JP5063003B2 - Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device - Google Patents

Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device Download PDF

Info

Publication number
JP5063003B2
JP5063003B2 JP2006016568A JP2006016568A JP5063003B2 JP 5063003 B2 JP5063003 B2 JP 5063003B2 JP 2006016568 A JP2006016568 A JP 2006016568A JP 2006016568 A JP2006016568 A JP 2006016568A JP 5063003 B2 JP5063003 B2 JP 5063003B2
Authority
JP
Japan
Prior art keywords
copper
copper nanoparticles
nanoparticles
less
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006016568A
Other languages
Japanese (ja)
Other versions
JP2007197755A (en
Inventor
高明 橋本
昌秀 島
博信 小野
暢文 杉尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2006016568A priority Critical patent/JP5063003B2/en
Publication of JP2007197755A publication Critical patent/JP2007197755A/en
Application granted granted Critical
Publication of JP5063003B2 publication Critical patent/JP5063003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明はナノ粒子の製造方法、ナノ粒子、導電性組成物および電子デバイスに関し、詳しくはナノ粒子の製造方法、この方法によって得られるナノ粒子、ならびにこのナノ粒子を含有する導電性組成物およびこの導電性組成物を用いて形成した被膜層を有する電子デバイスに関する。 Production method of the present invention is copper nanoparticles, copper nanoparticles, relates conductive composition and electronic devices, and more particularly a method of manufacturing a copper nanoparticles, copper nanoparticles obtained by this method, as well as conductive containing the copper nano-particles The present invention relates to a conductive composition and an electronic device having a coating layer formed using the conductive composition.

有機酸金属塩とアミン化合物とを反応させて金属微粒子を製造し、この金属微粒子を用いて導電性被覆層を形成することはよく知られているところであり、既に多くの方法が提案されている。例えば、特許文献1には、このような導電性被覆層を形成するに好適なものとされる金属元素含有有機化合物ペースト、およびこのペーストを用いて得られる電子デバイスが提案されている。   It is well known to produce metal fine particles by reacting an organic acid metal salt and an amine compound, and to form a conductive coating layer using the metal fine particles, and many methods have already been proposed. . For example, Patent Document 1 proposes a metal element-containing organic compound paste that is suitable for forming such a conductive coating layer, and an electronic device obtained using this paste.

特開2002−329419号公報JP 2002-329419 A

特許文献1に記載の方法によって得られる金属微粒子は、粒子径が0.1μm(100nm)以下とされているが、その粒度分布についての記載はない。しかし、例えば、導電パターン描画用インク組成物として、導電性被覆層を形成する場合、平均粒子径が10nmを超え、しかも粒子径が均一でなく、粒度分布が広い金属微粒子を用いると、金属微粒子の分散体であるインクの保管時に凝集が生じやすくなり、その結果、インクジェット装置を用いて回路パターンを描画する際につまりなどの問題が生じる可能性がある。さらに、導電性の金属膜を焼成処理などにより形成する場合、粒子間の空隙が大きくなるため、均一な膜の形成が難しくなることや基板との密着性が低くなるなどの問題が生じる。   The metal fine particles obtained by the method described in Patent Document 1 have a particle size of 0.1 μm (100 nm) or less, but there is no description of the particle size distribution. However, for example, when forming a conductive coating layer as an ink composition for drawing a conductive pattern, if metal fine particles having an average particle diameter of more than 10 nm, a non-uniform particle diameter, and a wide particle size distribution are used, the metal fine particles Aggregation is likely to occur during storage of the ink, which is a dispersion of the ink, and as a result, problems such as clogging may occur when drawing a circuit pattern using an ink jet apparatus. Furthermore, when a conductive metal film is formed by firing or the like, voids between particles are increased, which causes problems such as difficulty in forming a uniform film and low adhesion to the substrate.

このように、従来の方法によって得られる金属微粒子は粒子径や粒子の均一性(粒度分布)などの点でなお不十分であり、更なる改善が望まれている。   As described above, the metal fine particles obtained by the conventional method are still insufficient in terms of the particle diameter and particle uniformity (particle size distribution), and further improvement is desired.

本発明の目的は、電子デバイスなどの導電性被覆層の形成に好適な粒子径や粒度分布などの特性を有するナノ粒子およびそのようなナノ粒子の製造に好適なナノ粒子の製造方法を提供することにある。また、本発明の目的は、上記ナノ粒子を含有する導電性組成物およびこの導電性組成物を用いて得られる被覆層を有する電子デバイスを提供することにある。 An object of the present invention, the production method of the preferred copper nanoparticles in the manufacture of copper nanoparticles and such copper nanoparticles having properties such as a suitable particle size and particle size distribution in the formation of conductive coating layer, such as an electronic device Is to provide. Moreover, the objective of this invention is providing the electronic device which has a coating layer obtained using the electroconductive composition containing the said copper nanoparticle, and this electroconductive composition.

本発明者らの研究によれば、前記課題は下記発明により達成できることがわかった。
(1)攪拌機付き反応装置内で有機酸塩と炭素数8〜16のモノアミン化合物とを含む溶液に還元剤を添加し、銅金属核の形成およびその成長を行わせて銅ナノ粒子を製造する方法であって、該銅金属核の形成およびその成長を10〜55℃の温度、かつ、還元剤を添加するときの液温変化ΔTが20℃以下の条件下で行うことを特徴とするナノ粒子の製造方法。
(2)有機酸銅塩がギ酸銅、酢酸銅、シュウ酸銅、オレイン酸銅、ステアリン酸銅およびテトラデカン酸銅から選ばれる少なくとも1種である上記(1)の銅ナノ粒子の製造方法。
(3)炭素数8〜16のモノアミン化合物がオクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ドデシルジメチルアミンおよびトリオクチルアミンから選ばれる少なくとも1種である上記(1)または(2)の銅ナノ粒子の製造方法。
(4)還元剤がジメチルアミンボラン、tert−ブチルアミンボラン、水素化ホウ素ナトリウム、シュウ酸、アスコルビン酸、ホルムアルデヒドおよびアセトアルデヒドから選ばれる少なくとも1種である上記(1)〜(3)のいずれかの銅ナノ粒子の製造方法。
(5)上記(1)〜(4)のいずれかナノ粒子の製造方法により調製した、平均粒子径(D)が10nm以下であり、かつσ/D(σ:標準偏差値、D:平均粒子径)が0.2以下であるナノ粒子。
(6)上記(5)のナノ粒子を1ないし80質量%含んでなる導電性組成物。
(7)上記(6)の導電性組成物を用いて形成された被覆層を有する電子デバイス。
According to the studies by the present inventors, it has been found that the above problems can be achieved by the following invention.
(1) In a reactor equipped with a stirrer , a reducing agent is added to a solution containing an organic acid copper salt and a monoamine compound having 8 to 16 carbon atoms , and copper nanoparticles are formed and grown to produce copper nanoparticles. The copper metal nuclei are formed and grown at a temperature of 10 to 55 ° C. and a change in liquid temperature ΔT when a reducing agent is added is 20 ° C. or less. A method for producing copper nanoparticles.
(2) The method for producing copper nanoparticles according to (1), wherein the organic acid copper salt is at least one selected from copper formate, copper acetate, copper oxalate, copper oleate, copper stearate and copper tetradecanoate.
(3) Monoamine compounds having 8 to 16 carbon atoms are octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, dodecyldimethylamine and trioctylamine. The method for producing copper nanoparticles according to (1) or (2), which is at least one selected.
(4) The copper according to any one of the above (1) to (3), wherein the reducing agent is at least one selected from dimethylamine borane, tert-butylamine borane, sodium borohydride, oxalic acid, ascorbic acid, formaldehyde and acetaldehyde. A method for producing nanoparticles.
(5) The average particle diameter (D) prepared by the method for producing copper nanoparticles according to any one of (1) to (4 ) above is 10 nm or less, and σ / D (σ: standard deviation value, D: Copper nanoparticles having an average particle diameter) of 0.2 or less .
(6) A conductive composition comprising 1 to 80% by mass of the copper nanoparticles of (5) above.
(7) An electronic device having a coating layer formed using the conductive composition of (6) above.

本発明の方法によれば、ナノサイズの微粒子、具体的には、例えば、平均粒子径が10nm以下であり、かつσ/Dが0.2の微細で、均一性に優れたナノ粒子を容易に製造することができる。 According to the method of the present invention, nano-sized fine copper particles, specifically, for example, an average particle diameter of at 10nm or less, and sigma / D a is 0.2 micro uniformity excellent copper nanoparticles Can be easily manufactured.

本発明の方法によって得られるナノ粒子を含む導電性組成物を、例えば、回路パターン描画用インクとして使用すると均一な被膜が形成されるため、導電性に優れた金属被膜を得ることができる。 When a conductive composition containing copper nanoparticles obtained by the method of the present invention is used as, for example, a circuit pattern drawing ink, a uniform film is formed, and therefore a metal film having excellent conductivity can be obtained.

本発明によれば、有機酸塩と炭素数8〜16のモノアミン化合物とを反応させてナノ粒子を製造する際に、金属核の形成およびその成長を100℃未満の温度で行う。有機酸塩と炭素数8〜16のモノアミン化合物とを反応させて微粒子を製造すること自体は公知であり、本発明においても、上記有機酸塩およびモノアミン化合物としては、この種の反応に一般に知られている有機酸塩およびモノアミン化合物を用いることができる(例えば、特許文献1参照)。 According to the present invention, performs a monoamine compound of the organic acid copper salt and 8-16 carbon atoms is reacted in producing copper nanoparticles in form and growth of less than 100 ° C. temperature of the copper metal nuclei . Itself of a monoamine compound of the organic acid copper salt and 8-16 carbon atoms are reacted to produce the fine copper particles are known, in the present invention, as the organic acid copper salt and monoamine compounds, this type it is possible to use an organic acid copper salt of the reaction is generally known and monoamine compound (e.g., see Patent Document 1).

上記有機酸塩の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、テトラデカン酸、オレイン酸、リノール酸、リノレン酸、ステアリン酸、シュウ酸、酒石酸、フタル酸、メタクリル酸、クエン酸、アクリル酸、安息香酸などのカルボン酸やスルホン酸などと、銅との塩を挙げることができる。なかでも、銅のカルボン酸、具体的には、ギ酸銅、酢酸銅、シュウ酸銅、オレイン酸銅、ステアリン酸銅およびテトラデカン酸銅が好適に用いられる。 Specific examples of the organic acid copper salts, formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tetradecanoic acid, oleic acid, Examples thereof include a salt of copper with a carboxylic acid such as linoleic acid, linolenic acid, stearic acid, oxalic acid, tartaric acid, phthalic acid, methacrylic acid, citric acid, acrylic acid, and benzoic acid, and sulfonic acid. Among these, copper carboxylic acids, specifically copper formate, copper acetate, copper oxalate, copper oleate, copper stearate and copper tetradecanoate are preferably used.

上記炭素数8〜16のモノアミン化合物の具体例としては、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ドデシルジメチルアミンおよびトリオクチルアミンが挙げられる。これらは1種でも、あるいは2種以上混合して使用してもよい。 Specific examples of the monoamine compounds of the 8 to 16 carbon atoms, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine amine, hexadecylamine, dodecylamine dimethylamine and Trioctylamine is mentioned . These may be used alone or in combination of two or more.

有機酸塩とモノアミン化合物との割合については、特に限定されるものではないが、通常、モノアミン化合物を有機酸塩1モルに対し0.5モル以上30モル未満、好ましくは3モル以上15モル未満の割合で使用する。0.5モルより少ないと、有機酸塩とモノアミン化合物との均一な混合物が調製できないため還元時に凝集が生じやすくなり、一方、30モル以上添加しても微粒子化には作用せず余分なコストが必要となる。 The ratio of the organic acid copper salt and monoamine compound, is not particularly limited, monoamine compound and the organic acid copper salt 1 mole less than 30 mol 0.5 mol or more, preferably 3 moles More than 15 moles are used. If less than 0.5 mol, it aggregation is likely to occur at the time of reduction for homogeneous mixture with the organic acid copper salt and monoamine compounds can not be prepared, while the surplus does not act on micronized be added 30 moles or more Cost is required.

本発明の方法の特徴は、上記の有機酸塩とモノアミン化合物との反応を金属核の形成およびその成長を100℃未満の温度で行う点にある。前記特許文献1においては、40〜80℃で4〜96時間行う前段反応と、前段反応より20〜50℃高い温度で10分〜8時間行う後段反応とからなる二段階反応を経て金属微粒子を製造するに対して、本発明においては10〜55℃の温度範囲で、液温変化ΔT(温度変化範囲)が20℃以下、好ましくは10℃以下、より好ましくは5℃以下、特に好ましくは実質的に一定の温度に維持しながら、必要時間、具体的には、例えば、0.1〜5時間、好ましくは0.2〜3時間反応を行うことにより、金属核の形成とその成長を終了させる。このようにすることにより、平均粒子径が10nm以下であり、かつσ/Dが0.2以下であるナノ粒子を効率よく製造することができる。
なお、本発明の「金属核の形成およびその成長」とは、ナノ粒子の核が形成され、それが成長して目的とするナノ粒子が得られるまでの過程を意味する。
Feature of the process of the present invention is that carried out by forming and growing of less than 100 ° C. the temperature of the reaction of copper metal nuclei and the organic acid copper salt and monoamine compounds. In Patent Document 1, metal fine particles are obtained through a two-stage reaction consisting of a pre-stage reaction performed at 40 to 80 ° C. for 4 to 96 hours and a post-stage reaction performed at a temperature 20 to 50 ° C. higher than the pre-stage reaction for 10 minutes to 8 hours. In contrast to the production, in the present invention, the liquid temperature change ΔT (temperature change range) is 20 ° C. or less, preferably 10 ° C. or less, more preferably 5 ° C. or less, particularly preferably substantially in the temperature range of 10 to 55 ° C. The formation of the metal nucleus and its growth are completed by carrying out the reaction for a required time, specifically, for example, 0.1 to 5 hours, preferably 0.2 to 3 hours, while maintaining the temperature constant. Let By doing in this way, the copper nanoparticle whose average particle diameter is 10 nm or less and (sigma) / D is 0.2 or less can be manufactured efficiently.
The “formation and growth of copper metal nuclei” of the present invention means a process from the formation of nuclei of copper nanoparticles to the growth of the desired copper nanoparticles.

本発明の方法においては、上記の有機酸塩とモノアミン化合物との混合物と還元剤との反応の際に、液温変化ΔTを20℃以下、好ましくは10℃以下、より好ましくは5℃以下、特に好ましくは実質的に一定の温度に調整しながら、還元剤を添加して、金属核およびその成長を完了させるのがよい。上記還元剤としては、ジメチルアミンボラン、tert−ブチルアミンボラン、水素化ホウ素ナトリウム、シュウ酸、アスコルビン酸、ホルムアルデヒドおよびアセトアルデヒドを挙げることができる。これらは2種以上混合して使用することもできる。なかでも、ジメチルアミンボランおよび水素化ホウ素ナトリウムが好適に用いられる。 In the method of the present invention, upon reaction with a mixture with a reducing agent and the organic acid copper salt and monoamine compound, the liquid temperature change [Delta] T 20 ° C. or less, preferably 10 ° C. or less, more preferably 5 ° C. Hereinafter, the copper metal nucleus and its growth are preferably completed by adding a reducing agent while adjusting the temperature to a substantially constant temperature. Examples of the reducing agent include dimethylamine borane, tert-butylamine borane, sodium borohydride, oxalic acid, ascorbic acid, formaldehyde, and acetaldehyde. These may be used in combination of two or more. Of these, dimethylamine borane and sodium borohydride are preferably used.

本発明の方法によれば、平均粒子径(D)が10nm以下、好ましくは2〜8nm、より好ましくは3〜7nmであり、かつσ/D(σ:標準偏差値、D:平均粒子径)が0.2以下、好ましくは0.01〜0.19、より好ましくは0.02〜0.18であるナノ粒子が得られる。本発明においては、電界放射型走査電子顕微鏡(FE−SEM)を使用して金属ナノ粒子の粒子径を測定し、その平均値および標準偏差値を算出した。なお、本発明の「ナノ粒子」とは、ナノ粒子のほかに、酸化物ナノ粒子、あるいはナノ粒子と酸化物ナノ粒子との混合物を包含するものである。例えば、銅はCu O、CuOなどの酸化物の形態で存在する。 According to the method of the present invention, the average particle size (D) is 10 nm or less, preferably 2 to 8 nm, more preferably 3 to 7 nm, and σ / D (σ: standard deviation value, D: average particle size). but 0.2 or less, preferably 0.01 to 0.19, copper nanoparticles are obtained and more preferably from 0.02 to 0.18. In the present invention, the particle diameter of the metal nanoparticles was measured using a field emission scanning electron microscope (FE-SEM), and the average value and the standard deviation value were calculated. Note that the "copper nanoparticles" of the present invention, in addition to the copper nanoparticles, is intended to encompass a mixture of copper oxide nanoparticles or copper nanoparticles, and copper oxide nanoparticles. For example, copper exists in the form of oxides such as Cu 2 O and CuO.

上記還元剤は、有機酸塩1モルに対し、0.1モル以上10モル未満、好ましくは0.3モル以上5モル未満の割合で用いるのが一般的である。10モル以上では、還元力が強すぎるため粒子が凝集しナノ粒子が得られなくなり、一方、0.1モルより少ないと十分に還元できないためナノ粒子が生成しない。 The reducing agent is, relative to the organic acid copper salt 1 mole, less than 10 mol 0.1 mol or more, preferably common to use a ratio of less than 5 mol 0.3 mol. If the amount is 10 mol or more, the reducing power is too strong and the particles aggregate and copper nanoparticles cannot be obtained. On the other hand, if the amount is less than 0.1 mol, the particles cannot be sufficiently reduced and copper nanoparticles are not generated.

上記還元剤の添加方法には特に制限はなく、還元剤を水に溶解して水溶液として添加するのが一般的である。具体的には、有機酸塩とモノアミン化合物との混合物に、反応液を100℃未満とし、さらに液温変化ΔTを20℃以下に調整しながら、還元剤を所定時間内に徐々に添加すればよい。 There is no restriction | limiting in particular in the addition method of the said reducing agent, It is common to dissolve a reducing agent in water and to add as aqueous solution. More specifically, the mixture of an organic acid copper salt and monoamine compound, the reaction solution is less than 100 ° C., while further adjusting the liquid temperature change ΔT in 20 ° C. or less, gradually adding a reducing agent within a predetermined time do it.

上記の有機酸塩とモノアミン化合物と還元剤との反応によって得られるナノ粒子は、未反応のモノアミン化合物や還元剤から生成する生成物などとともに反応液中に含まれているため、アセトン、エタノール、メタノール、水など加えて静置した後、メンブレンフィルターなどを用いてろ過することにより、ナノ粒子をモノアミン化合物とともに沈殿物として回収することができる。 Since the above-mentioned copper nanoparticles obtained by the reaction of an organic acid copper salt and monoamine compound and a reducing agent are included with such products formed from monoamine compound or a reducing agent of the unreacted in the reaction solution, acetone, ethanol, allowed to stand added methanol, water, etc., by filtration using a membrane filter, it is possible to recover the copper nano-particles as a precipitate with monoamine compound.

次に、上記ナノ粒子の沈殿物を再度溶媒に分散させる。この溶媒としては、ノルマルヘキサン、シクロヘキサン、ノルマルペンタン、ノルマルヘプタン、トルエン、キシレン、メチルイソブチルケトン、ベンゼン、クロロホルム、四塩化炭素、メチルエチルケトン、酢酸エチル、酢酸ブチル、酢酸イソブチル、エチルベンゼン、トリメチルベンゼン、テルピネオール、デカン、ウンデカン、ドデカン、テトラデカン、ヘキサデカン、メタノール、エタノール、プロピルアルコール、ブチルアルコールなどを用いることができる。溶媒量は、沈殿物に対して質量で1倍以上100倍未満、好ましくは3倍以上50倍未満である。100倍以上使用しても溶解性に変化はなく、1倍未満では金属ナノ粒子の分散体を調製することができない。 Next, the precipitate of the copper nanoparticles is dispersed again in the solvent. As this solvent, normal hexane, cyclohexane, normal pentane, normal heptane, toluene, xylene, methyl isobutyl ketone, benzene, chloroform, carbon tetrachloride, methyl ethyl ketone, ethyl acetate, butyl acetate, isobutyl acetate, ethylbenzene, trimethylbenzene, terpineol, Decane, undecane, dodecane, tetradecane, hexadecane, methanol, ethanol, propyl alcohol, butyl alcohol, and the like can be used. The amount of the solvent is 1 to 100 times, preferably 3 to 50 times by mass with respect to the precipitate. Even if it is used 100 times or more, the solubility does not change, and if it is less than 1 time, a dispersion of metal nanoparticles cannot be prepared.

上記溶媒に沈殿物を分散させたものをナノ粒子分散液として使用してもよいが、分散液に含まれる不純物を取り除くとの観点から、分散液を5℃以下にまで冷却した後、再度メンブレンフィルターなどでろ過を行い、そのろ過液をナノ粒子分散液として使用することが好ましい。また、更に好ましくは、上記ろ過液中の溶媒を減圧除去させた後、再度上記溶媒に分散させることにより、不純物が少なく、かつナノ粒子を高濃度に含有したナノ粒子分散液を調製することができる。 A dispersion in which a precipitate is dispersed in the above-mentioned solvent may be used as a copper nanoparticle dispersion. However, from the viewpoint of removing impurities contained in the dispersion, the dispersion is cooled to 5 ° C. or lower and then again. It is preferable to perform filtration with a membrane filter or the like and use the filtrate as a copper nanoparticle dispersion. Further, more preferably, after the solvent of the filtrate in is removed under reduced pressure, by dispersing again the solvent, impurities less, and preparing a copper nanoparticle dispersion containing the copper nano-particles in a high concentration be able to.

本発明の導電性組成物とは、平均粒子径が10nm以下であり、かつσ/Dが0.2以下であるナノ粒子を1〜80質量%、好ましくは30〜60質量%含有するものであり、通常、前記ナノ粒子の有機溶剤分散液について、そのナノ粒子の含有量を1〜80質量%とすることにより容易に得られる。この導電性組成物は、電子デバイスにおける導電性パターンを作成するための、導電パターン描画用インク組成物として好適に用いられる。 The conductive composition of the present invention contains 1 to 80% by mass, preferably 30 to 60% by mass of copper nanoparticles having an average particle size of 10 nm or less and σ / D of 0.2 or less. , and the usually, an organic solvent dispersion of the copper nanoparticles, can be easily obtained by controlling the content of the copper nanoparticles and 1 to 80 wt%. This conductive composition is suitably used as a conductive pattern drawing ink composition for creating a conductive pattern in an electronic device.

本発明の導電性組成物を所定の基板に塗布した後、熱処理することによりナノ粒子からなる被覆層が形成される。導電性組成物を基板に塗布する方法については特に制限はなく、この種の分散体の塗布に一般に用いられている方法にしたがって行うことができる。具体的には、例えば、スクリーン印刷法、ディップコーティング法、スプレー法、スピンコーティング法などを採用することができる。上記基板としては、電極、配線、回路などを構成するのに一般に用いられている、焼成によって焼失、劣化しない耐熱性のものであればいずれでもよい。具体的には、例えば、鉄、銅、アルミニウムなどの金属基板、ポリイミドフィルムなどの耐熱性樹脂基板、ガラス基板などを挙げることができる。また、上記熱処理は、真空中、不活性ガス中、酸化性ガス、還元性ガス中のいずれかの雰囲気において実施することが好ましく、また、その際の熱処理温度は50℃以上500℃未満であることが好ましい。この被覆層は当該金属成分から構成されるものであり、金属それ自体に相当する導電性を示す。銅は、比抵抗値が低いこと、また耐エレクトロマイグレーション性の観点から好適であるAfter apply | coating the electrically conductive composition of this invention to a predetermined board | substrate, the coating layer which consists of copper nanoparticles is formed by heat-processing. There is no restriction | limiting in particular about the method of apply | coating an electroconductive composition to a board | substrate, It can carry out according to the method generally used for application | coating of this kind of dispersion. Specifically, for example, a screen printing method, a dip coating method, a spray method, a spin coating method, or the like can be employed. As the substrate, any substrate may be used as long as it has a heat resistance generally used for constituting electrodes, wirings, circuits, etc. and does not burn and deteriorate due to firing. Specific examples include metal substrates such as iron, copper, and aluminum, heat resistant resin substrates such as polyimide films, and glass substrates. Further, the heat treatment is preferably performed in an atmosphere of any one of vacuum, inert gas, oxidizing gas, and reducing gas, and the heat treatment temperature at that time is 50 ° C. or higher and lower than 500 ° C. It is preferable. This coating layer is comprised from the said copper metal component, and shows the electroconductivity equivalent to copper metal itself. Copper, specific resistance value is low, also suitable in view of electromigration resistance.

また、本発明の電子デバイスとは、上記導電性組成物を所望の形状に形成した被覆層、具体的には、例えば、金属配線および端子電極を有するものであり、その具体例としては、積層チップキャパシタ、積層チップインダクタ、チップ抵抗器、ビルドアップ基板、フレキシブルプリント基板、ガラス基板、セラミック基板などを挙げることができる。   Further, the electronic device of the present invention has a coating layer formed by forming the conductive composition into a desired shape, specifically, for example, a metal wiring and a terminal electrode. A chip capacitor, a multilayer chip inductor, a chip resistor, a build-up substrate, a flexible printed substrate, a glass substrate, a ceramic substrate, and the like can be given.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。
(実施例1)
1Lのガラスビーカーに酢酸銅一水和物(和光純薬工業株式会社製)15.7gとオクチルアミン(和光純薬工業株式会社)101.6gとを仕込み、40℃で10分間攪拌混合した。次に、前記ガラスビーカーを30℃の恒温水槽に入れ、これに、溶解させたジメチルアミンボラン溶液を液温が40℃付近となるようにし、0.5時間かけて徐々に添加して、還元処理を行い、金属核の形成およびその成長を終了させた。
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.
Example 1
A 1 L glass beaker was charged with 15.7 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 101.6 g of octylamine (Wako Pure Chemical Industries, Ltd.), and stirred and mixed at 40 ° C. for 10 minutes. Next, the glass beaker is placed in a constant temperature water bath at 30 ° C., and the dissolved dimethylamine borane solution is adjusted so that the liquid temperature becomes around 40 ° C. Processing was performed to finish the formation of metal nuclei and their growth.

上記還元処理後の溶液にアセトン200gを添加し、しばらく放置した後、ろ過により銅および有機物からなる沈殿物を0.1μmの孔径を有するメンブレンフィルターで分離回収した。回収物にトルエンを添加し再溶解した後、10℃まで冷却した後、再度メンブレンフィルターでろ過した。続いて、トルエンを減圧除去した後、テトラデカン溶媒を添加し、銅ナノ粒子を40質量%含有する分散液が得られた。   200 g of acetone was added to the solution after the reduction treatment and left for a while, and then a precipitate made of copper and an organic substance was separated and collected by filtration with a membrane filter having a pore size of 0.1 μm. Toluene was added to the recovered material and redissolved, and then cooled to 10 ° C., and then filtered again with a membrane filter. Subsequently, after toluene was removed under reduced pressure, a tetradecane solvent was added to obtain a dispersion containing 40% by mass of copper nanoparticles.

上記分散液をFE−SEMにより観察したところ、銅ナノ粒子の平均粒子径は5nmであり、σ/Dの値は0.14であった。
(比較例1)
1Lのガラスビーカーに酢酸銅一水和物(和光純薬工業株式会社製)15.7gとオクチルアミン(和光純薬工業株式会社)101.6gとを仕込み、40℃で10分間攪拌混合した。次に、この混合溶液を120℃まで昇温した後、溶解させたジメチルアミンボラン溶液を添加し還元処理を実施した。還元時の温度は120℃でほぼ安定していた。
When the dispersion was observed by FE-SEM, the average particle diameter of the copper nanoparticles was 5 nm, and the value of σ / D was 0.14.
(Comparative Example 1)
A 1 L glass beaker was charged with 15.7 g of copper acetate monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and 101.6 g of octylamine (Wako Pure Chemical Industries, Ltd.), and stirred and mixed at 40 ° C. for 10 minutes. Next, after raising the temperature of this mixed solution to 120 ° C., a dissolved dimethylamine borane solution was added to perform a reduction treatment. The temperature during the reduction was almost stable at 120 ° C.

還元後の溶液を40℃まで冷却した後、実施例1と同様の方法で銅ナノ粒子を40質量%含有する分散液の調製を試みた。実施例1では、0.1μmの孔径を有するメンブレンフィルターのろ過は容易であったが、本調製ではろ過が非常に困難であり、1μmの孔径を有するメンブレンフィルターでろ過を実施したが、10倍の時間を要した。   After the reduced solution was cooled to 40 ° C., an attempt was made to prepare a dispersion containing 40% by mass of copper nanoparticles in the same manner as in Example 1. In Example 1, filtration of a membrane filter having a pore size of 0.1 μm was easy, but in this preparation, filtration was very difficult, and filtration was performed with a membrane filter having a pore size of 1 μm. It took time.

また、分散液をFE−SEMにより観察したところ、銅ナノ粒子の平均粒子径は20nmであり、σ/Dの値は0.40であることが確認された。   Moreover, when the dispersion liquid was observed by FE-SEM, it was confirmed that the average particle diameter of the copper nanoparticles was 20 nm and the value of σ / D was 0.40.

Claims (7)

攪拌機付き反応装置内で有機酸塩と炭素数8〜16のモノアミン化合物とを含む溶液に還元剤を添加し、銅金属核の形成およびその成長を行わせて銅ナノ粒子を製造する方法であって、金属核の形成およびその成長を10〜55℃の温度、かつ、還元剤を添加するときの液温変化ΔTが20℃以下の条件下で行うことを特徴とするナノ粒子の製造方法。 A method in which a reducing agent is added to a solution containing an organic acid copper salt and a monoamine compound having 8 to 16 carbon atoms in a reactor equipped with a stirrer to form copper metal nuclei and grow them to produce copper nanoparticles. there are copper nanoparticles and performing the formation and its growth of the copper metal nuclei temperature of 10 to 55 ° C. and, under conditions liquid temperature change ΔT of 20 ° C. or less at the time of adding a reducing agent Manufacturing method. 有機酸銅塩がギ酸銅、酢酸銅、シュウ酸銅、オレイン酸銅、ステアリン酸銅およびテトラデカン酸銅から選ばれる少なくとも1種である請求項1記載の銅ナノ粒子の製造方法。The method for producing copper nanoparticles according to claim 1, wherein the organic acid copper salt is at least one selected from copper formate, copper acetate, copper oxalate, copper oleate, copper stearate and copper tetradecanoate. 炭素数8〜16のモノアミン化合物がオクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ドデシルジメチルアミンおよびトリオクチルアミンから選ばれる少なくとも1種である請求項1または2記載の銅ナノ粒子の製造方法。The monoamine compound having 8 to 16 carbon atoms is at least selected from octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, dodecyldimethylamine and trioctylamine It is 1 type, The manufacturing method of the copper nanoparticle of Claim 1 or 2. 還元剤がジメチルアミンボラン、tert−ブチルアミンボラン、水素化ホウ素ナトリウム、シュウ酸、アスコルビン酸、ホルムアルデヒドおよびアセトアルデヒドから選ばれる少なくとも1種である請求項1〜3のいずれかに記載の銅ナノ粒子の製造方法。4. The production of copper nanoparticles according to claim 1, wherein the reducing agent is at least one selected from dimethylamine borane, tert-butylamine borane, sodium borohydride, oxalic acid, ascorbic acid, formaldehyde and acetaldehyde. Method. 請求項1〜4のいずれかナノ粒子の製造方法により調製した、平均粒子径(D)が10nm以下であり、かつσ/D(σ:標準偏差値、D:平均粒子径)が0.2以下であるナノ粒子。 The average particle diameter (D) prepared by the method for producing copper nanoparticles according to any one of claims 1 to 4 is 10 nm or less, and σ / D (σ: standard deviation value, D: average particle diameter) is 0. . Copper nanoparticles that are 2 or less . 請求項ナノ粒子を1ないし80質量%含んでなる導電性組成物。 A conductive composition comprising 1 to 80% by mass of the copper nanoparticles of claim 5 . 請求項導電性組成物を用いて形成された被覆層を有する電子デバイス。 6. An electronic device having a coating layer formed using a conductive composition.
JP2006016568A 2006-01-25 2006-01-25 Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device Expired - Fee Related JP5063003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016568A JP5063003B2 (en) 2006-01-25 2006-01-25 Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016568A JP5063003B2 (en) 2006-01-25 2006-01-25 Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device

Publications (2)

Publication Number Publication Date
JP2007197755A JP2007197755A (en) 2007-08-09
JP5063003B2 true JP5063003B2 (en) 2012-10-31

Family

ID=38452640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016568A Expired - Fee Related JP5063003B2 (en) 2006-01-25 2006-01-25 Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device

Country Status (1)

Country Link
JP (1) JP5063003B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853879B (en) * 2006-10-12 2013-03-13 三菱电机株式会社 Field-effect transistor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968008B2 (en) * 2006-08-03 2011-06-28 Fry's Metals, Inc. Particles and inks and films using them
JP5303880B2 (en) * 2007-08-08 2013-10-02 ソニー株式会社 Method for producing nanoparticles
JP2010095789A (en) * 2007-12-26 2010-04-30 Dowa Electronics Materials Co Ltd Metal particle dispersion liquid, coating film, metal film, conductive paste, and method for producing metal film
JP5526578B2 (en) * 2009-04-01 2014-06-18 三菱マテリアル株式会社 Method for producing particle dispersion and method for producing oxide semiconductor particles, metal particles, and metalloid particles using the particle dispersion
WO2011115214A1 (en) * 2010-03-17 2011-09-22 新日鐵化学株式会社 Nickel-cobalt nanoparticle and manufacturing method therefor
JP2013206722A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Liquid composition, metal copper film, conductor wiring, and method for manufacturing metal copper film
JP2013206721A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Liquid composition, metal film, conductor wiring, and method for manufacturing metal film
TWI792540B (en) * 2020-09-15 2023-02-11 日商Jx金屬股份有限公司 Copper powder and copper powder manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730400B1 (en) * 1999-06-15 2004-05-04 Teruo Komatsu Ultrafine composite metal particles and method for manufacturing same
JP2004285454A (en) * 2003-03-25 2004-10-14 Konica Minolta Holdings Inc Homogeneous fine particle of inorganic metal, and manufacturing method
JP2005220435A (en) * 2003-10-22 2005-08-18 Mitsuboshi Belting Ltd Method of producing metal nanoparticle and dispersion of metal nanoparticle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101853879B (en) * 2006-10-12 2013-03-13 三菱电机株式会社 Field-effect transistor

Also Published As

Publication number Publication date
JP2007197755A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
US10071426B2 (en) Coated metal fine particle and manufacturing method thereof
US20090029148A1 (en) Metal Nanoparticle, Metal Nanoparticle Colloid, Method for Storing Metal Nanoparticle Colloid, and Metal Coating Film
TWI422709B (en) Silver-containing nanoparticles with replacement stabilizer
KR100905214B1 (en) Method for forming metal thin film, and metal thin film
JP2007321215A5 (en)
JP2007321215A (en) Dispersion of metallic nanoparticle and metallic coating film
KR101451603B1 (en) Silver fine powder, method for producing the same, and ink
WO2015182395A1 (en) Coated copper particles and method for manufacturing same
JP2005081501A (en) Metallic nano particle and its manufacturing method, metallic nano particle dispersion fluid and its manufacturing method, and metallic thin line, metallic membrane and their manufacturing method
JP4995492B2 (en) Method for producing copper nanoparticles, copper nanoparticles, copper nanoparticle dispersion, and electronic device
JP2008198595A (en) Metal particulate ink paste and organic acid treated metal particulate
JP2009295965A (en) Bimetallic nanoparticles for conductive ink application
JP2008069374A (en) Metallic nanoparticle dispersion and metallic film
JP2008176951A (en) Silver-based particulate ink paste
TWI702262B (en) Composition for manufacturing metal nanoparticle
JP2008297580A (en) Method for producing silver fine powder coated with organic substance and silver fine powder
JP2012144796A (en) Method of manufacturing silver nanoparticle, silver nanoparticle and silver ink
JP2007321216A5 (en)
JP2005281781A (en) Method for producing copper nanoparticle
US20100178420A1 (en) Method of preparing conductive ink composition for printed circuit board and method of producing printed circuit board
KR20160120716A (en) Method for producing metal nanoparticles
JP2021055127A (en) Copper/copper oxide fine particle paste
TW201143941A (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure
JP2009024193A (en) Method for producing metallic nanoparticle, metallic nanoparticle, dispersion of metallic nanoparticle, and metallic coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees