JP4624743B2 - Method for producing silver thin film and method for producing copper-silver alloy thin film - Google Patents

Method for producing silver thin film and method for producing copper-silver alloy thin film Download PDF

Info

Publication number
JP4624743B2
JP4624743B2 JP2004248716A JP2004248716A JP4624743B2 JP 4624743 B2 JP4624743 B2 JP 4624743B2 JP 2004248716 A JP2004248716 A JP 2004248716A JP 2004248716 A JP2004248716 A JP 2004248716A JP 4624743 B2 JP4624743 B2 JP 4624743B2
Authority
JP
Japan
Prior art keywords
silver
copper
organic solvent
thin film
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004248716A
Other languages
Japanese (ja)
Other versions
JP2005100980A (en
Inventor
恵美子 江草
範子 生武
政博 巖本
茂彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2004248716A priority Critical patent/JP4624743B2/en
Publication of JP2005100980A publication Critical patent/JP2005100980A/en
Application granted granted Critical
Publication of JP4624743B2 publication Critical patent/JP4624743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銀薄膜の製造方法及び銅−銀合金薄膜の製造方法に関し、詳しくは基板への密着性及び表面平滑性に優れた銀薄膜の製造方法及び銅−銀合金薄膜の製造方法に関する。   The present invention relates to a method for producing a silver thin film and a method for producing a copper-silver alloy thin film, and more particularly to a method for producing a silver thin film excellent in adhesion to a substrate and surface smoothness and a method for producing a copper-silver alloy thin film.

従来、各種電極、回路、電界シールド等、幅広い用途に銀薄膜等の金属薄膜が提供されている。一般的にガラス基板上あるいは半導体基板上に形成されるこのような金属薄膜の作製方法としては、真空蒸着法やペースト塗布法が知られている。   Conventionally, metal thin films such as silver thin films have been provided for a wide range of applications such as various electrodes, circuits, and electric field shields. As a method for producing such a metal thin film generally formed on a glass substrate or a semiconductor substrate, a vacuum deposition method or a paste coating method is known.

真空蒸着法は、真空蒸着装置内に基板を設置し、その上に金属薄膜を蒸着する方法であって、膜厚の精密な制御が可能で、高品質の金属薄膜を提供できることを特徴とする。   The vacuum deposition method is a method in which a substrate is placed in a vacuum deposition apparatus, and a metal thin film is deposited on the substrate. The film thickness can be precisely controlled, and a high-quality metal thin film can be provided. .

ペースト塗布法は、市販の金属微粒子を少なくとも樹脂成分及び有機溶媒からなるマトリックス成分に分散させ、必要に応じてガラスフリットを添加してガラス基板に塗布し、加熱によって液体成分を蒸発させることによって、金属薄膜を形成する方法である。具体的には、スクリーン印刷、ディップコート法、スピンコート法等があり、真空蒸着法に比較して簡便で安価な製膜プロセスを特徴とする。特許文献1には、粒径1.0μm以下の金微粒子とエチルセルロースからなる金ペーストが開示されており、金微粒子の粒径を制御することによって、金微粒子間の焼結を良好にし、500℃以下の比較的低温での焼成によって低抵抗値の金薄膜を形成可能にするものである。さらに、特許文献2には、250℃以下の温度で焼成可能な、有機溶媒中に安定に分散した銀微粒子分散ペーストが開示されている。   In the paste coating method, commercially available metal fine particles are dispersed in a matrix component consisting of at least a resin component and an organic solvent, and if necessary, glass frit is added and applied to a glass substrate, and the liquid component is evaporated by heating, This is a method of forming a metal thin film. Specifically, there are screen printing, dip coating, spin coating, and the like, which are characterized by a simple and inexpensive film forming process as compared with vacuum deposition. Patent Document 1 discloses a gold paste composed of gold fine particles having a particle size of 1.0 μm or less and ethyl cellulose. By controlling the particle size of the gold fine particles, sintering between the gold fine particles is improved, and the temperature is 500 ° C. A gold thin film having a low resistance value can be formed by firing at the following relatively low temperature. Further, Patent Document 2 discloses a silver fine particle dispersed paste stably dispersed in an organic solvent that can be fired at a temperature of 250 ° C. or lower.

しかし、真空蒸着法は、装置が大掛かりで高価であり、必要とされる真空度を達成するために長時間の真空引きを要する問題がある。一方、ペースト塗布法は、250℃以下の比較的低温での焼成が可能になってきているものの、そのような低温での焼成では、一般的に金属薄膜の基盤に対する密着性及び表面平滑性が不十分という問題がある。
特開平10−340619号公報 特開2002−299833号公報
However, the vacuum deposition method has a problem that the apparatus is large and expensive, and a long vacuum is required to achieve the required degree of vacuum. On the other hand, the paste coating method is capable of firing at a relatively low temperature of 250 ° C. or lower. However, such low temperature firing generally has good adhesion and surface smoothness to the base of the metal thin film. There is a problem of insufficient.
Japanese Patent Laid-Open No. 10-340619 JP 2002-299833 A

本発明は、前記問題に注目し、銀微粒子分散ペースト及び銅−銀合金微粒子分散ペーストを基板上に塗布して銀薄膜及び銅−銀合金薄膜を作製するにあたり、比較的低温での焼成によっても、基板に対する優れた密着性及び表面平滑性が得られる銀薄膜及び銅−銀合金薄膜を製造することができる銀薄膜の製造方法及び銅−銀合金薄膜の製造方法を提供することを目的とする。   The present invention pays attention to the above problems, and when a silver thin film and a copper-silver alloy fine particle dispersed paste are applied on a substrate to produce a silver thin film and a copper-silver alloy thin film, An object of the present invention is to provide a method for producing a silver thin film and a method for producing a copper-silver alloy thin film capable of producing a silver thin film and a copper-silver alloy thin film capable of obtaining excellent adhesion and surface smoothness to a substrate. .

本願請求項1記載の発明は、基板上に塗布した銀微粒子分散ペーストを焼成して銀薄膜を得る銀薄膜の製造方法において、銀イオン及び保護剤を含む第一有機溶剤に還元剤を添加して攪拌して得られた沈殿物を除去してろ過液を作製し、該ろ過液を濃縮して固形物を作製し、該固形物を第二有機溶剤に溶解して銀微粒子分散ペーストを作製し、該銀微粒子分散ペーストに有機チタン化合物、有機コバルト化合物、有機アルミニウム化合物、有機インジウム化合物、そして有機銅化合物から選ばれる少なくとも一種である有機金属化合物を添加して有機金属化合物含有銀微粒子分散ペーストを作製し、該有機金属化合物含有銀微粒子分散ペーストを基板上に展開して薄膜化し、250℃〜350℃の温度で焼成することを特徴とする銀薄膜の製造方法である。 The invention according to claim 1 of the present invention is a method for producing a silver thin film in which a silver thin film is obtained by baking a silver fine particle-dispersed paste applied on a substrate, and a reducing agent is added to the first organic solvent containing silver ions and a protective agent. The precipitate obtained by stirring is removed to produce a filtrate, the filtrate is concentrated to produce a solid, and the solid is dissolved in a second organic solvent to produce a silver fine particle dispersed paste. An organic metal compound-containing silver fine particle dispersion paste obtained by adding at least one organic metal compound selected from an organic titanium compound, an organic cobalt compound, an organic aluminum compound, an organic indium compound, and an organic copper compound to the silver fine particle dispersion paste A silver thin film characterized in that the organometallic compound-containing silver fine particle dispersed paste is spread on a substrate to form a thin film and fired at a temperature of 250 ° C. to 350 ° C. It is a method.

請求項記載の発明は、第二有機溶剤が第一有機溶剤と同一の有機溶剤である請求項1記載の銀薄膜の製造方法である。 The invention according to claim 2 is the method for producing a silver thin film according to claim 1, wherein the second organic solvent is the same organic solvent as the first organic solvent.

請求項記載の発明は、第二有機溶剤が第一有機溶剤と異なる有機溶剤である請求項1記載の銀薄膜の製造方法である。 Invention of Claim 3 is a manufacturing method of the silver thin film of Claim 1 whose 2nd organic solvent is an organic solvent different from a 1st organic solvent.

請求項記載の発明は、基板上に塗布した銅−銀合金微粒子分散ペーストを焼成して銅−銀合金薄膜を得る銅−銀合金薄膜の製造方法において、銀イオン、銅イオン、及び保護剤を含む第一有機溶剤に還元剤を添加して攪拌して得られた沈殿物を除去してろ過液を作製し、該ろ過液を濃縮して固形物を作製し、該固形物を第二有機溶剤に溶解して銅−銀合金微粒子分散ペーストを作製し、該銅−銀合金微粒子分散ペーストに有機チタン化合物、有機コバルト化合物、有機アルミニウム化合物、有機インジウム化合物、そして有機銅化合物から選ばれる少なくとも一種である有機金属化合物を添加して有機金属化合物含有銅−銀合金微粒子分散ペーストを作製し、該有機金属化合物含有銅−銀合金微粒子分散ペーストを基板上に展開して薄膜化し、250℃〜350℃の温度で焼成することを特徴とする銅−銀合金薄膜の製造方法である。 According to a fourth aspect of the present invention, there is provided a method for producing a copper-silver alloy thin film in which a copper-silver alloy fine particle dispersed paste applied on a substrate is fired to obtain a copper-silver alloy thin film. A reducing agent is added to the first organic solvent containing and the precipitate obtained by stirring is removed to prepare a filtrate, and the filtrate is concentrated to prepare a solid. A copper-silver alloy fine particle dispersion paste is prepared by dissolving in an organic solvent, and the copper-silver alloy fine particle dispersion paste is at least selected from an organic titanium compound, an organic cobalt compound, an organic aluminum compound, an organic indium compound, and an organic copper compound. which is one type organometallic compound is added an organometallic compound containing copper - to prepare a silver alloy fine particles dispersed paste, organometallic compounds containing copper - thinning expand silver alloy fine particles dispersed paste on a substrate Copper and firing at a temperature of 250 ° C. to 350 ° C. - is a method for producing a silver alloy thin film.

請求項記載の発明は、基板上に塗布した銅−銀合金微粒子分散ペーストを焼成して銅−銀合金薄膜を得る銅−銀合金薄膜の製造方法において、銀イオン及び保護剤を含む第一有機溶剤と銅イオン及び保護剤を含む第一有機溶剤の少なくとも一方に還元剤を添加して攪拌し、前記銀イオン及び保護剤を含む第一有機溶剤と銅イオン及び保護剤を含む第一有機溶剤を混合攪拌して得られた沈殿物を除去してろ過液を作製し、該ろ過液を濃縮して固形物を作製し、該固形物を第二有機溶剤に溶解して銅−銀合金微粒子分散ペーストを作製し、該銅−銀合金微粒子分散ペーストに有機チタン化合物、有機コバルト化合物、有機アルミニウム化合物、有機インジウム化合物、そして有機銅化合物から選ばれる少なくとも一種である有機金属化合物を添加して有機金属化合物含有銅−銀合金微粒子分散ペーストを作製し、該有機金属化合物含有銅−銀合金微粒子分散ペーストを基板上に展開して薄膜化し、250℃〜350℃の温度で焼成することを特徴とする銅−銀合金薄膜の製造方法である。 According to a fifth aspect of the present invention, there is provided a copper-silver alloy thin film manufacturing method for obtaining a copper-silver alloy thin film by firing a copper-silver alloy fine particle dispersed paste applied on a substrate. A reducing agent is added to and stirred with at least one of the organic solvent and the first organic solvent containing copper ions and the protective agent, and the first organic solvent containing the silver ions and the protective agent and the first organic containing the copper ions and the protective agent. A precipitate obtained by mixing and stirring the solvent is removed to prepare a filtrate, and the filtrate is concentrated to prepare a solid, and the solid is dissolved in a second organic solvent to obtain a copper-silver alloy. to prepare a fine particle-dispersed paste, copper - organotitanium compound silver alloy fine particles dispersed paste, an organic cobalt compound, an organic aluminum compound, an organic indium compound, and hydrogenated organic metal compound is at least one selected from an organic copper compound An organometallic compound-containing copper-silver alloy fine particle dispersed paste is prepared, and the organometallic compound-containing copper-silver alloy fine particle dispersed paste is spread on a substrate to form a thin film, which is fired at a temperature of 250 ° C. to 350 ° C. Is a method for producing a copper-silver alloy thin film.

請求項記載の発明は、第二有機溶剤が第一有機溶剤と同一の有機溶剤である請求項またはのいずれかに記載の銅−銀合金薄膜の製造方法である。 Invention of Claim 6 is a manufacturing method of the copper-silver alloy thin film in any one of Claim 4 or 5 whose 2nd organic solvent is the same organic solvent as a 1st organic solvent.

請求項記載の発明は、第二有機溶剤が第一有機溶剤と異なる有機溶剤である請求項またはのいずれかに記載の銅−銀合金薄膜の製造方法である。
Invention of Claim 7 is a manufacturing method of the copper-silver alloy thin film in any one of Claim 4 or 5 whose 2nd organic solvent is an organic solvent different from a 1st organic solvent.

本願各請求項記載の発明によれば、250℃〜350℃の比較的低温での焼成によっても基板との密着性及び表面平滑性に優れた銀薄膜及び銅−銀合金薄膜を提供することができる。   According to the invention described in the claims of the present application, it is possible to provide a silver thin film and a copper-silver alloy thin film excellent in adhesion to a substrate and surface smoothness even by firing at a relatively low temperature of 250 ° C. to 350 ° C. it can.

(銀微粒子分散ペーストの作製)
まず銀イオン及び保護剤を含む第一有機溶剤の作製について説明する。銀イオンを構成する銀の塩としては、安息香酸銀、酢酸銀、クエン酸銀等のカルボン酸銀、あるいは硝酸銀、炭酸銀、硫酸銀等の無機酸銀が用いられる。
(Preparation of silver fine particle dispersion paste)
First, preparation of the first organic solvent containing silver ions and a protective agent will be described. As the silver salt constituting the silver ions, silver carboxylates such as silver benzoate, silver acetate and silver citrate, or inorganic acid silver such as silver nitrate, silver carbonate and silver sulfate are used.

第一有機溶剤としては、例えば主鎖の炭素数が6以上18未満の炭化水素からなる有機溶剤を用いることが好ましい。炭素数が6未満であると、揮発性が高過ぎて取扱いが困難になり、逆に炭素数が18を越えると、粘性が高過ぎて取扱いが困難になり、また濃縮も困難になるためいずれも好ましくない。具体的には、ヘキサン、ヘプタン、オクタン、デカン、ウンデカン、ドデカン、トリデカン、トリメチルペンタン等の炭化水素が好ましい。銀の塩は、前記いずれかの有機溶剤に0.01mol/l〜1mol/lの濃度で溶解される。   As the first organic solvent, it is preferable to use, for example, an organic solvent composed of a hydrocarbon having 6 to 18 carbon atoms in the main chain. If the carbon number is less than 6, the volatility is too high and the handling becomes difficult. Conversely, if the carbon number exceeds 18, the viscosity becomes too high and the handling becomes difficult and the concentration becomes difficult. Is also not preferred. Specifically, hydrocarbons such as hexane, heptane, octane, decane, undecane, dodecane, tridecane, and trimethylpentane are preferable. The silver salt is dissolved in one of the organic solvents at a concentration of 0.01 mol / l to 1 mol / l.

保護剤は、有機溶剤への銀の塩の溶解を促進し、生成する銀微粒子を保護して、その凝集を防止するためのものであって、アルキルアミン、カルボン酸、アミド化合物、カルボニトリルから選ばれる少なくとも一種が用いられる。   The protective agent is for accelerating the dissolution of the silver salt in the organic solvent, protecting the generated silver fine particles and preventing the aggregation thereof, from alkylamine, carboxylic acid, amide compound, carbonitrile. At least one selected is used.

アルキルアミンは、炭素数5〜20のアルキルアミンが好適に用いられ、具体的には、
ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミン等が挙げられる。
As the alkylamine, an alkylamine having 5 to 20 carbon atoms is preferably used.
Examples include pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, hexadecylamine, octadecylamine and the like.

カルボン酸は、炭素数5〜20のカルボン酸が好適に用いられ、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、ヘキサデカン酸、ナフテン酸、ペンテン酸、ヘキセン酸、ヘプテン酸、ウンデシレン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。   As the carboxylic acid, a carboxylic acid having 5 to 20 carbon atoms is preferably used. Butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, hexadecanoic acid, naphthenic acid Pentenoic acid, hexenoic acid, heptenoic acid, undecylenic acid, oleic acid, linoleic acid, linolenic acid and the like.

アミド化合物は、炭素数5〜20のアルキルアミド及び環状アミドが用いられ、具体的には、ペンタンアミド、ヘキサンアミド、ヘプタンアミド、ノナンアミド、デカンアミド、ウンデカンアミド、ドデカンアミド、ヘキサデカンアミド、オクタデカンアミド、ベンズアミド、N−メチル−2−ピロリドン等が用いられる。   As the amide compounds, alkyl amides having 5 to 20 carbon atoms and cyclic amides are used. Specifically, pentaneamide, hexaneamide, heptaneamide, nonaneamide, decanamide, undecanamide, dodecanamide, hexadecanamide, octadecanamide, benzamide. N-methyl-2-pyrrolidone and the like are used.

カルボニトリルは、炭素数5〜20のカルボニトリルが好適に用いられ、具体的には、ペンタニトリル、ヘキサニトリル、ヘプタニトリル、オクタニトリル、ノナニトリル、デカニトリル、ウンデカニトリル、ドデカニトリル、ヘキサデカニトリル、オクタデカニトリル等が挙げられる。   As the carbonitrile, a carbonitrile having 5 to 20 carbon atoms is preferably used. Specifically, pentanitrile, hexanitrile, heptonitrile, octanitrile, nononitrile, deconitrile, undecanonitrile, dodecanonitrile, hexadeconitrile, Examples include octadecanonitrile.

前記各種保護剤に共通して、炭素数が5未満の保護剤は、銀微粒子を腐蝕させるおそれがあり、一方、炭素数が20を越える保護剤は、粘度上昇に伴って扱いが困難になり、さらには銀薄膜焼成時に熱分解することなく残留し、膜の均一性に悪影響を与えることがあるため好ましくない。   In common with the various protective agents, a protective agent having less than 5 carbon atoms may corrode silver fine particles, while a protective agent having more than 20 carbon atoms becomes difficult to handle as the viscosity increases. Further, it is not preferable because it remains without being thermally decomposed when the silver thin film is fired, and may adversely affect the uniformity of the film.

添加される保護剤の量は、銀イオンの2倍から10倍モル程度であることが好ましい。保護剤の添加は、銀微粒子の凝集を防止するには有効ではあるが、銀微粒子の収率を低下させることもあるので、その添加量はできるだけ少ないことが好ましい。   The amount of the protective agent added is preferably about 2 to 10 times mol of silver ions. Although the addition of a protective agent is effective in preventing aggregation of silver fine particles, it may reduce the yield of silver fine particles, so the addition amount is preferably as small as possible.

常温から40℃程度に温度調節した状態の銀イオン及び保護剤を含む有機溶剤に、還元剤を添加する。還元剤の種類は通常使用されるものであれば特に限定されず、水素化ホウ素ナトリウム、水素化ホウ素カリウムなどの水素化ホウ素金属塩、水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩、ヒドラジン化合物、クエン酸及びその塩、コハク酸及びその塩、アスコルビン酸及びその塩等がある。還元剤は、そのまま添加してもよいが、均一な反応性を確保するためには、水あるいはアルコールに溶解して添加することが好ましく、有機溶剤との相溶性を考慮すれば、アルコールに溶解して添加することがより好ましい。アルコールとしては、メタノール、エタノール、プロパノール等が好適に用いられる。還元剤のアルコール溶液の濃度は、0.01mol/l〜0.1mol/lに設定されることが好ましい。   A reducing agent is added to an organic solvent containing silver ions and a protective agent whose temperature is adjusted from room temperature to about 40 ° C. The kind of the reducing agent is not particularly limited as long as it is usually used. Metal borohydride such as sodium borohydride and potassium borohydride, lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, Examples include aluminum hydride salts such as aluminum beryllium hydride, magnesium aluminum hydride, and calcium aluminum hydride, hydrazine compounds, citric acid and its salts, succinic acid and its salts, ascorbic acid and its salts, and the like. The reducing agent may be added as it is, but in order to ensure uniform reactivity, it is preferable to add it by dissolving in water or alcohol. In consideration of compatibility with the organic solvent, it is dissolved in alcohol. More preferably, it is added. As the alcohol, methanol, ethanol, propanol or the like is preferably used. The concentration of the alcohol solution of the reducing agent is preferably set to 0.01 mol / l to 0.1 mol / l.

還元剤の添加により、銀イオンを含む有機溶剤に特有の色を呈していた溶液が、銀微粒子の生成を示す褐色に変色する。攪拌後、沈殿物を吸引ろ過等によって除去し、ろ過液をエバポレータ等で濃縮し、銀微粒子を含む黒色の液体を得る。   By the addition of the reducing agent, the solution exhibiting a color specific to the organic solvent containing silver ions turns brown to indicate the formation of silver fine particles. After stirring, the precipitate is removed by suction filtration or the like, and the filtrate is concentrated by an evaporator or the like to obtain a black liquid containing silver fine particles.

得られた黒色の液体をエバポレータ等によって濃縮することによって黒色の固体を得る。ここで、不純物を除去するために、得られた黒色の液体に銀微粒子の貧分散媒であるメタノール、エタノール等のアルコールを添加ことが好ましい。アルコールを加えた後、吸引ろ過によりアルコールに可溶である過剰有機成分である保護剤を除去し、フィルター上に残った沈殿物を前記第一有機溶剤に再分散させ、ろ過した後、乾燥させて黒色の固体を得る。   A black solid is obtained by concentrating the obtained black liquid with an evaporator or the like. Here, in order to remove impurities, it is preferable to add an alcohol such as methanol or ethanol, which is a poor dispersion medium of silver fine particles, to the obtained black liquid. After adding the alcohol, the protective agent, which is an excess organic component that is soluble in alcohol, is removed by suction filtration, and the precipitate remaining on the filter is redispersed in the first organic solvent, filtered, and dried. To obtain a black solid.

得られた黒色の固体を第二有機溶剤に溶解することによって、銀微粒子分散ペーストが得られる。ここで、第二有機溶剤は、第一有機溶剤と同一の有機溶剤であってもよく、または第一有機溶剤と異なる有機溶剤であってもよい。後述する銀薄膜の作製において、例えばスピンコート法を用いる場合は、第二有機溶剤は第一有機溶剤と同一であるか否かを問わないが、スクリーン印刷を行う場合は、第二有機溶剤として、第一有機溶剤とは異なる、比較的沸点の高い溶剤を選択することが好ましい。具体的には、ベンゼン、トルエン、キシレン、トリメチルベンゼン、ドデシルベンゼン、テトラリン等の芳香族炭化水素が好適に用いられる。   By dissolving the obtained black solid in the second organic solvent, a silver fine particle-dispersed paste is obtained. Here, the second organic solvent may be the same organic solvent as the first organic solvent, or may be an organic solvent different from the first organic solvent. In the production of a silver thin film, which will be described later, for example, when using a spin coating method, the second organic solvent may or may not be the same as the first organic solvent. It is preferable to select a solvent having a relatively high boiling point different from the first organic solvent. Specifically, aromatic hydrocarbons such as benzene, toluene, xylene, trimethylbenzene, dodecylbenzene, and tetralin are preferably used.

(有機金属化合物含有銀微粒子分散ペーストの作製)
得られた銀微粒子分散ペーストに有機金属化合物を添加し、有機金属化合物含有銀微粒子分散ペーストを作製する。有機金属化合物は、有機チタン化合物、有機コバルト化合物、有機アルミニウム化合物、有機インジウム化合物、そして有機銅化合物から選ばれる少なくとも一種である。具体的には、チタン、コバルト、アルミニウム、インジウム、銅のいずれかを含むアルコキシドあるいは有機酸塩であって、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド、酢酸コバルト、ギ酸コバルト、シュウ酸コバルト、アセチルアセトンアルミニウム、酢酸インジウム、ギ酸インジウム、シュウ酸インジウム、2−エチルヘキサン酸インジウム、酢酸銅、ギ酸銅、シュウ酸銅、等が好適に用いられる。有機金属化合物は、単独で添加する他、有機溶剤に溶解して添加してもよい。
(Production of organometallic compound-containing silver fine particle dispersed paste)
An organometallic compound is added to the obtained silver fine particle dispersed paste to prepare an organometallic compound-containing silver fine particle dispersed paste. The organometallic compound is at least one selected from an organotitanium compound, an organocobalt compound, an organoaluminum compound, an organoindium compound, and an organocopper compound. Specifically, it is an alkoxide or organic acid salt containing any of titanium, cobalt, aluminum, indium and copper, and includes titanium tetramethoxide, titanium tetraethoxide, titanium tetraisopropoxide, cobalt acetate, cobalt formate, Cobalt oxalate, aluminum acetylacetone, indium acetate, indium formate, indium oxalate, indium 2-ethylhexanoate, copper acetate, copper formate, copper oxalate and the like are preferably used. The organometallic compound may be added alone or dissolved in an organic solvent.

銀微粒子分散ペーストに対して、前記各種有機金属化合物は、1atom%〜20atom%の割合で添加される。1atom%未満では、銀薄膜の基板への十分な密着性が得られず、一方20atom%を越えると、銀薄膜の形成自体に悪影響を与えることがあるため好ましくない。   The various organometallic compounds are added to the silver fine particle dispersed paste at a rate of 1 atom% to 20 atom%. If it is less than 1 atom%, sufficient adhesion of the silver thin film to the substrate cannot be obtained. On the other hand, if it exceeds 20 atom%, the formation of the silver thin film itself may be adversely affected.

(銀薄膜の作製)
得られた有機金属化合物含有銀微粒子分散ペーストは、スピンコート法、スクリーン印刷法、ディップコート法、インクジェット印刷法等の方法によってガラス等の基板上に展開され、膜厚0.1μm〜1.0μmの薄膜に調整される。これをマッフル炉等を用いて焼成することにより、有機金属化合物中の金属が基板の中に入り込み、基板への密着性及び表面平滑性に優れた銀薄膜が形成される。ここで、焼成温度は250℃〜350℃、焼成時間は10分〜30分程度である。
(Preparation of silver thin film)
The obtained organometallic compound-containing silver fine particle dispersion paste is spread on a substrate such as glass by a spin coating method, a screen printing method, a dip coating method, an ink jet printing method, or the like, and has a film thickness of 0.1 μm to 1.0 μm. Adjusted to a thin film. By baking this using a muffle furnace or the like, the metal in the organometallic compound enters the substrate, and a silver thin film excellent in adhesion to the substrate and surface smoothness is formed. Here, the baking temperature is 250 ° C. to 350 ° C., and the baking time is about 10 minutes to 30 minutes.

(銅−銀合金微粒子分散ペーストの作製)
まず銀イオン、銅イオン、及び保護剤を含む第一有機溶剤の作製について説明する。銀イオンを構成する銀の塩としては、前記銀微粒子分散ペーストの作製において記載された銀の塩が用いられる。
(Preparation of copper-silver alloy fine particle dispersion paste)
First, production of the first organic solvent containing silver ions, copper ions, and a protective agent will be described. As the silver salt constituting the silver ion, the silver salt described in the preparation of the silver fine particle dispersed paste is used.

銅イオンを構成する銅の塩としては、酢酸銅、ギ酸銅、ナフテン酸銅、クエン酸第二銅、サリチル酸第二銅、酒石酸第二銅、ステアリン酸第二銅、パルミチン酸銅等のカルボン酸銅、あるいは硫酸銅、硝酸銅等の無機酸銅が用いられる。   Examples of copper salts constituting copper ions include carboxylic acids such as copper acetate, copper formate, copper naphthenate, cupric citrate, cupric salicylate, cupric tartrate, cupric stearate, and copper palmitate. Copper or inorganic acid copper such as copper sulfate or copper nitrate is used.

第一有機溶剤としては、前記銀微粒子分散ペーストの作製において記載された有機溶剤が用いられる。銅の塩及び銀の塩は、前記いずれかの有機溶剤に0.01mol/l〜1mol/lの濃度で溶解される。   As the first organic solvent, the organic solvent described in the preparation of the silver fine particle dispersed paste is used. The copper salt and the silver salt are dissolved in one of the organic solvents at a concentration of 0.01 mol / l to 1 mol / l.

保護剤は、有機溶剤への銀の塩及び銅の塩の溶解を促進し、生成する銅−銀微粒子を保護して、その凝集を防止するためのものであって、前記銀微粒子分散ペーストの作製において記載されたアルキルアミン、カルボン酸、アミド化合物、カルボニトリルから選ばれる少なくとも一種が用いられる。   The protective agent is for accelerating the dissolution of the silver salt and the copper salt in the organic solvent, protecting the produced copper-silver fine particles, and preventing the aggregation thereof. At least one selected from alkylamines, carboxylic acids, amide compounds, and carbonitriles described in the preparation is used.

添加される保護剤の量は、銀イオン及び銅イオンの2倍から10倍モル程度であることが好ましい。保護剤の添加は、銅−銀合金微粒子の凝集を防止するには有効ではあるが、銅−銀合金微粒子の収率を低下させることもあるので、その添加量はできるだけ少ないことが好ましい。   The amount of the protective agent added is preferably about 2 to 10 times mol of silver ions and copper ions. Although the addition of the protective agent is effective in preventing the aggregation of the copper-silver alloy fine particles, it may reduce the yield of the copper-silver alloy fine particles, so the addition amount is preferably as small as possible.

常温から40℃程度に温度調節した状態の銅イオン、銀イオン及び保護剤を含む第一有機溶剤に、還元剤を添加する。還元剤としては、前記銀微粒子分散ペーストの作製において記載された還元剤が用いられる。還元剤は、そのまま添加してもよいが、均一な反応性を確保するためには、水あるいはアルコールに溶解して添加することが好ましく、有機溶剤との相溶性を考慮すれば、アルコールに溶解して添加することがより好ましい。アルコールとしては、メタノール、エタノール、プロパノール等が好適に用いられる。還元剤のアルコール溶液の濃度は、0.01mol/l〜0.1mol/lに設定されることが好ましい。   A reducing agent is added to the first organic solvent containing copper ions, silver ions, and a protective agent in a state where the temperature is adjusted from room temperature to about 40 ° C. As the reducing agent, the reducing agent described in the preparation of the silver fine particle dispersed paste is used. The reducing agent may be added as it is, but in order to ensure uniform reactivity, it is preferable to add it by dissolving in water or alcohol. In consideration of compatibility with the organic solvent, it is dissolved in alcohol. More preferably, it is added. As the alcohol, methanol, ethanol, propanol or the like is preferably used. The concentration of the alcohol solution of the reducing agent is preferably set to 0.01 mol / l to 0.1 mol / l.

還元剤の添加により、溶液は銅−銀合金微粒子の生成を示す褐色に変色する。攪拌後、沈殿物を吸引ろ過等によって除去し、ろ過液をエバポレータ等で濃縮し、銅−銀合金微粒子を含む黒色の液体を得る。   With the addition of the reducing agent, the solution turns brown to indicate the formation of copper-silver alloy fine particles. After stirring, the precipitate is removed by suction filtration or the like, and the filtrate is concentrated with an evaporator or the like to obtain a black liquid containing copper-silver alloy fine particles.

得られた黒色の液体をエバポレータ等によって濃縮することによって黒色の固体を得る。ここで、不純物を除去するために、得られた黒色の液体に銅−銀合金微粒子の貧分散媒であるメタノール、エタノール等のアルコールを添加することが好ましい。アルコールを加えた後、吸引ろ過によりアルコールに可溶である過剰有機成分である保護剤を除去し、フィルター上に残った沈殿物を前記第一有機溶剤に再分散させ、ろ過した後、乾燥させて黒色の固体を得る。   A black solid is obtained by concentrating the obtained black liquid with an evaporator or the like. Here, in order to remove impurities, it is preferable to add alcohol such as methanol or ethanol, which is a poor dispersion medium of copper-silver alloy fine particles, to the obtained black liquid. After adding the alcohol, the protective agent, which is an excess organic component that is soluble in alcohol, is removed by suction filtration, and the precipitate remaining on the filter is redispersed in the first organic solvent, filtered, and dried. To obtain a black solid.

得られた黒色の固体を第二有機溶剤に溶解することによって、銅−銀合金微粒子分散ペーストが得られる。ここで、第二有機溶剤は、第一有機溶剤と同一の有機溶剤であってもよく、または第一有機溶剤と異なる有機溶剤であってもよい。後述する銅−銀合金薄膜の作製において、例えばスピンコート法を用いる場合は、第二有機溶剤は第一有機溶剤と同一であるか否かを問わないが、スクリーン印刷を行う場合は、第二有機溶剤として、第一有機溶剤とは異なる、比較的沸点の高い溶剤を選択することが好ましい。具体的には、前記銀微粒子分散ペーストの作製において記載された有機溶剤が用いられる。   By dissolving the obtained black solid in the second organic solvent, a copper-silver alloy fine particle dispersed paste is obtained. Here, the second organic solvent may be the same organic solvent as the first organic solvent, or may be an organic solvent different from the first organic solvent. In the production of a copper-silver alloy thin film, which will be described later, for example, when a spin coating method is used, it does not matter whether or not the second organic solvent is the same as the first organic solvent. As the organic solvent, it is preferable to select a solvent having a relatively high boiling point, which is different from the first organic solvent. Specifically, the organic solvent described in the preparation of the silver fine particle dispersed paste is used.

銅−銀微粒子分散ペーストは、上記のいわゆる同時還元の他、銅イオン及び保護剤を含む第一有機溶剤に還元剤を添加し、さらに銀イオン及び保護剤を含む第一有機溶剤を添加する、いわゆる逐次還元によっても得られる。逐次還元の順は、逆に銀、銅の順であってもよく、その場合は、銀イオン及び保護剤を含む第一有機溶剤に還元剤を添加し、さらに銅イオン及び保護剤を含む第一有機溶剤を添加する。   In addition to the so-called simultaneous reduction described above, the copper-silver fine particle-dispersed paste adds a reducing agent to a first organic solvent containing copper ions and a protective agent, and further adds a first organic solvent containing silver ions and a protective agent. It can also be obtained by so-called sequential reduction. The sequential reduction may be performed in the order of silver and copper. In that case, a reducing agent is added to the first organic solvent containing silver ions and a protective agent, and further a copper ion and a protective agent are added. Add one organic solvent.

(有機金属化合物含有銅−銀合金微粒子分散ペーストの作製)
得られた銅−銀合金微粒子分散ペーストに有機金属化合物を添加し、有機金属化合物含有銅−銀合金微粒子分散ペーストを作製する。有機金属化合物は、有機チタン化合物、有機コバルト化合物、有機アルミニウム化合物、有機インジウム化合物、そして有機銅化合物から選ばれる少なくとも一種である。具体的には、前記有機金属化合物含有銀微粒子分散ペーストの作製において記載された有機金属化合物が用いられる。有機金属化合物は、単独で添加する他、有機溶剤に溶解して添加してもよい。
(Preparation of organometallic compound-containing copper-silver alloy fine particle dispersion paste)
An organometallic compound is added to the obtained copper-silver alloy fine particle dispersed paste to produce an organometallic compound-containing copper-silver alloy fine particle dispersed paste. The organometallic compound is at least one selected from an organotitanium compound, an organocobalt compound, an organoaluminum compound, an organoindium compound, and an organocopper compound. Specifically, the organometallic compound described in the preparation of the organometallic compound-containing silver fine particle dispersed paste is used. The organometallic compound may be added alone or dissolved in an organic solvent.

銅−銀合金微粒子分散ペーストに対して、前記各種有機金属化合物は、1atom%〜20atom%の割合で添加される。1atom%未満では、銅−銀合金薄膜の基板への十分な密着性が得られず、一方20atom%を越えると、銅−銀合金薄膜の形成自体に悪影響を与えることがあるため好ましくない。   The various organometallic compounds are added to the copper-silver alloy fine particle dispersed paste at a rate of 1 atom% to 20 atom%. If it is less than 1 atom%, sufficient adhesion of the copper-silver alloy thin film to the substrate cannot be obtained. On the other hand, if it exceeds 20 atom%, the formation of the copper-silver alloy thin film itself may be adversely affected.

(銅−銀合金薄膜の作製)
得られた有機金属化合物含有銅−銀合金微粒子分散ペーストは、スピンコート法、スクリーン印刷法、ディップコート法、インクジェット印刷法等の方法によってガラス等の基板上に展開され、膜厚0.1μm〜1.0μmの薄膜に調整される。これをマッフル炉等を用いて焼成することにより、有機金属化合物中の金属が基板の中に入り込み、基板への密着性に優れた銅−銀合金薄膜が形成される。ここで、焼成温度は250℃〜350℃、焼成時間は10分〜30分程度である。
(Preparation of copper-silver alloy thin film)
The obtained organometallic compound-containing copper-silver alloy fine particle-dispersed paste is spread on a substrate such as glass by a spin coating method, a screen printing method, a dip coating method, an ink jet printing method, or the like. The film thickness is adjusted to 1.0 μm. By baking this using a muffle furnace or the like, the metal in the organometallic compound enters the substrate, and a copper-silver alloy thin film having excellent adhesion to the substrate is formed. Here, the baking temperature is 250 ° C. to 350 ° C., and the baking time is about 10 minutes to 30 minutes.

(実施例1)
酢酸銀30g、保護剤としてのナフテン酸145g、及び保護剤としてのオクチルアミン140gに第一有機溶剤としてのイソオクタン700mlを加え、室温で攪拌し、溶解させた。
Example 1
700 ml of isooctane as the first organic solvent was added to 30 g of silver acetate, 145 g of naphthenic acid as the protective agent, and 140 g of octylamine as the protective agent, and the mixture was stirred and dissolved at room temperature.

得られた溶液を攪拌し、0.1mol/l水素化ホウ素ナトリウムプロパノール溶液660mlを20分間かけて滴下し、銀を還元した。さらに1時間攪拌して、沈殿物を吸引ろ過により除去した後、ろ過液をエバポレータで濃縮し、黒色の液体を得た。   The resulting solution was stirred and 660 ml of a 0.1 mol / l sodium borohydride propanol solution was added dropwise over 20 minutes to reduce silver. The mixture was further stirred for 1 hour and the precipitate was removed by suction filtration, and then the filtrate was concentrated with an evaporator to obtain a black liquid.

得られた黒色の液体にメタノール3lを添加して褐色の沈殿物を生成させた後、吸引ろ過により沈殿物を回収した。得られた沈殿物をイソオクタンに再分散させ、ろ過した後、乾燥させて黒色の固体を得た。   After adding 3 l of methanol to the resulting black liquid to form a brown precipitate, the precipitate was collected by suction filtration. The obtained precipitate was redispersed in isooctane, filtered, and dried to obtain a black solid.

得られた黒色の固体を、金属分濃度が35wt%となるように第二有機溶剤としてのトルエンに溶解して銀微粒子分散トルエンインキを調整し、この銀微粒子分散トルエンインキに、14倍モルのオクチルアミンに溶解させた酢酸銅を1.7atom%添加後、ガラス基板上にスピンコート法によって展開し、300℃のマッフル炉にて30分間焼成した。焼成後連続膜を形成し、その表面平滑性は優れていた。体積抵抗率3.4μΩ・cm、膜厚0.5μmの銀薄膜であった。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。   The obtained black solid was dissolved in toluene as the second organic solvent so that the metal content concentration was 35 wt% to prepare a silver fine particle-dispersed toluene ink. After adding 1.7 atom% of copper acetate dissolved in octylamine, it was spread on a glass substrate by a spin coating method and baked in a 300 ° C. muffle furnace for 30 minutes. A continuous film was formed after firing, and the surface smoothness was excellent. The silver thin film had a volume resistivity of 3.4 μΩ · cm and a film thickness of 0.5 μm. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(実施例2)
実施例1と同じ銀微粒子分散トルエンインキに、10倍モルのオクチルアミンに溶解させた酢酸銅を5atom%添加後、実施例1と同じ手順に従って、体積抵抗率15.8μΩ・cm、膜厚0.6μmの銀薄膜を得た。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。
(Example 2)
After adding 5 atom% of copper acetate dissolved in 10-fold mol of octylamine to the same silver fine particle dispersed toluene ink as in Example 1, volume resistivity 15.8 μΩ · cm, film thickness 0 in accordance with the same procedure as Example 1. A silver thin film of 6 μm was obtained. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(実施例3)
実施例1と同じ銀微粒子分散トルエンインキに、10倍モルのオクチルアミンに溶解させた酢酸コバルト四水和物を5atom%添加後、実施例1と同じ手順に従って、体積抵抗率39μΩ・cm、膜厚0.6μmの銀薄膜を得た。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。
(Example 3)
After adding 5 atom% of cobalt acetate tetrahydrate dissolved in 10 times mole of octylamine to the same silver fine particle-dispersed toluene ink as in Example 1, according to the same procedure as in Example 1, the volume resistivity was 39 μΩ · cm, the film A silver thin film having a thickness of 0.6 μm was obtained. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(実施例4)
実施例1と同じ銀微粒子分散トルエンインキに、ナーセムアルミニウムを銀に対して1atom%添加後、実施例1と同じ手順に従って、体積抵抗率4.8μΩ・cm、膜厚0.3μmの銀薄膜を得た。碁盤目テープ剥離試験を行ったところ、0/100の結果ではあったが、焼成後連続膜を形成し、その表面平滑性は優れていた(Ra=1.8nm)。
Example 4
A silver thin film having a volume resistivity of 4.8 μΩ · cm and a film thickness of 0.3 μm is added to the same silver fine particle-dispersed toluene ink as in Example 1 after adding 1 atom% of nasem aluminum to silver. Got. When a cross-cut tape peeling test was performed, the result was 0/100, but a continuous film was formed after firing, and the surface smoothness was excellent (Ra = 1.8 nm).

(実施例5)
酢酸銅3.27g、酢酸銀27.04g、ナフテン酸145g、及びオクチルアミン140gにイソオクタン700mlを加え、室温で攪拌し、溶解させた。
(Example 5)
700 ml of isooctane was added to 3.27 g of copper acetate, 27.04 g of silver acetate, 145 g of naphthenic acid, and 140 g of octylamine, and the mixture was stirred and dissolved at room temperature.

得られた溶液を攪拌し、0.1mol/l水素化ホウ素ナトリウムプロパノール溶液660mlを20分間かけて滴下し、銅及び銀を還元した。さらに1時間攪拌して、沈殿物を吸引ろ過により除去した後、ろ過液をエバポレータで濃縮し、黒色の液体を得た。   The resulting solution was stirred and 660 ml of a 0.1 mol / l sodium borohydride propanol solution was added dropwise over 20 minutes to reduce copper and silver. The mixture was further stirred for 1 hour and the precipitate was removed by suction filtration, and then the filtrate was concentrated with an evaporator to obtain a black liquid.

得られた黒色の液体にメタノール3lを添加して褐色の沈殿物を生成させた後、吸引ろ過により沈殿物を回収した。得られた沈殿物をイソオクタンに再分散させ、ろ過した後、乾燥させて黒色の固体を得た。   After adding 3 l of methanol to the resulting black liquid to form a brown precipitate, the precipitate was collected by suction filtration. The obtained precipitate was redispersed in isooctane, filtered, and dried to obtain a black solid.

得られた黒色の固体を、金属分濃度が35wt%となるように第二有機溶剤としてのテトラリンに溶解して銅−銀合金微粒子分散テトラリンインキを調整し、この銅−銀合金微粒子分散テトラリンインキに、チタコートS151を5atom%添加後、ガラス基板上にスピンコート法によって展開し、300℃のマッフル炉にて30分間焼成した。焼成後連続膜を形成し、その表面平滑性は優れていた。体積抵抗率3.0μΩ・cm、膜厚0.5μmの銅−銀合金薄膜であった。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。   The obtained black solid was dissolved in tetralin as a second organic solvent so that the metal concentration was 35 wt% to prepare a copper-silver alloy fine particle dispersed tetralin ink, and this copper-silver alloy fine particle dispersed tetralin ink. Further, after adding 5 atom% of titacoat S151, it was spread on a glass substrate by a spin coat method and baked in a muffle furnace at 300 ° C. for 30 minutes. A continuous film was formed after firing, and the surface smoothness was excellent. It was a copper-silver alloy thin film having a volume resistivity of 3.0 μΩ · cm and a film thickness of 0.5 μm. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(実施例6)
実施例5と同じ銅−銀合金微粒子分散テトラリンインキにチタンテトライソプロポキシドを5atom%添加後、実施例5と同じ手順に従って、体積抵抗率3.9μΩ・cm、膜厚0.4μmの銅−銀合金薄膜を得た。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。
(Example 6)
After adding 5 atom% of titanium tetraisopropoxide to the same copper-silver alloy fine particle-dispersed tetralin ink as in Example 5, a volume resistivity of 3.9 μΩ · cm and a film thickness of 0.4 μm was obtained according to the same procedure as Example 5. A silver alloy thin film was obtained. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(実施例7)
実施例5と同じ銅−銀合金微粒子分散テトラリンインキにチタンテトライソプロポキシドを8.5atom%添加後、実施例5と同じ手順に従って、体積抵抗率132μΩ・cm、膜厚0.4μmの銅−銀合金薄膜を得た。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。
(Example 7)
After adding 8.5 atom% of titanium tetraisopropoxide to the same copper-silver alloy fine particle-dispersed tetralin ink as in Example 5, a volume resistivity of 132 μΩ · cm and a film thickness of 0.4 μm was obtained according to the same procedure as Example 5. A silver alloy thin film was obtained. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(実施例8)
実施例5と同じ銅−銀合金微粒子分散テトラリンインキに酢酸コバルトを8.5atom%添加後、実施例5と同じ手順に従って、体積抵抗率8.2μΩ・cm、膜厚0.1μmの銅−銀合金薄膜を得た。碁盤目テープ剥離試験を行ったところ、95/100の結果を得た。
(Example 8)
After adding 8.5 atom% of cobalt acetate to the same copper-silver alloy fine particle-dispersed tetralin ink as in Example 5, according to the same procedure as in Example 5, the volume resistivity is 8.2 μΩ · cm and the film thickness is 0.1 μm. An alloy thin film was obtained. When a cross-cut tape peeling test was performed, a result of 95/100 was obtained.

(実施例9)
実施例5のテトラリンをトルエンに代えて銅−銀合金微粒子分散トルエンインキを作製し、チタンテトライソプロポキシドを6atom%添加後、実施例5と同じ手順に従って、体積抵抗率171μΩ・cm、膜厚0.4μmの銅−銀合金薄膜を得た。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。
Example 9
A copper-silver alloy fine particle-dispersed toluene ink was prepared by replacing tetralin in Example 5 with toluene, and after adding 6 atom% of titanium tetraisopropoxide, the volume resistivity was 171 μΩ · cm, the film thickness was followed in the same procedure as in Example 5. A 0.4 μm copper-silver alloy thin film was obtained. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(実施例10)
実施例9と同じ銅−銀合金微粒子分散トルエンインキに、2−エチルヘキサン酸インジウムを2.6atom%添加後、実施例5と同じ手順に従って、体積抵抗率29μΩ・cm、膜厚0.5μmの銅−銀合金薄膜を得た。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。
(Example 10)
After adding 2.6 atom% of indium 2-ethylhexanoate to the same copper-silver alloy fine particle-dispersed toluene ink as in Example 9, the volume resistivity of 29 μΩ · cm and the film thickness of 0.5 μm were obtained according to the same procedure as in Example 5. A copper-silver alloy thin film was obtained. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(実施例11)
実施例9と同じ銅−銀合金微粒子分散トルエンインキに、2−エチルヘキサン酸インジウムを4.7atom%添加後、実施例5と同じ手順に従って、体積抵抗率72μΩ・cm、膜厚0.5μmの銅−銀合金薄膜を得た。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。
(Example 11)
After adding 4.7 atom% of indium 2-ethylhexanoate to the same copper-silver alloy fine particle-dispersed toluene ink as in Example 9, the volume resistivity of 72 μΩ · cm and the film thickness of 0.5 μm were obtained according to the same procedure as in Example 5. A copper-silver alloy thin film was obtained. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(実施例12)
実施例9と同じ銅−銀合金微粒子分散トルエンインキに、2−エチルヘキサン酸インジウムを14atom%添加後、実施例5と同じ手順に従って、体積抵抗率457μΩ・cm、膜厚0.5μmの銅−銀合金薄膜を得た。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。
(Example 12)
After adding 14 atom% of indium 2-ethylhexanoate to the same copper-silver alloy fine particle dispersed toluene ink as in Example 9, according to the same procedure as in Example 5, copper having a volume resistivity of 457 μΩ · cm and a film thickness of 0.5 μm A silver alloy thin film was obtained. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(実施例13)
実施例9と同じ銅−銀合金微粒子分散トルエンインキに、酢酸インジウムを5.2atom%添加後、実施例5と同じ手順に従って、体積抵抗率98μΩ・cm、膜厚0.8μmの銅−銀合金薄膜を得た。碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。
(Example 13)
After adding 5.2 atom% of indium acetate to the same copper-silver alloy fine particle-dispersed toluene ink as in Example 9, a copper-silver alloy having a volume resistivity of 98 μΩ · cm and a film thickness of 0.8 μm according to the same procedure as in Example 5 A thin film was obtained. When a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

(比較例1)
実施例1と同じ銀微粒子分散トルエンインキに、有機金属化合物を添加せずに、実施例1と同じ手順に従って銀薄膜を得た。碁盤目テープ剥離試験を行ったところ、0/100の結果を得た。
(Comparative Example 1)
A silver thin film was obtained according to the same procedure as in Example 1 without adding the organometallic compound to the same silver fine particle dispersed toluene ink as in Example 1. When a cross-cut tape peeling test was performed, a result of 0/100 was obtained.

250℃〜350℃という比較的低い焼成温度で焼成することによって焼成コストを抑制しながら、同時に基板との密着性及び表面平滑性に優れた金属薄膜である銀薄膜及び銅−銀合金薄膜を製造することができる。
Producing silver thin films and copper-silver alloy thin films, which are metal thin films with excellent adhesion to the substrate and surface smoothness, while suppressing firing costs by firing at a relatively low firing temperature of 250 ° C. to 350 ° C. can do.

Claims (7)

基板上に塗布した銀微粒子分散ペーストを焼成して銀薄膜を得る銀薄膜の製造方法において、
銀イオン及び保護剤を含む第一有機溶剤に還元剤を添加して攪拌して得られた沈殿物を除去してろ過液を作製し、
該ろ過液を濃縮して固形物を作製し、
該固形物を第二有機溶剤に溶解して銀微粒子分散ペーストを作製し、
該銀微粒子分散ペーストに有機チタン化合物、有機コバルト化合物、有機アルミニウム化合物、有機インジウム化合物、そして有機銅化合物から選ばれる少なくとも一種である有機金属化合物を添加して有機金属化合物含有銀微粒子分散ペーストを作製し、
該有機金属化合物含有銀微粒子分散ペーストを基板上に展開して薄膜化し、250℃〜350℃の温度で焼成することを特徴とする銀薄膜の製造方法。
In the method for producing a silver thin film, a silver thin film is obtained by firing a silver fine particle dispersed paste applied on a substrate.
Add a reducing agent to the first organic solvent containing silver ions and a protective agent and remove the precipitate obtained by stirring to make a filtrate.
Concentrate the filtrate to produce a solid,
Dissolving the solid in a second organic solvent to produce a silver fine particle dispersed paste,
An organometallic compound-containing silver particulate dispersion paste is prepared by adding at least one organometallic compound selected from organic titanium compounds, organocobalt compounds, organoaluminum compounds, organoindium compounds, and organocopper compounds to the silver particulate dispersion paste. And
A method for producing a silver thin film, characterized in that the organometallic compound-containing silver fine particle-dispersed paste is spread on a substrate to form a thin film and fired at a temperature of 250 ° C to 350 ° C.
第二有機溶剤が第一有機溶剤と同一の有機溶剤である請求項1記載の銀薄膜の製造方法。   The method for producing a silver thin film according to claim 1, wherein the second organic solvent is the same organic solvent as the first organic solvent. 第二有機溶剤が第一有機溶剤と異なる有機溶剤である請求項1記載の銀薄膜の製造方法。   The method for producing a silver thin film according to claim 1, wherein the second organic solvent is an organic solvent different from the first organic solvent. 基板上に塗布した銅−銀合金微粒子分散ペーストを焼成して銅−銀合金薄膜を得る銅−銀合金薄膜の製造方法において、
銀イオン、銅イオン、及び保護剤を含む第一有機溶剤に還元剤を添加して攪拌して得られた沈殿物を除去してろ過液を作製し、
該ろ過液を濃縮して固形物を作製し、
該固形物を第二有機溶剤に溶解して銅−銀合金微粒子分散ペーストを作製し、
該銅−銀合金微粒子分散ペーストに有機チタン化合物、有機コバルト化合物、有機アルミニウム化合物、有機インジウム化合物、そして有機銅化合物から選ばれる少なくとも一種である有機金属化合物を添加して有機金属化合物含有銅−銀合金微粒子分散ペーストを作製し、
該有機金属化合物含有銅−銀合金微粒子分散ペーストを基板上に展開して薄膜化し、250℃〜350℃の温度で焼成することを特徴とする銅−銀合金薄膜の製造方法。
In the method for producing a copper-silver alloy thin film, the copper-silver alloy fine particle dispersed paste applied on the substrate is fired to obtain a copper-silver alloy thin film.
Add a reducing agent to the first organic solvent containing silver ions, copper ions, and a protective agent and remove the precipitate obtained by stirring to make a filtrate.
Concentrate the filtrate to produce a solid,
Dissolving the solid in a second organic solvent to produce a copper-silver alloy fine particle dispersed paste,
An organic metal compound-containing copper-silver is prepared by adding at least one organic metal compound selected from an organic titanium compound, an organic cobalt compound, an organic aluminum compound, an organic indium compound, and an organic copper compound to the copper-silver alloy fine particle dispersed paste. Make an alloy fine particle dispersion paste,
A method for producing a copper-silver alloy thin film, characterized in that the organometallic compound-containing copper-silver alloy fine particle dispersed paste is spread on a substrate to form a thin film and fired at a temperature of 250 ° C to 350 ° C.
基板上に塗布した銅−銀合金微粒子分散ペーストを焼成して銅−銀合金薄膜を得る銅−銀合金薄膜の製造方法において、
銀イオン及び保護剤を含む第一有機溶剤と銅イオン及び保護剤を含む第一有機溶剤の少なくとも一方に還元剤を添加して攪拌し、
前記銀イオン及び保護剤を含む第一有機溶剤と銅イオン及び保護剤を含む第一有機溶剤を混合攪拌して得られた沈殿物を除去してろ過液を作製し、
該ろ過液を濃縮して固形物を作製し、該固形物を第二有機溶剤に溶解して銅−銀合金微粒子分散ペーストを作製し、
該銅−銀合金微粒子分散ペーストに有機チタン化合物、有機コバルト化合物、有機アルミニウム化合物、有機インジウム化合物、そして有機銅化合物から選ばれる少なくとも一種である有機金属化合物を添加して有機金属化合物含有銅−銀合金微粒子分散ペーストを作製し、
該有機金属化合物含有銅−銀合金微粒子分散ペーストを基板上に展開して薄膜化し、250℃〜350℃の温度で焼成することを特徴とする銅−銀合金薄膜の製造方法。
In the method for producing a copper-silver alloy thin film, the copper-silver alloy fine particle dispersed paste applied on the substrate is fired to obtain a copper-silver alloy thin film.
Add a reducing agent to at least one of the first organic solvent containing silver ions and a protective agent and the first organic solvent containing copper ions and a protective agent, and stir.
Removing the precipitate obtained by mixing and stirring the first organic solvent containing the silver ion and the protective agent and the first organic solvent containing the copper ion and the protective agent to produce a filtrate;
Concentrating the filtrate to produce a solid, dissolving the solid in a second organic solvent to produce a copper-silver alloy fine particle dispersed paste,
An organic metal compound-containing copper-silver is prepared by adding at least one organic metal compound selected from an organic titanium compound, an organic cobalt compound, an organic aluminum compound, an organic indium compound, and an organic copper compound to the copper-silver alloy fine particle dispersed paste. Make an alloy fine particle dispersion paste,
A method for producing a copper-silver alloy thin film, characterized in that the organometallic compound-containing copper-silver alloy fine particle-dispersed paste is spread on a substrate to form a thin film and fired at a temperature of 250 ° C to 350 ° C.
第二有機溶剤が第一有機溶剤と同一の有機溶剤である請求項またはのいずれかに記載の銅−銀合金薄膜の製造方法。 The method for producing a copper-silver alloy thin film according to claim 4 or 5 , wherein the second organic solvent is the same organic solvent as the first organic solvent. 第二有機溶剤が第一有機溶剤と異なる有機溶剤である請求項またはのいずれかに記載の銅−銀合金薄膜の製造方法。 Method for producing a silver alloy thin film - copper according to claim 4 or 5 second organic solvent is different from the organic solvent and the first organic solvent.
JP2004248716A 2003-08-29 2004-08-27 Method for producing silver thin film and method for producing copper-silver alloy thin film Expired - Fee Related JP4624743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004248716A JP4624743B2 (en) 2003-08-29 2004-08-27 Method for producing silver thin film and method for producing copper-silver alloy thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003306917 2003-08-29
JP2003306916 2003-08-29
JP2004248716A JP4624743B2 (en) 2003-08-29 2004-08-27 Method for producing silver thin film and method for producing copper-silver alloy thin film

Publications (2)

Publication Number Publication Date
JP2005100980A JP2005100980A (en) 2005-04-14
JP4624743B2 true JP4624743B2 (en) 2011-02-02

Family

ID=34468305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248716A Expired - Fee Related JP4624743B2 (en) 2003-08-29 2004-08-27 Method for producing silver thin film and method for producing copper-silver alloy thin film

Country Status (1)

Country Link
JP (1) JP4624743B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723236B2 (en) * 2004-12-28 2011-07-13 三ツ星ベルト株式会社 Silver thin film production method
JP5521207B2 (en) * 2009-01-28 2014-06-11 東ソー株式会社 Conductive film forming composition, method for producing the same, and conductive film forming method
JP2011034750A (en) * 2009-07-31 2011-02-17 Tosoh Corp Composition for conductive film formation and conductive film formation method
JP5504734B2 (en) * 2009-07-31 2014-05-28 東ソー株式会社 Conductive film forming composition and conductive film forming method
JP6199266B2 (en) * 2014-09-25 2017-09-20 本田技研工業株式会社 Manufacturing method of metal separator for fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272502A (en) * 2000-03-27 2001-10-05 Fuji Photo Film Co Ltd Hard coat coating fluid, method for preparing the same and antireflection transparent electrically conductive laminated film
JP2003266583A (en) * 2002-03-13 2003-09-24 Dainippon Printing Co Ltd Conductive sheet and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272502A (en) * 2000-03-27 2001-10-05 Fuji Photo Film Co Ltd Hard coat coating fluid, method for preparing the same and antireflection transparent electrically conductive laminated film
JP2003266583A (en) * 2002-03-13 2003-09-24 Dainippon Printing Co Ltd Conductive sheet and its manufacturing method

Also Published As

Publication number Publication date
JP2005100980A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4496216B2 (en) Conductive metal paste
US20090029148A1 (en) Metal Nanoparticle, Metal Nanoparticle Colloid, Method for Storing Metal Nanoparticle Colloid, and Metal Coating Film
JP2009295965A (en) Bimetallic nanoparticles for conductive ink application
JP2007321215A (en) Dispersion of metallic nanoparticle and metallic coating film
JP2011034750A (en) Composition for conductive film formation and conductive film formation method
JP2008198595A (en) Metal particulate ink paste and organic acid treated metal particulate
JP2008069374A (en) Metallic nanoparticle dispersion and metallic film
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP2008282913A (en) Method for manufacturing copper-oxide-based semiconductor thin film, and copper-oxide-based semiconductor thin film
WO2016136753A1 (en) Copper-containing particles, conductor-forming composition, method for manufacturing conductor, conductor and device
JP2014162966A (en) Metal fine particle composition, joining material, electronic component, formation method of junction layer, formation method of conductor layer, and ink composition
JP4624743B2 (en) Method for producing silver thin film and method for producing copper-silver alloy thin film
JP4908002B2 (en) Method for producing noble metal fine particles and method for producing noble metal thin film
JP4723236B2 (en) Silver thin film production method
JP2006286338A (en) Manufacturing method of silver-palladium alloy thin film
JP2009062611A (en) Metal fine particle material, dispersion liquid of metal fine particle material, conductive ink containing the dispersion liquid, and their manufacturing methods
JP2005015628A (en) Colloidal dispersion of cuprous oxide
JP2007145947A (en) Electroconductive ink composition and its manufacturing method
JP2017101307A (en) Copper-containing particle, conductor forming composition, method for producing conductor, conductor and electronic component
JP2005060816A (en) Production methods of alloy fine particle and alloy thin film
JP2005060824A (en) Method for producing alloy particulate, and method for producing alloy thin film
JPH07109724B2 (en) Copper-based conductive paste that can be soldered
JP5368683B2 (en) Metal nanoparticle dispersion and metal coating
JP2016145397A (en) Producing method of copper membrane and conductor obtained thereby
JP2009024193A (en) Method for producing metallic nanoparticle, metallic nanoparticle, dispersion of metallic nanoparticle, and metallic coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4624743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees