JP5250925B2 - Method for producing fibrous carbon - Google Patents

Method for producing fibrous carbon Download PDF

Info

Publication number
JP5250925B2
JP5250925B2 JP2001303491A JP2001303491A JP5250925B2 JP 5250925 B2 JP5250925 B2 JP 5250925B2 JP 2001303491 A JP2001303491 A JP 2001303491A JP 2001303491 A JP2001303491 A JP 2001303491A JP 5250925 B2 JP5250925 B2 JP 5250925B2
Authority
JP
Japan
Prior art keywords
polymer
carbon
diameter
fibrous carbon
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001303491A
Other languages
Japanese (ja)
Other versions
JP2003105637A (en
Inventor
禎一 稲田
信司 武田
矩之 田口
和己 小鍛治
修 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001303491A priority Critical patent/JP5250925B2/en
Publication of JP2003105637A publication Critical patent/JP2003105637A/en
Application granted granted Critical
Publication of JP5250925B2 publication Critical patent/JP5250925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

[発明の属する技術分野]
本発明は、直径のバラツキが少ない繊維状炭素の製造方法に関する。
[Technical field to which the invention belongs]
The present invention relates to a method for producing fibrous carbon with little variation in diameter.

カーボンナノチューブに代表される中空状カーボンファイバーは、直径数nm〜数百nm、長さ数nm〜数十μmからなり、その壁は数〜数十のグラファイト層を丸めた円筒形状からなる。
中空状カーボンファイバーは、機械的強度、水素貯蔵特性、電界放出特性等の特異な特性が注目され、その応用研究が進められている。従来の製法によれば、不活性ガス雰囲気中でアーク放電によりカーボンを蒸発させた後、凝集させる(特許第2845675号公報)や、−C≡C−および/または−C=C−を含む炭素材料に対し、X線、マイクロ波および超音波の少なくとも1種を照射する(特開2000−109310号公報)、あるいは炭素蒸気と非磁性遷移金属とを接触させてカーボンナノチューブを成長させる(特開2000−95509号公報)等がある。
A hollow carbon fiber typified by carbon nanotubes has a diameter of several nanometers to several hundreds of nanometers and a length of several nanometers to several tens of micrometers, and its wall has a cylindrical shape in which several to several tens of graphite layers are rounded.
Hollow carbon fibers are attracting attention for their unique properties such as mechanical strength, hydrogen storage characteristics, and field emission characteristics, and their application research is being promoted. According to the conventional manufacturing method, carbon is evaporated by arc discharge in an inert gas atmosphere and then agglomerated (Japanese Patent No. 2845675), or carbon containing -C≡C- and / or -C = C- The material is irradiated with at least one of X-rays, microwaves and ultrasonic waves (Japanese Patent Laid-Open No. 2000-109310), or carbon nanotubes are grown by contacting carbon vapor with a nonmagnetic transition metal (Japanese Patent Laid-Open No. 2000-109310). 2000-95509).

いずれの製法においても、目的とするカーボンナノチューブの生成割合が低く、カーボンブラック状炭素質やアモルファスカーボン等が副生することが避けられなかった。また、金属触媒を使用する場合、反応生成物を精製する必要があり、また精製しても金属触媒が完全に除去できず、前記の水素貯蔵特性や電界放出特性を低下させる等の影響が避けられなかった。  In any of the production methods, the production ratio of the target carbon nanotube is low, and it is inevitable that carbon black-like carbonaceous material, amorphous carbon, or the like is by-produced. In addition, when using a metal catalyst, it is necessary to purify the reaction product, and even if the metal catalyst is purified, the metal catalyst cannot be completely removed, and the effects of deteriorating the hydrogen storage characteristics and field emission characteristics are avoided. I couldn't.

また、フラーレンに代表される中空状カーボン粒子は、直径数nm〜数百nmからなり、壁は5員環または7員環を含む数〜数十のグラファイト層からなる。中空状カーボン粒子、は機械的強度、水素貯蔵特性、電界放出特性等の特異な特性が注目され、その応用研究が進められている。従来は、不活性ガス雰囲気中でアーク放電によりカーボンを蒸発させた後、凝集し、分離精製するといった製法が主であった。  Further, hollow carbon particles typified by fullerene have a diameter of several nanometers to several hundreds of nanometers, and a wall is composed of several to several tens of graphite layers including a 5-membered ring or a 7-membered ring. Hollow carbon particles are attracting attention for their unique properties such as mechanical strength, hydrogen storage characteristics, and field emission characteristics, and their application research is underway. Conventionally, the production method has been mainly such that carbon is evaporated by arc discharge in an inert gas atmosphere, and then agglomerated and separated and purified.

発明が解決しようとする課題Problems to be solved by the invention

しかし、前記製法ではカーボンナノチューブを代表とする中空状カーボンチューブの壁層数、直径、長さの制御が容易でなく、特に、延伸時の径が小さい場合は、均一な形状及び特性を得ることは非常に困難であった。
本発明は、延伸時にネッキング現象を起こす結晶性ポリマ−である熱分解消失性ポリマ−を用いて得られる、直径のバラツキが少ない中空状カーボンファイバー等の繊維状炭素を提供するものであり、上記問題点を解決するものである。
However, in the above production method, it is not easy to control the number of wall layers, diameter, and length of hollow carbon tubes represented by carbon nanotubes. In particular, when the diameter during stretching is small, uniform shape and characteristics can be obtained. Was very difficult.
The present invention provides a fibrous carbon such as a hollow carbon fiber having a small variation in diameter, which is obtained by using a thermally decomposable polymer that is a crystalline polymer that causes a necking phenomenon during stretching. It solves the problem.

課題を解決するための手段Means for solving the problem

[課題を解決するための手段]
本発明の要旨は、以下のとおりである。
[1] 熱分解消去性ポリマーと炭素前駆体ポリマーからなり、延伸時にネッキング現象を起こす、少なくともポリエステル又はナイロンを含む結晶性ポリマーからなる熱分解消失性ポリマーをシードとし、マトリックスとしての熱分解消去性ポリマーで被覆してマイクロカプセルを作製し、これを溶融し、繊維炭素となる紡糸の形状を制御して巻き取り、巻き取られた紡糸を加熱することで結晶性ポリマーに生じたネッキング現象下、延伸させ、中空状であってグラファイト層が形成された繊維状炭素を焼成生成することを特徴とする繊維状炭素の製造方法
[2] 前記項[1]において、繊維状炭素の直系の標準偏差1σ/平均値が0.1以上であることが好ましい。
[Means for solving problems]
The gist of the present invention is as follows.
[1] Pyrolysis erasable polymer as a matrix, which consists of a pyrolysis-erasable polymer consisting of a crystalline polymer containing at least polyester or nylon, which consists of a pyrolysis-erasable polymer and a carbon precursor polymer , and causes necking during stretching. A microcapsule is produced by coating with a polymer, melted, and wound by controlling the shape of spinning to become fiber carbon, and under the necking phenomenon generated in the crystalline polymer by heating the wound spinning, A method for producing fibrous carbon , characterized by firing and producing fibrous carbon that is stretched and hollow and having a graphite layer formed thereon .
[2] In the above item [1], it is preferable that the direct standard deviation 1σ / average value of fibrous carbon is 0.1 or more.

本発明は、熱分解消失性ポリマ−と炭素前駆体ポリマ−を含む混合組成物を延伸して繊維状にした後、焼結して得られる繊維状炭素であって、前記熱分解消失性ポリマ−が前記延伸時に熱分解消失ポリマ−が延伸時にネッキング現象を起こす結晶性ポリマ−である繊維状炭素に関する。  The present invention is a fibrous carbon obtained by stretching a mixed composition containing a pyrolysis-disappearing polymer and a carbon precursor polymer into a fiber, and then sintering the composition. -Relates to fibrous carbon which is a crystalline polymer in which the thermal decomposition disappearing polymer at the time of stretching causes a necking phenomenon at the time of stretching.

本発明の繊維状炭素は、焼成の際に熱分解消失するポリマ−と炭素前駆体ポリマ−とを組合せて作製できる。
その具体的な手段としては、熱分解消失性ポリマ−と炭素前駆体ポリマ−とからマイクロカプセルを製作し、マイクロカプセルを溶融紡糸した後、焼成する工程を有する方法が好ましい。
The fibrous carbon of the present invention can be prepared by combining a polymer that decomposes and disappears upon firing and a carbon precursor polymer.
As a specific means, a method including a step of producing a microcapsule from a pyrolysis-disappearing polymer and a carbon precursor polymer, melt-spinning the microcapsule, and then firing it is preferable.

熱分解消失性ポリマ−と炭素前駆体ポリマ−からなるマイクロカプセルを調製し、これを紡糸した後、焼成することで、各工程における反応制御が容易となる。
また、本発明は、前述した公知の製法に比べ、中空状の繊維状炭素の形状制御が容易となり、且つ高収率での製造が可能となる。
熱分解消失性ポリマ−と炭素前駆体ポリマ−を含む混合組成物の延伸、変形して繊維状とする場合は、前記2種類のポリマ−粒子の軟化温度以上に加熱することが好ましく、ポリマ−のガラス転移温度以上であることがより好ましい。
By preparing a microcapsule composed of a pyrolysis-disappearing polymer and a carbon precursor polymer, spinning the microcapsule, and firing it, the reaction control in each step becomes easy.
In addition, the present invention makes it easier to control the shape of hollow fibrous carbon and enables production with a higher yield than the known production method described above.
When the mixed composition containing the pyrolysis-disappearing polymer and the carbon precursor polymer is stretched and deformed to form a fiber, it is preferably heated to a temperature higher than the softening temperature of the two types of polymer particles. It is more preferable that it is more than the glass transition temperature.

前記ポリマ−粒子の直径は、特に限定されないが、最終的に得られる繊維状炭素の直径を前記ポリマ−粒子の直径を調整することにより制御ができる。細い直径の繊維状炭素を得るには、直径の小さいポリマ−粒子がより好ましい。
前記ポリマ−粒子の体積は、100mm以下が好ましく、最終的に得られるカーボンファイバーの直径と長さは、ポリマ−粒子の体積によって制御ができる。細い直径の繊維状炭素を得るには、体積の小さいポリマ−粒子がより好ましい。
The diameter of the polymer particles is not particularly limited, but the diameter of the fibrous carbon finally obtained can be controlled by adjusting the diameter of the polymer particles. In order to obtain fibrous carbon having a small diameter, polymer particles having a small diameter are more preferable.
The volume of the polymer particles is preferably 100 mm 3 or less, and the diameter and length of the finally obtained carbon fiber can be controlled by the volume of the polymer particles. In order to obtain fibrous carbon having a small diameter, polymer particles having a small volume are more preferable.

繊維状炭素のアスペクト比(長さ/直径)は、1以上が好ましく、用途に応じて最適のアスペクト比の繊維状炭素を提供できる。例えば、細くて長い繊維状炭素を得るには、溶融紡糸する際に加熱温度を高くする、ポリマ−の粘度を下げる、紡糸速度を速くする、紡糸の巻き取り速度を速くする、ポリマ−粒子の直径と体積を小さくすること、等が有効である。  The aspect ratio (length / diameter) of the fibrous carbon is preferably 1 or more, and it is possible to provide fibrous carbon having an optimal aspect ratio according to the application. For example, in order to obtain thin and long fibrous carbon, the heating temperature is increased during melt spinning, the viscosity of the polymer is decreased, the spinning speed is increased, the spinning winding speed is increased, the polymer winding speed is increased. It is effective to reduce the diameter and volume.

本発明において、熱分解消失性ポリマ−の軟化温度と炭素前駆体ポリマ−の軟化温度との差は100℃以下が好ましい。軟化温度の差が100℃を越えると紡糸の際に熱分解消失性ポリマ−と炭素前駆体ポリマ−の粘度に差が生じ糸が切れ易くなる。前記の2種類のポリマ−の軟化温度の差は50℃以下がより好ましく、25℃以下がさらに好ましく、15℃以下が最も好ましい。  In the present invention, the difference between the softening temperature of the thermally decomposable polymer and the softening temperature of the carbon precursor polymer is preferably 100 ° C. or less. If the difference in softening temperature exceeds 100 ° C., a difference in the viscosity between the thermally decomposable polymer and the carbon precursor polymer occurs during spinning, and the yarn tends to break. The difference between the softening temperatures of the two types of polymers is more preferably 50 ° C. or less, further preferably 25 ° C. or less, and most preferably 15 ° C. or less.

本発明において、マイクロカプセルの調製は、熱分解消失性ポリマ−として残炭率が10重量%以下、7重量%以下がより好ましく、5重量%以下とすることが更に好ましい。また、炭素前駆体ポリマ−として残炭率が15重量%以上のポリマ−を用いることが好ましく、30重量%以上がより好ましく、50重量%以上とすることがさらに好ましい。
熱分解消失性ポリマ−として残炭率が10重量%以下の樹脂を用いることで、中空状の繊維状炭素の細孔径が比較的容易に制御されると共に、壁を形成するグラファイト層の構造制御が容易となる。
熱分解消失性ポリマ−として残炭率が15重量%より高い樹脂を用いた場合、細孔径の制御が困難となり、壁を形成するグラファイト層の構造制御が困難となり、結果的に任意形状への制御が著しく困難となる。
In the present invention, the preparation of microcapsules is more preferably 10% by weight or less and 7% by weight or less, and more preferably 5% by weight or less, as a pyrolysis-disappearing polymer. Further, it is preferable to use a polymer having a residual carbon ratio of 15% by weight or more as the carbon precursor polymer, more preferably 30% by weight or more, and further preferably 50% by weight or more.
By using a resin having a residual carbon ratio of 10% by weight or less as the pyrolysis-disappearing polymer, the pore diameter of the hollow fibrous carbon can be controlled relatively easily, and the structure control of the graphite layer forming the wall can be achieved. Becomes easy.
When a resin with a residual carbon ratio higher than 15% by weight is used as the pyrolysis-disappearing polymer, it becomes difficult to control the pore diameter, and it becomes difficult to control the structure of the graphite layer forming the wall, resulting in an arbitrary shape. Control becomes extremely difficult.

本発明におけるマイクロカプセルの原料としては、前記条件を満たすものであれば特に制限はないが、紡糸工程での作業性を考慮すると熱可塑性樹脂が好ましい。
例えば、熱分解消失性ポリマ−としては、ポリテレフタル酸エチレン、ポリテレフタル酸ブチレン、アルキド樹脂、不飽和ポリエステル等のポリエステル; ポリアミド繊維であるナイロン6、ナイロン66等のナイロン;ポリエチレン、ポリプロピレン等のオレフィン系樹脂;ポリブタジエン等のジエン系樹脂;ポリアクリル酸メチル、ポリアクリル酸エチル等のアクリル樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル等のメタクリル樹脂;ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂;ポリエチレングリコール、ポリプロピレングリコール等のポリエーテル系樹脂等が挙げられ、これらのうちの1種以上を任意に組み合わせて用いることができる。これらの中でも、結晶性ポリマーであるポリエステル、ナイロンを用いることが好ましい。
The raw material of the microcapsule in the present invention is not particularly limited as long as it satisfies the above conditions, but a thermoplastic resin is preferable in consideration of workability in the spinning process.
For example, the pyrolysis-disappearing polymer includes: polyesters such as polyethylene terephthalate, polybutylene terephthalate, alkyd resin and unsaturated polyester; nylons such as nylon 6 and nylon 66 which are polyamide fibers; olefins such as polyethylene and polypropylene Resin; diene resin such as polybutadiene; acrylic resin such as polymethyl acrylate and polyethyl acrylate; methacryl resin such as polymethyl methacrylate and polyethyl methacrylate; polyvinyl acetate resin, polyvinyl alcohol resin; polyethylene glycol, Examples thereof include polyether resins such as polypropylene glycol, and one or more of these can be used in any combination. Among these, it is preferable to use polyester and nylon which are crystalline polymers.

また、炭素前駆体ポリマ−としては、ポリアクリロニトリル系樹脂、フェノール樹脂、フラン樹脂、ジビニルベンゼン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂等が挙げられ、これらのうちの1種以上を任意に組み合わせて用いることができる。  Examples of the carbon precursor polymer include polyacrylonitrile resin, phenol resin, furan resin, divinylbenzene resin, unsaturated polyester resin, polyimide resin, diallyl phthalate resin, vinyl ester resin, polyurethane resin, melamine resin, urea resin, etc. One or more of these can be used in any combination.

上記のマイクロカプセルの製造法には特に制限がないが、作業性を考慮すると、直径0.001μm〜100μmの熱分解消失性ポリマ−粒子をシードとしたシード重合、コアセルベーション法、界面縮合法、スプレー乾燥法、ハイブリダイザーを用いた湿式混合法などが好ましい。直径0.001μm〜1μm熱分解消失性ポリマ−粒子を用いる場合はシード重合が好ましい。
シード重合でマイクロカプセルを合成する場合には、ラジカル重合性を持つモノマから合成することが好ましいので、アクリロニトリルを単量体に用いたポリアクリロニトリル系樹脂が好ましく、アクリロニトリルによって形成される単量体ユニットをポリマ−中に35モル%以上含むポリアクリロニトリル系樹脂が好ましい。
The production method of the above microcapsules is not particularly limited. However, in consideration of workability, seed polymerization, coacervation method, and interfacial condensation method using a thermodegradable polymer particle having a diameter of 0.001 to 100 μm as a seed. A spray drying method, a wet mixing method using a hybridizer, and the like are preferable. When polymerized particles having a diameter of 0.001 μm to 1 μm are decomposed, seed polymerization is preferred.
When synthesizing microcapsules by seed polymerization, it is preferable to synthesize from a monomer having radical polymerizability, so a polyacrylonitrile-based resin using acrylonitrile as a monomer is preferable, and a monomer unit formed by acrylonitrile. Is preferably a polyacrylonitrile resin containing 35 mol% or more in the polymer.

直径0.001μm〜100μmの 熱分解消失性ポリマ−粒子の製造法には特に制限がなく、 熱分解消失性ポリマ−を粉砕必要により篩い分けする方法、逆相乳化重合、乳化重合、ソープフリー乳化重合、非水分散重合、シード重合、懸濁重合などの重合により直接粒子を得る方法があげられるが、作業性を考慮すると、逆相乳化重合、乳化重合、ソープフリー乳化重合、非水分散重合、シード重合、懸濁重合などの重合により直接粒子を得る方法が好ましく、直径0.001μm〜1μm 熱分解消失性ポリマ−粒子を得る場合には、乳化重合、ソープフリー乳化重合が好ましい。  There is no particular limitation on the method for producing thermally decomposable polymer particles having a diameter of 0.001 μm to 100 μm. A method of sieving the thermally decomposable polymer particles if necessary, reverse phase emulsion polymerization, emulsion polymerization, soap-free emulsification Methods for obtaining particles directly by polymerization, non-aqueous dispersion polymerization, seed polymerization, suspension polymerization, etc. can be mentioned, but in consideration of workability, reverse phase emulsion polymerization, emulsion polymerization, soap-free emulsion polymerization, non-aqueous dispersion polymerization In addition, a method of directly obtaining particles by polymerization such as seed polymerization or suspension polymerization is preferred, and when obtaining a polymer particle having a diameter of 0.001 μm to 1 μm which is thermally decomposable, emulsion polymerization and soap-free emulsion polymerization are preferred.

マイクロカプセルを製造する際に用いられる重合開始剤に特に制限はないが、最終的に製造した中空状の繊維状炭素の純度が高いのが望ましい場合には、炭素化工程で炭素が主成分として残る化合物、例えば炭素以外の元素の含有率が30%以下であって、例えば炭素、水素、酸素、窒素、りん、硫黄、フッ素、塩素、臭素及びよう素などからから選ばれた元素のみで構成される化合物が好ましい。これらの化合物としては、アゾビスイソブチロ二トリル、アゾビス(2−アミノプロパン)二塩酸塩、アゾビス−4−シアノペンタン酸、アゾビスジメチルバレロニトリル等のジアゾ化合物、過酸化ベンゾイル等の有機過酸化物、過硫酸アンモニウム等の過酸化物塩が挙げられ、これらのうちの1種以上を任意に組み合わせて用いることができる。  There is no particular limitation on the polymerization initiator used in producing the microcapsules, but when it is desirable that the final produced hollow fibrous carbon has a high purity, carbon is the main component in the carbonization step. The remaining compound, for example, the content of elements other than carbon is 30% or less, and is composed of only elements selected from, for example, carbon, hydrogen, oxygen, nitrogen, phosphorus, sulfur, fluorine, chlorine, bromine and iodine Are preferred. These compounds include azobisisobutyronitryl, azobis (2-aminopropane) dihydrochloride, diazo compounds such as azobis-4-cyanopentanoic acid, azobisdimethylvaleronitrile, and organic peroxides such as benzoyl peroxide. Examples thereof include peroxides and peroxide salts such as ammonium persulfate, and one or more of these can be used in any combination.

上記により得られたマイクロカプセルは、次いで紡糸に供される。本発明における紡糸の手段は特に制限されず、公知の方法を用いることができる。
例えば、マイクロカプセルを溶融した際にマトリクスとなる樹脂(例えば、前記マイクロカプセルのシードとして使用したものと同じか又は異なる 熱分解消失性ポリマ−)と共に原料として銅製るつぼに入れ、リボンヒーターで100〜300℃に加熱して原料を溶融させた後、るつぼ底部に空けた孔(例えば、φ1mmの孔)から溶融した原料樹脂をモータで巻き取る方式がある。
この場合、マイクロカプセルとマトリクスの配合割合は特に制限はないが、重量比で、前者1に対して後者0.3〜1.5とすることが好ましい。原料溶融時の加熱温度及びるつぼ底部に空けた孔径、巻き取りモータの回転数及び巻き取り部の周速、形状は適当に変えることで中空状の繊維状炭素の形状を制御できる。
The microcapsules thus obtained are then subjected to spinning. The spinning means in the present invention is not particularly limited, and a known method can be used.
For example, it is placed in a copper crucible as a raw material together with a resin that becomes a matrix when the microcapsules are melted (for example, the same or different pyrolysis-disappearing polymer used as the seed of the microcapsules), and 100 to 100 with a ribbon heater There is a method in which after melting the raw material by heating to 300 ° C., the raw material resin melted from a hole (for example, φ1 mm hole) formed in the bottom of the crucible is wound by a motor.
In this case, the mixing ratio of the microcapsules and the matrix is not particularly limited, but is preferably 0.3 to 1.5 with respect to the former 1 in terms of weight ratio. The shape of the hollow fibrous carbon can be controlled by appropriately changing the heating temperature at the time of melting the raw material, the diameter of the hole formed in the bottom of the crucible, the rotational speed of the winding motor, the peripheral speed and shape of the winding section.

次いで、焼成炭素化する工程により中空状の繊維状炭素を得ることができる。焼成炭素化は500〜3200℃で行うことが好ましく、600℃〜3000℃がより好ましい。焼成炭素化の温度が500℃未満の場合、グラファイト層の形成が十分ではなく、機械的強度、水素貯蔵特性、電界放出特性等の諸特性が低下する。また、焼成炭素化の温度が3200℃より高い場合、グラファイト層を形成する炭素原子の一部又は殆どが昇華し、グラファイト層に欠陥が生じる。  Subsequently, hollow fibrous carbon can be obtained by the process of calcination carbonization. The calcination carbonization is preferably performed at 500 to 3200 ° C, and more preferably 600 to 3000 ° C. When the temperature of calcination carbonization is less than 500 ° C., the graphite layer is not sufficiently formed, and various characteristics such as mechanical strength, hydrogen storage characteristics, and field emission characteristics are deteriorated. Moreover, when the temperature of calcination carbonization is higher than 3200 degreeC, a part or most of the carbon atom which forms a graphite layer will sublime, and a defect will arise in a graphite layer.

得られる繊維状炭素の直径に関しては、その標準偏差1σ/平均値が0.1以下であることが好ましく、0.03以下がより好ましく、0.01以下がさらに好ましい。標準偏差1σ/平均値が0.1より大きいと、径のバラツキが小さいとは言えず、グラファイト層等の構造制御が困難となる。  Regarding the diameter of the obtained fibrous carbon, the standard deviation 1σ / average value is preferably 0.1 or less, more preferably 0.03 or less, and further preferably 0.01 or less. If the standard deviation 1σ / average value is larger than 0.1, it cannot be said that the variation in diameter is small, and it becomes difficult to control the structure of the graphite layer and the like.

本発明の繊維状炭素は、必要に応じて、金属及び金属化合物を含むことができる。  The fibrous carbon of the present invention can contain a metal and a metal compound as necessary.

ネッキング現象により繊維状炭素の径バラツキが小さくなる機構を図1に示した。ポリエステル等の結晶性ポリマ−1は、加熱しながら張力4をかけて延伸すると加熱部2付近で径が細くなりほぼ一定の径を保ったまま延伸されるネッキング現象を起こす。その結果、径バラツキが小さい繊維状炭素3が得られる。  FIG. 1 shows a mechanism in which the diameter variation of the fibrous carbon is reduced by the necking phenomenon. When the crystalline polymer-1 such as polyester is stretched with a tension of 4 while being heated, the diameter becomes narrow in the vicinity of the heating part 2 and causes a necking phenomenon in which it is stretched while maintaining a substantially constant diameter. As a result, fibrous carbon 3 having a small diameter variation is obtained.

以下、本発明を実施例により説明する。
[実施例1]
熱分解消失性ポリマ−としてポリエステル(テレフタル酸とエチレングリコールの縮合重合体を使用)、炭素前駆体ポリマ−としてアクリロニトリルポリマ−を混合後、炭素前駆体ポリマ−のマイクロカプセルと熱分解消失ポリマ−を混合し樹脂塊を作製し、銅製るつぼに入れ、加熱溶融した。これを、るつぼの下部の孔から周速50m/分で回転させたモータに巻き付け、直径150μmとなるよう紡糸した。さらに、温度150℃の高温槽中で糸に張力0.1MPaをかけ、延伸した。10cm毎に100箇所で測定した繊維状炭素の直径の平均値は30μm、測定した直径の最大は31μm、最低は29.5μmであり、標準偏差1σ/平均値は0.01であった。
Hereinafter, the present invention will be described with reference to examples.
[Example 1]
Polyester (condensation polymer of terephthalic acid and ethylene glycol) is used as the thermal decomposition disappearing polymer, acrylonitrile polymer is mixed as the carbon precursor polymer, and then the carbon precursor polymer microcapsules and the thermal decomposition disappearing polymer are mixed. A resin lump was prepared by mixing, placed in a copper crucible, and melted by heating. This was wound around a motor rotated at a peripheral speed of 50 m / min through a hole in the lower part of the crucible and spun to a diameter of 150 μm. Furthermore, the yarn was stretched by applying a tension of 0.1 MPa in a high-temperature bath at a temperature of 150 ° C. The average diameter of the fibrous carbon measured at 100 locations every 10 cm was 30 μm, the maximum measured diameter was 31 μm, the minimum was 29.5 μm, and the standard deviation 1σ / average was 0.01.

[実施例2]
熱分解消失性ポリマ−としてポリエステルの代わりにナイロン66を使用すること以外は実施例1と同様にして樹脂塊を作製、銅製るつぼに入れ、加熱溶融した。これを、るつぼの下部の孔から周速200m/分で回転させたモータに巻き付け、直径600nmとなるよう紡糸した。さらに、温度150℃の高温槽中で糸に張力0.1MPaをかけ、延伸した。10cm毎に100箇所で測定した繊維状炭素の直径の平均値は300nm、測定した直径の最大は320nm、最低は285nmであり、標準偏差1σ/平均値は0.08であった。
[Example 2]
A resin mass was prepared in the same manner as in Example 1 except that nylon 66 was used in place of polyester as the pyrolysis-disappearing polymer, and the resin mass was placed in a copper crucible and melted by heating. This was wound around a motor rotated at a peripheral speed of 200 m / min through a hole in the lower part of the crucible and spun to a diameter of 600 nm. Furthermore, the yarn was stretched by applying a tension of 0.1 MPa in a high-temperature bath at a temperature of 150 ° C. The average diameter of the fibrous carbon measured at 100 locations every 10 cm was 300 nm, the maximum measured diameter was 320 nm, the minimum was 285 nm, and the standard deviation 1σ / average was 0.08.

発明の効果Effect of the invention

[発明の効果]
本発明により、繊維状炭素を製造する方法を提供することができる。本発明は、繊維状炭素延伸時にネッキング現象を起こすことにより、延伸時の繊維径が小さい場合でも径が安定するため、径が均一な繊維状炭素を得ることを可能とする。
[Effect of the invention]
According to the present invention, a method for producing fibrous carbon can be provided. The present invention makes it possible to obtain fibrous carbon having a uniform diameter because the necking phenomenon is caused at the time of drawing the fibrous carbon, so that the diameter is stabilized even when the fiber diameter at the time of drawing is small.

ネッキング現象により繊維状炭素の径バラツキが小さくなる例を示す説明図である。  It is explanatory drawing which shows the example in which the diameter variation of fibrous carbon becomes small by the necking phenomenon.

1…延伸前の繊維(結晶性ポリマー)、2…加熱部、3…(ネッキング部)繊維状炭素、4…(延伸時の)張力。  DESCRIPTION OF SYMBOLS 1 ... Fiber (drawing polymer) before extending | stretching 2 ... Heating part 3 ... (Necking part) Fibrous carbon, 4 ... Tension | tensile_strength (at the time of extending | stretching).

Claims (2)

熱分解消失性ポリマーと炭素前駆体ポリマーとを含む混合組成物を延伸して繊維状にした後、燒結して得られる繊維状炭素の製造する方法であって、
前記熱分解消失性ポリマーに、延伸時にネッキング現象を起こす、少なくともポリエステル又はナイロンを含む結晶性ポリマーが用いられ、
少なくともポリエステル又はナイロンを含む熱分解消失性ポリマーと炭素前駆体ポリマーとを混合してマイクロカプセルを形成し、
該マイクロカプセルおよびマトリックスポリマーとしての熱分解消失性ポリマーを混合して、加熱融合し、延伸して繊維状にした後、焼結して中空状繊維炭素を生成したこと
を特徴とする繊維状炭素の製造方法。
A method for producing fibrous carbon obtained by stretching a mixed composition containing a pyrolysis-disappearing polymer and a carbon precursor polymer into a fibrous form and then sintering the composition.
A crystalline polymer containing at least polyester or nylon that causes a necking phenomenon at the time of stretching is used as the thermally decomposable polymer.
A microcapsule is formed by mixing a pyrolysis-disappearing polymer containing at least polyester or nylon and a carbon precursor polymer,
A mixture of thermally decomposable fugitive polymer as the microcapsules and the matrix polymer, heating fusion, after the fibrous by drawing, fiber characterized in that a hollow fiber carbon has form raw sintered A method for producing carbon.
請求項1において、繊維状炭素の直径の標準偏差1σ/平均値が、0.1以上であることを特徴とする繊維状炭素の製造方法。
The method for producing fibrous carbon according to claim 1, wherein the standard deviation 1σ / average value of the diameter of the fibrous carbon is 0.1 or more.
JP2001303491A 2001-09-28 2001-09-28 Method for producing fibrous carbon Expired - Fee Related JP5250925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303491A JP5250925B2 (en) 2001-09-28 2001-09-28 Method for producing fibrous carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303491A JP5250925B2 (en) 2001-09-28 2001-09-28 Method for producing fibrous carbon

Publications (2)

Publication Number Publication Date
JP2003105637A JP2003105637A (en) 2003-04-09
JP5250925B2 true JP5250925B2 (en) 2013-07-31

Family

ID=19123568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303491A Expired - Fee Related JP5250925B2 (en) 2001-09-28 2001-09-28 Method for producing fibrous carbon

Country Status (1)

Country Link
JP (1) JP5250925B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022071052A1 (en) * 2020-09-29 2022-04-07

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184112A (en) * 1986-02-06 1987-08-12 Toray Ind Inc Production of high-tenacity high-modulus polyethylene fiber
JPH0364525A (en) * 1989-07-28 1991-03-19 Toyobo Co Ltd Production of pitch-based carbon yarn
JP3350608B2 (en) * 1995-03-02 2002-11-25 東レ株式会社 Polyester compositions, monofilaments and industrial textiles
JP2001073230A (en) * 1999-08-30 2001-03-21 Gun Ei Chem Ind Co Ltd Phenolic conjugate fiber, phenolic hollow carbon fiber and production of them
JP2001073226A (en) * 1999-08-30 2001-03-21 Gun Ei Chem Ind Co Ltd Conjugate fiber, phenolic ultrafine carbon fiber and production of them
JP2002029719A (en) * 2000-05-10 2002-01-29 Mitsubishi Chemicals Corp Carbon nanotube and method of producing the same
JP4678104B2 (en) * 2001-08-03 2011-04-27 日立化成工業株式会社 Hollow carbon fiber and method for producing the same

Also Published As

Publication number Publication date
JP2003105637A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
US7273652B2 (en) Hollow carbon fiber and production method
JP4552017B2 (en) Method for producing carbon nanomaterial
US20050100499A1 (en) Carbon nanotube and process for producing the same
Kuzuya et al. Preparation, morphology, and growth mechanism of carbon nanocoils
JP2022508630A (en) Method of manufacturing yarn containing carbon nanotubes, yarn manufactured from now on
JP5250925B2 (en) Method for producing fibrous carbon
JP4678104B2 (en) Hollow carbon fiber and method for producing the same
JP2003105640A (en) Method for producing catalyst substance-supporting carbon fiber and method for storing hydrogen
KR102098989B1 (en) Control method for tensile strength of cnt fiber aggregates
JP4678105B2 (en) Hollow carbon fiber and method for producing the same
JP4678106B2 (en) Hollow carbon fiber and method for producing the same
JP2003105639A (en) Method for producing hollow carbon fiber
JP3925459B2 (en) Carbon nanofiber and manufacturing method thereof
JP4151304B2 (en) Method for producing hollow carbon fiber
JP2003112914A (en) Hollow carbon cluster and hollow carbon fiber
JP2003105638A (en) Hollow carbon fiber and method for producing the same
CN107938014A (en) A kind of preparation method of fire-retardant liquid crystalline polyester fiber
JP3877155B2 (en) Carbon nanotube and method for producing the same
JP2003105641A (en) Hollow carbon fiber and method for producing fibrous carbon
JP2003048705A (en) Hollow carbon particle and method for producing the same
JP2004027467A (en) Hollow carbon nano-fiber and method for producing the same
KR101883034B1 (en) Process for preparing carbon nanotube fiber
JP3925458B2 (en) Nanocarbon having pores communicating therewith and method for producing the same
EP1411030A1 (en) Carbon nanotube and method for production thereof
JP6762542B2 (en) Manufacturing method of carbon nanotube array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees