of the bonding material according to claim 3.
前記混合物層の両面にニッケル、コバルトおよび銀からなる群から選択される少なくとも1種の金属からなる密着層を更に備えており、
一方の密着層が半導体素子の接合部に接するように配置され、他方の密着層が前記基板の接合部に接するように配置されていることを特徴とする請求項4に記載の半導体装置。
And further comprising an adhesion layer made of at least one metal selected from the group consisting of nickel, cobalt and silver on both sides of the mixture layer;
5. The semiconductor device according to claim 4, wherein one adhesion layer is disposed so as to be in contact with a bonding portion of the semiconductor element, and the other adhesion layer is disposed so as to be in contact with a bonding portion of the substrate.
JP2013086839A 2013-04-17 2013-04-17 Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same Expired - Fee Related JP6032110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013086839A JP6032110B2 (en) 2013-04-17 2013-04-17 Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086839A JP6032110B2 (en) 2013-04-17 2013-04-17 Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2014210947A JP2014210947A (en) 2014-11-13
JP6032110B2 true JP6032110B2 (en) 2016-11-24

Family

ID=51930906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086839A Expired - Fee Related JP6032110B2 (en) 2013-04-17 2013-04-17 Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP6032110B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5941588B2 (en) * 2014-09-01 2016-06-29 Dowaエレクトロニクス株式会社 Bonding material and bonding method using the same
EP3702072A1 (en) 2015-09-07 2020-09-02 Hitachi Chemical Company, Ltd. Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
JP7005121B2 (en) * 2015-12-04 2022-01-21 昭和電工マテリアルズ株式会社 Copper paste for non-pressurized bonding, bonded bodies, and semiconductor devices
KR20190105610A (en) 2017-01-11 2019-09-17 히타치가세이가부시끼가이샤 Copper pastes, assemblies and semiconductor devices for pressureless bonding
JP7198479B2 (en) * 2018-08-31 2023-01-04 学校法人早稲田大学 Semiconductor device bonding structure, method for producing semiconductor device bonding structure, and conductive bonding agent
KR102243472B1 (en) * 2018-12-17 2021-04-26 주식회사 경동원 Sintering paste composition for bonding power semiconductor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799881B2 (en) * 2004-12-27 2011-10-26 三井金属鉱業株式会社 Conductive ink
JP2006202938A (en) * 2005-01-20 2006-08-03 Kojiro Kobayashi Semiconductor device and its manufacturing method
JP2007095705A (en) * 2006-11-20 2007-04-12 Denso Corp Conductor paste composition and circuit substrate
JP5003250B2 (en) * 2007-04-02 2012-08-15 住友金属鉱山株式会社 Thick film resistor paste, thick film resistor and method for forming the same
JP5502434B2 (en) * 2008-11-26 2014-05-28 三ツ星ベルト株式会社 Bonding agent for inorganic material and bonded body of inorganic material
JP5520861B2 (en) * 2010-03-26 2014-06-11 古河電気工業株式会社 Copper alloy fine particle dispersion, method for producing sintered conductor, sintered conductor, and conductive connecting member
JP5733638B2 (en) * 2013-03-06 2015-06-10 株式会社豊田中央研究所 Bonding material and semiconductor device using the same, and wiring material and wiring for electronic element using the same

Also Published As

Publication number Publication date
JP2014210947A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP6153077B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP6032110B2 (en) Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
JP6337909B2 (en) Manufacturing method of electronic component module
EP3217424B1 (en) Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly
JP6099472B2 (en) Metal nanoparticle dispersion, method for producing metal nanoparticle dispersion, and bonding method
KR20180004853A (en) Binding material, binding body, and binding method
TW201830411A (en) Bonding material and bonding method using same
JP7220310B2 (en) Copper paste for non-pressure bonding, method for non-pressure bonding, and method for manufacturing bonded body
JP2016525495A (en) Sintered paste with silver oxide coated on precious and non-precious metal surfaces that are difficult to sinter
TW201312595A (en) Metal nanoparticle paste, bonding method, bonded element and electronic substrate
JP6153076B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP5733638B2 (en) Bonding material and semiconductor device using the same, and wiring material and wiring for electronic element using the same
JP6270241B2 (en) Bonding material and semiconductor device using the same
JP6722679B2 (en) Conductive paste
JP2017147151A (en) Conductive paste and semiconductor device
JP7210842B2 (en) Method for manufacturing joined body, copper paste for forming sintered copper pillars, and joining member with pillars
JP2017172029A (en) JOINT MATERIAL AND JOINT STRUCTURE USING Ni NANOPARTICLES
JP2014043382A (en) Semiconductor device and method of manufacturing the same
WO2018101471A1 (en) Electroconductive bonding material and method for manufacturing semiconductor device
TWI789698B (en) Copper oxide paste and method for producing electronic parts
JP7463681B2 (en) Method for manufacturing joined body and joined body
US11938543B2 (en) Silver sintering preparation and the use thereof for the connecting of electronic components
JP7131956B2 (en) Conductive bonding paste material and bonding method
JP2022049054A (en) Method of making electric conductor, metal paste and electric conductor
JP2020007593A (en) Joint material, joint material paste containing the same, and joint method and semiconductor device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R150 Certificate of patent or registration of utility model

Ref document number: 6032110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees