JP2009158441A - Conductive paste, and formation method of copper film using the same - Google Patents

Conductive paste, and formation method of copper film using the same Download PDF

Info

Publication number
JP2009158441A
JP2009158441A JP2007338884A JP2007338884A JP2009158441A JP 2009158441 A JP2009158441 A JP 2009158441A JP 2007338884 A JP2007338884 A JP 2007338884A JP 2007338884 A JP2007338884 A JP 2007338884A JP 2009158441 A JP2009158441 A JP 2009158441A
Authority
JP
Japan
Prior art keywords
group
component
conductive paste
amino
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007338884A
Other languages
Japanese (ja)
Inventor
Hiroki Maruyama
浩樹 丸山
Akito Yoshii
明人 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2007338884A priority Critical patent/JP2009158441A/en
Publication of JP2009158441A publication Critical patent/JP2009158441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive paste capable of easily forming a dense copper film in a desired shape at low temperature. <P>SOLUTION: This conductive paste contains: (A) copper formate (II) or its compound; (B) an amino compound represented by formula NR<SB>1</SB>R<SB>2</SB>R<SB>3</SB>, wherein R<SB>1</SB>is a 2-4C straight-chain or branched-chain alkyl group substituted with one substituent selected from a group consisting of a hydroxyl group, a methoxy group, an ethoxy group and an amino group, and R<SB>2</SB>and R<SB>3</SB>are each independently hydrogen or a 1-3C alkyl group that may be substituted with a hydroxyl group or an amino group; and (C) a 5-11C saturated fatty acid; and is characterized in that the constituent (C) is 0.1-1 mol to 1 mol of the constituent (A). <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、導電性ペースト、それを用いた銅膜の製造方法、及びそれによって得られる銅膜に関する。   The present invention relates to a conductive paste, a method for producing a copper film using the same, and a copper film obtained thereby.

0.1μm〜1μm程度の膜厚の薄膜を形成する方法として、真空蒸着法、スパッタリング法のような気相法、及びペーストを用いた印刷法等がある。しかし、真空蒸着法、スパッタリング法は、高価な設備を用い、バッチ式で行われる上に、生成された膜のパターニングが必要となるため、生産速度及び原料歩留まりが低く、コストがかかるという欠点がある。ペーストを用いた印刷法は、ペーストを印刷した後、600℃以上での焼結が必要となり、使用する基材が制限され、均一な焼結膜が得られにくく、また、薄膜と基材の熱収縮率の差による薄膜−基材間の接着力の低下等の問題がある。   As a method for forming a thin film having a thickness of about 0.1 μm to 1 μm, there are a vapor deposition method such as a vacuum deposition method and a sputtering method, and a printing method using a paste. However, the vacuum deposition method and the sputtering method are performed in a batch system using expensive equipment, and the generated film needs to be patterned. Therefore, the production speed and the raw material yield are low, and the cost is high. is there. The printing method using paste requires sintering at 600 ° C. or higher after printing the paste, the base material to be used is limited, and it is difficult to obtain a uniform sintered film. There are problems such as a decrease in adhesion between the thin film and the substrate due to a difference in shrinkage rate.

上記の問題点を解決するために、常温で固体の3〜15族の金属元素含有有機化合物と、アミノ化合物との金属元素含有有機化合物ペーストを塗布し、焼成する金属膜の製造方法が開示されている(特許文献1)。   In order to solve the above problems, a method for producing a metal film is disclosed in which a metal element-containing organic compound paste of a group 3-15 metal element that is solid at room temperature and an amino compound is applied and fired. (Patent Document 1).

また、ギ酸銅とアルコキシアルキルアミンとの混合生成物を基材と接触させながら焼成する金属膜の製造方法も開示されている(特許文献2)。   Also disclosed is a method for producing a metal film in which a mixed product of copper formate and alkoxyalkylamine is fired while being in contact with a substrate (Patent Document 2).

しかしながら、特許文献1の実施例25に記載された方法では、銅の膜状物が形成されるものの、焼成により析出した銅粒子同士は焼結していないため、電気抵抗が高く、電子部品用途に使用することはできない。   However, in the method described in Example 25 of Patent Document 1, a copper film is formed, but the copper particles deposited by firing are not sintered, so that the electrical resistance is high and the electronic component is used. Cannot be used for.

特許文献2に記載された方法では、ギ酸銅の熱分解の初期に生成した銅粒子を核として、銅粒子が粒成長し、銅粒子が粗大化した多孔性の銅膜が形成されるために、電気抵抗が高いうえに、均一な薄膜を得難いという問題がある。
特開平10−72673号公報 特開2005−2471号公報
In the method described in Patent Document 2, since a copper particle formed in the initial stage of thermal decomposition of copper formate is used as a nucleus, the copper particle grows and a porous copper film in which the copper particle is coarsened is formed. In addition, the electrical resistance is high and there is a problem that it is difficult to obtain a uniform thin film.
Japanese Patent Laid-Open No. 10-72673 Japanese Patent Laying-Open No. 2005-2471

本発明の目的は、簡便に、低温で緻密な銅膜を、所望の形状に形成しうる導電性ペースト、その導電性ペーストを用いた銅膜を製造する方法、及びこの方法で製造される銅膜を提供することである。   An object of the present invention is to provide a conductive paste that can easily form a dense copper film in a desired shape at a low temperature, a method for producing a copper film using the conductive paste, and a copper produced by this method. It is to provide a membrane.

本発明は、(A)ギ酸銅(II)又はその水和物と、(B)式:NR123(式中、R1は、水酸基、メトキシ基、エトキシ基及びアミノ基からなる群より選択される置換基の1個で置換されている炭素数2〜4の直鎖状又は分岐状のアルキル基を表し、R2及びR3は、それぞれ独立して、水素であるか、又は水酸基もしくはアミノ基で置換されていてもよい炭素数1〜3のアルキル基を表す。)で示されるアミノ化合物と、(C)炭素数5〜11の飽和脂肪酸とを含み、成分(A)1モルに対して、成分(C)が0.1〜1モルであることを特徴とする導電性ペーストに関する。 The present invention relates to (A) copper formate (II) or a hydrate thereof, and (B) formula: NR 1 R 2 R 3 (wherein R 1 comprises a hydroxyl group, a methoxy group, an ethoxy group, and an amino group. Represents a linear or branched alkyl group having 2 to 4 carbon atoms substituted with one of the substituents selected from the group, wherein R 2 and R 3 are each independently hydrogen; Or an amino compound having 1 to 3 carbon atoms which may be substituted with a hydroxyl group or an amino group.) And (C) a saturated fatty acid having 5 to 11 carbon atoms, and component (A) It is related with the electrically conductive paste characterized by 0.1-1 mol of components (C) with respect to 1 mol.

また、本発明は、導電性ペーストの層を基板上に成形し、非酸化性雰囲気中において200〜550℃で加熱する、銅膜を製造する方法に関する。   The present invention also relates to a method for producing a copper film, in which a layer of a conductive paste is formed on a substrate and heated at 200 to 550 ° C. in a non-oxidizing atmosphere.

本発明の導電性ペーストを非酸化雰囲気で焼成することにより、簡便に、低温で緻密な銅膜を得ることができる。   By baking the conductive paste of the present invention in a non-oxidizing atmosphere, a dense copper film can be easily obtained at a low temperature.

本発明の導電性ペーストは、(A)ギ酸銅(II)又はその水和物と、(B)式NR123:(式中、R1は、水酸基、メトキシ基、エトキシ基及びアミノ基からなる群より選択される置換基の1個で置換されている炭素数2〜4の直鎖状又は分岐状のアルキル基を表し、R2及びR3は、それぞれ独立して、水素であるか、又は水酸基もしくはアミノ基で置換されていてもよい炭素数1〜3のアルキル基を表す。)で示されるアミノ化合物と、(C)炭素数5〜11の飽和脂肪酸とを含み、成分(A)1モルに対して、成分(C)が0.1〜1モルであることを特徴とする。 The conductive paste of the present invention comprises (A) copper formate (II) or a hydrate thereof and (B) formula NR 1 R 2 R 3 : (wherein R 1 is a hydroxyl group, a methoxy group, an ethoxy group, and Represents a linear or branched alkyl group having 2 to 4 carbon atoms that is substituted with one of the substituents selected from the group consisting of amino groups, and R 2 and R 3 are each independently hydrogen Or an amino compound having 1 to 3 carbon atoms which may be substituted with a hydroxyl group or an amino group.) And (C) a saturated fatty acid having 5 to 11 carbon atoms, The component (C) is 0.1 to 1 mol with respect to 1 mol of the component (A).

成分(A)のギ酸銅(II)又はその水和物とは、無水物、水和物、又はそれらの混合物をいう。水和物としては、例えば、四水和物、二水和物などが挙げられ、好ましくは四水和物である。成分(A)の配合により、焼成時にギ酸銅が低温で分解され、かつ残留炭素量の抑制が図られる。焼成時の残存炭素量の抑制により、析出した銅粒子の焼結が促進され、緻密な銅膜が得られる。水和水は、導電性ペーストの焼成時等に脱離する。   The component (A) copper formate (II) or a hydrate thereof refers to an anhydride, a hydrate, or a mixture thereof. Examples of the hydrate include tetrahydrate, dihydrate and the like, and tetrahydrate is preferable. By blending the component (A), copper formate is decomposed at a low temperature during firing, and the amount of residual carbon is suppressed. By suppressing the amount of residual carbon during firing, sintering of the precipitated copper particles is promoted, and a dense copper film is obtained. Hydrated water is detached when the conductive paste is fired.

成分(B)の配合により、成分(A)の可溶化、及び焼成後の残存炭素量の抑制が図られる。成分(B)としては、式:NHR14(式中、R1は、水酸基、メトキシ基、エトキシ基及びアミノ基からなる群より選択される置換基の1個で置換されている炭素数2〜4の直鎖状又は分岐状のアルキル基を表し、R4は、水素であるか、又はアミノ基で置換されていてもよい炭素数1〜3のアルキル基を表す。)で示されるアミノ化合物が好ましく、式:NH25(式中、R5は、水酸基、メトキシ基及びエトキシ基からなる群より選択される置換基の1個で置換されている炭素数2〜4の直鎖状又は分岐状のアルキル基を表す。)で示されるアミノ化合物が、成分(A)の可溶化の観点から特に好ましい。可溶化により、導電性ペーストが均質化され、良好な印刷又は塗布等が可能となり、焼成時に析出する銅粒子の微細化も図られる。 By blending component (B), solubilization of component (A) and suppression of the amount of residual carbon after firing are achieved. Component (B) has the formula: NHR 1 R 4 (wherein R 1 is the number of carbon atoms substituted with one of the substituents selected from the group consisting of a hydroxyl group, a methoxy group, an ethoxy group, and an amino group) Represents a linear or branched alkyl group having 2 to 4 carbon atoms, and R 4 represents hydrogen or an alkyl group having 1 to 3 carbon atoms which may be substituted with an amino group. An amino compound is preferred, and has the formula: NH 2 R 5 (wherein R 5 is a straight chain having 2 to 4 carbon atoms substituted with one of the substituents selected from the group consisting of a hydroxyl group, a methoxy group and an ethoxy group. An amino compound represented by a linear or branched alkyl group is particularly preferable from the viewpoint of solubilization of the component (A). By solubilization, the conductive paste is homogenized, enabling good printing or coating, etc., and miniaturization of copper particles precipitated during firing.

成分(B)としては、例えば、3−メトキシプロピルアミン、3−エトキシプロピルアミン、1−アミノ−2−プロパノール、3−アミノ−1−プロパノール、2−アミノエタノール、2−アミノ−2−メチル−1−プロパノール、N−メチル−1,3−ジアミノプロパン、3,3'−ジアミノジプロピルアミン、2−メトキシエチルアミン、1,3−ジアミノプロパン、2−(2−アミノエチルアミノ)エタノール等の第1級アミノ基を含有する化合物、N−メチルエタノールアミン、2,2’−イミノジエタノール等の第2級アミノ基を含有する化合物、又は2−ジメチルアミノエタノール等の第3級アミノ基を含有する化合物を用いることが好ましく、2−アミノ−2−メチル−1−プロパノールが特に好ましい。   Examples of the component (B) include 3-methoxypropylamine, 3-ethoxypropylamine, 1-amino-2-propanol, 3-amino-1-propanol, 2-aminoethanol, 2-amino-2-methyl- 1-propanol, N-methyl-1,3-diaminopropane, 3,3′-diaminodipropylamine, 2-methoxyethylamine, 1,3-diaminopropane, 2- (2-aminoethylamino) ethanol, etc. A compound containing a primary amino group, a compound containing a secondary amino group such as N-methylethanolamine or 2,2′-iminodiethanol, or a tertiary amino group such as 2-dimethylaminoethanol A compound is preferably used, and 2-amino-2-methyl-1-propanol is particularly preferable.

成分(B)は、1種類でもよく、また、2種以上を組み合わせてもよい。   One type of component (B) may be used, or two or more types may be combined.

成分(C)の炭素数が5以上であることにより、ギ酸銅の分解温度が制御され、析出する銅粒子の微細化が図られる。また、析出した微細な銅粒子は焼結性がよく、緻密で導電性の高い銅膜が得られる。成分(C)の炭素数が11以下であることにより、成分(A)及び成分(B)との可溶性が図られ、かつ熱分解後の残留炭素量が抑制される。析出する銅粒子の微細化及び熱分解後の残留炭素量の観点から、成分(C)は、炭素数が7〜9の飽和脂肪酸であることが、特に好ましい。   When the carbon number of the component (C) is 5 or more, the decomposition temperature of copper formate is controlled and the deposited copper particles are refined. Moreover, the deposited fine copper particles have good sinterability, and a dense and highly conductive copper film can be obtained. When the carbon number of component (C) is 11 or less, solubility with component (A) and component (B) is achieved, and the amount of residual carbon after pyrolysis is suppressed. From the viewpoint of refining the precipitated copper particles and the amount of residual carbon after thermal decomposition, the component (C) is particularly preferably a saturated fatty acid having 7 to 9 carbon atoms.

成分(C)としては、例えば、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、2−エチルヘキサン酸、ノナン酸、デカン酸、ウンデカン酸等が好ましく、ヘプタン酸、オクタン酸、2−エチルヘキサン酸、ノナン酸がより好ましく、オクタン酸、2−エチルヘキサン酸が特に好ましい。   As the component (C), for example, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, decanoic acid, undecanoic acid and the like are preferable, and heptanoic acid, octanoic acid, 2-ethylhexanoic acid are preferable. Nonanoic acid is more preferable, and octanoic acid and 2-ethylhexanoic acid are particularly preferable.

成分(C)は、1種類でもよく、また、2種以上を組み合わせてもよい。   One type of component (C) may be used, or two or more types may be combined.

本発明の導電性ペーストは、スクリーン印刷機、ディスペンサー、スピンコーター等により、そのままでも印刷又は塗布が十分に可能であるが、さらに、アルコール類、ケトン類、エーテル類等を添加することにより、印刷性、保存性等の向上を図ることができる。なお、印刷又は塗布には、スクリーン印刷機、ディスペンサーの使用が好ましい。   The conductive paste of the present invention can be sufficiently printed or applied as it is with a screen printing machine, dispenser, spin coater, etc., but can also be printed by adding alcohols, ketones, ethers, etc. And the like can be improved. For printing or coating, it is preferable to use a screen printer or a dispenser.

上記アルコール類としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ターピネオール、ジヒドロターピネオール等が挙げられ、直鎖状でも分岐状でもよい。   Examples of the alcohols include methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, terpineol, dihydroterpineol, and the like, which may be linear or branched.

上記ケトン類としては、例えば、アセトン、メチルエチルケトン、2−ペンタノン、3−ペンタノン等が挙げられる。   Examples of the ketones include acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone.

上記エーテル類としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル等が挙げられる。   Examples of the ethers include ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dipropyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether and the like.

また、導電性ペーストには、印刷性や素子への密着性を向上させるために、アクリル系等の樹脂バインダーや可塑剤等を添加することもできる。   In addition, an acrylic resin binder, a plasticizer, or the like can be added to the conductive paste in order to improve printability and adhesion to the element.

導電性ペーストは、成分(A)1モルに対して、成分(A)の可溶化の観点から、成分(B)が1モル以上であることが好ましく、焼成後の残留炭素量を抑制する観点から、成分(B)が10モル以下であることが好ましい。   From the viewpoint of solubilization of the component (A) with respect to 1 mol of the component (A), the conductive paste preferably contains 1 mol or more of the component (B), and suppresses the residual carbon amount after firing. Therefore, the component (B) is preferably 10 mol or less.

導電性ペーストの配合は、成分(A)1モルに対して、ギ酸銅の分解により析出する銅粒子の微細化の観点から、成分(C)が0.1モル以上であることが好ましく、0.3モル以上であることが特に好ましい。また、焼成後の残留炭素量を抑制する観点から、成分(C)が1モル以下であることが好ましく、0.7モル以下であることが特に好ましい。   The amount of the conductive paste is preferably 0.1 mol or more from the viewpoint of miniaturization of copper particles deposited by decomposition of copper formate with respect to 1 mol of component (A). Particularly preferred is 3 mol or more. Moreover, from a viewpoint of suppressing the amount of residual carbon after baking, it is preferable that a component (C) is 1 mol or less, and it is especially preferable that it is 0.7 mol or less.

導電性ペーストの配合は、特に、成分(A)にギ酸銅(II)・四水和物、成分(B)に2−アミノ−2−メチル−1−プロパノール、成分(C)にオクタン酸を用いるときには、成分(A)1モルに対して、成分(B)が2〜6モル、成分(C)が0.4〜0.6モルであることが好ましく、成分(B)が3.5〜4.5モル、成分(C)が0.45〜0.55モルであることが特に好ましい。   In particular, the conductive paste is formulated with copper (II) formate tetrahydrate as component (A), 2-amino-2-methyl-1-propanol as component (B), and octanoic acid as component (C). When used, it is preferable that component (B) is 2 to 6 mol, component (C) is 0.4 to 0.6 mol, and component (B) is 3.5 mol with respect to 1 mol of component (A). It is particularly preferable that the content of the component (C) is 0.45 to 0.55 mol.

導電性ペーストを、基板上に印刷又は塗布し、非酸化性雰囲気中において、200〜550℃で加熱することにより、緻密で導電性の高い銅膜を製造することができる。   A dense and highly conductive copper film can be produced by printing or applying a conductive paste on a substrate and heating at 200 to 550 ° C. in a non-oxidizing atmosphere.

基板には、アルミナ、窒化アルミニウム、炭化ケイ素等のセラミックス基板、ガラス基板、ポリイミド、エポキシ樹脂、ポリエチレンナフタレート等の樹脂基板等を使用することができ、好ましくは、ポリイミド、エポキシ樹脂およびガラス基板が挙げられる。   As the substrate, ceramic substrates such as alumina, aluminum nitride, and silicon carbide, glass substrates, resin substrates such as polyimide, epoxy resin, and polyethylene naphthalate can be used. Preferably, polyimide, epoxy resin, and glass substrate are used. Can be mentioned.

成分(A)、(B)及び(C)を含むペーストを、基板上に焼成後膜厚0.1〜10μmになるように塗布し、非酸化性雰囲気中において、焼成すると均一で微細な結晶子径を有する銅粒子が析出する。このように均一で微細に析出する銅粒子は、焼結性がよいため、緻密な銅膜が得られる。非酸化性雰囲気としては、例えば、窒素ガス、窒素水素混合ガス、アルゴンガス等の中性又は弱還元性雰囲気が挙げられる。   A paste containing components (A), (B) and (C) is applied on a substrate so as to have a film thickness of 0.1 to 10 μm after firing, and is fired in a non-oxidizing atmosphere to produce uniform and fine crystals. Copper particles having a child diameter are deposited. Since the copper particles that are uniformly and finely deposited in this way have good sinterability, a dense copper film can be obtained. Examples of the non-oxidizing atmosphere include a neutral or weak reducing atmosphere such as nitrogen gas, nitrogen-hydrogen mixed gas, and argon gas.

成分(A)、(B)及び(C)を含むペーストを、焼成後膜厚0.1〜10μmになるように塗布し、非酸化性雰囲気中において、室温から180℃まで昇温速度5〜10℃/分で昇温し、180℃で20分間保持したときには、成分(C)の効果により、通常、基板の表面に平均結晶子径が20〜30nmの微細粒子が析出することを確認することができる。   The paste containing the components (A), (B) and (C) was applied so as to have a film thickness of 0.1 to 10 μm after firing, and the heating rate was 5 to 180 ° C. in a non-oxidizing atmosphere. When the temperature is raised at 10 ° C./min and held at 180 ° C. for 20 minutes, it is confirmed that fine particles having an average crystallite diameter of 20 to 30 nm are usually deposited on the surface of the substrate due to the effect of the component (C). be able to.

成分(A)、(B)及び(C)を含むペーストを、室温から200℃〜550℃まで昇温して焼成した場合には、緻密に焼結した銅膜が得られる。なお、導電性ペーストから析出する銅粒子の、焼結温度域以下での粗大な粒子の析出および成長を抑制するため、焼成工程中において、例えば80〜150℃等の温度で保持する工程等は行わず、一段階で焼成温度まで昇温することが好ましい。また、昇温速度が速すぎると、塗布された導電性ペーストの均一な熱分解が阻害される可能性が高くなり、昇温速度が遅すぎると、導電性ペーストから析出した銅粒子の焼結性が損なわれる可能性が高くなる。昇温速度は、緻密に焼結した銅膜を形成する観点から、好ましくは5℃/分〜100℃/分、さらに好ましくは10℃/分〜30℃/分である。また、銅膜の焼結の均一性の点から、焼結温度では5〜20分保持することが、好ましい。   When the paste containing the components (A), (B) and (C) is heated from room temperature to 200 ° C. to 550 ° C. and fired, a densely sintered copper film is obtained. In order to suppress the precipitation and growth of coarse particles below the sintering temperature range of the copper particles precipitated from the conductive paste, the step of holding at a temperature of, for example, 80 to 150 ° C. during the firing step, etc. It is preferable to raise the temperature to the firing temperature in one step without performing it. In addition, if the heating rate is too fast, there is a high possibility that uniform thermal decomposition of the applied conductive paste will be hindered, and if the heating rate is too slow, the copper particles precipitated from the conductive paste will be sintered. There is a high possibility that the performance will be impaired. The temperature increase rate is preferably 5 ° C./min to 100 ° C./min, more preferably 10 ° C./min to 30 ° C./min from the viewpoint of forming a densely sintered copper film. Moreover, it is preferable to hold | maintain for 5 to 20 minutes at a sintering temperature from the point of the uniformity of sintering of a copper film.

上記の製造方法により、緻密で導電性の高い銅膜を得ることができる。   A dense and highly conductive copper film can be obtained by the above manufacturing method.

下記の実施例により本発明を詳細に説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。   The following examples illustrate the invention in detail but are not intended to limit the invention in any way.

500cm3容フラスコに、表1に示す原料を用いて、成分(A)を0.3モル、成分(B)を1.2モル、成分(C)を0.15モル投入し、室温で5時間撹拌して、実施例1〜15、及び比較例1〜9の導電性ペーストを作製した。成分(A)には、日本化学産業(株)製ギ酸銅(II)4水和物を用いた。なお、比較例4のみ成分(A)に和光純薬(株)酢酸銅を用い、比較例9のみ、成分(A)0.3モルに対して、成分(C)を0.015モル投入した。可溶性の結果を表1に示す。可溶性の評価は、肉眼で行い、導電性ペースト中に固体が観察されないときには可溶であるとした。成分(A)が可溶であるときに○、成分(A)が可溶でないときに×とした。実施例1〜15は○であった。これに対し、比較例1〜3は×であった。 Using a raw material shown in Table 1, 0.3 mol of the component (A), 1.2 mol of the component (B), and 0.15 mol of the component (C) were charged into a 500 cm 3 volume flask at room temperature. It stirred for time and produced the electrically conductive paste of Examples 1-15 and Comparative Examples 1-9. As the component (A), copper (II) formate tetrahydrate manufactured by Nippon Chemical Industry Co., Ltd. was used. In addition, only Wako Pure Chemical Industries, Ltd. copper acetate was used for component (A) only in comparative example 4, and 0.015 mol of component (C) was added to 0.3 mol of component (A) only in comparative example 9. . The solubility results are shown in Table 1. The evaluation of solubility was performed with the naked eye, and was considered soluble when no solid was observed in the conductive paste. When the component (A) was soluble, it was marked as ◯, and when the component (A) was not soluble, it was marked as x. Examples 1-15 were (circle). On the other hand, Comparative Examples 1-3 were x.

幅26mm、長さ76mm、厚さ1.2〜1.5mmのスライドガラスに、導電性ペーストを幅10mm、長さ50mm、厚さ約0.05mmのパターンに塗布した。   The conductive paste was applied to a slide glass having a width of 26 mm, a length of 76 mm, and a thickness of 1.2 to 1.5 mm in a pattern having a width of 10 mm, a length of 50 mm, and a thickness of about 0.05 mm.

次に、ペーストの塗布面を上にしてスライドガラスを、窒素ガス雰囲気のベルト炉を用い、室温から500℃まで25℃/分の速度で昇温し、500℃で10分保持した後、室温まで降温して、500℃焼成後の試料を作製した。500℃焼成後と同様にパターンを塗布し、室温から200℃まで10℃/分の速度で昇温し、200℃で10分保持した後、室温まで降温して、200℃焼成後の試料を作製した。500℃焼成後及び200℃焼成後の試料をSEMで観察し、緻密な銅膜が形成されていることを確認した。   Next, the slide glass was heated up at a rate of 25 ° C./min from room temperature to 500 ° C. using a belt furnace in a nitrogen gas atmosphere with the paste application surface facing up, and held at 500 ° C. for 10 minutes. The sample was baked to 500 ° C. to prepare a sample. A pattern was applied in the same manner as after baking at 500 ° C., the temperature was increased from room temperature to 200 ° C. at a rate of 10 ° C./min, held at 200 ° C. for 10 minutes, then cooled to room temperature, and the sample after baking at 200 ° C. Produced. The sample after baking at 500 ° C. and after baking at 200 ° C. was observed by SEM, and it was confirmed that a dense copper film was formed.

500℃焼成後の試料の銅膜の抵抗をLCRメーターを用い4端子法で測定し、膜厚を表面粗さ計で測定後、それらの数値から比抵抗を算出した。その結果を表2に示す。実施例1〜3の比抵抗は、0.7〜1.8×10-5Ω・cmであった。これに対して、比較例4、5は測定できず、比較例6〜9の比抵抗は、3.0〜3.2×10-5Ω・cmであった。 The resistance of the copper film of the sample after baking at 500 ° C. was measured by a four-terminal method using an LCR meter, the film thickness was measured by a surface roughness meter, and the specific resistance was calculated from those values. The results are shown in Table 2. The specific resistances of Examples 1 to 3 were 0.7 to 1.8 × 10 −5 Ω · cm. On the other hand, Comparative Examples 4 and 5 could not be measured, and the specific resistances of Comparative Examples 6 to 9 were 3.0 to 3.2 × 10 −5 Ω · cm.

図1に、実施例1の導電性ペーストの180℃焼成後と500℃焼成後の走査型電子顕微鏡写真を示す。180℃焼成後の試料は、500℃焼成後の試料と同様に、ガラス基板上に導電ペーストを塗布した後、室温から180℃まで速度9℃/分で昇温し、180℃で10分間保持した後、室温まで降温して作製した。180℃焼成後には、緻密な銅粒子が析出していることを確認することができ、銅粒子の結晶子径は約22nmであった。また、500℃焼成後には、析出した銅粒子の焼結が進行し、緻密な銅膜を形成しており、その結晶子径は約43nmであった。結晶子径は、Rigaku社製X線回折装置(型番:RINT−UltimaIII)を用い、X線回折法(Scherrerの式を用いる方法)で測定した。   FIG. 1 shows scanning electron micrographs of the conductive paste of Example 1 after baking at 180 ° C. and after baking at 500 ° C. As with the sample after baking at 500 ° C., the sample after baking at 180 ° C. was coated with a conductive paste on a glass substrate, then heated from room temperature to 180 ° C. at a rate of 9 ° C./min, and held at 180 ° C. for 10 minutes. Then, the temperature was lowered to room temperature. After firing at 180 ° C., it was confirmed that dense copper particles were deposited, and the crystallite diameter of the copper particles was about 22 nm. Moreover, after baking at 500 ° C., the precipitated copper particles proceeded to form a dense copper film, and the crystallite diameter was about 43 nm. The crystallite diameter was measured by an X-ray diffraction method (method using Scherrer's formula) using an Rigaku X-ray diffractometer (model number: RINT-UltimaIII).

比較のために、図2に、比較例6の導電性ペーストの180℃焼成後と500℃焼成後の走査型電子顕微鏡写真を、図3に比較例8の導電性ペーストの180℃焼成後と500℃焼成後の走査型電子顕微鏡写真を示す。比較例6、比較例8いずれの導電性ペーストも180℃焼成後に、凝集した粗い銅粒子の析出が観察され、銅粒子の結晶子径は約40nmであった。比較例6、比較例8いずれの導電性ペーストも、500℃焼成後においてあまり焼結が進行せず、緻密な銅膜は得られなかった。銅粒子の結晶子径は、ともに約49nmであった。   For comparison, FIG. 2 shows scanning electron micrographs of the conductive paste of Comparative Example 6 after baking at 180 ° C. and 500 ° C., and FIG. 3 shows the conductive paste of Comparative Example 8 after baking at 180 ° C. The scanning electron micrograph after 500 degreeC baking is shown. In each of the conductive pastes of Comparative Example 6 and Comparative Example 8, precipitation of aggregated coarse copper particles was observed after baking at 180 ° C., and the crystallite diameter of the copper particles was about 40 nm. In any of the conductive pastes of Comparative Example 6 and Comparative Example 8, sintering did not progress much after baking at 500 ° C., and a dense copper film could not be obtained. The crystallite size of the copper particles was about 49 nm.

本発明に係る導電性ペーストは、成分(A)、(B)、(C)が可溶化され、均一であった。また、焼結性がよく、低い比抵抗を有する緻密な銅膜を形成することができた。   In the conductive paste according to the present invention, the components (A), (B), and (C) were solubilized and uniform. In addition, a dense copper film having good sinterability and low specific resistance could be formed.

実施例1の導電性ペーストの180℃焼成後と500℃焼成後の走査型電子顕微鏡写真を示す。The scanning electron micrograph after 180 degreeC baking and 500 degreeC baking of the electrically conductive paste of Example 1 is shown. 比較例6の導電性ペーストの180℃焼成後と500℃焼成後の走査型電子顕微鏡写真を示す。The scanning electron micrograph after 180 degreeC baking and 500 degreeC baking of the electrically conductive paste of the comparative example 6 is shown. 比較例8の導電性ペーストの180℃焼成後と500℃焼成後の走査型電子顕微鏡写真を示す。The scanning electron micrograph after 180 degreeC baking and 500 degreeC baking of the electrically conductive paste of the comparative example 8 is shown.

Claims (10)

(A)ギ酸銅(II)又はその水和物と、(B)式:NR123(式中、R1は、水酸基、メトキシ基、エトキシ基及びアミノ基からなる群より選択される置換基の1個で置換されている炭素数2〜4の直鎖状又は分岐状のアルキル基を表し、R2及びR3は、それぞれ独立して、水素であるか、又は水酸基もしくはアミノ基で置換されていてもよい炭素数1〜3のアルキル基を表す。)で示されるアミノ化合物と、(C)炭素数5〜11の飽和脂肪酸とを含み、成分(A)1モルに対して、成分(C)が0.1〜1モルであることを特徴とする導電性ペースト。 (A) Copper (II) formate or a hydrate thereof and (B) Formula: NR 1 R 2 R 3 (wherein R 1 is selected from the group consisting of a hydroxyl group, a methoxy group, an ethoxy group, and an amino group) Represents a linear or branched alkyl group having 2 to 4 carbon atoms that is substituted with one of the substituents, and R 2 and R 3 are each independently hydrogen, a hydroxyl group, or an amino group And an amino compound represented by (C) a saturated fatty acid having 5 to 11 carbon atoms, and component (A) per mole of component (A) The component (C) is 0.1 to 1 mol. 成分(C)が、炭素数が7〜9の飽和脂肪酸である、請求項1記載の導電性ペースト。   The electrically conductive paste of Claim 1 whose component (C) is a C7-C9 saturated fatty acid. 成分(C)が、オクタン酸又は2−エチルヘキサン酸である、請求項1又は2記載の導電性ペースト。   The electrically conductive paste of Claim 1 or 2 whose component (C) is octanoic acid or 2-ethylhexanoic acid. 成分(B)が、式:NH25(式中、R5は、水酸基、メトキシ基及びエトキシ基からなる群より選択される置換基の1個で置換されている炭素数2〜4の直鎖状又は分岐状のアルキル基を表す。)で示されるアミノ化合物である、請求項1〜3のいずれか1項記載の導電性ペースト。 Component (B) is represented by the formula: NH 2 R 5 (wherein R 5 is a C 2-4 substituted with one of the substituents selected from the group consisting of a hydroxyl group, a methoxy group and an ethoxy group) The conductive paste according to any one of claims 1 to 3, which is an amino compound represented by a linear or branched alkyl group. 成分(B)が、3−メトキシプロピルアミン、3−エトキシプロピルアミン、1−アミノ−2−プロパノール、3−アミノ−1−プロパノール、2−アミノエタノール、N−メチルエタノールアミン、2−アミノ−2−メチル−1−プロパノール、N−メチル−1,3−ジアミノプロパン、3,3’−ジアミノジプロピルアミン、2−メトキシエチルアミン、1,3−ジアミノプロパン、2,2’−イミノジエタノール、2−ジメチルアミノエタノール及び2−(2−アミノエチルアミノ)エタノールからなる群より選択される、請求項1〜3のいずれか1項記載の導電性ペースト。   Component (B) is 3-methoxypropylamine, 3-ethoxypropylamine, 1-amino-2-propanol, 3-amino-1-propanol, 2-aminoethanol, N-methylethanolamine, 2-amino-2 -Methyl-1-propanol, N-methyl-1,3-diaminopropane, 3,3'-diaminodipropylamine, 2-methoxyethylamine, 1,3-diaminopropane, 2,2'-iminodiethanol, 2- The conductive paste according to claim 1, which is selected from the group consisting of dimethylaminoethanol and 2- (2-aminoethylamino) ethanol. 成分(B)が、2−アミノ−2−メチル−1−プロパノールである、請求項4又は5記載の導電性ペースト。   The conductive paste according to claim 4 or 5, wherein component (B) is 2-amino-2-methyl-1-propanol. 成分(A)1モルに対して、成分(B)が1〜10モルである、請求項1〜6のいずれか1項記載の導電性ペースト。   The electrically conductive paste of any one of Claims 1-6 whose component (B) is 1-10 mol with respect to 1 mol of a component (A). 請求項1〜7のいずれか1項記載の導電性ペーストの層を基板上に形成し、非酸化性雰囲気中において200〜550℃で加熱する、銅膜を製造する方法。   The method of manufacturing a copper film which forms the layer of the electrically conductive paste of any one of Claims 1-7 on a board | substrate, and heats at 200-550 degreeC in non-oxidizing atmosphere. 銅膜の膜厚が0.1〜10μmである、請求項8記載の方法。   The method according to claim 8, wherein the copper film has a thickness of 0.1 to 10 μm. 請求項8又は9記載の方法で製造される銅膜。   A copper film produced by the method according to claim 8 or 9.
JP2007338884A 2007-12-28 2007-12-28 Conductive paste, and formation method of copper film using the same Pending JP2009158441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007338884A JP2009158441A (en) 2007-12-28 2007-12-28 Conductive paste, and formation method of copper film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338884A JP2009158441A (en) 2007-12-28 2007-12-28 Conductive paste, and formation method of copper film using the same

Publications (1)

Publication Number Publication Date
JP2009158441A true JP2009158441A (en) 2009-07-16

Family

ID=40962201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338884A Pending JP2009158441A (en) 2007-12-28 2007-12-28 Conductive paste, and formation method of copper film using the same

Country Status (1)

Country Link
JP (1) JP2009158441A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034732A (en) * 2009-07-30 2011-02-17 Namics Corp Conductive composition, conductor and method of manufacturing the same
JP2011219862A (en) * 2010-03-26 2011-11-04 Furukawa Electric Co Ltd:The Dispersant of fine-particle of copper alloy, method of manufacturing sintering conductive material, sintering conductive material, and conductive connection member
WO2014148091A1 (en) * 2013-03-19 2014-09-25 富士フイルム株式会社 Composition for conductive film formation, and method for producing conductive film using same
WO2014157303A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Composition for forming conductive films and method for producing conductive film using same
WO2014156326A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Composition for forming conductive film, and conductive film manufacturing method using same
JP2017001978A (en) * 2015-06-08 2017-01-05 国立大学法人北海道大学 Method of producing copper complex and composition for forming conductive film containing the same
KR101743897B1 (en) 2014-05-30 2017-06-05 교리쯔 가가꾸 산교 가부시키가이샤 Coated copper particles and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072673A (en) * 1996-04-30 1998-03-17 Nippon Terupen Kagaku Kk Production of metallic paste and metallic coating
JP2002329419A (en) * 2001-04-27 2002-11-15 Namics Corp Metal element containing organic compound paste, its manufacturing method and its use
JP2004059987A (en) * 2002-07-29 2004-02-26 Namics Corp External electrode and electronic component having the same
JP2005002471A (en) * 2003-06-03 2005-01-06 Basf Ag Deposition of copper on substrate
JP2007035353A (en) * 2005-07-25 2007-02-08 Namics Corp Metal paste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072673A (en) * 1996-04-30 1998-03-17 Nippon Terupen Kagaku Kk Production of metallic paste and metallic coating
JP2002329419A (en) * 2001-04-27 2002-11-15 Namics Corp Metal element containing organic compound paste, its manufacturing method and its use
JP2004059987A (en) * 2002-07-29 2004-02-26 Namics Corp External electrode and electronic component having the same
JP2005002471A (en) * 2003-06-03 2005-01-06 Basf Ag Deposition of copper on substrate
JP2007035353A (en) * 2005-07-25 2007-02-08 Namics Corp Metal paste

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011034732A (en) * 2009-07-30 2011-02-17 Namics Corp Conductive composition, conductor and method of manufacturing the same
JP2011219862A (en) * 2010-03-26 2011-11-04 Furukawa Electric Co Ltd:The Dispersant of fine-particle of copper alloy, method of manufacturing sintering conductive material, sintering conductive material, and conductive connection member
WO2014148091A1 (en) * 2013-03-19 2014-09-25 富士フイルム株式会社 Composition for conductive film formation, and method for producing conductive film using same
JP2014182913A (en) * 2013-03-19 2014-09-29 Fujifilm Corp Composition for conductive film formation, and method for producing conductive film using the same
WO2014157303A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Composition for forming conductive films and method for producing conductive film using same
WO2014156326A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Composition for forming conductive film, and conductive film manufacturing method using same
JP2014196384A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Conductive film-forming composition and method for producing conductive film using the same
JP2014196427A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Composition for forming an electroconductive film and method for manufacturing electroconductive film using the same
KR101743897B1 (en) 2014-05-30 2017-06-05 교리쯔 가가꾸 산교 가부시키가이샤 Coated copper particles and method for manufacturing same
JP2017001978A (en) * 2015-06-08 2017-01-05 国立大学法人北海道大学 Method of producing copper complex and composition for forming conductive film containing the same

Similar Documents

Publication Publication Date Title
JP6491753B2 (en) Metal paste excellent in low-temperature sinterability and method for producing the metal paste
JP2009158441A (en) Conductive paste, and formation method of copper film using the same
Yonezawa et al. Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu 2+-alkanolamine metallacycle compounds for electrically conductive layer formation
JP5712635B2 (en) Silver-containing composition
JP6156991B2 (en) Composition for forming copper film and method for producing copper film using the same
JPWO2015194579A1 (en) Carbon-coated metal powder, conductive paste containing carbon-coated metal powder, laminated electronic component using the same, and method for producing carbon-coated metal powder
JP7191390B2 (en) METHOD OF MANUFACTURING METAL FOAM
JP2013527877A (en) Conductive metal ink composition and method for forming conductive pattern
JP5732520B1 (en) Silver particle production method and silver particles produced by the method
JP7205974B2 (en) Film manufacturing method
KR20150036372A (en) Silver-containing composition, and base for use in formation of silver element
US20200180030A1 (en) Preparation method for metal foam
JP6659712B2 (en) Powder for conductive material, ink for conductive material, conductive paste, and method for producing powder for conductive material
JP2015049988A (en) Composition for forming conductive film and method for producing conductive film using the same
JP2012134297A (en) Cuprous oxide particle dispersion
JP6727174B2 (en) Composition for forming conductive film, method for producing conductive film, copper formate complex
JP2012131895A (en) Electrically conductive ink composition and electric conduction part produced using the same
JP6766054B2 (en) Method for forming paste composition and silicon germanium layer
JP6404523B1 (en) Method for producing silver nanoparticles
WO2015045932A1 (en) Copper thin film forming composition
WO2012161900A1 (en) Conductive composition comprising viscosity modifier
KR20140011696A (en) Conductive cupper paste composition and method for forming metal thin layer using the same
JP2022062181A (en) Flaky silver particle, silver dispersion liquid, and conductive paste
WO2022209228A1 (en) Paste composition, and method for forming germanium compound layer
JP7118496B2 (en) Composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903