JP5176060B2 - Method for producing silver particle dispersion - Google Patents

Method for producing silver particle dispersion Download PDF

Info

Publication number
JP5176060B2
JP5176060B2 JP2005195669A JP2005195669A JP5176060B2 JP 5176060 B2 JP5176060 B2 JP 5176060B2 JP 2005195669 A JP2005195669 A JP 2005195669A JP 2005195669 A JP2005195669 A JP 2005195669A JP 5176060 B2 JP5176060 B2 JP 5176060B2
Authority
JP
Japan
Prior art keywords
silver
less
dispersion
tem
amine compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005195669A
Other languages
Japanese (ja)
Other versions
JP2007019055A (en
Inventor
王高 佐藤
尾木孝造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2005195669A priority Critical patent/JP5176060B2/en
Priority to TW096101215A priority patent/TWI354323B/en
Publication of JP2007019055A publication Critical patent/JP2007019055A/en
Application granted granted Critical
Publication of JP5176060B2 publication Critical patent/JP5176060B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は粒径がナノメートルオーダーの銀粒子粉末を有機化合物の液状媒体(液状有機媒体という)に分散させた銀粒子分散液とその製造法に係り、詳しくは、微細な回路パターンを形成するための配線形成用材料例えばインクジェット法による配線形成用材料として好適な微粒子銀の分散液とその製造法に関する。本発明の銀粒子分散液はLSI基板の配線やFPD(フラットパネルディスプレイ)の形成用、さらには微細なトレンチ、ビアホール、コンタクトホールの埋め込等の配線形成用の材料としても好適であり、車の塗装等の色材としても適用できる。   The present invention relates to a silver particle dispersion in which silver particle powder having a particle size of nanometer order is dispersed in a liquid medium of an organic compound (referred to as a liquid organic medium) and a method for producing the same. Specifically, a fine circuit pattern is formed. TECHNICAL FIELD The present invention relates to a fine particle silver dispersion suitable as a wiring forming material for the ink jet method, for example, and a manufacturing method thereof. The silver particle dispersion of the present invention is also suitable as a material for forming wiring for LSI substrates, FPD (flat panel displays), and wiring for embedding fine trenches, via holes, contact holes, etc. It can also be applied as a coloring material for painting.

固体物質の大きさがnmオーダー(ナノメートルオーダー)になると比表面積が非常に大きくなるために、固体でありながら気体や液体の界面が極端に大きくなる。このため、その表面の特性が固体物質の性質を大きく左右する。金属粒子粉末の場合は、融点がバルク状態のものに比べ劇的に低下することが知られており、そのためにμmオーダーの粒子に比べて微細な配線の描画が可能になり、しかも低温焼結できる等の利点を具備するようになる。金属粒子粉末の中でも銀粒子粉末は、低抵抗でかつ高い耐候性をもち、金属の価格も他の貴金属と比較して安価であることから、微細な配線幅をもつ次世代の配線材料として特に期待されている。   When the size of the solid substance is in the order of nm (on the order of nanometers), the specific surface area becomes very large, so that the interface between the gas and the liquid becomes extremely large while being solid. For this reason, the properties of the surface greatly influence the properties of the solid substance. In the case of metal particle powder, it is known that the melting point is drastically lower than that in the bulk state, which makes it possible to draw fine wiring compared to particles on the order of μm, and low temperature sintering. It has advantages such as being able to do so. Among the metal particle powders, the silver particle powder has low resistance and high weather resistance, and the price of the metal is low compared with other noble metals, so it is particularly useful as a next-generation wiring material with a fine wiring width. Expected.

nmオーダーの銀粒子粉末の製造法としては大別して気相法と液相法が知られている。気相法ではガス中での蒸発法が普通であり、特許文献1にはヘリウム等の不活性ガス雰囲気でかつ0.5Torr程度の低圧中で銀を蒸発させる方法が記載されている。液相法に関しては、特許文献2では、水相で銀イオンをアミンで還元し、得られた銀の微粒子を高分子量の分散剤を含有させた有機溶媒相に移動して銀のコロイドを得る方法を開示している。特許文献3には、溶媒中でハロゲン化銀を還元剤(アルカリ金属水素化ホウ酸塩またはアンモニウム水素化ホウ酸塩)を用いてチオール系の保護剤の存在下で還元する方法が記載されている。
特開2001−35255号公報 特開平11−319538号公報 特開2003−253311号公報
As a method for producing a silver particle powder of nm order, a gas phase method and a liquid phase method are roughly classified. The vapor phase method is usually an evaporation method in gas, and Patent Document 1 describes a method of evaporating silver in an inert gas atmosphere such as helium and a low pressure of about 0.5 Torr. Regarding the liquid phase method, in Patent Document 2, silver ions are reduced with an amine in an aqueous phase, and the resulting silver fine particles are transferred to an organic solvent phase containing a high molecular weight dispersant to obtain a silver colloid. A method is disclosed. Patent Document 3 describes a method of reducing silver halide in a solvent in the presence of a thiol-based protective agent using a reducing agent (alkali metal borohydride or ammonium borohydride). Yes.
JP 2001-35255 A JP 11-319538 A JP 2003253331 A

特許文献1の気相法で得られる銀粒子は、粒径が10nm以下であり分散液中での分散性が良好である。しかし、この製法には特別な装置が必要である。このため産業用の銀ナノ粒子を大量に合成するには難があることに加えて、銀粒子の収率が低く、この製法で得られる粒子粉末は高価である。   Silver particles obtained by the vapor phase method of Patent Document 1 have a particle size of 10 nm or less and good dispersibility in the dispersion. However, this process requires special equipment. For this reason, in addition to the difficulty in synthesizing industrial silver nanoparticles in large quantities, the yield of silver particles is low, and the particle powder obtained by this production method is expensive.

これに対して液相法は基本的に大量合成に適した方法であるが、液中ではそのナノ粒子は極めて凝集性が高く、このため単一粒子に分散したナノ粒子分散液を得難いという問題がある。一般に、ナノ粒子の製造には分散媒としてクエン酸を用いる例が多く、液中の金属イオン濃度も10mmol/L(=0.01mol/L)以下と極めて低いのが通常である。このため、産業上の応用面でのネックとなっていた。   On the other hand, the liquid phase method is basically a method suitable for mass synthesis, but in the liquid, the nanoparticles are extremely cohesive, so it is difficult to obtain a nanoparticle dispersion dispersed in a single particle. There is. In general, there are many examples in which citric acid is used as a dispersion medium in the production of nanoparticles, and the metal ion concentration in the liquid is usually extremely low, 10 mmol / L (= 0.01 mol / L) or less. For this reason, it has become a bottleneck in industrial application.

特許文献2は、液相法により0.2〜0.6mol/Lの高い金属イオン濃度と、高い原料仕込み濃度で安定して分散した銀ナノ粒子を合成しているが、凝集を抑制するために数平均分子量が数万の高分子量の有機分散剤を用いている。高分子量の有機分散剤を用いたものでは、これを色材として用いる場合は問題ないが、回路形成用途に用いる場合には高分子量分散剤が燃焼し難いために焼成時に残存しやすいこと、さらには焼成後も配線にポアが発生しやすいこと等から抵抗が高くなったり断線が生じたりするので、低温焼成により微細な配線を形成するには問題がある。また、高分子量の分散剤を使用している関係上、微粒子銀の分散液の粘度が高くなることも問題となる。   Patent Document 2 synthesizes silver nanoparticles stably dispersed at a high metal ion concentration of 0.2 to 0.6 mol / L and a high raw material feed concentration by a liquid phase method, but to suppress aggregation. In addition, a high molecular weight organic dispersant having a number average molecular weight of tens of thousands is used. In the case of using a high molecular weight organic dispersant, there is no problem when this is used as a coloring material, but when used for circuit formation, the high molecular weight dispersant is difficult to burn, so that it tends to remain during firing. However, there is a problem in forming fine wiring by low-temperature firing because resistance increases or disconnection occurs because the pores are easily generated after firing. In addition, since a high molecular weight dispersant is used, the viscosity of the dispersion of fine silver particles becomes a problem.

特許文献3は、液相法により、仕込み濃度も0.1mol/L以上の比較的高い濃度で反応させ、得られた10nm以下の銀粒子を有機分散媒に分散させているが、特許文献3では分散剤としてチオール系の分散剤が提案されている。チオール系の分散剤は分子量が200程度と低いことから、配線形成時に低温焼成で容易に除去させることができるが、硫黄(S)が含まれており、この硫黄分は、配線やその他電子部品を腐食させる原因となるために配線形成用途には好ましくはない。   In Patent Document 3, reaction is performed at a relatively high concentration of 0.1 mol / L or more by a liquid phase method, and the obtained silver particles of 10 nm or less are dispersed in an organic dispersion medium. Proposed a thiol-based dispersant as a dispersant. Since the thiol-based dispersant has a low molecular weight of about 200, it can be easily removed by low-temperature firing at the time of wiring formation, but it contains sulfur (S), and this sulfur content is used for wiring and other electronic components. This is not preferable for wiring formation applications.

したがって本発明はこのような問題を解決し、微細な配線形成用途に適し、かつ低温焼結性が良好な高分散性球状銀粒子の分散液を安価かつ大量に高い収率で得ることを課題としたものである。   Therefore, the present invention solves such problems, and it is an object to obtain a dispersion of highly dispersible spherical silver particles that is suitable for fine wiring formation applications and has good low-temperature sinterability at low cost and in large yield. It is what.

本発明によれば、85〜150℃でアルコールまたはポリオールの1種または2種以上の液中で銀塩または銀酸化物を還元処理してなり粒子表面が有機保護剤で覆われた平均粒径(DTEM)50nm以下、結晶粒子径(DX)50nm以下、単結晶化度(DTEM/DX)2.0以下の銀粒子粉末を、沸点が60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させた銀粒子の分散液であり、前記の有機保護剤が1分子中に少なくとも1個以上の不飽和結合を有するアミン化合物である銀粒子分散液の製造法であって、還元剤として機能する前記アルコールまたはポリオールの1種または2種以上の液中で前記銀塩または銀酸化物を還元するさいに、前記アミン化合物として1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下において85〜150℃で前記の還元反応を進行させることを特徴とする銀粒子分散液の製造法を提供する。 According to the present invention, the average particle diameter obtained by reducing the silver salt or silver oxide with an organic protective agent by reducing silver salt or silver oxide in one or more liquids of alcohol or polyol at 85 to 150 ° C. A silver particle powder having a (D TEM ) of 50 nm or less, a crystal particle diameter (D X ) of 50 nm or less, and a single crystallinity (D TEM / D X ) of 2.0 or less is a nonpolar or polar boiling point of 60 to 300 ° C. A method for producing a silver particle dispersion wherein the dispersion is a silver particle dispersed in a small liquid organic medium, and the organic protective agent is an amine compound having at least one unsaturated bond in one molecule. When reducing the silver salt or silver oxide in one or more liquids of the alcohol or polyol functioning as a reducing agent, at least one unsaturated bond in one molecule as the amine compound. Molecules with Provided is a method for producing a silver particle dispersion, wherein the reduction reaction proceeds at 85 to 150 ° C. in the presence of an amine compound in an amount of 100 to 1000.

また、本発明によれば、85〜150℃でアルコールまたはポリオールの1種または2種以上の液中で銀塩または銀酸化物を還元処理してなり粒子表面が有機保護剤で覆われた平均粒径(DTEM)50nm以下、結晶粒子径(DX)50nm以下、単結晶化度(DTEM/DX)2.0以下の銀粒子粉末を、沸点が60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させた銀粒子の分散液であり、前記の有機保護剤が1分子中に少なくとも1個以上の不飽和結合を有するアミン化合物である銀粒子分散液の製造法であって、還元剤として機能する前記アルコールまたはポリオールの1種または2種以上の液中で前記銀塩または銀酸化物を還元するさいに、前記アミン化合物として1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下において85〜150℃で前記の還元反応を進行させ、得られた粒子表面が該アミン化合物で覆われた平均粒径(DTEM)50nm以下、結晶粒子径(DX)50nm以下、単結晶化度(DTEM/DX)2.0以下の銀粒子粉末を前記沸点が60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させることを特徴とする銀粒子分散液の製造法を提供する。 Further, according to the present invention, the average particle surface covered with an organic protective agent is obtained by reducing silver salt or silver oxide in one or more liquids of alcohol or polyol at 85 to 150 ° C. A silver particle powder having a particle size (D TEM ) of 50 nm or less, a crystal particle size (D X ) of 50 nm or less, and a single crystallinity (D TEM / D X ) of 2.0 or less is nonpolar or having a boiling point of 60 to 300 ° C. A silver particle dispersion liquid dispersed in a liquid organic medium having a small polarity, wherein the organic protective agent is an amine compound having at least one unsaturated bond in one molecule. In the reduction of the silver salt or silver oxide in one or more liquids of the alcohol or polyol functioning as a reducing agent, at least one or more non-molecules per molecule as the amine compound. Has a saturated bond In the presence of an amine compound having a molecular weight of 100 to 1000, the above reduction reaction proceeds at 85 to 150 ° C., and the resulting particle surface is covered with the amine compound. The average particle diameter (D TEM ) is 50 nm or less, crystal particles Dispersing silver particle powder having a diameter (D X ) of 50 nm or less and a single crystallinity (D TEM / D X ) of 2.0 or less in a liquid organic medium having a boiling point of 60 to 300 ° C. or a nonpolar or small polarity. Provided is a method for producing a silver particle dispersion.

本発明者は液相法で銀の粒子粉末を製造する試験を重ねてきたが、沸点が85〜150℃のアルコール中で、硝酸銀を、85〜150℃の温度で(蒸発したアルコールを液相に還流させながら)、例えば分子量100〜400のアミン化合物からなる保護剤の共存下で還元処理すると、粒径の揃った球状の銀のナノ粒子粉末が得られることを知見し、特願2005−26805号明細書および図面に記載した。また、沸点が85℃以上のアルコールまたはポリオール中で、銀化合物(代表的には炭酸銀または酸化銀)を、85℃以上の温度で、例えば分子量100〜400の脂肪酸からなる保護剤の共存下で還元処理すると、腐食性化合物の少ない粒径の揃った球状の銀の粒子粉末が得ることを知見し、特願2005−26866号明細書および図面に記載した。いずれの場合にも、その銀粒子粉末を非極性もしくは極性の小さな液状有機媒体に分散させることによって銀粒子の分散液を得ることができ、この分散液から遠心分離等で粗粒子を除くと粒径のバラツキの少ない(CV値=標準偏差σ/個数平均粒子の百分率が40%未満の)銀粒子が単分散した分散液を得ることができる。   The present inventor has repeatedly conducted tests for producing silver particle powder by a liquid phase method. In an alcohol having a boiling point of 85 to 150 ° C., silver nitrate is heated at a temperature of 85 to 150 ° C. (evaporated alcohol is liquid phase). For example, when a reduction treatment is performed in the presence of a protective agent composed of an amine compound having a molecular weight of 100 to 400, a spherical silver nanoparticle powder having a uniform particle size can be obtained. This is described in the specification of No. 26805 and the drawings. Further, in an alcohol or polyol having a boiling point of 85 ° C. or higher, a silver compound (typically silver carbonate or silver oxide) is mixed with a protective agent comprising a fatty acid having a molecular weight of 100 to 400, for example, at a temperature of 85 ° C. or higher. It was found that when the reduction treatment was performed, spherical silver particle powder having a uniform particle size with few corrosive compounds was obtained and described in Japanese Patent Application No. 2005-26866 and drawings. In either case, a dispersion of silver particles can be obtained by dispersing the silver particle powder in a non-polar or small polar liquid organic medium. When coarse particles are removed from the dispersion by centrifugation or the like, A dispersion in which silver particles having a small variation in diameter (CV value = standard deviation σ / percentage of number average particles is less than 40%) are monodispersed can be obtained.

しかし、これら方法では、反応温度を高くすると、液中の銀イオンが効率よく還元されるが、粒子の焼結が起こって粗粒子化し、目的とする50nm以下の銀粒子粉末が得られ難くなり、反面、反応温度を低くすれば焼結は抑制できるが、液中の銀イオンの還元効率が低下してしまって収率が下がる等のことから、効率よく目的とする50nm以下の銀粒子粉末の作製を行うにはさらなる改善を必要とした。   However, in these methods, when the reaction temperature is increased, silver ions in the liquid are efficiently reduced, but the particles are sintered and coarsened, making it difficult to obtain the desired silver particle powder of 50 nm or less. On the other hand, if the reaction temperature is lowered, sintering can be suppressed, but the reduction efficiency of silver ions in the liquid is reduced, resulting in a decrease in yield. Further improvements were required to make the.

この課題に対し、有機保護剤として分子量500以上のものを使用すると、反応温度を高くしても、焼結を抑制でき、その結果、高い還元率で50nm以下の銀粒子粉末を高効率で得ることができることがわかった。しかし、分子量の大きい有機保護剤を用いると、その銀粒子分散液を配線形成用材料とした場合に、300℃以下の低温での焼結性が著しく低下するという別の問題が現れることがわかった。基板に有機フィルム等を用いた回路等では、300℃以上の温度で焼成することは実質的にできないので、該分散液の用途に制限を受けることになるし、その他の材料を用いる回路基板でも低温で焼結性がよいことは当該銀粒子分散液の価値を高めることになる。このため、高分子量の有機保護剤を用いたのでは、50nm以下の銀粒子粉末を高収率で得ることと、その銀粒子分散液の低温焼結性とを両立させることはできない。   For this problem, when an organic protective agent having a molecular weight of 500 or more is used, sintering can be suppressed even when the reaction temperature is increased, and as a result, a silver particle powder having a high reduction rate of 50 nm or less can be obtained with high efficiency. I found out that I could do it. However, when an organic protective agent having a large molecular weight is used, another problem appears that the sinterability at a low temperature of 300 ° C. or lower remarkably deteriorates when the silver particle dispersion is used as a wiring forming material. It was. In a circuit using an organic film or the like on the substrate, firing at a temperature of 300 ° C. or more is substantially impossible, so the use of the dispersion is limited, and even a circuit substrate using other materials Good sinterability at low temperatures increases the value of the silver particle dispersion. For this reason, when a high molecular weight organic protective agent is used, it is impossible to achieve both high yield of silver particle powder of 50 nm or less and low temperature sinterability of the silver particle dispersion.

そこで、さらに研究を重ねた結果、1分子中に2重結合等の不飽和結合を1個以上持つアミン化合物を有機保護剤として用いると、前記の両立ができることを見い出した。さらに、当該還元処理において、反応温度を段階的にあげて、多段反応温度で還元する処方を採用したり、得られた粒子懸濁液の洗浄および粗粒子除去の操作を高度に組み立てることによって、一層有利に前記の両立ができ、銀ナノ粒子が高度に分散した低温焼結性のよい銀粒子分散液を高収率で製造できることがわかった。   As a result of further research, it has been found that the above-mentioned compatibility can be achieved by using an amine compound having one or more unsaturated bonds such as double bonds in one molecule as an organic protective agent. Furthermore, in the reduction treatment, by increasing the reaction temperature step by step, adopting a formulation that reduces at a multistage reaction temperature, or by highly assembling the operations of washing the resulting particle suspension and removing coarse particles, It has been found that the above-mentioned compatibility can be achieved more advantageously, and a silver particle dispersion having a high degree of low-temperature sinterability in which silver nanoparticles are highly dispersed can be produced in a high yield.

以下に本発明で特定する事項を説明する。
〔平均粒径DTEM
本発明の銀粒子粉末は、TEM(透過電子顕微鏡)観察により測定される平均粒径(DTEMと記す)が200nm以下、好ましくは100nm以下、さらに好ましくは50nm以下、さらに好ましくは30nm以下、場合によっては20nm以下である。このため、本発明の銀粒子粉末分散液は微細な配線を形成するのに適する。TEM観察では60万倍に拡大した画像から重なっていない独立した粒子300個の径を測定して平均値を求める。
The matters specified by the present invention will be described below.
[Average particle diameter D TEM ]
Silver particle powder of the present invention, TEM (referred to as D TEM) average particle size measured by (transmission electron microscope) observation 200nm or less, preferably 100nm or less, more preferably 50nm or less, more preferably 30nm or less, if Is 20 nm or less. For this reason, the silver particle powder dispersion of the present invention is suitable for forming fine wiring. In TEM observation, the average value is obtained by measuring the diameter of 300 independent particles that are not overlapped from an image magnified 600,000 times.

〔X線結晶粒径Dx〕
本発明の銀粒子粉末は、結晶粒子径(Dxと記す)が50nm以下である。銀粒子粉末のX線結晶粒径はX線回折結果から Scherrer の式を用いて求めることができる。その求め方は、次のとおりである。
Scherrer の式は、次の一般式で表現される。
Dx=K・λ/β COSθ
式中、K:Scherrer定数、Dx:結晶粒子径、λ:測定X線波長、β:X線回折で得られたピークの半価幅、θ:回折線のブラッグ角をそれぞれ表す。Kは0.94の値を採用し、X線の管球はCuを用いると、前式は下式のように書き換えられる。
Dx=0.94×1.5405/β COSθ
[X-ray crystal grain size Dx]
The silver particle powder of the present invention has a crystal particle diameter (denoted as Dx) of 50 nm or less. The X-ray crystal grain size of the silver particle powder can be determined from the X-ray diffraction result using the Scherrer equation. How to find it is as follows.
Scherrer's formula is expressed by the following general formula.
Dx = K · λ / β COSθ
In the formula, K: Scherrer constant, Dx: crystal particle diameter, λ: measured X-ray wavelength, β: half width of peak obtained by X-ray diffraction, θ: Bragg angle of diffraction line. If K adopts a value of 0.94 and the X-ray tube uses Cu, the previous equation can be rewritten as the following equation.
Dx = 0.94 × 1.5405 / β COSθ

〔単結晶化度〕
本発明の銀粒子粉末は単結晶化度(DTEM/Dx)が2.0以下である。このため、緻密な配線を形成でき、耐マイグレーション性も優れている。単結晶化度が2.0より大きくなると、多結晶化度が高くなって多結晶粒子間に不純物を含み易くなり、焼成時にポアが生じ易くなり、緻密な配線を形成できなくなるので、好ましくない。また、多結晶粒子間の不純物のために耐マイグレーション性も低下する
[Single crystallinity]
The silver particle powder of the present invention has a single crystallinity ( DTEM / Dx) of 2.0 or less. For this reason, dense wiring can be formed, and migration resistance is also excellent. If the single crystallinity is larger than 2.0, the degree of polycrystallinity is high, and impurities are easily contained between the polycrystalline particles, and pores are easily generated during firing, so that it is impossible to form a dense wiring. . Also, migration resistance decreases due to impurities between polycrystalline grains

〔有機保護剤〕
本発明においては、表面が有機保護剤で覆われた銀粒子を液状有機媒体に分散させることによって銀粒子分散液とするが、その有機保護剤としては、1分子中に少なくとも1個以上の不飽和結合を有し、分子量100〜1000、好ましくは100〜400のアミン化合物を使用する。このような不飽和結合をもつアミン化合物を有機保護剤として使用することによって、還元反応において銀核を一斉に発生させると共に析出した銀核の成長を全体的に均斉に抑制する現象が起きるのではないかと推測されるが、前記のように50nm以下の銀粒子粉末を高収率で得ることができ、しかもこのアミン化合物は比較的低温で分解するのでその銀粒子分散液の低温焼結性を確保することができる。本発明で使用できる代表的なアミン化合物として、例えばトリアリルアミン、オレイルアミン、ジオレイルアミン、オレイルプロピレンジアミンを例示できる。
[Organic protective agent]
In the present invention, silver particles having a surface covered with an organic protective agent are dispersed in a liquid organic medium to form a silver particle dispersion, and the organic protective agent includes at least one non-conductive agent in one molecule. An amine compound having a saturated bond and having a molecular weight of 100 to 1000, preferably 100 to 400 is used. By using such an amine compound having an unsaturated bond as an organic protective agent, there is a phenomenon in which silver nuclei are simultaneously generated in the reduction reaction and the growth of the precipitated silver nuclei is uniformly suppressed as a whole. As mentioned above, it is possible to obtain a silver particle powder of 50 nm or less in a high yield as described above, and since this amine compound decomposes at a relatively low temperature, the low temperature sinterability of the silver particle dispersion is reduced. Can be secured. Examples of typical amine compounds that can be used in the present invention include triallylamine, oleylamine, dioleylamine, and oleylpropylenediamine.

〔液状有機媒体〕
前記の有機保護剤で覆われた銀粒子粉末を分散させる液状有機媒体としては、沸点が60〜300℃の非極性もしくは極性の小さい液状有機媒体を用いる。ここで、「非極性もしくは極性の小さい」というのは25℃での比誘電率が15以下であることを指し、より好ましく5以下である。比誘電率が15を超える場合、銀粒子の分散性が悪化し沈降することがあり、好ましくない。分散液の用途に応じて各種の液状有機媒体が使用できるが、炭化水素系が好適に使用でき、とくに、イソオクタン、n−デカン、イソドデカン、イソヘキサン、n−ウンデカン、n−テトラデカン、n−ドデカン、トリデカン、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン、エチルベンゼン、デカリン、テトラリン等の芳香族炭化水素等が使用できる。これらの液状有機媒体は1種類または2種類以上を使用することができ、ケロシンのような混合物であっても良い。更に、極性を調整するために、混合後の液状有機媒体の25℃での比誘電率が15以下となる範囲でアルコール系、ケトン系、エーテル系、エステル系等の極性有機媒体を添加しても良い。
[Liquid organic medium]
As the liquid organic medium in which the silver particle powder covered with the organic protective agent is dispersed, a nonpolar or small polar liquid organic medium having a boiling point of 60 to 300 ° C. is used. Here, “non-polar or low polarity” means that the relative dielectric constant at 25 ° C. is 15 or less, more preferably 5 or less. When the relative dielectric constant exceeds 15, the dispersibility of silver particles may deteriorate and settle, which is not preferable. Various liquid organic media can be used depending on the use of the dispersion, but hydrocarbons can be preferably used. In particular, isooctane, n-decane, isododecane, isohexane, n-undecane, n-tetradecane, n-dodecane, Aliphatic hydrocarbons such as tridecane, hexane and heptane, and aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, decalin and tetralin can be used. These liquid organic media may be used alone or in combination of two or more, and may be a mixture such as kerosene. Further, in order to adjust the polarity, polar organic media such as alcohols, ketones, ethers, esters, etc. are added within a range where the relative permittivity at 25 ° C. of the mixed liquid organic media is 15 or less. Also good.

〔アルコールまたはポリオール〕
本発明では還元剤として機能するアルコールまたはポリオールの1種または2種以上の液中で銀化合物を還元するが、このようなアルコールとしては、プロピルアルコール、イソプロピルアルコール、n−ブタノール、イソブタノール、sec−ブチルアルコール、tert−ブチルアルコール、アリルアルコール、クロチルアルコール、シクロペンタノール等が使用できる。またポリオールとしては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等が使用できる。
[Alcohol or polyol]
In the present invention, the silver compound is reduced in one or more liquids of alcohol or polyol that functions as a reducing agent. Examples of such alcohol include propyl alcohol, isopropyl alcohol, n-butanol, isobutanol, sec. -Butyl alcohol, tert-butyl alcohol, allyl alcohol, crotyl alcohol, cyclopentanol and the like can be used. As the polyol, diethylene glycol, triethylene glycol, tetraethylene glycol, or the like can be used.

〔粘度〕
本発明に従う銀粒子粉末を液状有機媒体に分散させた分散液はニュートン流体であり、温度25℃における粘度が50mPa・s以下である。このため、本発明の銀粒子分散液はインクジェット法による配線形成用材料として好適である。インクジェット法で配線形成を行う場合には、配線の平坦性を維持するために基板上に着弾する液滴の量的な均一性が求められるが、本発明の銀粒子分散液はニュートン流体で且つ粘度が50mPa・s以下であるために、ノズル詰まりなく円滑な液滴の吐出ができるので、この要求を満たすことができる。粘度測定は、東機産業(株)製のR550形粘度計RE550Lにコーンロータ0.8°のものを取り付け、25℃の恒温にて行うことができる。
〔viscosity〕
A dispersion obtained by dispersing silver particle powder according to the present invention in a liquid organic medium is a Newtonian fluid, and has a viscosity of 50 mPa · s or less at a temperature of 25 ° C. For this reason, the silver particle dispersion liquid of the present invention is suitable as a wiring forming material by an ink jet method. When wiring is formed by the ink jet method, the uniformity of the amount of droplets that land on the substrate is required to maintain the flatness of the wiring, but the silver particle dispersion of the present invention is a Newtonian fluid and Since the viscosity is 50 mPa · s or less, the liquid droplets can be smoothly discharged without clogging the nozzle, so that this requirement can be satisfied. Viscosity measurement can be performed at a constant temperature of 25 ° C. with a cone rotor of 0.8 ° attached to an R550 viscometer RE550L manufactured by Toki Sangyo Co., Ltd.

〔表面張力〕
本発明の銀粒子分散液は25℃での表面張力が80mN/m以下である。このためインクジェット法による配線形成用材料として好適である。表面張力の大きい分散液ではノズル先端でのメニスカスの形状が安定しないので吐出量や吐出タイミングの制御が困難になり、基板上に着弾した液滴の濡れが悪く、配線の平坦性が劣る結果となるが、本発明の銀粒子分散液は表面張力が80mN/m以下であるから、このようなことがなく、品質のよい配線ができる。表面張力の測定は、協和界面科学株式会社製のCBVP-Zを使用し、25℃の恒温にて測定できる。
〔surface tension〕
The silver particle dispersion of the present invention has a surface tension at 25 ° C. of 80 mN / m or less. For this reason, it is suitable as a wiring forming material by the ink jet method. In the dispersion liquid with large surface tension, the shape of the meniscus at the nozzle tip is not stable, so it becomes difficult to control the discharge amount and discharge timing, the wetted droplets landing on the substrate are poor, and the flatness of the wiring is poor. However, since the silver particle dispersion of the present invention has a surface tension of 80 mN / m or less, such a situation does not occur and a high-quality wiring can be obtained. The surface tension can be measured at a constant temperature of 25 ° C. using CBVP-Z manufactured by Kyowa Interface Science Co., Ltd.

〔メンブランフィルターの通過径〕
本発明の銀粒子の分散液は銀粒子粉末の平均粒径(DTEM)+20nmの孔径を有するメンブランフィルターを通過する。銀粒子の平均粒径DTEMより20nmだけ大きい孔径を通過するのであるから、その分散液中の銀粒子は凝集することなく、個々の粒子ごとに液中に流動できる状態にあること、すなわちほぼ完全に単分散していることを意味する。このことも、本発明の銀粒子の分散液はインクジェット法による配線形成用材料として極めて好適である。粒子が凝集した部分があると、ノズル詰まりが起きやすいばかりでなく、形成される配線の充填性が悪くなって焼成時にポアが発生して高抵抗化や断線の原因となるが、このようなことが本発明の分散液では回避できる。メンブランフィルター通過試験において、最も孔径が小さいフィルターとして、Whatman社製アノトッププラス25シリンジフィルタ(孔径20nm)を使用できる。
[Passing diameter of membrane filter]
The dispersion of silver particles of the present invention passes through a membrane filter having a mean particle diameter (D TEM ) of silver particle powder + 20 nm. Since the average particle diameter D of the silver particles passes through a pore size that is 20 nm larger than the TEM , the silver particles in the dispersion are in a state of being able to flow into the liquid for each individual particle without agglomeration. It means completely monodispersed. Again, the silver particle dispersion of the present invention is extremely suitable as a wiring forming material by the ink jet method. If there is a part where the particles are aggregated, not only nozzle clogging is likely to occur, but the filling property of the formed wiring deteriorates and pores are generated during firing, leading to high resistance and disconnection. This can be avoided with the dispersion of the invention. In the membrane filter passage test, Whatman Anotop Plus 25 syringe filter (pore diameter 20 nm) can be used as the filter having the smallest pore diameter.

〔pH〕
本発明の銀粒子分散液はpH(水素イオン濃度)が6.5以上である。このため、配線形成用材料としたときに回路基板上の銅箔を腐食させることがなく、また配線間でのマイグレーションが起こり難いという特徴がある。当該分散液のpHの測定は、HORIBA株式会社製pHメーターD−55Tと、低導電性水・非水溶媒用pH電極6377−10Dを用いて行うことができる。この方法で測定した分散液のpHが6.5未満の場合には、酸成分による回路基板上の銅箔腐食を起こし、また配線間でのマイグレーションが起こり易くなり、回路の信頼性が低下する。
[PH]
The silver particle dispersion of the present invention has a pH (hydrogen ion concentration) of 6.5 or more. For this reason, when used as a wiring forming material, the copper foil on the circuit board is not corroded and migration between wirings hardly occurs. The pH of the dispersion can be measured using a pH meter D-55T manufactured by HORIBA Ltd. and a pH electrode 6377-10D for low conductivity water / non-aqueous solvent. When the pH of the dispersion measured by this method is less than 6.5, corrosion of the copper foil on the circuit board due to the acid component occurs, and migration between the wirings easily occurs, and the reliability of the circuit decreases. .

〔強熱減量〕
銀粒子分散液の強熱減量(%)は次の式で示される値をいう。
強熱減量(%)=100×〔(W50−W300)/W50−(W50−W1000)/W50
ここで、W50、W300およびW1000は、温度が50℃、300℃および1000℃における分散液の重量を表す。
本発明の銀粒子分散液の強熱減量は5%未満である。強熱減量が5%未満であるから、配線を焼成する際に有機保護剤が短時間で燃焼して、焼結を抑制することがなく、良好な導電性を有する配線が得られる。強熱減量が5%以上であると、焼成時に有機保護剤が焼結抑制剤として働き、配線の抵抗が高くなってしまい、場合によっては導電性を阻害するので好ましくない。
[Loss on ignition]
The ignition loss (%) of the silver particle dispersion is a value represented by the following formula.
Loss on ignition (%) = 100 × [(W 50 −W 300 ) / W 50 − (W 50 −W 1000 ) / W 50 ]
Here, W 50 , W 300 and W 1000 represent the weight of the dispersion at temperatures of 50 ° C., 300 ° C. and 1000 ° C.
The loss on ignition of the silver particle dispersion of the present invention is less than 5%. Since the loss on ignition is less than 5%, the organic protective agent burns in a short time when the wiring is fired, and the wiring having good conductivity is obtained without suppressing the sintering. When the ignition loss is 5% or more, the organic protective agent acts as a sintering inhibitor during firing, and the resistance of the wiring becomes high.

強熱減量はマックサイエンス/ブルカーエイエックス社製TG−DTA2000型測定器により、以下の測定条件で測定できる。
試料重量20±1mg、
昇温速度10℃/min、
雰囲気:大気(通気なし)、
標準試料:アルミナ20.0mg、
測定皿:株式会社理学製アルミナ測定皿、
温度範囲:50℃〜1000℃。
The ignition loss can be measured with a TG-DTA2000 type measuring instrument manufactured by Mac Science / Bruker Ax Co. under the following measurement conditions.
Sample weight 20 ± 1 mg,
Temperature rising rate 10 ° C / min,
Atmosphere: air (no ventilation),
Standard sample: 20.0 mg of alumina,
Measuring dish: Alumina measuring dish manufactured by Rigaku Corporation
Temperature range: 50 ° C to 1000 ° C.

次に本発明の銀粒子粉末の製造法を説明する。
本発明の銀粒子粉末は、アルコールまたはポリオール中で、銀化合物(各種の銀塩や銀酸化物等)を、有機保護剤の共存下で、85℃〜150℃の温度で還元処理することによって製造することができる。有機保護剤としては前記のとおり1分子中に1個以上の不飽和結合を有する分子量100〜1000のアミン化合物を使用する。
Next, the manufacturing method of the silver particle powder of this invention is demonstrated.
The silver particle powder of the present invention is obtained by reducing a silver compound (various silver salts, silver oxides, etc.) at a temperature of 85 ° C. to 150 ° C. in the presence of an organic protective agent in alcohol or polyol. Can be manufactured. As described above, an amine compound having a molecular weight of 100 to 1000 and having one or more unsaturated bonds in one molecule is used as the organic protective agent.

アルコールまたはポリオールは、銀化合物の還元剤として、また反応系の液状有機媒体として機能するものである。アルコールとしてはイソブタノール、n−ブタノール等が好ましい。還元反応は加熱下でこの液状有機媒体兼還元剤の蒸発と凝縮を繰り返す還流条件下で行なわせるのがよい。還元に供する銀化合物としては、塩化銀、硝酸銀、酸化銀、炭酸銀等があるが、工業的観点から硝酸銀が好ましいが、硝酸銀に限定されるものではない。本発明法では反応時の液中のAgイオン濃度は50mmol/L以上で行うことができる。還元処理にあたっては、反応温度を段階的にあげて、多段反応温度で還元処理する方法も有利である。 The alcohol or polyol functions as a reducing agent for the silver compound and as a liquid organic medium for the reaction system. As the alcohol, isobutanol, n-butanol and the like are preferable. The reduction reaction is preferably performed under reflux conditions in which the liquid organic medium / reducing agent is repeatedly evaporated and condensed under heating. Examples of the silver compound used for the reduction include silver chloride, silver nitrate, silver oxide, and silver carbonate. Silver nitrate is preferable from an industrial viewpoint, but is not limited to silver nitrate. In the method of the present invention, the Ag ion concentration in the solution during the reaction can be 50 mmol / L or more. In the reduction treatment, a method of raising the reaction temperature stepwise and carrying out reduction treatment at a multistage reaction temperature is also advantageous.

反応後の銀ナノ粒子の懸濁液(反応直後のスラリー)は、洗浄・分散・分級等の工程を経て、本発明に従う銀粒子の分散液とすることができるが、それら工程の代表例(後記の実施例で用いた例)を挙げると次のとおりである。   The silver nanoparticle suspension after the reaction (slurry immediately after the reaction) can be made into a dispersion of silver particles according to the present invention through steps such as washing, dispersion, and classification, but representative examples of these steps ( Examples used in the examples described later are as follows.

〔洗浄工程〕
(1) 反応後のスラリー40mLを遠心分離器(日立工機株式会社製のCF7D2)を用いて3000rpmで30分固液分離を実施し、上澄みを廃棄する。
(2) 沈殿物にメタノール40mLを加えて超音波分散機で分散させる。
(3) 前記の(1) →(2) を3回繰り返す。
(4) 前記の(1) を実施して上澄み廃棄し沈殿物を得る。
[Washing process]
(1) 40 mL of the slurry after the reaction is subjected to solid-liquid separation at 3000 rpm for 30 minutes using a centrifuge (CF7D2 manufactured by Hitachi Koki Co., Ltd.), and the supernatant is discarded.
(2) Add 40 mL of methanol to the precipitate and disperse with an ultrasonic disperser.
(3) Repeat (1) → (2) three times.
(4) Carry out the above (1) and discard the supernatant to obtain a precipitate.

〔分散工程〕
(1) 前記の洗浄工程を得た沈殿物にケロシン(沸点180〜270℃)を40mL添加する。
(2) 次いで超音波分散機にかける。
[Dispersing process]
(1) 40 mL of kerosene (boiling point 180-270 ° C.) is added to the precipitate obtained from the washing step.
(2) Then apply to an ultrasonic disperser.

〔分級工程〕
(1) 分散工程を経た銀粒子とケロシンの混濁液40mLを前記と同様の遠心分離器を用いて3000rpmで30分間固液分離を実施する。
(2) 上澄み液を回収する。この上澄み液が銀粒子分散液となる。
[Classification process]
(1) Solid-liquid separation is performed for 30 minutes at 3000 rpm using a centrifuge similar to the above for 40 mL of a turbid solution of silver particles and kerosene that has undergone the dispersion step.
(2) Collect the supernatant. This supernatant becomes a silver particle dispersion.

〔銀粒子分散液の濃度〕
銀粒子分散液中の銀濃度の算出は次のようにして行うことができる。
(1) 前記の分級工程で得られた銀粒子分散液を、重量既知の容器に移す。
(2) 真空乾燥機に該容器をセットして突沸しないように十分注意しながら真空度と温度を上げて濃縮・乾燥を行い、液体が観察されなくなってから、真空状態240℃で12時間乾燥を行う。
(3) 室温まで冷却した後に真空乾燥機より容器を取り出して重量を測定する。
(4) 前記(3) の重量から容器重量を減じて銀粒子分散液中の銀粒子の重量を求める。
(5) 前記(4) の重量と銀粒子分散液の重量から分散液中の銀粒子濃度を算出する。
[Concentration of silver particle dispersion]
The calculation of the silver concentration in the silver particle dispersion can be performed as follows.
(1) Transfer the silver particle dispersion obtained in the classification step to a container of known weight.
(2) Set up the container in a vacuum dryer and increase the degree of vacuum and temperature while paying careful attention to prevent bumping. Concentrate and dry, and after the liquid is no longer observed, dry at 240 ° C in vacuum for 12 hours I do.
(3) After cooling to room temperature, remove the container from the vacuum dryer and measure the weight.
(4) The weight of the silver particles in the silver particle dispersion is determined by subtracting the weight of the container from the weight of (3).
(5) The silver particle concentration in the dispersion is calculated from the weight of (4) and the weight of the silver particle dispersion.

〔実施例1〕
液状有機媒体兼還元剤としてイソブタノール(和光純薬株式会社製の特級)140mLに、有機保護剤として不飽和結合を分子中に1個有するオレイルアミン(和光純薬株式会社製Mw=267)185.83mLと、銀化合物として硝酸銀結晶(関東化学株式会社製)19.212gとを添加し、マグネットスターラーにて攪拌して硝酸銀を溶解させる。
[Example 1]
Oleylamine (Mw = 267, manufactured by Wako Pure Chemical Industries, Ltd.) having an unsaturated bond as an organic protective agent in 140 mL of isobutanol (special grade manufactured by Wako Pure Chemical Industries, Ltd.) as a liquid organic medium and reducing agent 185. 83 mL and 19.212 g of silver nitrate crystals (manufactured by Kanto Chemical Co., Inc.) as a silver compound are added and stirred with a magnetic stirrer to dissolve the silver nitrate.

この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液をマグネットスターラーにより100rpmの回転速度で撹拌しつつ加熱し、100℃の温度で2時間30分の還流を行った。その後、108℃まで温度を上げ、2時間30分の還流を行い、反応を終了した。そのさい100℃および108℃に至るまでの昇温速度はいずれも2℃/minとした。   The solution was transferred to a container equipped with a refluxer and placed on an oil bath. The nitrogen gas was blown into the container as an inert gas at a flow rate of 400 mL / min, and the solution was stirred with a magnetic stirrer at a rotation speed of 100 rpm. The mixture was heated and refluxed at a temperature of 100 ° C. for 2 hours and 30 minutes. Thereafter, the temperature was raised to 108 ° C., refluxing was performed for 2 hours and 30 minutes, and the reaction was completed. At that time, the heating rate up to 100 ° C. and 108 ° C. was set to 2 ° C./min.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級の工程を実施し、本文に記載した方法で諸特性の評価を行なった。その結果、得られた銀粒子は、平均粒径DTEM=12.3nm、結晶粒子径Dx=15.0nm、単結晶化度(DTEM/Dx)=0.82であり、その銀粒子分散液については、銀粒子濃度=5wt%、粘度=1.1mPa・ s、表面張力=25.4mN/m、pH=8.86、強熱減量=3.1%であり、Whatman社製アノトッププラス25シリンジフィルタ(孔径20nm)を問題なく通過し、分散性が良好で凝集はなかった。 The slurry after the reaction was subjected to the washing, dispersing and classification steps described in the text, and various properties were evaluated by the methods described in the text. As a result, the obtained silver particles had an average particle diameter D TEM = 12.3 nm, a crystal particle diameter Dx = 15.0 nm, and a single crystallinity (D TEM /Dx)=0.82. As for the liquid, silver particle concentration = 5 wt%, viscosity = 1.1 mPa · s, surface tension = 25.4 mN / m, pH = 8.86, loss on ignition = 3.1%, Whatman Anotop It passed through the plus 25 syringe filter (pore diameter 20 nm) without problems, and the dispersibility was good and there was no aggregation.

〔比較例1〕
液状有機媒体兼還元剤としてエチレングリコール(和光純薬株式会社製の特級)200mLに、有機保護剤としてポリビニルピロリドン(和光純薬株式会社MW≒40000)13.32gと、銀化合物として硝酸銀結晶(関東化学株式会社製)2.745gとを添加し、マグネットスターラーにて攪拌して硝酸銀を溶解させる。
[Comparative Example 1]
200 mL of ethylene glycol (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) as a liquid organic medium and reducing agent, 13.32 g of polyvinyl pyrrolidone (MW≈40000) as an organic protective agent, and silver nitrate crystals (Kanto) as a silver compound 2.745 g (manufactured by Chemical Co., Ltd.) is added and stirred with a magnetic stirrer to dissolve silver nitrate.

この溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら、該溶液をマグネットスターラーにより200rpmの回転速度で撹拌しつつ加熱し、120℃の温度で1時間の還流を行い、反応を終了した。そのさい120℃に至るまでの昇温速度は1℃/min とした。   The solution was transferred to a container equipped with a refluxer and placed on an oil bath. The nitrogen gas was blown into the container as an inert gas at a flow rate of 400 mL / min, and the solution was stirred at a rotation speed of 200 rpm with a magnetic stirrer. The mixture was heated and refluxed at 120 ° C. for 1 hour to complete the reaction. At that time, the temperature raising rate up to 120 ° C. was set to 1 ° C./min.

反応終了後のスラリーについて本文に記載した洗浄、分散および分級を実施し、本文に記載した方法で諸特性の評価を行なった。その結果、得られた銀粒子は、平均粒径DTEM=43.5nm、結晶粒子径Dx=16nm、単結晶化度(DTEM/Dx)=2.72であり、その銀粒子分散液については、銀粒子濃度=3wt%、粘度=6.3mPa・ s、表面張力=30.6mN/m、pH=8.15、強熱減量=6.9%であり、アドバンテック製メンブランフィルター(孔径100nm)を通過できず、分散性は不良で凝集していた。 The slurry after the reaction was washed, dispersed and classified as described in the text, and various properties were evaluated by the methods described in the text. As a result, the obtained silver particles have an average particle diameter D TEM = 43.5 nm, a crystal particle diameter Dx = 16 nm, and a single crystallinity (D TEM /Dx)=2.72. Has a silver particle concentration = 3 wt%, viscosity = 6.3 mPa · s, surface tension = 30.6 mN / m, pH = 8.15, loss on ignition = 6.9%, Advantech membrane filter (pore size 100 nm) ) And dispersibility was poor and agglomerated.

Claims (2)

85〜150℃でアルコールまたはポリオールの1種または2種以上の液中で銀塩または銀酸化物を還元処理してなり粒子表面が有機保護剤で覆われた平均粒径(D TEM )50nm以下、結晶粒子径(D X )50nm以下、単結晶化度(D TEM /D X )2.0以下の銀粒子粉末を、沸点が60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させた銀粒子の分散液であり、前記の有機保護剤が1分子中に少なくとも1個以上の不飽和結合を有するアミン化合物である銀粒子分散液の製造法であって、還元剤として機能する前記アルコールまたはポリオールの1種または2種以上の液中で前記銀塩または銀酸化物を還元するさいに、前記アミン化合物として1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下において85〜150℃で前記の還元反応を進行させることを特徴とする銀粒子分散液の製造法。 An average particle diameter (D TEM ) of 50 nm or less obtained by reducing silver salt or silver oxide in one or more liquids of alcohol or polyol at 85 to 150 ° C. and covering the particle surface with an organic protective agent A silver particle powder having a crystal particle size (D X ) of 50 nm or less and a single crystallinity (D TEM / D X ) of 2.0 or less is dispersed in a nonpolar or small polar liquid organic medium having a boiling point of 60 to 300 ° C. A method for producing a silver particle dispersion, wherein the organic protective agent is an amine compound having at least one unsaturated bond in one molecule, and functions as a reducing agent. When reducing the silver salt or silver oxide in one or two or more liquids of the alcohol or polyol, the amine compound has a molecular weight of 100 to 100 having at least one unsaturated bond in one molecule. Preparation of the silver particle dispersion you characterized by advancing the reduction reaction at 85 to 150 ° C. in the presence of 0 amine compound. 85〜150℃でアルコールまたはポリオールの1種または2種以上の液中で銀塩または銀酸化物を還元処理してなり粒子表面が有機保護剤で覆われた平均粒径(D TEM )50nm以下、結晶粒子径(D X )50nm以下、単結晶化度(D TEM /D X )2.0以下の銀粒子粉末を、沸点が60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させた銀粒子の分散液であり、前記の有機保護剤が1分子中に少なくとも1個以上の不飽和結合を有するアミン化合物である銀粒子分散液の製造法であって、還元剤として機能する前記アルコールまたはポリオールの1種または2種以上の液中で前記銀塩または銀酸化物を還元するさいに、前記アミン化合物として1分子中に少なくとも1個以上の不飽和結合を有する分子量100〜1000のアミン化合物の共存下において85〜150℃で前記の還元反応を進行させ、得られた粒子表面が該アミン化合物で覆われた平均粒径(DTEM)50nm以下、結晶粒子径(DX)50nm以下、単結晶化度(DTEM/DX)2.0以下の銀粒子粉末を前記沸点が60〜300℃の非極性もしくは極性の小さい液状有機媒体に分散させることを特徴とする銀粒子分散液の製造法。 An average particle diameter (D TEM ) of 50 nm or less obtained by reducing silver salt or silver oxide in one or more liquids of alcohol or polyol at 85 to 150 ° C. and covering the particle surface with an organic protective agent A silver particle powder having a crystal particle size (D X ) of 50 nm or less and a single crystallinity (D TEM / D X ) of 2.0 or less is dispersed in a nonpolar or small polar liquid organic medium having a boiling point of 60 to 300 ° C. A method for producing a silver particle dispersion, wherein the organic protective agent is an amine compound having at least one unsaturated bond in one molecule, and functions as a reducing agent. When reducing the silver salt or silver oxide in one or two or more liquids of the alcohol or polyol, the amine compound has a molecular weight of 100 to 100 having at least one unsaturated bond in one molecule. The above reduction reaction was allowed to proceed at 85 to 150 ° C. in the presence of 0 amine compound, and the average particle diameter (D TEM ) of the obtained particle surface covered with the amine compound was 50 nm or less, the crystal particle diameter (D X ) 50 nm or less, you characterized by dispersing the single crystallinity (D TEM / D X) 2.0 following silver particle powder the boiling point non-polar or less polar liquid organic medium of 60 to 300 ° C. A method for producing a silver particle dispersion.
JP2005195669A 2005-07-05 2005-07-05 Method for producing silver particle dispersion Expired - Fee Related JP5176060B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005195669A JP5176060B2 (en) 2005-07-05 2005-07-05 Method for producing silver particle dispersion
TW096101215A TWI354323B (en) 2005-07-05 2007-01-12 Silver particle dispersion liduid and method of ma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195669A JP5176060B2 (en) 2005-07-05 2005-07-05 Method for producing silver particle dispersion

Publications (2)

Publication Number Publication Date
JP2007019055A JP2007019055A (en) 2007-01-25
JP5176060B2 true JP5176060B2 (en) 2013-04-03

Family

ID=37755994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195669A Expired - Fee Related JP5176060B2 (en) 2005-07-05 2005-07-05 Method for producing silver particle dispersion

Country Status (1)

Country Link
JP (1) JP5176060B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994086B2 (en) * 2007-04-03 2012-08-08 旭化成イーマテリアルズ株式会社 Metal thin film precursor dispersion
JP2009138243A (en) * 2007-12-07 2009-06-25 Dowa Electronics Materials Co Ltd Silver fine powder with excellent affinity for polar medium, silver ink, and method for producing silver particle
JP5274000B2 (en) * 2007-12-07 2013-08-28 Dowaエレクトロニクス株式会社 Low-temperature sinterable silver fine powder and silver paint and method for producing them
JP5226293B2 (en) * 2007-12-25 2013-07-03 Dowaエレクトロニクス株式会社 Method for producing silver conductive film
JP2010095789A (en) * 2007-12-26 2010-04-30 Dowa Electronics Materials Co Ltd Metal particle dispersion liquid, coating film, metal film, conductive paste, and method for producing metal film
JP4514807B2 (en) 2008-04-10 2010-07-28 山本貴金属地金株式会社 Method for producing noble metal fine particles
JP5372450B2 (en) * 2008-09-25 2013-12-18 独立行政法人科学技術振興機構 Method for producing metal nanoparticles
JP2013151753A (en) * 2013-03-04 2013-08-08 Dowa Electronics Materials Co Ltd Silver micropowder excellent in affinity for polar medium, and silver ink

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497491B2 (en) * 1999-12-07 2010-07-07 バンドー化学株式会社 Silver colloid aqueous solution, method for producing silver colloid aqueous solution, conductive film and method for forming conductive film
JP4871443B2 (en) * 2000-10-13 2012-02-08 株式会社アルバック Method for producing metal ultrafine particle dispersion
JP2003226901A (en) * 2002-02-05 2003-08-15 Hitachi Maxell Ltd Binary alloy fine particle and production method therefor
JP4168371B2 (en) * 2002-06-28 2008-10-22 戸田工業株式会社 Metal colloidal organosol and method for producing the same
JP4248857B2 (en) * 2002-11-29 2009-04-02 三ツ星ベルト株式会社 Method for producing silver fine particles
JP4414145B2 (en) * 2003-03-06 2010-02-10 ハリマ化成株式会社 Conductive nanoparticle paste
WO2004096470A1 (en) * 2003-04-28 2004-11-11 Sumitomo Metal Mining Co., Ltd. Method for preparing liquid colloidal dispersion of silver particles, liquid colloidal dispersion of silver particles, and silver conductive film
JP4390057B2 (en) * 2003-06-25 2009-12-24 戸田工業株式会社 Silver ultrafine particle colloid production method

Also Published As

Publication number Publication date
JP2007019055A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4674375B2 (en) Method for producing silver particle powder
KR101371269B1 (en) Process for producing silver powder
JP5371247B2 (en) Silver paint and production method thereof
JP5176060B2 (en) Method for producing silver particle dispersion
US8486310B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
JP4284283B2 (en) Silver particle powder manufacturing method
KR101451603B1 (en) Silver fine powder, method for producing the same, and ink
JP5213420B2 (en) Copper powder with excellent dispersibility in liquid and corrosion resistance and method for producing the same
KR101525099B1 (en) Metal microparticle containing composition and process for production of the same
KR20100027100A (en) Method for production of silver fine powder covered with organic substance, and silver fine powder
JP5213592B2 (en) Copper fine powder, dispersion thereof and method for producing copper fine powder
JP5232016B2 (en) Wiring forming material
JP5274000B2 (en) Low-temperature sinterable silver fine powder and silver paint and method for producing them
JP4674376B2 (en) Method for producing silver particle powder
JP4897624B2 (en) Low-temperature sinterable silver fine powder and silver paint and method for producing them
JP5124822B2 (en) Method for producing composite metal powder and dispersion thereof
JP5314451B2 (en) Metallic nickel particle powder and dispersion thereof, and method for producing metallic nickel particle powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121207

R150 Certificate of patent or registration of utility model

Ref document number: 5176060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees