JP4908002B2 - Method for producing noble metal fine particles and method for producing noble metal thin film - Google Patents

Method for producing noble metal fine particles and method for producing noble metal thin film Download PDF

Info

Publication number
JP4908002B2
JP4908002B2 JP2006017861A JP2006017861A JP4908002B2 JP 4908002 B2 JP4908002 B2 JP 4908002B2 JP 2006017861 A JP2006017861 A JP 2006017861A JP 2006017861 A JP2006017861 A JP 2006017861A JP 4908002 B2 JP4908002 B2 JP 4908002B2
Authority
JP
Japan
Prior art keywords
noble metal
fine particles
acid
organic
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006017861A
Other languages
Japanese (ja)
Other versions
JP2007146271A (en
Inventor
政博 巖本
恵美子 江草
大輔 岡崎
泰助 伊勢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2006017861A priority Critical patent/JP4908002B2/en
Publication of JP2007146271A publication Critical patent/JP2007146271A/en
Application granted granted Critical
Publication of JP4908002B2 publication Critical patent/JP4908002B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば無アルカリガラスのようなガラス基板との密着性と膜表面の平滑性に優れた薄膜を成形することができる貴金属微粒子の製造方法および貴金属薄膜の製造方法に関する。   The present invention relates to a method for producing noble metal fine particles and a method for producing a noble metal thin film capable of forming a thin film having excellent adhesion to a glass substrate such as alkali-free glass and smoothness of the film surface.

従来、各種電極、回路、電界シールド、反射膜等、幅広い用途に銀薄膜等の金属薄膜が提供されている。一般的にガラス基板上あるいは半導体基板上に形成されるこのような金属薄膜の作製方法としては、真空蒸着法やペースト塗布法が知られている。   Conventionally, metal thin films such as silver thin films have been provided for various applications such as various electrodes, circuits, electric field shields, and reflective films. As a method for producing such a metal thin film generally formed on a glass substrate or a semiconductor substrate, a vacuum deposition method or a paste coating method is known.

真空蒸着法は、真空蒸着装置内に基板を設置し、その上に金属薄膜を蒸着する方法であって、膜厚の精密な制御が可能で、高品質の金属薄膜を提供できることを特徴とする。   The vacuum deposition method is a method in which a substrate is placed in a vacuum deposition apparatus, and a metal thin film is deposited thereon. The film thickness can be precisely controlled, and a high-quality metal thin film can be provided. .

ペースト塗布法は、市販の金属微粒子を少なくとも樹脂成分および有機溶媒からなるマトリックス成分に分散させ、必要に応じてガラスフリットを添加してガラス基板に塗布し、加熱によって液体成分を蒸発させることによって、金属薄膜を形成する方法である。具体的には、スクリーン印刷、ディップコート法、スピンコート法等があり、真空蒸着法に比較して簡便で安価な製膜プロセスを特徴とする。   In the paste coating method, commercially available metal fine particles are dispersed in at least a matrix component composed of a resin component and an organic solvent, and if necessary, glass frit is added and coated on a glass substrate, and the liquid component is evaporated by heating, This is a method of forming a metal thin film. Specifically, there are screen printing, dip coating, spin coating, and the like, which are characterized by a simple and inexpensive film forming process as compared with vacuum deposition.

特許文献1には、粒径1.0μm以下の金微粒子とエチルセルロースからなる金ペーストが開示されており、金微粒子の粒径を制御することによって、金微粒子間の焼結を良好にし、500℃以下の比較的低温での焼成によって低抵抗値の金薄膜を形成可能にするものである。さらに、特許文献2には、250℃以下の温度で焼成可能な、有機溶媒中に安定に分散した銀微粒子分散ペーストが開示されている。   Patent Document 1 discloses a gold paste composed of gold fine particles having a particle size of 1.0 μm or less and ethyl cellulose. By controlling the particle size of the gold fine particles, sintering between the gold fine particles is improved, and 500 ° C. A gold thin film having a low resistance value can be formed by firing at the following relatively low temperature. Further, Patent Document 2 discloses a silver fine particle dispersed paste stably dispersed in an organic solvent, which can be fired at a temperature of 250 ° C. or lower.

しかし、真空蒸着法は、装置が大掛かりで高価であり、必要とされる真空度を達成するために長時間の真空引きを要する問題がある。一方、ペースト塗布法は、250℃以下の比較的低温での焼成が可能になってきているものの、そのような低温での焼成では、一般的に金属薄膜の基板に対する密着性が不十分という問題があった。
特開平10−340619号公報 特開2002−299833号公報
However, the vacuum deposition method has a problem that the apparatus is large and expensive, and a long vacuum is required to achieve the required degree of vacuum. On the other hand, the paste coating method has made it possible to fire at a relatively low temperature of 250 ° C. or less, but such a low temperature generally has a problem that the adhesion of the metal thin film to the substrate is generally insufficient. was there.
Japanese Patent Laid-Open No. 10-340619 JP 2002-299833 A

即ち、一般的に貴金属は安定であるため、塗布対象物である基板との反応性が低く、基板との密着性に乏しかった。また、銀粒子に限らず、貴金属のように他の物質との反応性、密着性が低い場合には、基板から剥がれやすくなるという問題があった。このため、ガラス基板を表面処理して銀薄膜との密着性を高める必要があった。   That is, since noble metals are generally stable, the reactivity with the substrate that is the object to be coated is low, and the adhesion with the substrate is poor. In addition to silver particles, there is a problem that when the reactivity and adhesion to other substances are low, such as noble metals, they are easily peeled off from the substrate. For this reason, it was necessary to surface-treat a glass substrate and to improve adhesiveness with a silver thin film.

しかも、銀をガラス基板上に成膜する場合、焼成温度が250℃を超えると粒成長が顕著となり、そのために平滑な表面が荒れて表面白濁が生じる等、高温焼成時の表面性に劣
る問題が発生し、得られた金属膜をそのまま配線として使用することは困難であった。
In addition, when silver is deposited on a glass substrate, grain growth becomes significant when the firing temperature exceeds 250 ° C., and therefore the smooth surface becomes rough and surface turbidity occurs, resulting in poor surface properties during high temperature firing. It was difficult to use the obtained metal film as a wiring as it was.

本発明は前記の点に鑑みてなされたものであり、ガラス基板との密着性と膜表面の平滑性に優れた薄膜を成形することができる貴金属微粒子を製造する方法および貴金属薄膜を製造する方法を提供することを目的とする。   The present invention has been made in view of the above points, and a method for producing noble metal fine particles and a method for producing a noble metal thin film capable of forming a thin film having excellent adhesion to a glass substrate and smoothness of the film surface. The purpose is to provide.

即ち、本発明は貴金属の表面を保護コロイドで包囲した貴金属微粒子の製造方法であり、炭素数5〜20から選ばれる少なくとも1種類のアミンと、炭素数4〜9のカルボン酸と炭素数10〜30のカルボン酸とを含む原料を攪拌して得られる化合物および/または混合物を保護コロイドとして用い、この保護コロイドと貴金属イオンを含む溶液に還元剤を添加し攪拌した後、余分な保護コロイドおよび溶媒を除去することを特徴としている。 That is, the present invention is a method for producing noble metal fine particles in which the surface of a noble metal is surrounded by a protective colloid, and includes at least one amine selected from 5 to 20 carbon atoms, a carboxylic acid having 4 to 9 carbon atoms, and 10 to 10 carbon atoms. A compound and / or mixture obtained by stirring a raw material containing 30 carboxylic acids is used as a protective colloid, a reducing agent is added to the solution containing the protective colloid and noble metal ions, and the mixture is stirred. It is characterized by removing.

また、本発明の貴金属微粒子の製造方法は、貴金属微粒子が分散しない溶媒に、炭素数5〜20から選ばれる少なくとも1種類のアミンと、炭素数4〜9のカルボン酸と炭素数10〜30のカルボン酸とを含む原料を攪拌して得られる化合物および/または混合物からなる保護コロイド、貴金属イオン、還元剤を加え、貴金属微粒子の沈澱物を生成させて回収する方法であり、貴金属微粒子を沈澱物させることにより効率よく製造することができる。 Moreover, the method for producing noble metal fine particles of the present invention includes a solvent in which noble metal fine particles are not dispersed, at least one amine selected from 5 to 20 carbon atoms, a carboxylic acid having 4 to 9 carbon atoms, and 10 to 30 carbon atoms. This is a method of adding a protective colloid consisting of a compound and / or a mixture obtained by stirring a raw material containing carboxylic acid and / or a noble metal ion and a reducing agent to produce a precipitate of noble metal fine particles and recovering the noble metal fine particles. By making it, it can manufacture efficiently.

上記沈澱方法で使用する貴金属微粒子が分散しない溶媒としては、メタノール、エタノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ペプタノール、α−テレピネオールから選ばれた少なくとも1種のアルコール類がある。   Examples of the solvent in which the precious metal fine particles used in the precipitation method are not dispersed include at least one alcohol selected from methanol, ethanol, isopropanol, butanol, pentanol, hexanol, cyclohexanol, peptanol, and α-terpineol.

また、本発明の貴金属微粒子の製造方法では、特に炭素数10〜30のカルボン酸を使用することによって貴金属微粒子を単体で使用しても貴金属の粒成長を抑制して表面の平滑性を維持し、更にはガラス基板との密着性が改善された薄膜を成形することができる。 Further, in the method for producing noble metal fine particles of the present invention, even when the carboxylic acid having 10 to 30 carbon atoms is used, even when the noble metal fine particles are used alone, the noble metal particle growth is suppressed and the surface smoothness is maintained. Furthermore, a thin film with improved adhesion to the glass substrate can be formed.

前記貴金属微粒子の製造方法は、炭素数10〜30のカルボン酸がデカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、オクタデカン酸、オクタデセン酸、そしてオクタデカジエン酸から選ばれた少なくとも一種であり、炭素数4〜9のカルボン酸がペンタン酸、ヘキサン酸、そしてオクタン酸から選ばれた少なくとも一種であり、貴金属が銀であり、また貴金属の割合が60〜95質量%で、保護コロイドの割合が5〜40質量%である。   The method for producing the noble metal fine particles is at least one type in which the carboxylic acid having 10 to 30 carbon atoms is selected from decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, octadecanoic acid, octadecenoic acid, and octadecadienoic acid. The carboxylic acid having 4 to 9 carbon atoms is at least one selected from pentanoic acid, hexanoic acid and octanoic acid, the noble metal is silver, and the proportion of the noble metal is 60 to 95% by mass; The ratio is 5 to 40% by mass.

本発明の貴金属薄膜の製造方法では、このようにして得られた貴金属微粒子を有機溶剤に溶かしてペーストに作製し、該ペーストを基板上に展開して薄膜を形成し、これを150〜450℃の温度で焼成する。   In the method for producing a noble metal thin film of the present invention, the noble metal fine particles thus obtained are dissolved in an organic solvent to prepare a paste, and the paste is spread on a substrate to form a thin film. Firing at a temperature of

前記ペーストには、さらに有機金属化合物を添加してもよい。ここで、有機金属化合物とは、有機鉄化合物、有機チタン化合物、有機アルミニウム化合物、有機スズ化合物、有機銅化合物、有機ニッケル化合物、有機インジウム化合物、有機亜鉛化合物、そして有機ビスマス化合物から選ばれる少なくとも一種である。   An organic metal compound may be further added to the paste. Here, the organic metal compound is at least one selected from an organic iron compound, an organic titanium compound, an organic aluminum compound, an organic tin compound, an organic copper compound, an organic nickel compound, an organic indium compound, an organic zinc compound, and an organic bismuth compound. It is.

本発明は、貴金属微粒子の表面に保護コロイドとして炭素数5〜20から選ばれる少なくとも1種類のアミンと炭素数4〜9のカルボン酸と炭素数10〜30のカルボン酸を選定し、これらによって包囲された固形物である貴金属微粒子の製造方法およびこの貴金属微粒子を有機溶剤に溶かしてペーストに作製し、該ペーストを基板上に展開して薄膜を形成し、これを150〜450℃の温度で焼成することを特徴とする貴金属薄膜の製造方法であり、貴金属微粒子を単体で使用しても貴金属の粒成長を抑制して表面の平滑性を維持し、更にはガラス基板との密着性が改善された薄膜を成形することができる効果がある。特に、炭素数10〜30のカルボン酸を併用することによってその効果が大きい。 In the present invention, at least one amine selected from 5 to 20 carbon atoms, a carboxylic acid having 4 to 9 carbon atoms, and a carboxylic acid having 10 to 30 carbon atoms are selected as a protective colloid on the surface of the noble metal fine particles and surrounded by these. Method of producing noble metal fine particles, which are formed solids, and dissolving the noble metal fine particles in an organic solvent to prepare a paste, spreading the paste on a substrate to form a thin film, and firing the film at a temperature of 150 to 450 ° C. This is a method for producing a noble metal thin film characterized in that even if noble metal fine particles are used alone, the grain growth of the noble metal is suppressed, the surface smoothness is maintained, and the adhesion to the glass substrate is further improved. There is an effect that a thin film can be formed. In particular, the effect is great when a carboxylic acid having 10 to 30 carbon atoms is used in combination .

また、前記ペーストにさらに有機金属化合物を添加することによって、より平滑性に優れた貴金属薄膜が得られる。   Moreover, the noble metal thin film which was further excellent in smoothness can be obtained by further adding an organometallic compound to the paste.

本発明では、貴金属微粒子の表面に保護コロイドとして炭素数5〜20から選ばれる少なくとも1種類のアミンと、炭素数4〜30から選ばれる少なくとも1種類のカルボン酸を選定し、これらによって包囲された固形物である貴金属微粒子の製造方法およびこの貴金属微粒子を用いた貴金属薄膜の製造方法である。   In the present invention, at least one amine selected from 5 to 20 carbon atoms and at least one carboxylic acid selected from 4 to 30 carbon atoms are selected as a protective colloid on the surface of the noble metal fine particles and surrounded by these. It is a manufacturing method of the noble metal microparticle which is a solid substance, and the manufacturing method of the noble metal thin film using this noble metal microparticle.

具体的には、炭素数5〜20から選ばれる少なくとも1種類のアミンと、炭素数4〜9のカルボン酸と炭素数10〜30のカルボン酸とを含む原料を攪拌して得られる化合物および/または混合物を保護コロイドとして用い、この保護コロイドと貴金属イオンを含む溶液に複数回に分けて還元剤を添加し攪拌した後、余分な保護コロイドおよび溶媒を除去するものである。前記保護コロイドの組合せであれば、貴金属微粒子を有機溶媒に分散したペーストを150〜450℃の温度で焼成しても、焼成膜に残留するために、貴金属の粒成長を抑制して表面の平滑性を維持し、更にはガラス基板との密着性を改善する。 Specifically, a compound obtained by stirring a raw material containing at least one amine selected from 5 to 20 carbon atoms, a carboxylic acid having 4 to 9 carbon atoms, and a carboxylic acid having 10 to 30 carbon atoms and / or Alternatively, the mixture is used as a protective colloid, and a reducing agent is added to the solution containing the protective colloid and the noble metal ions in a plurality of times and stirred, and then the excess protective colloid and the solvent are removed. In the case of the combination of the protective colloids, even when a paste in which noble metal fine particles are dispersed in an organic solvent is baked at a temperature of 150 to 450 ° C., it remains in the baked film. Maintain the property, and further improve the adhesion to the glass substrate.

即ち、貴金属微粒子の製造方法では、貴金属イオンと、保護剤として(1)炭素数5〜20から選ばれる少なくとも1種類のアミンと(2)炭素数4〜9のカルボン酸と炭素数10〜30のカルボン酸とを組み合わせたものを溶剤に溶解し、還元剤を10分〜2時間かけて滴下して保護剤で保護した貴金属微粒子/溶媒分散液を用意する。 That is, in the method for producing noble metal fine particles, noble metal ions, (1) at least one amine selected from 5 to 20 carbon atoms as a protective agent, (2) carboxylic acids having 4 to 9 carbon atoms, and 10 to 30 carbon atoms. A combination of these carboxylic acids is dissolved in a solvent, and a reducing agent is dropped over 10 minutes to 2 hours to prepare a noble metal fine particle / solvent dispersion liquid protected with a protective agent.

前記貴金属微粒子としては、金、銀、白金、パラジウム、ロジウム、ルテニウム、オスミウム、イリジウム等が挙げられるが、特に限定されるものではない。これらの貴金属を一種類のみ使用してもよく、適宜、組み合わせて使用してもよい。   Examples of the noble metal fine particles include gold, silver, platinum, palladium, rhodium, ruthenium, osmium and iridium, but are not particularly limited. Only one kind of these noble metals may be used, or may be used in combination as appropriate.

前記貴金属イオンは、溶媒に可溶性のある金属化合物であり、あるいはこの金属を溶解することで調製できるものである。該金属化合物は特に限定されず、例えば塩化金酸またはその塩、硝酸銀、塩化銀、酢酸銀、塩化白金酸またはその塩、塩化パラジウム、硝酸パラジウム、酢酸パラジウム、硝酸パラジウム等が挙げられる。   The noble metal ion is a metal compound that is soluble in a solvent, or can be prepared by dissolving the metal. The metal compound is not particularly limited, and examples thereof include chloroauric acid or a salt thereof, silver nitrate, silver chloride, silver acetate, chloroplatinic acid or a salt thereof, palladium chloride, palladium nitrate, palladium acetate, palladium nitrate and the like.

そして上記溶媒としては、例えば主鎖の炭素数が6以上18以下の有機溶媒を用いることが好ましい。炭素数が6未満であると、揮発性が高すぎて取り扱いが困難になり、逆に炭素数が18を超えると、粘性が高すぎて取り扱いが困難になり、また濃縮も困難になるためいずれも好ましくない。具体的には、ヘキサン、ヘプタン、オクタン、デカン、ウンデカン、ドデカン、トリデカン、トリメチルペンタン等の炭化水素あるいは、トルエン、キシレン、テトラリン、ヘキサデカン、テトラデカン、ヘプタメチルノナン等が好ましい。   For example, an organic solvent having 6 to 18 carbon atoms in the main chain is preferably used as the solvent. If the carbon number is less than 6, the volatility is too high and handling becomes difficult. Conversely, if the carbon number exceeds 18, the viscosity becomes too high and handling becomes difficult, and it becomes difficult to concentrate. Is also not preferred. Specifically, hydrocarbons such as hexane, heptane, octane, decane, undecane, dodecane, tridecane, and trimethylpentane, toluene, xylene, tetralin, hexadecane, tetradecane, heptamethylnonane, and the like are preferable.

前記貴金属イオン溶液の濃度は、溶媒に溶解可能な範囲であれば特に限定されず、好ましくは100mM以上である。100mM未満であると、十分高濃度の貴金属微粒子が連続して得られないため、好ましくない。   The concentration of the noble metal ion solution is not particularly limited as long as it can be dissolved in a solvent, and is preferably 100 mM or more. If it is less than 100 mM, no sufficiently high concentration of noble metal fine particles can be obtained continuously, which is not preferable.

前記還元剤としては、溶媒に溶解した還元剤含有溶液を使用するもので、例えば水素化ホウ素ナトリウム、ヒドラジン化合物、クエン酸またはその塩、コハク酸またはその塩、アスコルビン酸またはその塩、ホスフィン酸またはその塩、酒石酸またはその塩等を使用することができる。   As the reducing agent, a reducing agent-containing solution dissolved in a solvent is used. For example, sodium borohydride, hydrazine compound, citric acid or a salt thereof, succinic acid or a salt thereof, ascorbic acid or a salt thereof, phosphinic acid or Its salt, tartaric acid or its salt, etc. can be used.

前記還元剤含有溶液の濃度は、溶媒に溶解可能な範囲であれば特に限定されず、好ましくは貴金属イオンモル濃度に対し0.1倍以上である。0.1倍未満であると、貴金属イオン含有溶液の滴下量に比べ多量の還元剤含有溶液が必要となり、工業的に不利なため好ましくない。   The concentration of the reducing agent-containing solution is not particularly limited as long as it can be dissolved in a solvent, and is preferably 0.1 times or more with respect to the noble metal ion molar concentration. If it is less than 0.1 times, a larger amount of reducing agent-containing solution is required than the amount of the noble metal ion-containing solution added, which is not preferable because it is industrially disadvantageous.

前記還元剤含有溶液は、一度に全て投入するのではなく複数回に分けて投入するのが好ましく、またその速度は、一定であることが好ましい。   It is preferable that the reducing agent-containing solution is not added all at once but in a plurality of times, and the rate is preferably constant.

前記貴金属微粒子の表面を包囲させる保護コロイドは、(1)炭素数5〜20のアミンを50〜99モル%の範囲内、(2)炭素数4〜30から選ばれる少なくとも1種類のカルボン酸を1〜50モル%の範囲内で含む原料から得られる化合物であることが好ましい。   The protective colloid that surrounds the surface of the noble metal fine particles includes (1) an amine having 5 to 20 carbon atoms in a range of 50 to 99 mol%, and (2) at least one carboxylic acid selected from 4 to 30 carbon atoms. It is preferable that it is a compound obtained from the raw material contained within the range of 1-50 mol%.

前記アミンとしては、例えばペンチルアミン、へキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミン等を挙げることができる。   Examples of the amine include pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, hexadecylamine, and octadecylamine.

(3)炭素数4〜9のカルボン酸と、(4)炭素数10〜30のカルボン酸の組合せにおいて、(4)炭素数10〜30のカルボン酸は、貴金属の粒成長を抑制して表面の平滑性を維持し、更にはガラス基板との密着性を改善して薄膜を成形する上で好ましい。(3)炭素数4〜9のカルボン酸と(4)炭素数10〜30のカルボン酸の比率は、(3)炭素数4〜9のカルボン酸の割合が0〜99モル%の範囲内、(4)炭素数10〜30のカルボン酸の割合が1〜100モル%の範囲内であることが好ましい。 (3) In a combination of a carboxylic acid having 4 to 9 carbon atoms and (4) a carboxylic acid having 10 to 30 carbon atoms , (4) the carboxylic acid having 10 to 30 carbon atoms suppresses the grain growth of the noble metal and the surface It is preferable for maintaining the smoothness of the film and further improving the adhesion to the glass substrate to form a thin film. (3) The ratio of the carboxylic acid having 4 to 9 carbon atoms and (4) the carboxylic acid having 10 to 30 carbon atoms is (3) the ratio of the carboxylic acid having 4 to 9 carbon atoms is in the range of 0 to 99 mol%. (4) The proportion of the carboxylic acid having 10 to 30 carbon atoms is preferably in the range of 1 to 100 mol%.

(3)炭素数4〜9のカルボン酸としては、例えば、ペンタン酸、ヘキサン酸、そしてオクタン酸等を挙げることができる。 (3) Examples of the carboxylic acid having 4 to 9 carbon atoms include pentanoic acid, hexanoic acid, and octanoic acid.

4)炭素数10〜30のカルボン酸としては、例えばデカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、オクタデカン酸、オクタデセン酸、そしてオクタデカジエン酸等を挙げることができる。 ( 4) Examples of the carboxylic acid having 10 to 30 carbon atoms include decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, octadecanoic acid, octadecenoic acid, and octadecadienoic acid.

そして、前記分散液を0.5〜3時間攪拌し、得られたろ過液をエバポレータで濃縮した液体を得る。この液体に溶媒を加えて沈澱物を生成させた後、吸引ろ過し、乾燥することによって保護剤で保護した貴金属微粒子の固形物を得る。   And the said dispersion liquid is stirred for 0.5 to 3 hours, and the liquid which concentrated the obtained filtrate with the evaporator is obtained. A solvent is added to this liquid to form a precipitate, which is then filtered by suction and dried to obtain a solid of precious metal fine particles protected with a protective agent.

ここで使用する溶媒としては、メタノール、エタノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ペプタノール、α−テレピネオールなどのアルコール類を混合して用いることができる。   As the solvent used here, alcohols such as methanol, ethanol, isopropanol, butanol, pentanol, hexanol, cyclohexanol, peptanol and α-terpineol can be mixed and used.

前記固形物である保護剤で保護した貴金属微粒子は、貴金属微粒子の割合が60〜95質量%で、保護コロイドの割合が5〜40質量%が好ましく、両者の合計は100質量%である。   The precious metal fine particles protected with the solid protective agent are preferably 60 to 95% by mass of the precious metal fine particles, and preferably 5 to 40% by mass of the protective colloid, and the total of both is 100% by mass.

そして、この固形物をトルエン、へキサン、シクロヘキサン、ヘプタン、シクロヘプタン、オクタン、デカン、ウンデカン、ドデカン、トリデカン、トリメチルペンタン、ベンゼン、キシレン、テトラリン、ヘキサデカン、テトラデカン、ヘプタメチルノナン等の有機溶媒に溶解してペーストに仕上げることができる。この場合の、貴金属微粒子の濃度が10〜95質量%に調節することが好ましい。   This solid is dissolved in an organic solvent such as toluene, hexane, cyclohexane, heptane, cycloheptane, octane, decane, undecane, dodecane, tridecane, trimethylpentane, benzene, xylene, tetralin, hexadecane, tetradecane, heptamethylnonane, etc. And can be finished into a paste. In this case, the concentration of the noble metal fine particles is preferably adjusted to 10 to 95% by mass.

前記ペーストには、さらに有機金属化合物を添加してもよい。ここで、有機金属化合物とは、有機鉄化合物、有機チタン化合物、有機アルミニウム化合物、有機スズ化合物、有機銅化合物、有機ニッケル化合物、有機インジウム化合物、有機亜鉛化合物、そして有機ビスマス化合物から選ばれる少なくとも一種である。ペーストに不純物としての有機金属化合物を添加することによって、保護コロイドが除去された銀微粒子の粒成長が有効に抑制され、より平滑性に優れた貴金属薄膜が得られる。   An organic metal compound may be further added to the paste. Here, the organic metal compound is at least one selected from an organic iron compound, an organic titanium compound, an organic aluminum compound, an organic tin compound, an organic copper compound, an organic nickel compound, an organic indium compound, an organic zinc compound, and an organic bismuth compound. It is. By adding an organometallic compound as an impurity to the paste, the grain growth of the silver fine particles from which the protective colloid has been removed is effectively suppressed, and a noble metal thin film with better smoothness can be obtained.

前記各種有機金属化合物の具体例としては、有機鉄化合物として、2−エチルヘキサン酸鉄、酢酸鉄(II)、アクリル酸鉄、メタクリル酸鉄(III)、有機チタン化合物として、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソプロポキシド、チタン2−エチルヘキシオキシド、チタンイソブトキサイド、有機アルミニウム化合物として、アセチルアセトンアルミニウム、アルミニウム(III)n−ブトキシド、アルミニウム(III)t−ブトキシド、アルミニウム(III)ジイソプロポキサイドエチルアセテート、アルミニウム(III)イソプロポキシド、アルミニウム(III)2,4−ペンタンジオネート、有機スズ化合物として、2−エチルヘキサン酸スズ、ビス(2−エチルヘキサノエート)スズ、酢酸スズ、テトラ−n−ブチルスズ、テトラメチルスズ、スズ(II)メトキサイド、スズ(II)エトキサイド、トリ−n−ブチルメトキシスズ、有機銅化合物として、酢酸銅、ギ酸銅、シュウ酸銅、銅(II)エチルアセトアセテート、銅(II)2,4ペンタンジオネート、有機ニッケル化合物として、ニッケル(II)2,4ペンタンジオネート、ニッケル(II)ヘキサフルオロペンタンジオネート、有機インジウム化合物として、酢酸インジウム、ギ酸インジウム、シュウ酸インジウム、2−エチルヘキサン酸インジウム、インジウム2,4ペンタンジオネート、インジウムメチル(トリメチル)アセチルアセテート、有機亜鉛化合物として、アクリル酸亜鉛、亜鉛2−エチルヘキサノエート、メタクリル酸亜鉛、亜鉛ネオデカノエート、有機ビスマス化合物として、ビスマスヘキサフルオロペンタンジオネート、ビスマス(III)t−ペントキサイド、ビスマス(III)テトラメチルヘプタンジオネート等が挙げられる。   Specific examples of the various organometallic compounds include, as an organic iron compound, iron 2-ethylhexanoate, iron (II) acetate, iron acrylate, iron (III) methacrylate, as an organic titanium compound, titanium tetramethoxide, Titanium tetraethoxide, titanium tetraisopropoxide, titanium 2-ethylhexoxide, titanium isobutoxide, organic aluminum compounds such as acetylacetone aluminum, aluminum (III) n-butoxide, aluminum (III) t-butoxide, aluminum (III) diisopropoxide ethyl acetate, aluminum (III) isopropoxide, aluminum (III) 2,4-pentanedionate, organotin compound, tin 2-ethylhexanoate, bis (2-ethylhexanoate) ) Tin, tin acetate, tetra-n- Tiltin, tetramethyltin, tin (II) methoxide, tin (II) ethoxide, tri-n-butylmethoxytin, organic copper compounds such as copper acetate, copper formate, copper oxalate, copper (II) ethyl acetoacetate, copper (II) 2,4-pentanedionate, nickel (II) 2,4-pentanedionate, nickel (II) hexafluoropentanedionate as organic nickel compound, indium acetate, indium formate, indium oxalate as organic indium compound Indium 2-ethylhexanoate, indium 2,4-pentanedionate, indium methyl (trimethyl) acetyl acetate, organic zinc compounds such as zinc acrylate, zinc 2-ethylhexanoate, zinc methacrylate, zinc neodecanoate, organic bismuth As a compound, bis Examples include mass hexafluoropentanedionate, bismuth (III) t-pentoxide, and bismuth (III) tetramethylheptanedionate.

得られる薄膜の平滑性及び体積抵抗率を考慮すれば、有機金属化合物の添加量は貴金属に対して0.5at%以下であることがより好ましい。   Considering the smoothness and volume resistivity of the resulting thin film, the addition amount of the organometallic compound is more preferably 0.5 at% or less with respect to the noble metal.

前記ペーストは基板上にスピンコート法、スクリーン印刷法、ディップコート法、インクジェット印刷法等の方法によって薄膜を形成し、該薄膜を150〜450℃で焼成し、これにより貴金属の粒成長を抑制して表面の平滑性を維持し、更にはガラス基板との密着性を改善する。   The paste forms a thin film on a substrate by a method such as spin coating, screen printing, dip coating, or ink jet printing, and the thin film is baked at 150 to 450 ° C., thereby suppressing noble metal grain growth. Thus, the surface smoothness is maintained and the adhesion to the glass substrate is further improved.

本発明の貴金属微粒子の製造方法における他の実施形態としては、貴金属微粒子の表面に保護コロイドとして炭素数5〜20から選ばれる少なくとも1種類のアミンと、炭素数4〜30から選ばれる少なくとも1種類のカルボン酸を選定し、これらによって包囲された固形物である貴金属微粒子の沈澱物を溶媒中で生成させて回収する方法で、効率よく貴金属微粒子を製造することができる。   In another embodiment of the method for producing noble metal fine particles of the present invention, at least one amine selected from 5 to 20 carbon atoms as a protective colloid on the surface of the noble metal fine particles and at least one type selected from 4 to 30 carbon atoms are used. In this method, noble metal fine particles can be efficiently produced by a method in which a precipitate of noble metal fine particles, which are solids surrounded by them, is generated and recovered in a solvent.

具体的には、貴金属微粒子が分散しない溶媒に、炭素数5〜20から選ばれる少なくとも1種類のアミンと、炭素数4〜9のカルボン酸と炭素数10〜30のカルボン酸とを含む原料を攪拌して得られる化合物および/または混合物を保護コロイドと、貴金属イオンと、還元剤を加え、貴金属微粒子の沈澱物を生成させて回収するものである。そして、貴金属微粒子が分散しない溶媒に、保護コロイドと貴金属イオンを加えて、混合攪拌した溶液に複数回に分けて還元剤を添加し貴金属を還元し、貴金属微粒子の沈澱物を生成させ、得られた沈澱物を吸引ろ過して回収する。上記保護コロイドの組合せであれば、貴金属微粒子を有機溶媒に分散したペーストを150〜450℃の温度で焼成しても、焼成膜に残留するために、貴金属の粒成長を抑制して表面の平滑性を維持し、更にはガラス基板との密着性を改善する。 Specifically, a raw material containing at least one amine selected from 5 to 20 carbon atoms, a carboxylic acid having 4 to 9 carbon atoms, and a carboxylic acid having 10 to 30 carbon atoms in a solvent in which noble metal fine particles are not dispersed. A compound and / or mixture obtained by stirring is added with a protective colloid, a noble metal ion, and a reducing agent, and a precipitate of noble metal fine particles is generated and recovered. Then, the protective colloid and the noble metal ion are added to the solvent in which the noble metal fine particles are not dispersed, and the reducing agent is added to the mixed and stirred solution several times to reduce the noble metal, thereby generating a precipitate of the noble metal fine particles. The precipitate is collected by suction filtration. With the above combination of protective colloids, even when a paste in which noble metal fine particles are dispersed in an organic solvent is baked at a temperature of 150 to 450 ° C., it remains in the baked film, so that the grain growth of the noble metal is suppressed and the surface is smoothed. Maintain the property, and further improve the adhesion to the glass substrate.

貴金属微粒子が分散しない溶媒としては、メタノール、エタノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ペプタノール、α−テレピネオールなどのアルコール類を混合して用いることができる。これにより、貴金属微粒子の沈澱物を生成させ、容易に回収することができる。   As a solvent in which noble metal fine particles are not dispersed, alcohols such as methanol, ethanol, isopropanol, butanol, pentanol, hexanol, cyclohexanol, peptanol, and α-terpineol can be mixed and used. As a result, a precipitate of noble metal fine particles can be generated and easily recovered.

そして、保護コロイドである(1)炭素数5〜20のアミン、(2)炭素数4〜9のカルボン酸と炭素数10〜30のカルボン酸を含む原料から得られる化合物および/または混合物、貴金属イオン、そして還元剤の種類、添加量等は、前述と同じである。
And a compound and / or a mixture obtained from a raw material containing a protective colloid (1) an amine having 5 to 20 carbon atoms, (2) a carboxylic acid having 4 to 9 carbon atoms and a carboxylic acid having 10 to 30 carbon atoms , a noble metal The types of ions, reducing agents, addition amounts, etc. are the same as described above.

以下、本発明を実施例に基づいて説明する。これらの例は単なる例示であって、本発明を何ら限定するものではない。   Hereinafter, the present invention will be described based on examples. These examples are merely illustrative and do not limit the present invention in any way.

実施例1
酢酸銀2.5g、保護剤として(1)オクチルアミン4.9g、(2)オクタデカジエン酸0.5g、(3)ヘキサン酸2.0gをトリメチルペンタン0.05Lに加え、攪拌混合し溶解した。この混合溶液を攪拌し、0.03モル/Lの水素化ホウ素ナトリウムを含むプロパノール溶液0.1Lを1時間かけて滴下し銀を還元した。更に、3時間攪拌して黒色の液体を得た。
Example 1
Silver acetate 2.5g, (1) Octylamine 4.9g, (2) Octadecadienoic acid 0.5g, (3) Hexanoic acid 2.0g as a protective agent was added to 0.05L of trimethylpentane, mixed and dissolved. did. This mixed solution was stirred, and 0.1 L of a propanol solution containing 0.03 mol / L sodium borohydride was added dropwise over 1 hour to reduce silver. Furthermore, it stirred for 3 hours and obtained the black liquid.

得られた黒色の液体をエバポレータによって濃縮した後、これにメタノール0.5Lを加えて褐色の沈殿物を生成させた後、吸引ろ過により沈殿物を回収した。該沈殿物をトリメチルペンタンに再分散させ、ろ過した後、乾燥させて2.3gの黒色の固体を得た(銀ナノ粒子の収率95%)。反応溶媒濃度0.1モル/Lで銀微粒子固形物を得た。UV−VIS(紫外可視分光光度計)で測定したところ、図1に示すような波長430.5nmにピークを有し、銀のナノ粒子が生成されていることを確認した。   After the obtained black liquid was concentrated by an evaporator, 0.5 L of methanol was added thereto to form a brown precipitate, and then the precipitate was collected by suction filtration. The precipitate was redispersed in trimethylpentane, filtered, and dried to obtain 2.3 g of a black solid (yield of silver nanoparticles 95%). A silver fine particle solid was obtained at a reaction solvent concentration of 0.1 mol / L. When measured with UV-VIS (ultraviolet-visible spectrophotometer), it was confirmed that a silver nanoparticle was generated having a peak at a wavelength of 430.5 nm as shown in FIG.

得られた黒色の固体を、金属分濃度が30質量%になるようにトルエンに溶解して銀微粒子分散トルエンペーストを調整した。これをガラス基板上にスピンコート法によって薄膜を作製し、300℃のマッフル炉にて30分間焼成した。焼成後、連続膜を作製し、その表面を表面粗さ計で測定した結果、11.2nmであり、表面には凹凸が少なく平滑性に優れていることが判る。また、得られた薄膜は体積抵抗率3.65μΩ・cm、膜厚323.4nmであった。また、碁盤目テープ剥離試験を行ったところ、100/100の結果を得た。   The obtained black solid was dissolved in toluene so that the metal concentration was 30% by mass to prepare a silver fine particle-dispersed toluene paste. A thin film was prepared on a glass substrate by spin coating, and baked in a muffle furnace at 300 ° C. for 30 minutes. After firing, a continuous film was prepared, and the surface was measured with a surface roughness meter. As a result, it was found to be 11.2 nm and the surface had few irregularities and excellent smoothness. The obtained thin film had a volume resistivity of 3.65 μΩ · cm and a film thickness of 323.4 nm. Moreover, when a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

尚、表面粗さの測定は、触針式膜厚計で測定し中心線表面粗さ(Ra)を算出した。   The surface roughness was measured with a stylus type film thickness meter to calculate the centerline surface roughness (Ra).

薄膜の体積抵抗率は、その表面抵抗値を四探針法で測定し、触針式膜厚計で測定した膜厚および膜面積から算出した。   The volume resistivity of the thin film was calculated from the film thickness and the film area measured by a stylus type film thickness meter by measuring the surface resistance value by a four-probe method.

薄膜と無アルカリガラスとの密着性は、薄膜をクロスカットした後、テープ剥離試験により評価した。   The adhesion between the thin film and the alkali-free glass was evaluated by a tape peeling test after the thin film was cross-cut.

実施例2
オクタデカジエン酸をテトラデカン酸にした以外は実施例1と同様にして、銀ナノ粒子を得た(収率82%)。UV−VISで測定したところ、図1に示すような波長424.5nmにピークを有し、銀のナノ粒子が生成されていることを確認した。焼成後連続膜を作製し、その表面を肉眼で観察した。
Example 2
Silver nanoparticles were obtained in the same manner as in Example 1 except that tetradecanoic acid was changed to tetradecanoic acid (yield 82%). When measured by UV-VIS, it was confirmed that silver nanoparticles were generated with a peak at a wavelength of 424.5 nm as shown in FIG. After firing, a continuous film was prepared and the surface was observed with the naked eye.

その結果、薄膜の中心線表面粗さRaは4.3nmで、凹凸が少なく平滑性に優れていた。また、得られた薄膜の体積抵抗率は5.4μΩ・cm、膜厚0.4μmであった。また、碁盤目テープ剥離試験を行ったところ、80/100の結果を得た。   As a result, the center line surface roughness Ra of the thin film was 4.3 nm, and there were few unevenness | corrugations and it was excellent in smoothness. The obtained thin film had a volume resistivity of 5.4 μΩ · cm and a film thickness of 0.4 μm. Moreover, when a cross-cut tape peeling test was performed, a result of 80/100 was obtained.

実施例3
オクタデカジエン酸をヘキサデカン酸にした以外は実施例1と同様にして、銀ナノ粒子を得た(収率72%)。UV−VISで測定したところ、図1に示すような波長431.5nmにピークを有し、銀のナノ粒子が生成されていることを確認した。焼成後連続膜を作製し、その表面を肉眼で観察した。
Example 3
Silver nanoparticles were obtained in the same manner as in Example 1 except that octadecadienoic acid was changed to hexadecanoic acid (yield 72%). When measured by UV-VIS, it was confirmed that silver nanoparticles were generated with a peak at a wavelength of 431.5 nm as shown in FIG. After firing, a continuous film was prepared and the surface was observed with the naked eye.

その結果、薄膜の中心線表面粗さRaは10.8nmで、凹凸が少なく平滑性に優れていた。また、得られた薄膜の体積抵抗率は4.0μΩ・cm、膜厚0.4μmであった。また、碁盤目テープ剥離試験を行ったところ、10/100の結果を得た。   As a result, the center line surface roughness Ra of the thin film was 10.8 nm, and there were few unevenness | corrugations and it was excellent in smoothness. The obtained thin film had a volume resistivity of 4.0 μΩ · cm and a film thickness of 0.4 μm. Moreover, when a cross-cut tape peeling test was performed, a result of 10/100 was obtained.

実施例4
オクタデカジエン酸をオクタデセン酸にした以外は実施例1と同様にして、銀ナノ粒子を得た(収率95%)。UV−VISで測定したところ、図1に示すような波長428.5nmにピークを有し、銀のナノ粒子が生成されていることを確認した。焼成後連続膜を作製し、その表面を肉眼で観察した。
Example 4
Silver nanoparticles were obtained in the same manner as in Example 1 except that octadecadienoic acid was changed to octadecenoic acid (yield 95%). When measured by UV-VIS, it has a peak at a wavelength of 428.5 nm as shown in FIG. 1, and it was confirmed that silver nanoparticles were generated. After firing, a continuous film was prepared and the surface was observed with the naked eye.

その結果、薄膜の中心線表面粗さRaは1.4nmで、凹凸が少なく平滑性に優れていた。また、得られた薄膜の体積抵抗率は3.8μΩ・cm、膜厚0.3μmであった。また、碁盤目テープ剥離試験を行ったところ、0/100の結果を得た。   As a result, the center line surface roughness Ra of the thin film was 1.4 nm, and there were few unevenness | corrugations and it was excellent in smoothness. The obtained thin film had a volume resistivity of 3.8 μΩ · cm and a film thickness of 0.3 μm. Moreover, when a cross-cut tape peeling test was performed, a result of 0/100 was obtained.

実施例5
オクタデカジエン酸をオクタデカン酸にした以外は実施例1と同様にして、銀ナノ粒子を得た(収率67%)。UV−VISで測定したところ、図1に示すような波長427.0nmにピークを有し、銀のナノ粒子が生成されていることを確認した。焼成後連続膜を作製し、その表面を肉眼で観察した。
Example 5
Silver nanoparticles were obtained in the same manner as in Example 1 except that octadecadienoic acid was changed to octadecanoic acid (yield 67%). When measured by UV-VIS, it has a peak at a wavelength of 427.0 nm as shown in FIG. 1, and it was confirmed that silver nanoparticles were generated. After firing, a continuous film was prepared and the surface was observed with the naked eye.

その結果、薄膜の中心線表面粗さRaは4.5nmで、凹凸が少なく平滑性に優れていた。また、得られた薄膜の体積抵抗率は4.4μΩ・cm、膜厚0.5μmであった。また、碁盤目テープ剥離試験を行ったところ、0/100の結果を得た。   As a result, the center line surface roughness Ra of the thin film was 4.5 nm, and there were few unevenness | corrugations and it was excellent in smoothness. The obtained thin film had a volume resistivity of 4.4 μΩ · cm and a film thickness of 0.5 μm. Moreover, when a cross-cut tape peeling test was performed, a result of 0/100 was obtained.

実施例6
酢酸銀2.5g、保護剤として(1)オクチルアミン4.9g、(2)オクタデカジエン酸0.5g、(3)ヘキサン酸2.0gをトリメチルペンタン0.05Lに加え、攪拌混合し溶解した。この混合溶液に0.03モル/Lの水素化ホウ素ナトリウムを含むプロパノール溶液0.1Lを1時間かけて滴下し銀を還元した。更に、3時間攪拌して黒色の液体を得た。
Example 6
Silver acetate 2.5g, (1) Octylamine 4.9g, (2) Octadecadienoic acid 0.5g, (3) Hexanoic acid 2.0g as a protective agent was added to 0.05L of trimethylpentane, mixed and dissolved. did. To this mixed solution, 0.1 L of a propanol solution containing 0.03 mol / L sodium borohydride was added dropwise over 1 hour to reduce silver. Furthermore, it stirred for 3 hours and obtained the black liquid.

得られた黒色の液体をエバポレータによって濃縮した後、これにメタノール0.5Lを加えて褐色の沈殿物を生成させた後、吸引ろ過により沈殿物を回収した。該沈殿物をトリメチルペンタンに再分散させ、ろ過した後、乾燥させて2.3gの黒色の固体を得た(銀ナノ粒子の収率95%)。反応溶媒濃度0.1モル/Lで銀微粒子固形物を得た。UV−VISで測定したところ、波長430.5nmにピークを有し、銀ナノ粒子が生成されていることを確認した。   After the obtained black liquid was concentrated by an evaporator, 0.5 L of methanol was added thereto to form a brown precipitate, and then the precipitate was collected by suction filtration. The precipitate was redispersed in trimethylpentane, filtered, and dried to obtain 2.3 g of a black solid (yield of silver nanoparticles 95%). A silver fine particle solid was obtained at a reaction solvent concentration of 0.1 mol / L. When measured by UV-VIS, it has a peak at a wavelength of 430.5 nm, and it was confirmed that silver nanoparticles were generated.

得られた黒色の固体を、金属分濃度が30質量%になるようにトルエンに溶解して銀微粒子分散トルエンペーストを作製した。このペーストに銀に対して2−エチルヘキサン酸鉄を0.1at%添加した。これを無アルカリガラス基板上にスピンコート法によって薄膜を作製し、300℃のマッフル炉にて30分間焼成した。焼成後、連続膜を作製し、その表面を表面粗さ計で測定した結果、6.6nmであり、表面には凹凸がなく平滑性に優れていることが判る。また得られた薄膜は、体積抵抗率4.98μΩ・cm、膜厚0.3μmであった。また、碁盤目テープ剥離試験を行ったところ100/100の結果を得た。   The obtained black solid was dissolved in toluene so that the metal concentration was 30% by mass to prepare a silver fine particle-dispersed toluene paste. To this paste, 0.1 at% of iron 2-ethylhexanoate was added to silver. A thin film was prepared by spin coating on an alkali-free glass substrate and baked in a muffle furnace at 300 ° C. for 30 minutes. After firing, a continuous film was prepared and the surface was measured with a surface roughness meter. As a result, it was found that the surface was 6.6 nm and the surface had no irregularities and was excellent in smoothness. Further, the obtained thin film had a volume resistivity of 4.98 μΩ · cm and a film thickness of 0.3 μm. Further, when a cross-cut tape peeling test was performed, a result of 100/100 was obtained.

実施例7
2−エチルヘキサン酸鉄0.1at%を0.25at%にした以外は、実施例6と同じ手順に従って、無アルカリガラス基板上に焼成膜を得た。得られた焼成膜の膜厚は312.7nmであり、体積抵抗率は5.16μΩ・cmであった。焼成膜とガラス基板との密着性は良好でテープ剥離試験をクリアした。中心線表面粗さRaは1.8nmであり、金属光沢のある平滑な膜であった。
Example 7
A fired film was obtained on an alkali-free glass substrate according to the same procedure as in Example 6 except that iron 2-ethylhexanoate was changed to 0.1 at% by 0.25 at%. The obtained fired film had a film thickness of 312.7 nm and a volume resistivity of 5.16 μΩ · cm. The adhesion between the fired film and the glass substrate was good and the tape peeling test was cleared. The center line surface roughness Ra was 1.8 nm, and it was a smooth film with metallic luster.

実施例8
2−エチルヘキサン酸鉄0.1at%をチタンテトライソプロポキシド0.5at%にした以外は、実施例6と同じ手順に従って、無アルカリガラス基板上に焼成膜を得た。得られた焼成膜の膜厚は336.4nmであり、体積抵抗率は7.39μΩ・cmであった。焼成膜とガラス基板との密着性は得られなかったが、中心線表面粗さRaは2.0nmであり金属光沢のある平滑な膜であった。
Example 8
A fired film was obtained on an alkali-free glass substrate according to the same procedure as in Example 6 except that 0.1 at% of iron 2-ethylhexanoate was changed to 0.5 at% of titanium tetraisopropoxide. The film thickness of the obtained fired film was 336.4 nm and the volume resistivity was 7.39 μΩ · cm. Although adhesion between the fired film and the glass substrate was not obtained, the center line surface roughness Ra was 2.0 nm, and the film was a smooth film with metallic luster.

実施例9
2−エチルヘキサン酸鉄0.1at%を2−エチルヘキサン酸スズ0.1at%にした以外は、実施例6と同じ手順に従って、無アルカリガラス基板上に焼成膜を得た。得られた焼成膜の膜厚は314.2nmであり、体積抵抗率は7.39μΩ・cmであった。焼成膜とガラス基板との密着性は得られなかったが、中心線表面粗さRaは7.9nmであり金属光沢のある平滑な膜であった。
Example 9
A fired film was obtained on an alkali-free glass substrate according to the same procedure as in Example 6, except that 0.1 at% of iron 2-ethylhexanoate was changed to 0.1 at% of tin 2-ethylhexanoate. The film thickness of the obtained fired film was 314.2 nm, and the volume resistivity was 7.39 μΩ · cm. Although adhesion between the fired film and the glass substrate was not obtained, the center line surface roughness Ra was 7.9 nm, and the film was a smooth film with metallic luster.

実施例10
2−エチルヘキサン酸鉄0.1at%を2−エチルヘキサン酸スズ0.5at%にした以外は、実施例6と同じ手順に従って、無アルカリガラス基板上に焼成膜を得た。得られた焼成膜の膜厚は381.5nmであり、体積抵抗率は19.68μΩ・cmであった。焼成膜とガラス基板との密着性は良好で、テープ剥離試験をクリアした。中心線表面粗さRaは9.4nmであり金属光沢のある平滑な膜であった。
Example 10
A fired film was obtained on an alkali-free glass substrate according to the same procedure as in Example 6 except that 0.1 at% of iron 2-ethylhexanoate was changed to 0.5 at% of tin 2-ethylhexanoate. The obtained fired film had a thickness of 381.5 nm and a volume resistivity of 19.68 μΩ · cm. The adhesion between the fired film and the glass substrate was good, and the tape peeling test was cleared. The center line surface roughness Ra was 9.4 nm, and it was a smooth film with metallic luster.

実施例11
ドデシルアミン9.2gとヘキサン酸2.9gを混合し、60℃、1時間攪拌した後、トリエチルペンタン0.5Lと混合した。この混合溶液に5.0×10−2モル/Lの塩化金(III)酸水溶液0.05Lとプロパノール0.05Lを添加し、1時間攪拌した。この混合溶液に2.5×10−1モル/Lの水素化ホウ素ナトリウムを含む水溶液0.05Lを滴下し、金を還元した。
Example 11
9.2 g of dodecylamine and 2.9 g of hexanoic acid were mixed, stirred at 60 ° C. for 1 hour, and then mixed with 0.5 L of triethylpentane. To this mixed solution, 0.05 L of 5.0 × 10 −2 mol / L aqueous solution of gold chloride (III) acid and 0.05 L of propanol were added and stirred for 1 hour. To this mixed solution, 0.05 L of an aqueous solution containing 2.5 × 10 −1 mol / L sodium borohydride was dropped to reduce gold.

滴下後、1時間以上攪拌し、油層のみを抽出して黒色の液体を得た。得られた液体をエバポレータで凝縮した後、これにメタノール0.5Lを加えて沈殿を生成させた後、吸引ろ過により沈殿物を回収した。この沈殿物をトリメチルペンタンで再分散させ、ろ過した後、乾燥させて黒色の固体0.29gを得た(金微粒子の収量54%)。   After dropping, the mixture was stirred for 1 hour or more, and only the oil layer was extracted to obtain a black liquid. After condensing the obtained liquid with an evaporator, 0.5 L of methanol was added thereto to form a precipitate, and then the precipitate was collected by suction filtration. This precipitate was redispersed with trimethylpentane, filtered, and dried to obtain 0.29 g of a black solid (yield of gold fine particles 54%).

得られた固体を金属濃度約30質量%となるようにトリメチルペンタンに分散して金微粒子分散トリメチルペンタンペーストを調整した。これを無アルカリガラス基板上にスピンコート法によって薄膜を作製し、ホットプレート上で30分間焼成した。焼成後連続膜を作製し、その表面を肉眼で確認した。その結果、薄膜の表面粗さRaは3.6nmで、凹凸が少なく平滑性に優れていた。また、得られた薄膜の体積抵抗率は6.7μΩ・cm、膜厚121nmであった。また、碁盤目テープ剥離試験を行ったところ、0/100の結果を得た。   The obtained solid was dispersed in trimethylpentane so as to have a metal concentration of about 30% by mass to prepare a gold fine particle-dispersed trimethylpentane paste. A thin film was prepared by spin coating on an alkali-free glass substrate and baked on a hot plate for 30 minutes. A continuous film was prepared after firing, and the surface was confirmed with the naked eye. As a result, the surface roughness Ra of the thin film was 3.6 nm, and there were few unevenness | corrugations and it was excellent in smoothness. The obtained thin film had a volume resistivity of 6.7 μΩ · cm and a film thickness of 121 nm. Moreover, when a cross-cut tape peeling test was performed, a result of 0/100 was obtained.

比較例1
オクタデカジエン酸をオクタデセン−1−オールにした以外は実施例1と同様にして、焼成後連続膜を作製し、その表面を肉眼で観察した。その結果、薄膜の中心線表面粗さRaは50nm以上で、凹凸が多くて平滑性が劣っていた。
Comparative Example 1
A continuous film was prepared after firing in the same manner as in Example 1 except that octadecadienoic acid was changed to octadecen-1-ol, and the surface thereof was observed with the naked eye. As a result, the center line surface roughness Ra of the thin film was 50 nm or more, and there were many irregularities and the smoothness was poor.

比較例2
オクタデカジエン酸を酢酸オクタデシルにした以外は実施例1と同様にして、焼成後連続膜を作製し、その表面を肉眼で観察した。その結果、薄膜の中心線表面粗さRaは50nm以上で、表面には凹凸が多くて平滑性が劣っていた。
Comparative Example 2
A continuous film was prepared after firing in the same manner as in Example 1 except that octadecadienoic acid was changed to octadecyl acetate, and the surface thereof was observed with the naked eye. As a result, the centerline surface roughness Ra of the thin film was 50 nm or more, and the surface had many irregularities and the smoothness was poor.

比較例3
酢酸銀2.5g、保護剤としてヘキサン酸7.8g、オクチルアミン19.4gをトリメチルペンタン1Lに加え、攪拌混合し溶解した。この混合溶液を攪拌し、0.03モル/Lの水素化ホウ素ナトリウムを含むプロパノール溶液0.6Lを1時間かけて滴下し、銀を還元した。更に、3時間攪拌して黒色の液体を得た。
Comparative Example 3
2.5 g of silver acetate, 7.8 g of hexanoic acid as a protective agent, and 19.4 g of octylamine were added to 1 L of trimethylpentane, stirred and mixed to dissolve. The mixed solution was stirred, and 0.6 L of a propanol solution containing 0.03 mol / L sodium borohydride was added dropwise over 1 hour to reduce silver. Furthermore, it stirred for 3 hours and obtained the black liquid.

実施例1と同様に、得られた黒色の液体をエバポレータによって濃縮した後、これにメタノールを加えて褐色の沈殿物を生成させた後、吸引ろ過により沈殿物を回収した。そしてこの沈殿物をイソオクタンに再分散させ、ろ過した後、乾燥させて黒色の固体を得た。   In the same manner as in Example 1, the obtained black liquid was concentrated by an evaporator, methanol was added thereto to form a brown precipitate, and the precipitate was collected by suction filtration. The precipitate was redispersed in isooctane, filtered, and dried to obtain a black solid.

しかし、得られた黒色の固体は除々に変色し、これをトルエンに溶解したが、凝集してコロイド分散せずインキを作製することが出来なかった。   However, the obtained black solid gradually discolored and dissolved in toluene. However, it did not aggregate and colloidally disperse, making it impossible to produce an ink.

比較例4
酢酸銀30g、保護剤としてのナフテン酸145g、および保護剤としてのオクチルアミン140gにトリメチルペンタン0.7を加え、室温で攪拌し、溶解させた。
Comparative Example 4
Trimethylpentane 0.7 was added to 30 g of silver acetate, 145 g of naphthenic acid as a protective agent, and 140 g of octylamine as a protective agent, and the mixture was stirred and dissolved at room temperature.

得られた溶液を攪拌し、0.1モル/L水素化ホウ素ナトリウムプロパノール溶液660mLを20分間かけて滴下し、銀を還元した。さらに1時間攪拌して、沈殿物を吸引ろ過により除去した後、ろ過液をエバポレータで濃縮し、黒色の液体を得た。   The resulting solution was stirred and 660 mL of a 0.1 mol / L sodium borohydride propanol solution was added dropwise over 20 minutes to reduce silver. The mixture was further stirred for 1 hour and the precipitate was removed by suction filtration, and then the filtrate was concentrated with an evaporator to obtain a black liquid.

得られた黒色の液体にメタノール3Lを添加して褐色の沈殿物を生成させた後、吸引ろ過により沈殿物を回収した。得られた沈殿物をトリメチルペンタンに再分散させ、ろ過した後、乾燥させて黒色の固体を得た。   After adding 3 L of methanol to the resulting black liquid to produce a brown precipitate, the precipitate was collected by suction filtration. The obtained precipitate was redispersed in trimethylpentane, filtered, and dried to obtain a black solid.

得られた黒色の固体を、金属分濃度が30質量%となるようにトルエンに溶解して銀微粒子分散トルエンインキを調整し、焼成後連続膜を作製し、その表面を肉眼で観察した。その結果、薄膜の中心線表面粗さRaは50nm以上で、凹凸が多くて平滑性が劣っていた。碁盤目テープ剥離試験を行ったところ、0/100の結果を得た。   The obtained black solid was dissolved in toluene so that the metal concentration was 30% by mass to prepare a silver fine particle-dispersed toluene ink, a continuous film was prepared after firing, and the surface was observed with the naked eye. As a result, the center line surface roughness Ra of the thin film was 50 nm or more, and there were many irregularities and the smoothness was poor. When a cross-cut tape peeling test was performed, a result of 0/100 was obtained.

比較例5
オクチルアミン16.41gとトルエン0.25Lを混合した。この溶液に5.0×10−2モル/Lの塩化金(III)酸水溶液0.05Lを加え1時間攪拌した。作製した金イオン溶液にドデカンチオール0.51gを加え、還元剤として2.5×10−1モル/Lの水素化ホウ素ナトリウム水溶液0.05Lを滴下し金を還元した。
Comparative Example 5
Octylamine 16.41g and toluene 0.25L were mixed. To this solution, 0.05 L of 5.0 × 10 −2 mol / L aqueous solution of chloroauric (III) chloroacid was added and stirred for 1 hour. To the prepared gold ion solution, 0.51 g of dodecanethiol was added, and 0.05 L of a 2.5 × 10 −1 mol / L sodium borohydride aqueous solution was added dropwise as a reducing agent to reduce the gold.

滴下後、1時間以上攪拌し、油層のみを抽出した後、エバポレータで濃縮することで黒色の液体を得た。この液体にメタノール0.5Lを添加し、30分程度攪拌して沈殿を生成させた。吸引ろ過により沈殿物を回収した。この沈殿物をトルエンで再分散させ、ろ過した後、乾燥させて黒色の固体を得た。   After dropping, the mixture was stirred for 1 hour or more to extract only the oil layer, and then concentrated by an evaporator to obtain a black liquid. To this liquid, 0.5 L of methanol was added and stirred for about 30 minutes to form a precipitate. The precipitate was collected by suction filtration. This precipitate was redispersed with toluene, filtered, and dried to obtain a black solid.

得られた固体を金属濃度約30質量%となるようにトルエンに分散して金微粒子分散トルエンペーストを調整した。これを無アルカリガラス基板上にスピンコート法によって薄膜を作製し、ホットプレート上で30分間焼成した。得られた薄膜を300℃のホットプレート上で30分間焼成したが、連続膜は得られなかった。   The obtained solid was dispersed in toluene so that the metal concentration was about 30% by mass to prepare a gold fine particle-dispersed toluene paste. A thin film was prepared by spin coating on an alkali-free glass substrate and baked on a hot plate for 30 minutes. The obtained thin film was baked on a hot plate at 300 ° C. for 30 minutes, but no continuous film was obtained.

実施例12
酢酸銀2.5g、保護剤として(1)オクチルアミン4.9g、(2)オクタデカジエン酸0.5g、(3)ヘキサン酸2.0gをメタノール0.5Lに加え、攪拌混合し溶解した。この混合溶液に攪拌し、0.03モル/Lの水素化ホウ素ナトリウムを含むメタノール溶液0.1Lを1時間かけて滴下し銀を還元した。
Example 12
2.5 g of silver acetate, (1) octylamine 4.9 g, (2) octadecadienoic acid 0.5 g, and (3) hexanoic acid 2.0 g as a protective agent were added to 0.5 L of methanol and mixed by stirring to dissolve. . The mixture was stirred and 0.1 L of a methanol solution containing 0.03 mol / L sodium borohydride was added dropwise over 1 hour to reduce silver.

得られた沈澱物を吸引ろ過により回収した。該沈殿物をトリメチルペンタンに再分散させ、ろ過した後、乾燥させて2.3gの黒色の固体を得た。(銀ナノ粒子の収率95%)UV−VIS(紫外可視分光光度計)で測定したところ、波長430.5nmにピークを有し、銀のナノ粒子が生成されていることを確認した。   The resulting precipitate was collected by suction filtration. The precipitate was redispersed in trimethylpentane, filtered and dried to obtain 2.3 g of a black solid. (Yield 95% of silver nanoparticles) When measured with UV-VIS (ultraviolet visible spectrophotometer), it was confirmed that a silver nanoparticle was generated having a peak at a wavelength of 430.5 nm.

得られた黒色の固体を、金属分濃度が38質量%になるようにトルエンに溶解して銀微粒子分散トルエンペーストを調整した。これをガラス基板上にスピンコート法によって薄膜を作製し、300℃のマッフル炉にて30分間焼成した。焼成後、連続膜を作製し、その表面を表面粗さ計で測定した結果、11.2nmであり、表面には凹凸が少なく平滑性に優れていることが判る。また、得られた薄膜は体積抵抗率4.66μΩ・cm、膜厚351.3nmであった。また、基盤目テープ剥離試験を行ったところ、100/100の結果を得た。   The obtained black solid was dissolved in toluene so that the metal concentration was 38% by mass to prepare a silver fine particle dispersed toluene paste. A thin film was prepared on a glass substrate by spin coating, and baked in a muffle furnace at 300 ° C. for 30 minutes. After firing, a continuous film was prepared, and the surface was measured with a surface roughness meter. As a result, it was found to be 11.2 nm and the surface had few irregularities and excellent smoothness. The obtained thin film had a volume resistivity of 4.66 μΩ · cm and a film thickness of 351.3 nm. Moreover, when the foundation | substrate eye tape peeling test was done, the result of 100/100 was obtained.

実施例13
酢酸銀2.5g、保護剤として(1)オクチルアミン4.9g、(2)オクタデカジエン酸0.5g、(3)ヘキサン酸2.0gをエタノール0.5Lに加え、攪拌混合し溶解した。この混合溶液に攪拌し、0.03モル/Lの水素化ホウ素ナトリウムを含むエタノール溶液0.1Lを1時間かけて滴下し銀を還元した。
Example 13
2.5 g of silver acetate, (1) octylamine 4.9 g, (2) octadecadienoic acid 0.5 g, and (3) hexanoic acid 2.0 g as a protective agent were added to 0.5 L of ethanol, mixed by stirring and dissolved. . The mixed solution was stirred, and 0.1 L of an ethanol solution containing 0.03 mol / L sodium borohydride was added dropwise over 1 hour to reduce silver.

得られた沈澱物を実施例12と同様に吸引ろ過により回収し、2.3gの黒色の固体を得た。(銀ナノ粒子の収率90%)UV−VIS(紫外可視分光光度計)で測定したところ、波長429.0nmにピークを有し、銀のナノ粒子が生成されていることを確認した。   The obtained precipitate was collected by suction filtration in the same manner as in Example 12 to obtain 2.3 g of a black solid. (Yield 90% of silver nanoparticles) When measured with UV-VIS (ultraviolet visible spectrophotometer), it was confirmed that a silver nanoparticle was generated having a peak at a wavelength of 429.0 nm.

得られた黒色の固体を、金属分濃度が38質量%になるようにトルエンに溶解して銀微粒子分散トルエンペーストを調整した。これを実施例6と同様に焼成して連続膜を作製し、その表面を表面粗さ計で測定した結果、10.6nmであり、表面には凹凸が少なく平滑性に優れていることが判る。また、得られた薄膜は体積抵抗率4.16μΩ・cm、膜厚348.6nmであった。また、基盤目テープ剥離試験を行ったところ、100/100の結果を得た。   The obtained black solid was dissolved in toluene so that the metal concentration was 38% by mass to prepare a silver fine particle dispersed toluene paste. This was baked in the same manner as in Example 6 to produce a continuous film, and the surface was measured with a surface roughness meter. As a result, it was found that the surface was 10.6 nm and the surface had few irregularities and excellent smoothness. . The obtained thin film had a volume resistivity of 4.16 μΩ · cm and a film thickness of 348.6 nm. Moreover, when the foundation | substrate eye tape peeling test was done, the result of 100/100 was obtained.

実施例14
酢酸銀2.5g、保護剤として(1)オクチルアミン4.9g、(2)オクタデカジエン酸0.5g、(3)ヘキサン酸2.0gをプロパノール0.5Lに加え、攪拌混合し溶解した。この混合溶液に攪拌し、0.03モル/Lの水素化ホウ素ナトリウムを含むプロパノーリ溶液0.1Lを1時間かけて滴下し銀を還元した。
Example 14
2.5 g of silver acetate, (1) octylamine 4.9 g, (2) octadecadienoic acid 0.5 g, and (3) hexanoic acid 2.0 g as a protective agent were added to 0.5 L of propanol, mixed by stirring and dissolved. . The mixed solution was stirred, and 0.1 L of a propanol solution containing 0.03 mol / L sodium borohydride was added dropwise over 1 hour to reduce silver.

得られた沈澱物を実施例12と同様に吸引ろ過により回収し、2.3gの黒色の固体を得た。(銀ナノ粒子の収率35%)UV−VIS(紫外可視分光光度計)で測定したところ、波長428.2nmにピークを有し、銀のナノ粒子が生成されていることを確認した。   The obtained precipitate was collected by suction filtration in the same manner as in Example 12 to obtain 2.3 g of a black solid. (Yield 35% of silver nanoparticles) When measured with UV-VIS (ultraviolet visible spectrophotometer), it was confirmed that a silver nanoparticle was generated having a peak at a wavelength of 428.2 nm.

得られた黒色の固体を、金属分濃度が38質量%になるようにトルエンに溶解して銀微粒子分散トルエンペーストを調整した。これを実施例12と同様に焼成して連続膜を作製し、その表面を表面粗さ計で測定した結果、12.2nmであり、表面には凹凸が少なく平滑性に優れていることが判る。また、得られた薄膜は体積抵抗率4.78μΩ・cm、膜厚348.6nmであった。また、基盤目テープ剥離試験を行ったところ、100/100の結果を得た。   The obtained black solid was dissolved in toluene so that the metal concentration was 38% by mass to prepare a silver fine particle dispersed toluene paste. This was baked in the same manner as in Example 12 to produce a continuous film, and the surface was measured with a surface roughness meter. As a result, it was found that the surface was 12.2 nm and the surface had few irregularities and excellent smoothness. . The obtained thin film had a volume resistivity of 4.78 μΩ · cm and a film thickness of 348.6 nm. Moreover, when the foundation | substrate eye tape peeling test was done, the result of 100/100 was obtained.

本発明の貴金属微粒子の製造方法および貴金属薄膜の製造方法では、150〜450℃という比較的低い焼成温度で焼成することによって焼成コストを抑制しながら、同時に基板との密着性および表面平滑性に優れた貴金属薄膜を製造することができ、各種電極、回路、電界シールド、反射膜等、幅広い用途の貴金属薄膜に使用できる。   In the method for producing noble metal fine particles and the method for producing a noble metal thin film of the present invention, the firing cost is suppressed by firing at a relatively low firing temperature of 150 to 450 ° C., and at the same time, the adhesion to the substrate and the surface smoothness are excellent. It can be used for various types of precious metal thin films such as various electrodes, circuits, electric field shields, and reflective films.

実施例1〜5で得られた銀微粒子固形物のUV−VIS(紫外可視分光光度計)のスペクトルを示すグラフである。It is a graph which shows the spectrum of UV-VIS (ultraviolet visible spectrophotometer) of the silver fine particle solid substance obtained in Examples 1-5.

Claims (11)

貴金属の表面を保護コロイドで包囲した貴金属微粒子の製造方法において、炭素数5〜20から選ばれる少なくとも1種類のアミンと、炭素数4〜9のカルボン酸と炭素数10〜30のカルボン酸とを含む原料を攪拌して得られる化合物および/または混合物を保護コロイドとして用い、この保護コロイドと貴金属イオンを含む溶液に還元剤を添加し攪拌した後、余分な保護コロイドおよび溶媒を除去することを特徴とする貴金属微粒子の製造方法。 In the method for producing noble metal fine particles in which the surface of a noble metal is surrounded by a protective colloid, at least one amine selected from 5 to 20 carbon atoms, a carboxylic acid having 4 to 9 carbon atoms, and a carboxylic acid having 10 to 30 carbon atoms. Using a compound and / or mixture obtained by stirring the raw material containing it as a protective colloid, adding a reducing agent to the solution containing this protective colloid and noble metal ions, stirring, and then removing excess protective colloid and solvent A method for producing noble metal fine particles. 貴金属の表面を保護コロイドで包囲した貴金属微粒子の製造方法において、貴金属微粒子が分散しない溶媒に、炭素数5〜20から選ばれる少なくとも1種類のアミンと、炭素数4〜9のカルボン酸と炭素数10〜30のカルボン酸とを含む原料を攪拌して得られる化合物および/または混合物からなる保護コロイド、貴金属イオン、還元剤を加え、貴金属微粒子の沈澱物を生成させて回収することを特徴とする貴金属微粒子の製造方法。 In the method for producing noble metal fine particles in which the surface of the noble metal is surrounded by a protective colloid, in a solvent in which the noble metal fine particles are not dispersed, at least one amine selected from 5 to 20 carbon atoms, a carboxylic acid having 4 to 9 carbon atoms, and a carbon number A protective colloid composed of a compound and / or a mixture obtained by stirring a raw material containing 10 to 30 carboxylic acids and / or a noble metal ion and a reducing agent are added, and a precipitate of noble metal fine particles is generated and recovered. Method for producing noble metal fine particles. 貴金属微粒子が分散しない溶媒が、メタノール、エタノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ペプタノール、α−テレピネオールから選ばれた少なくとも1種のアルコール類である請求項2記載の貴金属微粒子の製造方法。   The production of precious metal fine particles according to claim 2, wherein the solvent in which the precious metal fine particles are not dispersed is at least one alcohol selected from methanol, ethanol, isopropanol, butanol, pentanol, hexanol, cyclohexanol, peptanol, and α-terpineol. Method. 請求項1または2記載の炭素数10〜30のカルボン酸が、デカン酸、ドデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、オクタデカン酸、オクタデセン酸、そしてオクタデカジエン酸から選ばれた少なくとも一種である貴金属微粒子の製造方法。 The carboxylic acid having 10 to 30 carbon atoms according to claim 1 or 2 is at least one selected from decanoic acid, dodecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, octadecanoic acid, octadecenoic acid, and octadecadienoic acid. A method for producing certain noble metal fine particles. 請求項1または2記載の炭素数4〜9のカルボン酸が、ペンタン酸、ヘキサン酸、そしてオクタン酸から選ばれた少なくとも一種である貴金属微粒子の製造方法。 A method for producing noble metal fine particles, wherein the carboxylic acid having 4 to 9 carbon atoms according to claim 1 or 2 is at least one selected from pentanoic acid, hexanoic acid, and octanoic acid. 請求項1乃至のいずれかに記載の貴金属が、銀である貴金属微粒子の製造方法。 A method for producing noble metal fine particles, wherein the noble metal according to any one of claims 1 to 5 is silver. 請求項1乃至のいずれかに記載の貴金属が、金である貴金属微粒子の製造方法。 A method for producing noble metal fine particles, wherein the noble metal according to any one of claims 1 to 5 is gold. 貴金属の割合が60〜95質量%で、保護コロイドの割合が5〜40質量%である請求項1乃至7のいずれかに記載の貴金属微粒子の製造方法。
The method for producing noble metal fine particles according to any one of claims 1 to 7, wherein a ratio of the noble metal is 60 to 95% by mass and a ratio of the protective colloid is 5 to 40% by mass.
請求項1乃至のいずれかに記載の製造方法によって得られた貴金属微粒子を有機溶剤に溶かしてペーストに作製し、該ペーストを基板上に展開して薄膜を形成し、これを150〜450℃の温度で焼成することを特徴とする貴金属薄膜の製造方法。 A noble metal fine particle obtained by the production method according to any one of claims 1 to 8 is dissolved in an organic solvent to prepare a paste, and the paste is spread on a substrate to form a thin film. A method for producing a noble metal thin film, characterized by firing at a temperature of 前記ペーストにさらに有機金属化合物を添加し、該ペーストを基板上に展開して薄膜を形成し、これを150〜450℃の温度で焼成する請求項記載の貴金属薄膜の製造方法。 The method for producing a noble metal thin film according to claim 9 , wherein an organic metal compound is further added to the paste, the paste is spread on a substrate to form a thin film, and the thin film is baked at a temperature of 150 to 450 ° C. 前記有機金属化合物が、有機鉄化合物、有機チタン化合物、有機アルミニウム化合物、有機スズ化合物、有機銅化合物、有機ニッケル化合物、有機インジウム化合物、有機亜鉛化合物、そして有機ビスマス化合物から選ばれる少なくとも一種である請求項10記載の貴金属薄膜の製造方法。 The organic metal compound is at least one selected from organic iron compounds, organic titanium compounds, organic aluminum compounds, organic tin compounds, organic copper compounds, organic nickel compounds, organic indium compounds, organic zinc compounds, and organic bismuth compounds. Item 11. A method for producing a noble metal thin film according to Item 10 .
JP2006017861A 2005-05-31 2006-01-26 Method for producing noble metal fine particles and method for producing noble metal thin film Expired - Fee Related JP4908002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017861A JP4908002B2 (en) 2005-05-31 2006-01-26 Method for producing noble metal fine particles and method for producing noble metal thin film

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2005158255 2005-05-31
JP2005158255 2005-05-31
JP2005189602 2005-06-29
JP2005189602 2005-06-29
JP2005317147 2005-10-31
JP2005317147 2005-10-31
JP2006017861A JP4908002B2 (en) 2005-05-31 2006-01-26 Method for producing noble metal fine particles and method for producing noble metal thin film

Publications (2)

Publication Number Publication Date
JP2007146271A JP2007146271A (en) 2007-06-14
JP4908002B2 true JP4908002B2 (en) 2012-04-04

Family

ID=38208026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017861A Expired - Fee Related JP4908002B2 (en) 2005-05-31 2006-01-26 Method for producing noble metal fine particles and method for producing noble metal thin film

Country Status (1)

Country Link
JP (1) JP4908002B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7968008B2 (en) 2006-08-03 2011-06-28 Fry's Metals, Inc. Particles and inks and films using them
KR101004553B1 (en) 2007-10-24 2011-01-03 도와 일렉트로닉스 가부시키가이샤 Micro Silver Particle-Containing Composition, Method for Producing It, Method for Producing Micro Silver Particle
KR101153516B1 (en) * 2010-03-23 2012-06-11 삼성전기주식회사 Method for producing metal nanoparticles, ink composition thereby and method for producing of the same
JP5827203B2 (en) 2012-09-27 2015-12-02 三ツ星ベルト株式会社 Conductive composition
CN108053915A (en) * 2017-12-18 2018-05-18 西安宏星电子浆料科技有限责任公司 Silk-screen printing auri conductor paste and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060824A (en) * 2003-07-28 2005-03-10 Mitsuboshi Belting Ltd Method for producing alloy particulate, and method for producing alloy thin film

Also Published As

Publication number Publication date
JP2007146271A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
KR101474040B1 (en) Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
US8512438B2 (en) Methods for controlling metal nanostructures morphology
TWI600776B (en) Silver powder, and electrically conductive paste
JP4908002B2 (en) Method for producing noble metal fine particles and method for producing noble metal thin film
JP5355007B2 (en) Method for producing spherical silver powder
JP5560459B2 (en) Method for synthesizing metal nanoparticles
JP5358877B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
CN102632651B (en) Solder bonds layered product and conjugant
WO2011071885A2 (en) Compositions and methods for growing copper nanowires
JP2007321215A (en) Dispersion of metallic nanoparticle and metallic coating film
JP2005537386A (en) Low viscosity precursor composition and method for depositing conductive electronic features
JP2005081501A (en) Metallic nano particle and its manufacturing method, metallic nano particle dispersion fluid and its manufacturing method, and metallic thin line, metallic membrane and their manufacturing method
JPWO2006011180A1 (en) Conductive metal paste
JP2007197755A (en) Method for producing metal nanoparticle, metal nanoparticle, electrically conductive composition and electronic device
JP2007145947A (en) Electroconductive ink composition and its manufacturing method
JP5560458B2 (en) Method for synthesizing metal nanoparticles
JP5765455B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JP2007175619A (en) Method for manufacturing metallic thin film
JP2006286338A (en) Manufacturing method of silver-palladium alloy thin film
JP4624743B2 (en) Method for producing silver thin film and method for producing copper-silver alloy thin film
JP2005060824A (en) Method for producing alloy particulate, and method for producing alloy thin film
JP5582164B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JP2005060816A (en) Production methods of alloy fine particle and alloy thin film
JP4723236B2 (en) Silver thin film production method
TWI757412B (en) Manufacturing method of silver nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4908002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees