JP5213592B2 - Copper fine powder, dispersion thereof and method for producing copper fine powder - Google Patents

Copper fine powder, dispersion thereof and method for producing copper fine powder Download PDF

Info

Publication number
JP5213592B2
JP5213592B2 JP2008224701A JP2008224701A JP5213592B2 JP 5213592 B2 JP5213592 B2 JP 5213592B2 JP 2008224701 A JP2008224701 A JP 2008224701A JP 2008224701 A JP2008224701 A JP 2008224701A JP 5213592 B2 JP5213592 B2 JP 5213592B2
Authority
JP
Japan
Prior art keywords
copper
surfactant
fine powder
particles
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008224701A
Other languages
Japanese (ja)
Other versions
JP2010059453A (en
Inventor
ジャヤデワン バラチャンドラン
ウアマン ジョン レマン クヤ
王高 佐藤
哲 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Dowa Electronics Materials Co Ltd
Original Assignee
Tohoku University NUC
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Dowa Electronics Materials Co Ltd filed Critical Tohoku University NUC
Priority to JP2008224701A priority Critical patent/JP5213592B2/en
Publication of JP2010059453A publication Critical patent/JP2010059453A/en
Application granted granted Critical
Publication of JP5213592B2 publication Critical patent/JP5213592B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、微細な銅粒子からなる銅微粉であって、特に粒子径の均一性が高く、微細な回路パターンや電極を形成するための導電性インクのフィラーとして好適な銅微粉、およびその分散液、並びに前記銅微粉の製造方法に関する。   The present invention is a copper fine powder composed of fine copper particles, and has a particularly high uniformity in particle diameter, and a copper fine powder suitable as a filler for conductive ink for forming fine circuit patterns and electrodes, and dispersion thereof The present invention relates to a liquid and a method for producing the copper fine powder.

従来から回路パターンや電極の印刷方法として、生産性の良いスクリーン印刷法が広く利用されている。しかし、近年の電子機器の軽薄短小化に伴い、電子配線や電極等については一層の微細化が要求されるようになってきた。このような細線化のニーズに応えるためにはインクジェット法等の新たな印刷法に適用できる導電性フィラーが必要となる。   Conventionally, a screen printing method with good productivity has been widely used as a method for printing circuit patterns and electrodes. However, as electronic devices have become lighter and thinner in recent years, further miniaturization of electronic wiring and electrodes has been required. In order to meet such a need for thinning, a conductive filler applicable to a new printing method such as an ink jet method is required.

これまで広く利用されてきた導電性ペースト用フィラーは、μmオーダーの粒径のものがほとんどであった。しかし、インクジェット法等の新しい印刷技術に適用するためには、粒子径50nm以下といった極めて微細な粒子(ナノ粒子)をフィラーに用いることが望まれる。また、回路パターンを描画した後に行う焼成をできるだけ低温で行うことが電子回路の工業生産においては極めて有利となる。焼成温度を大幅に低下させるためにもナノ粒子の採用が有効である。   Most of the fillers for conductive pastes that have been widely used so far have a particle size on the order of μm. However, in order to apply to a new printing technique such as an ink jet method, it is desired to use extremely fine particles (nanoparticles) having a particle diameter of 50 nm or less as a filler. In addition, it is extremely advantageous in industrial production of electronic circuits to perform firing after drawing a circuit pattern at as low a temperature as possible. The use of nanoparticles is also effective for significantly reducing the firing temperature.

金属ナノ粒子のなかでも、銀ナノ粒子は既に実用化の段階にある。銀は比較的酸化されにくく耐候性に優れることから、ナノ粒子の工業的生産は比較的実施しやすいと考えられる。しかし、銀はエレクトロマイグレーションを起こしやすいという欠点がある。また高価である。このため、エレクトロマイグレーションが敬遠される用途や、より安価な部材が要求される用途では、銀ナノ粒子ではなく、銅ナノ粒子の適用が望まれるところである。銅ナノ粒子の製造技術についても種々検討がなされている(例えば特許文献1〜3)。   Among metal nanoparticles, silver nanoparticles are already in practical use. Since silver is relatively difficult to oxidize and has excellent weather resistance, it is considered that industrial production of nanoparticles is relatively easy to implement. However, silver has the disadvantage that it is prone to electromigration. It is also expensive. For this reason, in applications where electromigration is avoided or where lower cost members are required, application of copper nanoparticles instead of silver nanoparticles is desired. Various studies have also been made on copper nanoparticle production techniques (for example, Patent Documents 1 to 3).

特開2002−121606号公報JP 2002-121606 A 特開2005−330552号公報JP 2005-330552 A 特開2007−56321号公報JP 2007-56321 A

銅は、銀と比べ、安価でありエレクトロマイグレーションが生じにくいという特長を有する反面、酸化されやすいという欠点がある。特に比表面積が大きいナノ粒子では酸化されやすさが著しく増大する。このため、銅ナノ粒子を工業的に安定して製造することは意外と難しい。発明者らは種々研究の結果、表面酸化が極めて起こりにくい銅ナノ粒子の合成方法として、有機ポリマーに覆われた銅ナノ粒子を湿式工程により合成する手法を開発し、特願2007−313366号にて提案した。   Copper has the advantage of being cheaper and less susceptible to electromigration than silver, but has the disadvantage of being easily oxidized. In particular, in the case of nanoparticles having a large specific surface area, the susceptibility to oxidation is significantly increased. For this reason, it is unexpectedly difficult to manufacture copper nanoparticles industrially stably. As a result of various studies, the inventors have developed a method for synthesizing copper nanoparticles covered with an organic polymer by a wet process as a method for synthesizing copper nanoparticles that are extremely unlikely to undergo surface oxidation, and in Japanese Patent Application No. 2007-313366. Proposed.

このような有機ポリマーに覆われて存在する銅ナノ粒子は耐酸化性に優れ、腐食が進行しにくいものである。しかしながら、個々の銅粒子は高分子に覆われていることから、この銅粒子を用いて描画した回路パターンに導電性を付与するためには、例えば500℃程度といった温度での焼成が必要となる。これでは、ナノ粒子のメリットである「焼結温度の低下」が十分に活かしきれない。   Copper nanoparticles that are covered with such an organic polymer are excellent in oxidation resistance and hardly corrode. However, since individual copper particles are covered with a polymer, in order to impart conductivity to a circuit pattern drawn using these copper particles, for example, firing at a temperature of about 500 ° C. is required. . In this case, the “reduction in sintering temperature”, which is a merit of nanoparticles, cannot be fully utilized.

一方、微細な回路パターンなどを工業的に効率良く描画するためには、単に粒子径が小さいだけではなく、粒子径の均一性が高いこと、すなわち銅微粉としての粒度分布がシャープであることが極めて有効である。粒子径の均一性が高いナノ粒子をフィラーに用いると、インクジェット条件(ノズル形状や吐出圧力等)を最適化しやすく、ノズル詰まりや描画むらの防止に有利となる。また、液状媒体中で粗大粒子が沈降分離するようなことがなく、分散状態を均一に保つうえでも有利である。さらに、ロット間での焼結温度の変動も小さく抑えることができ、焼成温度のコントロールがしやすくなる。しかしながら、本来酸化されやすい銅ナノ粒子について、有機ポリマーで保護されていないような、粒度分布のシャープな銅微粉を得ることは容易ではなく、しかも、個々の粒子の凝集を防ぎ、良好な分散性能(適切な溶媒に混合したときに粒子が分散する性質)を有した状態で銅微粉を回収することは一層難しい。   On the other hand, in order to draw fine circuit patterns and the like efficiently industrially, not only the particle diameter is small, but also the uniformity of the particle diameter is high, that is, the particle size distribution as copper fine powder is sharp. It is extremely effective. Use of nanoparticles with high uniformity in particle diameter as the filler facilitates optimization of ink jet conditions (nozzle shape, discharge pressure, etc.), and is advantageous in preventing nozzle clogging and uneven drawing. Further, the coarse particles are not settled and separated in the liquid medium, which is advantageous in keeping the dispersion state uniform. Furthermore, the fluctuation of the sintering temperature between lots can be suppressed to be small, and the firing temperature can be easily controlled. However, it is not easy to obtain copper fine particles with a sharp particle size distribution that are not protected by organic polymers for copper nanoparticles that are inherently susceptible to oxidation. It is more difficult to recover the copper fine powder in a state where it has a property of dispersing particles when mixed in an appropriate solvent.

本発明はこのような現状に鑑み、保護材としてポリマーを使用することなく、粒子径の均一性が高く、かつ溶媒中で良好な分散性を呈する銅ナノ粒子の微粉末を提供すること、およびその微粉末の分散液を提供することを目的とする。   In view of the present situation, the present invention provides a fine powder of copper nanoparticles having high particle size uniformity and good dispersibility in a solvent without using a polymer as a protective material, and An object is to provide a dispersion of the fine powder.

上記目的は、分子量200〜400の有機化合物からなる界面活性剤の分子が表面に付着している銅粒子で構成され、TEM観察により求まる平均粒子径DTEMが50nm以下、かつ下記(1)式で定義されるCV値が50%以下好ましくは25%以下である、粒子径の均一性に優れる銅微粉によって達成される。前記銅粒子は例えば、アルコールと、界面活性剤である分子量200〜400の有機化合物が溶け合っている溶媒中に溶解している銅化合物を、前記アルコールの還元力を利用して金属銅に還元させるとともに、析出した金属銅を当該溶媒中において前記界面活性剤の分子で被覆する合成法により合成されたものである。
CV値=σD/DTEM×100 ……(1)
ここでσDはDTEMの測定対象とした個々の粒子の粒子径についての標準偏差である。
The above object is composed of copper particles having a surfactant molecule composed of an organic compound having a molecular weight of 200 to 400 attached to the surface, an average particle diameter D TEM determined by TEM observation is 50 nm or less, and the following formula (1) The CV value defined by the above is achieved by a copper fine powder having excellent uniformity in particle diameter, which is 50% or less, preferably 25% or less. The copper particles reduce, for example, a copper compound dissolved in a solvent in which an alcohol and an organic compound having a molecular weight of 200 to 400 as a surfactant are dissolved into metallic copper by using the reducing power of the alcohol. At the same time, it is synthesized by a synthesis method in which the deposited copper metal is coated with the surfactant molecules in the solvent.
CV value = σ D / D TEM × 100 (1)
Here, σ D is a standard deviation with respect to the particle size of each particle to be measured by DTEM .

平均粒子径DTEMは、TEM(透過型電子顕微鏡)により観察される銅微粉の観察画像において、粒子の全体形状が把握できる粒子100個以上(例えば300個)を無作為に選んで、個々の粒子の粒子径を測定し、それらの平均値を算出することによって求めることができる。個々の粒子の粒子径は、画像上で把握される最も径の大きい部分の長さ(長径)を採用する。 The average particle diameter D TEM is an observation image of copper fine powder observed by a TEM (transmission electron microscope), and randomly selects 100 or more particles (for example, 300 particles) that can grasp the overall shape of the particles. It can be determined by measuring the particle diameter of the particles and calculating their average value. As the particle diameter of each particle, the length (major diameter) of the largest diameter portion grasped on the image is adopted.

また本発明では、上記の銅微粉が極性溶媒中に単分散している銅粒子分散液を提供する。
単分散とは、個々の粒子が液中において独立して動ける状態にあることをいう。
The present invention also provides a copper particle dispersion in which the copper fine powder is monodispersed in a polar solvent.
Monodispersed means that individual particles can move independently in the liquid.

このような銅微粉は、R−OH、ただしRは炭素数7〜8の直鎖アルキル基、で表される1種以上のアルコールAと、界面活性剤である分子量200〜400の有機化合物が溶け合っている溶媒中に、下記(a)のモル比で銅化合物が溶解している液を、下記(b)のモル比で水酸化物が混合された状態で、下記(c)の温度範囲に保持することにより、前記界面活性剤の分子が表面に付着しておりTEM観察により求まる平均粒子径DTEMが50nm以下の銅粒子を合成する工程(銅粒子合成工程)を有する銅微粉の製造方法によって得ることができる。
(a)[界面活性剤分子]/[銅イオン]のモル比:1〜20
(b)[水酸化物中の水酸化物イオン]/[アルコールA]のモル比:0.008〜0.5
(c)アルコールAを構成する最も沸点が低いアルコールの沸点をABP(℃)とするとき、(ABP−50℃)以上かつABP以下の温度範囲
Such a copper fine powder is composed of R-OH, where R is a linear alkyl group having 7 to 8 carbon atoms, and an organic compound having a molecular weight of 200 to 400 which is a surfactant. In a solvent in which the copper compound is dissolved in the solvent in the following (a) molar ratio, with the hydroxide mixed in the following (b) molar ratio, the temperature range of (c) below production of copper fine powder having a by holding, step of average particle diameter D TEM molecules of the surface active agent which is obtained by adhering to and TEM observation on the surface to synthesize the following copper particles 50 nm (copper particle synthesis process) to It can be obtained by the method.
(A) [Surfactant molecule] / [copper ion] molar ratio: 1 to 20
(B) Molar ratio of [hydroxide ion in hydroxide] / [alcohol A]: 0.008 to 0.5
(C) When the boiling point of the alcohol having the lowest boiling point constituting alcohol A is A BP (° C.), the temperature range is (A BP −50 ° C.) or more and A BP or less.

また、上記合成工程のあとに、
合成された銅粒子を含むスラリーを固液分離して、固形分を回収する工程(固液分離工程)、
前記固形分中に混在する不純物の有機化合物を有機溶媒で洗浄し、不純物の無機塩を有機溶媒と水の混合液で洗浄する工程(洗浄工程)、
を有する銅微粉の製造方法が提供される。
In addition, after the above synthesis step,
A step (solid-liquid separation step) of solid-liquid separation of the slurry containing the synthesized copper particles and recovering the solid content;
A step of washing the organic compound of impurities mixed in the solid content with an organic solvent, and a step of washing the inorganic salt of impurities with a mixture of the organic solvent and water (washing step);
A method for producing a copper fine powder having the following is provided.

上記の製造方法においては例えば、銅化合物として塩化銅(II)または酢酸銅(II)を使用し、水酸化物として水酸化ナトリウムまたは水酸化カリウムを使用することができる。また、前記界面活性剤としてはオレイルアミン(C918=C917−NH2、分子量約267)が例示できる。 In the above production method, for example, copper (II) chloride or copper (II) acetate can be used as the copper compound, and sodium hydroxide or potassium hydroxide can be used as the hydroxide. Examples of the surfactant include oleylamine (C 9 H 18 = C 9 H 17 —NH 2 , molecular weight of about 267).

本発明によれば、粒子径の均一性が高い銅ナノ粒子で構成される銅微粉が提供可能となった。その個々の粒子は有機ポリマーに取り囲まれた状態ではなく、分子量が200〜400の界面活性剤の分子が付着することによって保護されており、液状媒体中で単分散することができる性質を具備している。このような銅微粉はインクジェット法等による細線印刷技術に適している。また、マイグレーションが生じやすい銀微粉の代替としても期待される。   ADVANTAGE OF THE INVENTION According to this invention, the copper fine powder comprised by the copper nanoparticle with a high uniformity of a particle diameter can be provided now. The individual particles are not surrounded by the organic polymer, but are protected by the adhesion of surfactant molecules having a molecular weight of 200 to 400, and can be monodispersed in a liquid medium. ing. Such copper fine powder is suitable for the fine line printing technique by the inkjet method or the like. It is also expected to replace silver fine powder that is prone to migration.

本発明の銅微粉は、TEM観察により求まる平均粒子径DTEMが50nm以下の「銅ナノ粒子」によって構成される。しかも、下記(1)式で定義されるCV値が50%以下である。
CV値=σD/DTEM×100 ……(1)
CV値は、微粉末を構成する粒子の粒子径の均一性を表す指標である。発明者らの検討によれば、液状媒体中での分散性、インクジェット法等の細線印刷技術への適用性、焼結温度の安定性などを考慮すると、CV値が50%以下の銅微粉であることが極めて好都合である。25%以下であることがより好ましく、15%以下であることが一層好ましい。インクジェット法においては平均粒子径を大幅に下回る微小粒子径の粒子が多数存在するとノズル詰まり等のトラブルを招く要因となり、工業的な実施は困難である。(1)式からわかるように、同じCV値を実現するためには平均粒子径DTEMが小さくなるに伴って標準偏差σに対する制約もより厳しくなる。
Copper fine powder of the present invention has an average particle diameter D TEM which is obtained by TEM observation is constituted by the following "copper nanoparticles" 50nm. Moreover, the CV value defined by the following formula (1) is 50% or less.
CV value = σ D / D TEM × 100 (1)
The CV value is an index representing the uniformity of the particle diameter of the particles constituting the fine powder. According to the study by the inventors, in consideration of dispersibility in a liquid medium, applicability to fine line printing technology such as an ink jet method, stability of sintering temperature, etc., copper fine powder having a CV value of 50% or less It is very convenient to be. It is more preferably 25% or less, and further preferably 15% or less. In the ink jet method, if there are a large number of fine particles having a particle size significantly smaller than the average particle size, it causes troubles such as nozzle clogging, and industrial implementation is difficult. As can be seen from the equation (1), in order to realize the same CV value, the restriction on the standard deviation σ becomes more severe as the average particle diameter D TEM becomes smaller.

CV値が十分に小さくても、平均粒子径DTEMが50nmを超えると焼結温度の低減効果が薄れ、またインクジェット法への適用性についても優位性が薄れてしまう。DTEMは40nm以下であることがより好ましく、25nm以下、あるいはさらに20nm以下であることが一層好ましい。一方、DTEMが非常に小さいサイズの銅微粉において粒子径の均一性の高いものを工業的に製造することは必ずしも容易ではない。種々検討の結果、DTEMは4nm以上の範囲とすることが実用的であり、5nm以上あるいは7nm以上に管理しても構わない。 Even if the CV value is sufficiently small, if the average particle diameter D TEM exceeds 50 nm, the effect of reducing the sintering temperature is diminished, and the applicability to the ink jet method is diminished. D TEM is more preferably 40 nm or less, and further preferably 25 nm or less, or even 20 nm or less. On the other hand, it is not always easy to industrially manufacture a copper fine powder having a very small D TEM and having a highly uniform particle diameter. As a result of various investigations, D TEM is practical in the range of more than 4 nm, it may be managed to 5nm or more or more 7 nm.

また、CV値が小さいことに加え、個々の銅粒子はできるだけ角張った箇所が少なく、球形に近い形状であることが望ましい。例えばTEM画像上において粒子の最も長い部分の径(長径)と、その長径に対して直角方向の最も長い部分の径(短径)の比をアスペクト比と定義すると、個々の粒子のアスペクト比の平均値(平均アスペクト比)が1〜1.5であることが望ましく、1〜1.2であることがより好ましい。このようなCV値が小さくかつアスペクト比が1に近い銅微粉はインクジェットのノズル詰まりの防止、吐出条件の安定化、焼結温度の安定化にとって極めて有効である。   In addition to a small CV value, it is desirable that each copper particle has a square shape as few as possible and has a shape close to a sphere. For example, when the ratio of the diameter of the longest part (major axis) of a particle on the TEM image to the diameter (minor axis) of the longest part perpendicular to the major axis is defined as the aspect ratio, the aspect ratio of each particle The average value (average aspect ratio) is preferably 1 to 1.5, and more preferably 1 to 1.2. Such a copper fine powder having a small CV value and an aspect ratio close to 1 is extremely effective for preventing nozzle clogging of ink jet, stabilizing discharge conditions, and stabilizing sintering temperature.

本発明の銅微粉のもう1つの大きな特徴は、個々の粒子の表面に分子量200〜400の有機化合物からなる界面活性剤の分子が付着していることである。分子量が400を超える界面活性剤では、銅微粉の塗膜を焼成する際に、焼成温度を低くすると脱着・揮発が起こりにくく、金属ナノ粒子に特有の低温焼結性が十分に活かせない場合がある。一方、界面活性剤は液状媒体中において銅粒子に浮力を与える「浮き輪」としても機能する。平均粒子径50nm以下の銅ナノ粒子の液中分散性(特に単分散状態を長期間維持する特性)を十分に確保するためには、分子量200以上の界面活性剤の分子が付着していることが極めて有利となる。また、銀粒子と比べ、銅粒子は酸化されやすいことから、銅微粉の保存安定性を確保するためにも界面活性剤の有機化合物は分子量200以上のものであることが望まれる。   Another major feature of the copper fine powder of the present invention is that surfactant molecules comprising an organic compound having a molecular weight of 200 to 400 are attached to the surface of each particle. For surfactants with a molecular weight of over 400, when firing a coating of copper fine powder, if the firing temperature is lowered, desorption and volatilization hardly occur, and the low-temperature sinterability unique to metal nanoparticles may not be fully utilized. is there. On the other hand, the surfactant also functions as a “buoy ring” that gives buoyancy to the copper particles in the liquid medium. In order to sufficiently secure the dispersibility of copper nanoparticles having an average particle size of 50 nm or less in liquid (particularly the property of maintaining a monodispersed state for a long period of time), surfactant molecules having a molecular weight of 200 or more are attached. Is extremely advantageous. In addition, since copper particles are more easily oxidized than silver particles, it is desirable that the organic compound of the surfactant has a molecular weight of 200 or more in order to ensure the storage stability of the copper fine powder.

発明者らの検討の結果、界面活性剤としては、特に不飽和結合を持つ1級アミンが好適である。分子量が200〜400と比較的大きい有機化合物の中でも、不飽和結合を持つ1級アミンは焼成時の加熱によって銅粒子から脱着しやすく、揮発除去が容易となる。また、用途によっては界面活性剤を別の種類のものに付け替える必要が生じる場合もあるが、不飽和結合を持つ1級アミンは銅粒子から適度に脱着しやすい性質を有しており、界面活性剤の付け替えにも有利である。そのようなアミンとして、オレイルアミン(C918=C917−NH2、分子量約267)を例示することができる。 As a result of investigations by the inventors, a primary amine having an unsaturated bond is particularly suitable as the surfactant. Among organic compounds having a relatively large molecular weight of 200 to 400, primary amines having an unsaturated bond are easily desorbed from the copper particles by heating at the time of firing, and are easy to volatilize and remove. Depending on the application, it may be necessary to replace the surfactant with another type, but the primary amine having an unsaturated bond has a property of being easily desorbed from the copper particles, and the surface activity. It is also advantageous for changing the agent. Such amines can be exemplified oleylamine (C 9 H 18 = C 9 H 17 -NH 2, molecular weight of about 267).

本発明の銅微粉は、アルコールと、界面活性剤である分子量200〜400の有機化合物が溶け合っている溶媒中に溶解している銅化合物を、前記アルコールの還元力を利用して金属銅に還元させるとともに、析出した金属銅を当該溶媒中において前記界面活性剤の分子で被覆するという湿式での合成法によって製造することができる。このようなアルコールの還元力を利用した金属ナノ粒子の合成法は、すでに銀微粉の製造法としては実用化の段階にある。しかしながら、銅のアルコールによる還元析出反応は、銀の場合と同じようには簡単に起こらないことがわかった。すなわち、銅ナノ粒子の湿式合成においては、粒子径、粒度分布の制御が難しく、反応を進行させるための工夫が必要となる。   The copper fine powder of the present invention reduces a copper compound dissolved in a solvent in which an alcohol and an organic compound having a molecular weight of 200 to 400 as a surfactant are dissolved into metallic copper by using the reducing power of the alcohol. In addition, it can be produced by a wet synthesis method in which the deposited copper metal is coated with the surfactant molecules in the solvent. Such a method for synthesizing metal nanoparticles using the reducing power of alcohol has already been put into practical use as a method for producing silver fine powder. However, it was found that the reduction precipitation reaction with copper alcohol does not occur as easily as with silver. That is, in wet synthesis of copper nanoparticles, it is difficult to control the particle size and particle size distribution, and a device for advancing the reaction is required.

発明者らは詳細な検討の結果、アルコール溶媒中に、水酸化物イオンをある程度の濃度以上に存在させた場合に、アルコールの還元力を利用した銅の析出反応が円滑に進行することを見出した。水酸化物イオン(OH-)は、アルコール溶媒中に溶解するアルカリ金属水酸化物(例えばNaOH)などによって供給できる。この水酸化物イオンは、アルコール溶媒の変性および、より容易に還元可能な金属錯体の生成を促進する働きがあると考えられる。本発明で適用するアルコール系溶媒を用いた湿式反応においては、水酸化物イオン濃度により析出反応速度の制御が可能である。また、実験的には、粒子径の小さい銅ナノ粒子合成に適した水酸化物イオン濃度範囲が存在する。 As a result of detailed studies, the inventors have found that when a hydroxide ion is present in a certain concentration or more in an alcohol solvent, a copper precipitation reaction utilizing the reducing power of the alcohol proceeds smoothly. It was. The hydroxide ion (OH ) can be supplied by an alkali metal hydroxide (for example, NaOH) dissolved in an alcohol solvent. This hydroxide ion is considered to have a function of promoting modification of the alcohol solvent and formation of a metal complex that can be more easily reduced. In the wet reaction using the alcohol solvent applied in the present invention, the deposition reaction rate can be controlled by the hydroxide ion concentration. Experimentally, a hydroxide ion concentration range suitable for the synthesis of copper nanoparticles having a small particle diameter exists.

以下、本発明の銅微粉の製造方法についてより具体的に説明する。
〔銅粒子合成工程〕
銅原子の供給物質としては、後述の溶媒中に完全に溶解させることが可能な銅化合物を使用する。後述の水酸化物によって中性塩を形成するような銅塩を選択することが比較的望ましい。例えば塩化銅(II);CuCl2、酢酸銅(II);Cu2(CH3COO)4などが好適な対象として挙げられる。
還元剤となるアルコールAとしては、R−OH、ただしRは炭素数7〜8の直鎖アルキル基、で表される1種以上のアルコールが採用できる。具体的には、1−ヘプタノール;CH3(CH26OH、沸点176.8℃、および1−オクタノール;CH3(CH27OH、沸点194.5℃がこれに該当する。
界面活性剤は、上記のように分子量200〜400の有機化合物を採用する。例えばオレイルアミンのような不飽和結合を持つ1級アミンが好ましい。
水酸化物としては、上記アルコールAおよび界面活性剤によく溶ける水酸化ナトリウム;NaOH、水酸化カリウム;KOHなどが好適である。
Hereinafter, the manufacturing method of the copper fine powder of this invention is demonstrated more concretely.
[Copper particle synthesis process]
As a copper atom supply substance, a copper compound that can be completely dissolved in a solvent described later is used. It is relatively desirable to select a copper salt that forms a neutral salt with the hydroxide described below. For example, copper (II) chloride; CuCl 2 , copper acetate (II); Cu 2 (CH 3 COO) 4 and the like may be mentioned as suitable objects.
As alcohol A used as a reducing agent, R-OH, where R is a linear alkyl group having 7 to 8 carbon atoms, can be used. Specifically, 1-heptanol; CH 3 (CH 2 ) 6 OH, boiling point 176.8 ° C., and 1-octanol; CH 3 (CH 2 ) 7 OH, boiling point 194.5 ° C. correspond to this.
As the surfactant, an organic compound having a molecular weight of 200 to 400 is used as described above. For example, a primary amine having an unsaturated bond such as oleylamine is preferred.
As the hydroxide, sodium hydroxide that dissolves well in the alcohol A and the surfactant; NaOH, potassium hydroxide; KOH and the like are suitable.

銅の析出反応を生じさせるためには、上記の各原料物質が均一によく溶けあっている状態を作ることが重要である。前述のように水酸化物の存在によってアルコールAの還元力による銅の析出反応が進行することから、まず、アルコールAと界面活性剤が溶けあっている溶媒中に銅化合物が溶解している液(反応元液)を用意し、昇温させ、所定温度になった後に水酸化物を混合するという手法を採ることが効率的である。   In order to cause a copper precipitation reaction, it is important to create a state in which the above-mentioned raw material materials are uniformly and well dissolved. As described above, since the precipitation reaction of copper by the reducing power of alcohol A proceeds due to the presence of hydroxide, first, a solution in which a copper compound is dissolved in a solvent in which alcohol A and a surfactant are dissolved It is efficient to prepare a (reaction source solution), raise the temperature, and mix the hydroxide after reaching a predetermined temperature.

反応温度は、アルコールAの沸点をABP(℃)とするとき、(ABP−50℃)以上かつABP以下の温度範囲とするのがよい。(ABP−50℃)より低温では反応が進行しにくい。一方、ABPを超える温度域では沸騰現象により反応環境が安定せず、CV値の小さい粒子を合成する上でもマイナス要因となる。アルコールAが2種以上のアルコールを混合したもの(1−ヘプタノールと1−オクタノール混合液)である場合は、アルコールAを構成する各アルコールのうち最も沸点が低いアルコールの沸点をABP(℃)として採用すればよい。ただし、沸点の最も低いアルコールの混合量が少量であり、反応中にそのアルコールが揮発除去されて沸点が上昇した後は、残りのアルコールによって改めて沸点ABP(℃)を定め、(ABP−50℃)以上かつABP以下の温度範囲で反応を進行させればよい。反応温度は(ABP−30℃)以上かつABP以下の温度範囲とすることがより好ましい。 The reaction temperature is preferably (A BP −50 ° C.) or more and A BP or less when the boiling point of the alcohol A is A BP (° C.). The reaction hardly proceeds at a temperature lower than (A BP- 50 ° C.). On the other hand, in the temperature range exceeding A BP without the reaction environment be stabilized by boiling phenomenon, it becomes a negative factor even on synthesizing the small particles of CV value. When alcohol A is a mixture of two or more alcohols (1-heptanol and 1-octanol mixed solution), the boiling point of the alcohol having the lowest boiling point among the alcohols constituting alcohol A is A BP (° C.). It may be adopted as. However, the amount of the alcohol having the lowest boiling point is small, and after the alcohol is volatilized and removed during the reaction to increase the boiling point, the boiling point A BP (° C.) is determined again by the remaining alcohol, and (A BP − The reaction may be allowed to proceed in a temperature range of 50 ° C. or more and ABP or less. The reaction temperature is more preferably (A BP −30 ° C.) or higher and A BP or lower.

[アルコールA]/[銅イオン]のモル比は20以上とすることが好ましい。ただし、あまり溶媒の量が増えすぎると水酸化物の使用量が増大して不経済となるので[アルコールA]/[銅イオン]のモル比は概ね300以下の範囲とすればよい。   The molar ratio [alcohol A] / [copper ion] is preferably 20 or more. However, if the amount of the solvent increases too much, the amount of hydroxide used increases, which is uneconomical, so the molar ratio of [alcohol A] / [copper ion] may be approximately 300 or less.

[界面活性剤分子]/[銅イオン]のモル比は1〜20の範囲とすることが望ましい。このモル比が小さすぎると析出した銅の周囲を素早く界面活性剤の分子で取り囲むことが難しくなり、粒子が粗大化しやすい。また、銅粒子表面に付着する界面活性剤の量が不足して、銅粒子が凝集しやすくなる。種々検討の結果、[界面活性剤分子]/[銅イオン]のモル比は1以上とすることが望ましく、2.5以上とすることがより好ましく、5以上とすることが一層好ましい。一方、[界面活性剤分子]/[銅イオン]のモル比が過剰になると無駄が多く不経済である。したがって、[界面活性剤分子]/[銅イオン]のモル比は20以下の範囲とすることが効率的であり、15以下、あるいは10以下にコントロールしても構わない。   The molar ratio of [surfactant molecule] / [copper ion] is preferably in the range of 1-20. When this molar ratio is too small, it becomes difficult to quickly surround the deposited copper with surfactant molecules, and the particles are likely to become coarse. In addition, the amount of the surfactant that adheres to the surface of the copper particles is insufficient, and the copper particles tend to aggregate. As a result of various studies, the molar ratio of [surfactant molecule] / [copper ion] is preferably 1 or more, more preferably 2.5 or more, and even more preferably 5 or more. On the other hand, an excessive molar ratio of [surfactant molecule] / [copper ion] is wasteful and uneconomical. Therefore, it is efficient that the [surfactant molecule] / [copper ion] molar ratio is in the range of 20 or less, and it may be controlled to 15 or less, or 10 or less.

上記の反応元液を、前述の反応温度まで昇温させた後、水酸化物を混合すると、アルコールAによる銅の還元反応が進行し、金属銅が液中に析出する。その際、析出した銅粒子は、周囲に存在する界面活性剤の分子により迅速に取り囲まれて粗大粒子への成長が抑止され、銅ナノ粒子が合成される。温度条件、撹拌条件を安定化させることにより、粒子径の揃った銅ナノ粒子を得ることが可能となる。   When the reaction source liquid is heated to the above reaction temperature and then mixed with a hydroxide, a copper reduction reaction with alcohol A proceeds, and metallic copper precipitates in the liquid. At that time, the deposited copper particles are quickly surrounded by the surfactant molecules present in the surrounding area, and growth to coarse particles is suppressed, and copper nanoparticles are synthesized. By stabilizing the temperature condition and the stirring condition, it is possible to obtain copper nanoparticles having a uniform particle diameter.

[水酸化物中の水酸化物イオン]/[アルコールA]のモル比は0.008〜0.5の範囲とすることが望ましい。液中に存在する水酸化物イオンの濃度が低すぎると、アルコールによる銅の還元析出反応が進行する環境が実現できない。発明者らの検討によれば、水酸化物の混合量を銅に対するモル比で整理しても、好適な水酸化物の混合量を規定することは困難であることがわかった。これは、水酸化物は銅の析出反応自体には直接的に関与しないためであると考えられる。むしろ、主たる溶媒であるアルコールAに対するモル比によって、必要な水酸化物の量を規定することができた。これまでの検討では、[水酸化物中の水酸化物イオン]/[アルコールA]のモル比を0.008以上とすることによって、良好に銅ナノ粒子を合成することができる。[水酸化物中の水酸化物イオン]/[アルコールA]のモル比を0.01以上とすることがより好ましく、0.015以上とすることが一層好ましい。ただし、過剰に水酸化物を添加すると、反応液中にゲル状の生成物が生じ、粒子を回収することが難しくなる場合がある。[水酸化物中の水酸化物イオン]/[アルコールA]のモル比は0.5以下の範囲で調整することが望ましく、通常、0.2以下で十分であり、例えば0.1以下あるいは0.075以下にコントロールしても構わない。   The molar ratio of [hydroxide ion in hydroxide] / [alcohol A] is preferably in the range of 0.008 to 0.5. If the concentration of hydroxide ions present in the liquid is too low, an environment in which the reduction and precipitation reaction of copper by alcohol proceeds cannot be realized. According to the study by the inventors, it has been found that it is difficult to specify a suitable amount of hydroxide even if the amount of hydroxide mixed is arranged in a molar ratio with respect to copper. This is thought to be because the hydroxide does not directly participate in the copper precipitation reaction itself. Rather, the amount of hydroxide required could be defined by the molar ratio to alcohol A, the main solvent. In the examination so far, copper nanoparticles can be synthesized satisfactorily by setting the molar ratio of [hydroxide ion in hydroxide] / [alcohol A] to 0.008 or more. The molar ratio [hydroxide ion in hydroxide] / [alcohol A] is more preferably 0.01 or more, and still more preferably 0.015 or more. However, when an excessive amount of hydroxide is added, a gel-like product is generated in the reaction solution, and it may be difficult to recover the particles. It is desirable to adjust the molar ratio of [hydroxide ion in hydroxide] / [alcohol A] within a range of 0.5 or less, and usually 0.2 or less is sufficient, for example 0.1 or less or It may be controlled to 0.075 or less.

水酸化物を混合し始めてからの反応時間は、概ね1〜12時間の範囲で調整することができる。反応終了後は、固液分離操作が可能な温度まで冷却させるが、その冷却過程において液中に有機溶媒を添加しても構わない。これにより液が希釈されて温度低下に伴うスラリーの粘性増大が抑制され、後工程での固液分離操作がし易くなる。ただし、使用している界面活性剤がその希釈用有機溶媒に溶けやすい(溶解度が大きい)場合は、希釈量が多いと、銅粒子に付着している界面活性剤分子の脱着を招く恐れがある。それを防ぐためには、予め希釈用有機溶媒に当該界面活性剤を溶解させておくことが有効である。例えば界面活性剤としてオレイルアミンを使用し、希釈用溶媒としてメタノールを使用する場合だと、予めそのメタノール中にある程度のオレイルアミンを溶解させておき、これを添加することが有効である。なお、この希釈操作は必ずしも必要ではなく、固液分離の作業性等に応じて実施すればよい。   The reaction time from the start of mixing the hydroxide can be adjusted within a range of about 1 to 12 hours. After completion of the reaction, the mixture is cooled to a temperature at which solid-liquid separation can be performed, but an organic solvent may be added to the liquid during the cooling process. As a result, the liquid is diluted and the increase in the viscosity of the slurry accompanying the temperature drop is suppressed, and the solid-liquid separation operation in the subsequent process is facilitated. However, if the surfactant used is easily soluble in the organic solvent for dilution (high solubility), a large amount of dilution may cause desorption of surfactant molecules attached to the copper particles. . In order to prevent this, it is effective to previously dissolve the surfactant in an organic solvent for dilution. For example, when oleylamine is used as the surfactant and methanol is used as the solvent for dilution, it is effective to dissolve some oleylamine in the methanol in advance and add it. This dilution operation is not necessarily required, and may be performed according to the workability of solid-liquid separation.

〔固液分離工程〕
次に、上記のようにして合成された銅ナノ粒子を含むスラリーを固液分離して、固形分を回収する。固液分離方法は遠心分離が好適である。
[Solid-liquid separation process]
Next, the slurry containing the copper nanoparticles synthesized as described above is subjected to solid-liquid separation to recover the solid content. Centrifugation is suitable for the solid-liquid separation method.

〔洗浄工程〕
回収された固形分には、界面活性剤が表面に付着した銅ナノ粒子が存在するが、それに混じって種々の反応生成物や残った原料物質が混在している。これらの混在物質(不純物)をできるだけ排除することが、分散性の良い銅微粉を得る上で重要である。アルコールと界面活性剤の混合溶媒中で銀ナノ粒子を合成する公知の方法においては、合成された銀ナノ粒子に混在する不純物は有機物質が主体であり、メタノールその他の有機溶媒を洗浄液に用いて、例えば「超音波洗浄→固液分離」の操作を1回または複数回行うことにより、分散性に優れた銀微粉を得ることが可能であった。ところが、本発明に従う上記合成法においては、反応を進行させるために水酸化物を共存させる。このため、水酸化物と銅化合物の反応生成物として、有機溶媒よりも、むしろ水に対する溶解度の方がかなり大きい無機化合物が生成することがある。この無機系の物質を効率良く除去することが、洗浄工程において大きな課題となってくる。
[Washing process]
The recovered solid content contains copper nanoparticles having a surface-active agent attached thereto, and various reaction products and remaining raw material are mixed in the copper nanoparticles. It is important to eliminate these mixed substances (impurities) as much as possible in order to obtain copper fine powder with good dispersibility. In the known method of synthesizing silver nanoparticles in a mixed solvent of alcohol and surfactant, the impurities mixed in the synthesized silver nanoparticles are mainly organic substances, and methanol or other organic solvent is used as a cleaning liquid. For example, it is possible to obtain silver fine powder having excellent dispersibility by performing the operation of “ultrasonic cleaning → solid-liquid separation” once or a plurality of times. However, in the above synthesis method according to the present invention, a hydroxide is allowed to coexist in order to advance the reaction. For this reason, an inorganic compound having a considerably higher solubility in water rather than an organic solvent may be generated as a reaction product of a hydroxide and a copper compound. Efficient removal of this inorganic substance becomes a major issue in the cleaning process.

もちろん、従来と同様に、有機溶媒を洗浄液とした洗浄操作によって、無機系の物質も除去することは可能である。しかし発明者らはさらに検討を進めたところ、より効率的に洗浄工程を終えるためには、固形分中に混在する不純物のうち、有機系の不純物を有機溶媒により洗浄・除去し、無機系の不純物を有機溶媒と水の混合液により洗浄・除去するという、多段階の洗浄工程を採用することが効果的であることを見出した。具体的には「有機溶媒を洗浄液とする超音波洗浄→有機溶媒と水の混合液を洗浄液とする超音波洗浄→固液分離」の操作を行えばよい。あるいは、「有機溶媒を洗浄液とする超音波洗浄→固液分離」の操作と、「有機溶媒と水の混合液を洗浄液とする超音波洗浄→固液分離」の操作を順次行ってもよい。   Of course, it is possible to remove inorganic substances by a washing operation using an organic solvent as a washing liquid as in the conventional case. However, the inventors further studied, and in order to finish the cleaning process more efficiently, organic impurities out of impurities mixed in the solid content were washed and removed with an organic solvent, and inorganic type impurities were removed. It has been found that it is effective to employ a multi-step cleaning process in which impurities are cleaned and removed with a mixture of an organic solvent and water. Specifically, an operation of “ultrasonic cleaning using an organic solvent as a cleaning liquid → ultrasonic cleaning using a mixed liquid of an organic solvent and water as a cleaning liquid → solid-liquid separation” may be performed. Alternatively, an operation of “ultrasonic cleaning using an organic solvent as a cleaning liquid → solid-liquid separation” and an operation of “ultrasonic cleaning using a mixed liquid of an organic solvent and water as a cleaning liquid → solid-liquid separation” may be sequentially performed.

例えば、銅化合物として塩化銅(II)を用い、水酸化物として水酸化ナトリウムを用いた場合、反応後のスラリーから回収された固形分中には不純物として塩化ナトリウムが混在しており、条件によっては肉眼で観測できるような粗大な塩化ナトリウム結晶が生じることもある。Naのようなアルカリ金属が銅微粉中に不純物として混在していると、その銅微粉を電子回路に使用した電子部品に悪影響を及ぼすことが懸念される。アルカリ金属塩は、有機溶媒と水の混合液を洗浄液として用いることにより、効率よく除去することができる。これは、アルカリ金属塩が水に対して非常に溶けやすい性質を有していることに起因すると考えられる。ただし、銅微粉は酸化されやすいため、水で洗浄することは困難である。すなわち、水を有機溶媒に添加・混合した洗浄液を用いることが肝要である。有機溶媒と水の混合液中に占める水の割合は20〜80質量%であることが望ましい。また、有機溶媒と水の混合液を洗浄液とする洗浄操作は、短時間で行うことが望ましい。例えば有機溶媒と水の混合液を洗浄液とする超音波洗浄は5〜20秒で終了させることが望ましい。   For example, when copper (II) chloride is used as the copper compound and sodium hydroxide is used as the hydroxide, sodium chloride is mixed as an impurity in the solid content recovered from the slurry after the reaction. May produce coarse sodium chloride crystals that can be observed with the naked eye. When an alkali metal such as Na is mixed as an impurity in the copper fine powder, there is a concern that the copper fine powder may adversely affect an electronic component using the electronic circuit. The alkali metal salt can be efficiently removed by using a mixed liquid of an organic solvent and water as a cleaning liquid. This is considered to be due to the fact that alkali metal salts have the property of being very soluble in water. However, since copper fine powder is easily oxidized, it is difficult to wash with water. That is, it is important to use a cleaning liquid in which water is added to and mixed with an organic solvent. The proportion of water in the mixture of the organic solvent and water is preferably 20 to 80% by mass. In addition, it is desirable to perform a cleaning operation using a mixed liquid of an organic solvent and water in a short time. For example, it is desirable that ultrasonic cleaning using a mixed liquid of an organic solvent and water as a cleaning liquid is completed in 5 to 20 seconds.

このようにして洗浄された銅微粉は、界面活性剤分子が表面に付着しており、種々の極性溶媒中で良好な分散性を呈する。例えば、界面活性剤にオレイルアミンを使用した銅微粉は、トルエン、デカン、テトラデカン、イソパラフィン系溶剤等の炭化水素の液状媒体中で単分散することが確認された。また、この銅微粉の粒子に付着している界面活性剤を、他の種類の界面活性剤に付け替える操作を有機溶媒中で行うことによって、各種媒体に適した銅微粉を得ることが可能である。特に界面活性剤のオレイルアミンは、銅粒子に付着する性質を有している一方で、アルコール溶媒等への溶解が非常に起こりやすいので、オレイルアミンが付着した銅微粉と、目的とする別の界面活性剤が溶解している有機溶媒中に、オレイルアミンが溶解しやすいアルコール溶媒を多量に加えることで、比較的容易に界面活性剤を付け替えることが可能である。   The copper fine powder washed in this way has surfactant molecules attached to the surface and exhibits good dispersibility in various polar solvents. For example, copper fine powder using oleylamine as a surfactant was confirmed to be monodispersed in a hydrocarbon liquid medium such as toluene, decane, tetradecane, and isoparaffin solvents. Moreover, it is possible to obtain copper fine powder suitable for various media by performing an operation in which the surfactant adhering to the particles of the copper fine powder is replaced with another type of surfactant in an organic solvent. . In particular, oleylamine, a surfactant, has the property of adhering to copper particles, but it is very easy to dissolve in alcohol solvents, etc., so copper fine powder with oleylamine attached and other desired surface activity By adding a large amount of an alcohol solvent in which oleylamine is easily dissolved in an organic solvent in which the agent is dissolved, it is possible to replace the surfactant relatively easily.

《実施例1》
還元剤であるアルコールAとして1−ヘプタノール(和光純薬工業株式会社製の特級)、銅化合物として無水塩化銅(II)(和光純薬工業株式会社製)、界面活性剤としてオレイルアミン(和光純薬工業株式会社製)、水酸化物として水酸化ナトリウム顆粒(和光純薬工業株式会社製)をそれぞれ用意した。
Example 1
1-heptanol (special grade made by Wako Pure Chemical Industries, Ltd.) as alcohol A which is a reducing agent, anhydrous copper chloride (II) (made by Wako Pure Chemical Industries, Ltd.) as a copper compound, and oleylamine (Wako Pure Chemical, Ltd.) as a surfactant Kogyo Kogyo Co., Ltd.) and sodium hydroxide granules (manufactured by Wako Pure Chemical Industries, Ltd.) were prepared as hydroxides.

〔銅粒子合成工程〕
無水塩化銅(II)2.5gとメタノール(和光純薬工業株式会社製)10gを混合して超音波分散機により塩化銅をメタノール中に完全に溶解させた後、オレイルアミン28.0gを添加して再度超音波分散機にかけて完全に溶け合う状態とし、さらにこの液に1−ヘプタノール70mLを添加した。この混合液を還流器の付いたセパブルフラスコに移し、マントルヒーターにセットした。
[Copper particle synthesis process]
After mixing 2.5 g of anhydrous copper chloride (II) and 10 g of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) and completely dissolving copper chloride in methanol using an ultrasonic disperser, 28.0 g of oleylamine was added. Then, the mixture was again completely dissolved with an ultrasonic disperser, and 70 mL of 1-heptanol was added to this solution. This mixed solution was transferred to a separable flask equipped with a refluxer and set in a mantle heater.

別途、1−ヘプタノール50mLに水酸化ナトリウム顆粒1.4gを添加し、マグネットスターラーにより300rpmで撹拌しながら160℃で40分加熱し、水酸化ナトリウムを完全に溶解させた液を用意した。   Separately, 1.4 g of sodium hydroxide granules was added to 50 mL of 1-heptanol, and heated at 160 ° C. for 40 minutes while stirring at 300 rpm with a magnetic stirrer to prepare a solution in which sodium hydroxide was completely dissolved.

上記マントルヒーターにセットしたセパブルフラスコ内の液中に窒素ガスを流量500mL/minで吹き込みながら、液をプロペラにより回転速度200rpmで撹拌した。窒素ガスの吹き込みおよび撹拌を維持した状態で液温を昇温速度3.2℃/minで160℃まで上昇させ、160℃でそのまま30分保持したのち、前記の1−ヘプタノール中に水酸化ナトリウムが溶解している160℃の液を全量投入した。その後、撹拌は200rpmを維持し、窒素ガスはフラスコ内の気相部分に導入するように切り替えて、セパブルフラスコの液を160℃に保持しながら還流を1時間行った。すなわち、反応温度160℃で1時間保持することにより、銅の還元析出反応の進行を試みた。なお、反応開始時に液中に存在する1−ヘプタノールの総量は、体積70+50=120mLに相当する98.628gである。   While nitrogen gas was blown into the liquid in the separable flask set in the mantle heater at a flow rate of 500 mL / min, the liquid was stirred with a propeller at a rotation speed of 200 rpm. The temperature of the liquid was increased to 160 ° C. at a rate of temperature increase of 3.2 ° C./min while maintaining nitrogen gas blowing and stirring, and maintained at 160 ° C. for 30 minutes, and then sodium hydroxide was added to the 1-heptanol. The total amount of 160 ° C. solution in which was dissolved was charged. Thereafter, stirring was maintained at 200 rpm, and nitrogen gas was switched to be introduced into the gas phase portion in the flask, and reflux was performed for 1 hour while maintaining the liquid in the separable flask at 160 ° C. That is, by maintaining the reaction temperature at 160 ° C. for 1 hour, an attempt was made to proceed the copper reduction precipitation reaction. The total amount of 1-heptanol present in the liquid at the start of the reaction is 98.628 g corresponding to a volume of 70 + 50 = 120 mL.

その後、200rpmの撹拌を維持しながら90℃まで約40分間かけて冷却し、その時点でオレイルアミン3.0gとメタノール50mLが溶け合った混合液を全量添加し、その後、降温させながら撹拌を10分間継続した。
なお、各原料の仕込み量および反応温度を表1に示してある(以下の各例において同じ)。
Then, while maintaining stirring at 200 rpm, it was cooled to 90 ° C. over about 40 minutes, at which point a total amount of a mixed solution of 3.0 g of oleylamine and 50 mL of methanol was added, and then stirring was continued for 10 minutes while lowering the temperature. did.
In addition, the preparation amount and reaction temperature of each raw material are shown in Table 1 (the same applies in the following examples).

〔固液分離工程〕
液温が50℃以下になった後、窒素雰囲気中にて、反応後のスラリーを遠沈管4本に分配し、遠心分離機(日立工機株式会社製;CF7D2)を用いて3000rpmで10分間遠心分離することにより固液分離し、上澄みを廃棄し、固形分を回収した。
[Solid-liquid separation process]
After the liquid temperature became 50 ° C. or lower, the slurry after the reaction was distributed to four centrifuge tubes in a nitrogen atmosphere, and 10 minutes at 3000 rpm using a centrifuge (Hitachi Koki Co., Ltd .; CF7D2). Solid-liquid separation was performed by centrifugation, the supernatant was discarded, and the solid content was recovered.

〔洗浄工程〕
得られた固形分を窒素雰囲気中において以下の手順で洗浄した。
1.エタノール(和光純薬工業株式会社製)100mLに無水マレイン酸(和光純薬工業株式会社製)1.0gを溶解させた液を洗浄液とし、前記の固形分が入っている遠沈管4本にこの洗浄液をそれぞれ10mLずつ添加し、5分間超音波洗浄を行った。
2.純水100mLに無水マレイン酸(和光純薬工業株式会社製)1.0gを溶解させた液を上記超音波洗浄後の遠沈管4本にそれぞれ10mLずつ加え、10秒間超音波洗浄を行った。
3.その後、上記の遠心分離機を用いて2400rpmで10分間遠心分離することにより固液分離し、上澄みを廃棄し、固形分を回収した。
4.前記の固形分を回収した遠沈管4本に、それぞれトルエン5mLとオレイルアミン0.25mLを添加し、5分間超音波洗浄し、次いで各遠沈管にメタノール10mLを加え、さらに5分間超音波洗浄した。
5.その後、上記の遠心分離機を用いて2400rpmで10分間遠心分離することにより固液分離し、上澄みを廃棄し、固形分を回収した。
[Washing process]
The obtained solid content was washed in a nitrogen atmosphere by the following procedure.
1. Four centrifuge tubes containing a solid solution containing 1.0 g of maleic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) dissolved in 100 mL of ethanol (manufactured by Wako Pure Chemical Industries, Ltd.). 10 ml each of this washing solution was added to each and ultrasonic washing was performed for 5 minutes.
2. 10 mL each of a solution obtained by dissolving 1.0 g of maleic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) in 100 mL of pure water is added to each of the four centrifuge tubes after the ultrasonic cleaning, and ultrasonic cleaning is performed for 10 seconds. It was.
3. Then, solid-liquid separation was performed by centrifuging at 2400 rpm for 10 minutes using the above-mentioned centrifuge, and the supernatant was discarded and the solid content was recovered.
4. Add 5 mL of toluene and 0.25 mL of oleylamine to each of the 4 centrifuge tubes from which the solids were collected, and ultrasonically wash for 5 minutes. Then add 10 mL of methanol to each of the centrifuge tubes, and then ultrasonically wash for 5 minutes. did.
5. Then, solid-liquid separation was carried out by centrifuging at 2400 rpm for 10 minutes using the above-mentioned centrifuge, and the supernatant was discarded and the solid content was recovered.

このようにして、洗浄されたペースト状の固形分を得た。この固形分をトルエンに分散させることにより分散液を得た。   In this way, a washed paste-like solid was obtained. This solid content was dispersed in toluene to obtain a dispersion.

〔TEM観察〕
上記の分散液について、TEM(透過型電子顕微鏡)により粒子の観察を行った。そのTEM写真の一例を図1に示す。粒子が単分散していることがわかる。
倍率60万倍のTEM画像において、重なっていない独立した銅粒子300個を無作為に選んでその径(長径)を測定し、測定した全粒子の径の平均値を平均粒子径DTEMとした。
また、測定した全粒子の径について標準偏差σDを算出し、下記(1)によりCV値を求めた。
CV値=σD/DTEM×100 ……(1)
なお、粒子径の標準偏差σDは、マイクロソフト社の表計算ソフト「エクセル」に組み込まれているSTDEV関数を使って算出した。
[TEM observation]
About said dispersion liquid, particle | grains were observed with TEM (transmission electron microscope). An example of the TEM photograph is shown in FIG. It can be seen that the particles are monodispersed.
In a TEM image with a magnification of 600,000 times, 300 independent copper particles that do not overlap were randomly selected to measure the diameter (major axis), and the average value of the measured diameters of all the particles was defined as the average particle diameter DTEM . .
Further, the standard deviation σ D was calculated for the measured diameters of all the particles, and the CV value was obtained by the following (1).
CV value = σ D / D TEM × 100 (1)
The standard deviation σ D of the particle size was calculated by using the STDEV function incorporated in Microsoft spreadsheet software “Excel”.

この例において、平均粒子径DTEMは10.5nm、CV値は13.0%であった。平均アスペクト比は1〜1.2の範囲にある。
この粒子についてX線回折を行った結果、金属銅が合成されていることが確認された。
In this example, the average particle diameter D TEM is 10.5 nm, CV value was 13.0%. The average aspect ratio is in the range of 1 to 1.2.
As a result of X-ray diffraction of the particles, it was confirmed that metallic copper was synthesized.

〔焼成膜の作製〕
上記分散液(銅粒子分散液)をガラス板に塗布した後、このガラス板を4体積%水素−窒素混合ガス雰囲気中において、昇温速度10℃/minで300℃まで昇温し、300℃で60分焼成することにより、焼成膜を作製した。表面粗さ・輪郭形状測定機(株式会社東京精密製;SURFCOM 1500DX)を用いた段差測定の結果、この焼成膜の膜厚は2.52μmであった。
(Production of fired film)
After the dispersion (copper particle dispersion) was applied to a glass plate, the glass plate was heated to 300 ° C. at a rate of temperature increase of 10 ° C./min in a 4% by volume hydrogen-nitrogen mixed gas atmosphere. Was fired for 60 minutes to prepare a fired film. As a result of step measurement using a surface roughness / contour shape measuring machine (manufactured by Tokyo Seimitsu Co., Ltd .; SURFCOM 1500DX), the thickness of the fired film was 2.52 μm.

この焼成膜について、低抵抗率計(株式会社三菱化学アナリテック製;ロレスタGP MCP−T610)を用いて4端子4探針法にて体積固有抵抗を測定したところ、208μΩ・cmであった。すなわち、300℃の焼成温度で銅の導電膜が得られることが確認された。   When the volume resistivity of this fired film was measured by a four-terminal four-probe method using a low resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd .; Loresta GP MCP-T610), it was 208 μΩ · cm. That is, it was confirmed that a copper conductive film was obtained at a firing temperature of 300 ° C.

《実施例2》
無水塩化銅、1−ヘプタノール、オレイルアミン、水酸化ナトリウムの仕込み量を表1に示す通りとし、実施例1と同様の実験を行った。
得られた粒子の平均粒子径DTEMは6.7nm、CV値は24.28%であった。平均アスペクト比は1〜1.2の範囲にある。その粒子のTEM写真の一例を図2に示す。
X線回折の結果、この粒子は金属銅であることが確認された。
Example 2
The same experiment as in Example 1 was performed with the amounts of anhydrous copper chloride, 1-heptanol, oleylamine and sodium hydroxide as shown in Table 1.
The average particle diameter D of the particles obtained TEM is 6.7 nm, CV value was 24.28%. The average aspect ratio is in the range of 1 to 1.2. An example of a TEM photograph of the particles is shown in FIG.
As a result of X-ray diffraction, it was confirmed that the particles were metallic copper.

《実施例3》
無水塩化銅、1−ヘプタノール、オレイルアミン、水酸化ナトリウムの仕込み量を表1に示す通りとし、実施例1と同様の実験を行った。
得られた粒子の平均粒子径DTEMは9.0nm、CV値は18.20%であった。平均アスペクト比は1〜1.2の範囲にある。その粒子のTEM写真の一例を図3に示す。
X線回折の結果、この粒子は金属銅であることが確認された。
Example 3
The same experiment as in Example 1 was performed with the amounts of anhydrous copper chloride, 1-heptanol, oleylamine and sodium hydroxide as shown in Table 1.
The average particle diameter D of the particles obtained TEM is 9.0 nm, CV value was 18.20%. The average aspect ratio is in the range of 1 to 1.2. An example of a TEM photograph of the particles is shown in FIG.
As a result of X-ray diffraction, it was confirmed that the particles were metallic copper.

《実施例4》
無水塩化銅、1−ヘプタノール、オレイルアミン、水酸化ナトリウムの仕込み量を表1に示す通りとし、反応温度での保持時間を1時間から12時間に変更した以外は実施例1と同様の実験を行った。
得られた粒子の平均粒子径DTEMは9.4nm、CV値は14.50%であった。平均アスペクト比は1〜1.2の範囲にある。その粒子のTEM写真の一例を図4に示す。
X線回折の結果、この粒子は金属銅であることが確認された。
Example 4
The same experiment as in Example 1 was performed except that the amounts of anhydrous copper chloride, 1-heptanol, oleylamine and sodium hydroxide were as shown in Table 1 and the holding time at the reaction temperature was changed from 1 hour to 12 hours. It was.
The average particle diameter D of the particles obtained TEM is 9.4 nm, CV value was 14.50%. The average aspect ratio is in the range of 1 to 1.2. An example of a TEM photograph of the particles is shown in FIG.
As a result of X-ray diffraction, it was confirmed that the particles were metallic copper.

《比較例1》
前記の無水塩化銅(II)、水酸化ナトリウム顆粒の他、還元剤であるアルコールAとしてイソヘプタノール(和光純薬工業株式会社製の特級)、保護材として1−ビニル−2−ピロリドンのポリマー(PVPポリマー;和光純薬工業株式会社製、PVP K30またはK15、数平均分子量約40000)を用意した。
<< Comparative Example 1 >>
In addition to anhydrous copper chloride (II) and sodium hydroxide granules, isoheptanol (special grade manufactured by Wako Pure Chemical Industries, Ltd.) is used as alcohol A as a reducing agent, and 1-vinyl-2-pyrrolidone polymer is used as a protective material. (PVP polymer; manufactured by Wako Pure Chemical Industries, Ltd., PVP K30 or K15, number average molecular weight of about 40000) was prepared.

イソヘプタノール200mLに、無水塩化銅(II)1.0gおよびPVPポリマー8.48gを添加し、マグネットスターラーにより撹拌して常温で溶解させた。次いで水酸化ナトリウム顆粒1.75gを添加しマグネットスターラーで溶解させた。この容器を還流器の着いた容器に移してオイルバスに載せ、溶液中に窒素ガスを流量400mL/minで吹き込みながら液をマグネットスターラーにより回転速度200rpmで撹拌した。窒素ガスの吹き込みおよび撹拌を維持した状態で液温を昇温速度10℃/minで176℃まで上昇させ、176℃の沸騰状態で還流させながら1時間保持することにより、銅を還元析出させた。   To 200 mL of isoheptanol, 1.0 g of anhydrous copper chloride (II) and 8.48 g of PVP polymer were added and stirred at a room temperature with a magnetic stirrer. Next, 1.75 g of sodium hydroxide granules were added and dissolved with a magnetic stirrer. The container was transferred to a container equipped with a reflux condenser and placed on an oil bath, and the liquid was stirred with a magnetic stirrer at a rotation speed of 200 rpm while nitrogen gas was blown into the solution at a flow rate of 400 mL / min. With the nitrogen gas blowing and stirring maintained, the liquid temperature was increased to 176 ° C. at a heating rate of 10 ° C./min, and held for 1 hour while refluxing at 176 ° C. to reduce and precipitate copper. .

反応後のスラリーが50℃以下になった後、以下の手順で処理した。
1.反応後のスラリー5mLに、アセトン(和光純薬工業株式会社製)25mLを添加し、超音波分散機に10分間かけて分散させた。
2.この分散液を遠心分離機(日立工機株式会社製;CF7D2)を用いて3000rpmで10分間遠心分離することにより固液分離し、上澄みを廃棄し、固形分を回収した。
3.前記1〜2の工程を繰り返した。
4.得られたスラリーに、水8mL、アセトン32mLを添加し、超音波分散機に10分かけて分散させた。
5.この分散液を上記の遠心分離機を用いて3000rpmで20分間遠心分離することにより固液分離し、上澄みを廃棄し、固形分を回収した。
6.回収されたペースト状の固形分にメタノールを添加して分散液とし、その分散液を上記遠心分離機にかけることにより粗大粒子および凝集粒子を分離除去した分散液を得た。
なお、上記6の固形分についてX線回折を行った結果、金属銅が合成されていることが確認された。
After the slurry after the reaction became 50 ° C. or lower, the slurry was treated according to the following procedure.
1. To 5 mL of the slurry after the reaction, 25 mL of acetone (manufactured by Wako Pure Chemical Industries, Ltd.) was added and dispersed in an ultrasonic disperser for 10 minutes.
2. This dispersion was subjected to solid-liquid separation by centrifuging at 3000 rpm for 10 minutes using a centrifuge (manufactured by Hitachi Koki Co., Ltd .; CF7D2), and the supernatant was discarded to recover the solid content.
3. The steps 1 and 2 were repeated.
4. To the obtained slurry, 8 mL of water and 32 mL of acetone were added and dispersed in an ultrasonic disperser over 10 minutes.
5. This dispersion was subjected to solid-liquid separation by centrifuging at 3000 rpm for 20 minutes using the above centrifuge, and the supernatant was discarded to recover the solid content.
6. Methanol was added to the recovered pasty solids to obtain a dispersion, and the dispersion was subjected to the above centrifugal separator to obtain a dispersion in which coarse particles and aggregated particles were separated and removed.
In addition, as a result of performing X-ray diffraction about solid content of said 6, it was confirmed that metallic copper is synthesize | combined.

得られた分散液を用いて実施例1と同様に焼成温度300℃にて焼成膜を作製し、体積固有抵抗の測定を試みたが、抵抗値は測定不能であった。水素雰囲気中500℃で焼成した焼成膜(膜厚0.492μm)の場合でも、体積固有抵抗は4.48×104μΩ・cmと非常に高かった。このことから有機高分子で被覆された銅ナノ粒子は焼結しにくいことが確かめられた。 Using the obtained dispersion, a fired film was produced at a firing temperature of 300 ° C. in the same manner as in Example 1 and measurement of the volume resistivity was attempted, but the resistance value was not measurable. Even in the case of a fired film (film thickness: 0.492 μm) fired at 500 ° C. in a hydrogen atmosphere, the volume resistivity was very high at 4.48 × 10 4 μΩ · cm. From this, it was confirmed that copper nanoparticles coated with an organic polymer are difficult to sinter.

《実施例5》
アルコールAを1−オクタノールとし、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図5に示す。X線回折の結果、この粒子は金属銅であることが確認された。平均粒子径DTEMが20nm以下、かつCV値が50%以下の銅微粉が得られた。
Example 5
The same experiment as in Example 2 was performed with alcohol A as 1-octanol.
An example of a TEM photograph of the obtained particles is shown in FIG. As a result of X-ray diffraction, it was confirmed that the particles were metallic copper. A copper fine powder having an average particle diameter DTEM of 20 nm or less and a CV value of 50% or less was obtained.

《比較例2》
アルコールAを1−ブタノールとし、反応温度を120℃として、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図6に示す。粒子は粗大化している。
<< Comparative Example 2 >>
The same experiment as in Example 2 was performed by setting the alcohol A to 1-butanol and the reaction temperature to 120 ° C.
An example of a TEM photograph of the obtained particles is shown in FIG. The particles are coarsened.

《比較例3》
アルコールAを2−オクタノールとし、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図7に示す。粗大粒子と微細粒子が混在し、粒度分布が悪い。
<< Comparative Example 3 >>
The same experiment as in Example 2 was performed using alcohol A as 2-octanol.
An example of a TEM photograph of the obtained particles is shown in FIG. Coarse particles and fine particles are mixed and particle size distribution is poor.

《比較例4》
アルコールAをエチレングリーコールとし、反応温度を120℃として、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図8に示す。粒子は粗大化している。
<< Comparative Example 4 >>
The same experiment as in Example 2 was performed with alcohol A as ethylene glycol and a reaction temperature of 120 ° C.
An example of a TEM photograph of the obtained particles is shown in FIG. The particles are coarsened.

《実施例6》
反応温度を140℃に下げて、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図9に示す。X線回折の結果、この粒子は金属銅であることが確認された。平均粒子径DTEMが20nm以下の銅微粉が得られた。
Example 6
The same experiment as in Example 2 was performed with the reaction temperature lowered to 140 ° C.
An example of a TEM photograph of the obtained particles is shown in FIG. As a result of X-ray diffraction, it was confirmed that the particles were metallic copper. Copper fine powder having an average particle diameter DTEM of 20 nm or less was obtained.

《比較例5》
反応温度を100℃として、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図10に示す。X線回折の結果、金属銅はほとんど生成していなかった。
<< Comparative Example 5 >>
The same experiment as in Example 2 was performed at a reaction temperature of 100 ° C.
An example of a TEM photograph of the obtained particles is shown in FIG. As a result of X-ray diffraction, almost no metallic copper was produced.

《比較例6》
反応温度を120℃として、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図11に示す。粗大な銅粒子が生成した。
<< Comparative Example 6 >>
The same experiment as in Example 2 was performed at a reaction temperature of 120 ° C.
An example of a TEM photograph of the obtained particles is shown in FIG. Coarse copper particles were produced.

《比較例7》
反応温度をアルコールAの沸点より高い180℃として、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図12に示す。不定形の粗大粒子が発生した。
<< Comparative Example 7 >>
The same experiment as in Example 2 was performed at a reaction temperature of 180 ° C. higher than the boiling point of alcohol A.
An example of a TEM photograph of the obtained particles is shown in FIG. Irregular coarse particles were generated.

《実施例7》
オレイルアミンの仕込み量を2.8gとし、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図13に示す。X線回折の結果、この粒子は金属銅であることが確認された。平均粒子径DTEMが20nm以下、かつCV値が50%以下の銅微粉が得られた。
Example 7
The same experiment as in Example 2 was performed with the amount of oleylamine charged to 2.8 g.
An example of a TEM photograph of the obtained particles is shown in FIG. As a result of X-ray diffraction, it was confirmed that the particles were metallic copper. A copper fine powder having an average particle diameter DTEM of 20 nm or less and a CV value of 50% or less was obtained.

《比較例8》
オレイルアミンの仕込み量を0.7gに低減し、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図14に示す。粒子の粗大化、凝集化が生じた。
<< Comparative Example 8 >>
The amount of oleylamine charged was reduced to 0.7 g, and the same experiment as in Example 2 was performed.
An example of a TEM photograph of the obtained particles is shown in FIG. Particle coarsening and agglomeration occurred.

《比較例9》
オレイルアミンの仕込み量を0.0g(無添加)とし、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図15に示す。反応生成物は不定型な粗大な固まりとなった。
<< Comparative Example 9 >>
The same experiment as in Example 2 was performed with the amount of oleylamine charged to 0.0 g (no addition).
An example of a TEM photograph of the obtained particles is shown in FIG. The reaction product became an amorphous coarse mass.

《実施例8》
水酸化ナトリウムの投入量を0.45gに低減し、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図16に示す。X線回折の結果、この粒子は金属銅であることが確認された。平均粒子径DTEMが20nm以下、かつCV値が50%以下の銅微粉が得られた。
Example 8
The amount of sodium hydroxide input was reduced to 0.45 g, and the same experiment as in Example 2 was performed.
An example of a TEM photograph of the obtained particles is shown in FIG. As a result of X-ray diffraction, it was confirmed that the particles were metallic copper. A copper fine powder having an average particle diameter DTEM of 20 nm or less and a CV value of 50% or less was obtained.

《比較例10》
水酸化ナトリウムの投入量を0.15gに低減し、実施例2と同様の実験を行った。
得られた粒子のTEM写真の一例を図17に示す。X線回折の結果、金属銅の生成は認められなかった。
<< Comparative Example 10 >>
The amount of sodium hydroxide input was reduced to 0.15 g, and the same experiment as in Example 2 was performed.
An example of a TEM photograph of the obtained particles is shown in FIG. As a result of X-ray diffraction, formation of metallic copper was not observed.

《実施例9》
銅化合物として酢酸銅(II)(和光純薬工業株式会社製)を0.74g使用し、水酸化ナトリウムの投入量を0.30gとしたことを除き、実施例6と同様の実験を行った。
得られた粒子のTEM写真の一例を図18に示す。X線回折の結果、この粒子は金属銅であることが確認された。平均粒子径DTEMが50nm以下、かつCV値が50%以下の銅微粉が得られた。
Example 9
The same experiment as in Example 6 was performed, except that 0.74 g of copper (II) acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the copper compound, and the amount of sodium hydroxide added was 0.30 g. .
An example of a TEM photograph of the obtained particles is shown in FIG. As a result of X-ray diffraction, it was confirmed that the particles were metallic copper. A copper fine powder having an average particle diameter DTEM of 50 nm or less and a CV value of 50% or less was obtained.

実施例1で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Example 1. FIG. 実施例2で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Example 2. 実施例3で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Example 3. FIG. 実施例4で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Example 4. FIG. 実施例5で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Example 5. FIG. 比較例2で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Comparative Example 2. 比較例3で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Comparative Example 3. 比較例4で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Comparative Example 4. 実施例6で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Example 6. 比較例5で得られた粒子のTEM写真。10 is a TEM photograph of particles obtained in Comparative Example 5. 比較例6で得られた粒子のTEM写真。10 is a TEM photograph of particles obtained in Comparative Example 6. 比較例7で得られた粒子のTEM写真。10 is a TEM photograph of particles obtained in Comparative Example 7. 実施例7で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Example 7. FIG. 比較例8で得られた粒子のTEM写真。10 is a TEM photograph of particles obtained in Comparative Example 8. 比較例9で得られた粒子のTEM写真。10 is a TEM photograph of particles obtained in Comparative Example 9. 実施例8で得られた粒子のTEM写真。4 is a TEM photograph of particles obtained in Example 8. 比較例10で得られた粒子のTEM写真。10 is a TEM photograph of particles obtained in Comparative Example 10. 実施例9で得られた粒子のTEM写真。10 is a TEM photograph of particles obtained in Example 9.

Claims (7)

R−OH、ただしRは炭素数7〜8の直鎖アルキル基、で表される1種以上のアルコールと、界面活性剤である分子量200〜400の有機化合物が溶け合っている溶媒中に溶解している銅化合物を、前記アルコールの還元力を利用して金属銅に還元させるとともに、析出した金属銅を当該溶媒中において前記界面活性剤の分子で被覆する合成法により合成された、前記分子量200〜400の有機化合物からなる界面活性剤の分子が表面に付着している銅粒子で構成され、TEM観察により求まる平均粒子径DTEMが50nm以下、かつ下記(1)式で定義されるCV値が50%以下である銅微粉。
CV値=σD/DTEM×100 ……(1)
ここでσDはDTEMの測定対象とした個々の粒子の粒子径についての標準偏差である。
R-OH, where R is a linear alkyl group having 7 to 8 carbon atoms, and is dissolved in a solvent in which one or more alcohols represented by a surfactant and an organic compound having a molecular weight of 200 to 400 as a surfactant are dissolved. The molecular weight 200 synthesized by a synthesis method in which the copper compound is reduced to metallic copper using the reducing power of the alcohol and the deposited metallic copper is coated with the surfactant molecules in the solvent. consists of copper particles molecule of the surfactant comprising an organic compound of 400 is adhered to the surface, the mean particle diameter D TEM which is obtained by TEM observation 50nm or less, and the following (1) being defined CV value formula Copper fine powder whose 50% or less.
CV value = σ D / D TEM × 100 (1)
Here, σ D is a standard deviation with respect to the particle size of each particle to be measured by DTEM .
CV値が25%以下である請求項1に記載の銅微粉。 The copper fine powder according to claim 1, wherein the CV value is 25% or less. 請求項1または2に記載の銅微粉が極性溶媒中に単分散している銅粒子分散液。 A copper particle dispersion in which the copper fine powder according to claim 1 or 2 is monodispersed in a polar solvent. R−OH、ただしRは炭素数7〜8の直鎖アルキル基、で表される1種以上のアルコールAと、界面活性剤である分子量200〜400の有機化合物が溶け合っている溶媒中に、下記(a)のモル比で銅化合物が溶解している液を、下記(b)のモル比で水酸化物が混合された状態で、下記(c)の温度範囲に保持することにより、前記界面活性剤の分子が表面に付着しておりTEM観察により求まる平均粒子径DTEMが50nm以下の銅粒子を合成する銅微粉の製造方法。
(a)[界面活性剤分子]/[銅イオン]のモル比:1〜20
(b)[水酸化物中の水酸化物イオン]/[アルコールA]のモル比:0.008〜0.5
(c)アルコールAを構成する最も沸点が低いアルコールの沸点をABP(℃)とするとき、(ABP−50℃)以上かつABP以下の温度範囲
In a solvent in which one or more alcohols A represented by R—OH, where R is a linear alkyl group having 7 to 8 carbon atoms, and an organic compound having a molecular weight of 200 to 400 as a surfactant are dissolved together, By maintaining the liquid in which the copper compound is dissolved at the molar ratio of the following (a) in the temperature range of the following (c) while the hydroxide is mixed at the molar ratio of the following (b), method for producing a copper fine powder having an average particle diameter D TEM molecules of the surfactant which is obtained by observing TEM is attached to the surface to synthesize the following copper particles 50nm.
(A) [Surfactant molecule] / [copper ion] molar ratio: 1 to 20
(B) Molar ratio of [hydroxide ion in hydroxide] / [alcohol A]: 0.008 to 0.5
(C) When the boiling point of the alcohol having the lowest boiling point constituting alcohol A is A BP (° C.), the temperature range is (A BP −50 ° C.) or more and A BP or less.
R−OH、ただしRは炭素数7〜8の直鎖アルキル基、で表される1種以上のアルコールAと、界面活性剤である分子量200〜400の有機化合物が溶け合っている溶媒中に、下記(a)のモル比で銅化合物が溶解している液を、下記(b)のモル比で水酸化物が混合された状態で、下記(c)の温度範囲に保持することにより、前記界面活性剤の分子が表面に付着しておりTEM観察により求まる平均粒子径DTEMが50nm以下の銅粒子を合成する工程、
合成された銅粒子を含むスラリーを固液分離して、固形分を回収する工程、
前記固形分中に混在する不純物の有機化合物を有機溶媒で洗浄し、不純物の無機塩を有機溶媒と水の混合液で洗浄する工程、
を有する銅微粉の製造方法。
(a)[界面活性剤分子]/[銅イオン]のモル比:1〜20
(b)[水酸化物中の水酸化物イオン]/[アルコールA]のモル比:0.008〜0.5
(c)アルコールAを構成する最も沸点が低いアルコールの沸点をABP(℃)とするとき、(ABP−50℃)以上かつABP以下の温度範囲
In a solvent in which one or more alcohols A represented by R—OH, where R is a linear alkyl group having 7 to 8 carbon atoms, and an organic compound having a molecular weight of 200 to 400 as a surfactant are dissolved together, By maintaining the liquid in which the copper compound is dissolved at the molar ratio of the following (a) in the temperature range of the following (c) while the hydroxide is mixed at the molar ratio of the following (b), A step of synthesizing copper particles having an average particle diameter D TEM of 50 nm or less as determined by TEM observation, where the surfactant molecules are attached to the surface;
Solid-liquid separation of the slurry containing the synthesized copper particles, and recovering the solid content,
Washing the organic compound of impurities mixed in the solid content with an organic solvent, washing the inorganic salt of impurities with a mixture of the organic solvent and water,
The manufacturing method of the copper fine powder which has this.
(A) [Surfactant molecule] / [copper ion] molar ratio: 1 to 20
(B) Molar ratio of [hydroxide ion in hydroxide] / [alcohol A]: 0.008 to 0.5
(C) When the boiling point of the alcohol having the lowest boiling point constituting alcohol A is A BP (° C.), the temperature range is (A BP −50 ° C.) or more and A BP or less.
前記銅化合物が塩化銅(II)または酢酸銅(II)であり、前記水酸化物が水酸化ナトリウムまたは水酸化カリウムである請求項またはに記載の銅微粉の製造方法。 The method for producing copper fine powder according to claim 4 or 5 , wherein the copper compound is copper (II) chloride or copper (II) acetate, and the hydroxide is sodium hydroxide or potassium hydroxide. 前記界面活性剤がオレイルアミンである請求項のいずれかに記載の銅微粉の製造方法。 The method for producing a copper fine powder according to any one of claims 4 to 6 , wherein the surfactant is oleylamine.
JP2008224701A 2008-09-02 2008-09-02 Copper fine powder, dispersion thereof and method for producing copper fine powder Expired - Fee Related JP5213592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224701A JP5213592B2 (en) 2008-09-02 2008-09-02 Copper fine powder, dispersion thereof and method for producing copper fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224701A JP5213592B2 (en) 2008-09-02 2008-09-02 Copper fine powder, dispersion thereof and method for producing copper fine powder

Publications (2)

Publication Number Publication Date
JP2010059453A JP2010059453A (en) 2010-03-18
JP5213592B2 true JP5213592B2 (en) 2013-06-19

Family

ID=42186584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224701A Expired - Fee Related JP5213592B2 (en) 2008-09-02 2008-09-02 Copper fine powder, dispersion thereof and method for producing copper fine powder

Country Status (1)

Country Link
JP (1) JP5213592B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163880A (en) * 2017-10-04 2020-05-15 Jx金属株式会社 Method for producing surface-treated copper fine particles

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392910B2 (en) * 2009-10-01 2014-01-22 古河電気工業株式会社 Method for producing copper fine particles
JP5999588B2 (en) * 2011-02-18 2016-09-28 田中貴金属工業株式会社 Metal nanoparticles and method for producing metal nanoparticles
JP2014148750A (en) * 2013-01-09 2014-08-21 Nippon Synthetic Chem Ind Co Ltd:The Metal composite superfine particle and its manufacturing method
JP5820556B2 (en) * 2013-01-31 2015-11-24 双葉電子工業株式会社 Method for producing copper nanowires
CN103639420B (en) * 2013-11-27 2016-03-30 昆明理工大学 A kind of low melt type ionic liquid electrodeposition altogether prepares the method for copper nanoparticle
JP2020035978A (en) * 2018-08-31 2020-03-05 京セラ株式会社 Method for manufacturing copper particle for connection, paste for connection and semiconductor device, and electrical/electronic component
KR102323573B1 (en) * 2020-06-08 2021-11-05 중앙대학교 산학협력단 Copper nanoparticles of uniform shape and size, and method for synthesis thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4168371B2 (en) * 2002-06-28 2008-10-22 戸田工業株式会社 Metal colloidal organosol and method for producing the same
JP2007169680A (en) * 2005-12-19 2007-07-05 Osaka Univ Method for producing metal particulate and metal particulate produced thereby
KR100797484B1 (en) * 2006-08-29 2008-01-23 삼성전기주식회사 Method for manufacturing cubic copper or copper oxide nanoparticles
JP5213420B2 (en) * 2006-12-13 2013-06-19 国立大学法人東北大学 Copper powder with excellent dispersibility in liquid and corrosion resistance and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163880A (en) * 2017-10-04 2020-05-15 Jx金属株式会社 Method for producing surface-treated copper fine particles

Also Published As

Publication number Publication date
JP2010059453A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5213592B2 (en) Copper fine powder, dispersion thereof and method for producing copper fine powder
JP5252843B2 (en) Silver ink and its manufacturing method
JP5371247B2 (en) Silver paint and production method thereof
JP5213420B2 (en) Copper powder with excellent dispersibility in liquid and corrosion resistance and method for producing the same
JP4294705B2 (en) Method for producing silver fine powder coated with organic substance and silver fine powder
JPWO2009060803A1 (en) Copper fine particles, production method thereof and copper fine particle dispersion
JP5162383B2 (en) Method for producing silver-coated copper fines
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP5176060B2 (en) Method for producing silver particle dispersion
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP5857703B2 (en) Silver powder
JP4279329B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP2011063828A (en) Copper-nickel nanoparticle, and method for producing the same
JP4897624B2 (en) Low-temperature sinterable silver fine powder and silver paint and method for producing them
JP2005281781A (en) Method for producing copper nanoparticle
JP5274000B2 (en) Low-temperature sinterable silver fine powder and silver paint and method for producing them
CN107614160A (en) Silver particles dispersion liquid
JP6209249B2 (en) Method for producing oxide-coated copper fine particles
JP2008179851A (en) Method for manufacturing silver powder, and silver powder
JP4674376B2 (en) Method for producing silver particle powder
JP5232016B2 (en) Wiring forming material
JP5314451B2 (en) Metallic nickel particle powder and dispersion thereof, and method for producing metallic nickel particle powder
JP2009068053A (en) Method for manufacturing silver particle, and silver particle dispersion liquid
JP2009091634A (en) Method for producing silver fine powder
JP2009215619A (en) Silver fine particle excellent in affinity with ketone, and silver ink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5213592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees