JP2005015628A - Colloidal dispersion of cuprous oxide - Google Patents

Colloidal dispersion of cuprous oxide Download PDF

Info

Publication number
JP2005015628A
JP2005015628A JP2003182109A JP2003182109A JP2005015628A JP 2005015628 A JP2005015628 A JP 2005015628A JP 2003182109 A JP2003182109 A JP 2003182109A JP 2003182109 A JP2003182109 A JP 2003182109A JP 2005015628 A JP2005015628 A JP 2005015628A
Authority
JP
Japan
Prior art keywords
cuprous oxide
colloidal dispersion
dispersion
particle size
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003182109A
Other languages
Japanese (ja)
Other versions
JP4493942B2 (en
Inventor
Mutsuhiro Maruyama
睦弘 丸山
Onkai Son
恩海 孫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2003182109A priority Critical patent/JP4493942B2/en
Publication of JP2005015628A publication Critical patent/JP2005015628A/en
Application granted granted Critical
Publication of JP4493942B2 publication Critical patent/JP4493942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a stable colloidal dispersion containing cuprous oxide in a high concentration, and stable to the change with the passage of time. <P>SOLUTION: This colloidal dispersion of the cuprous oxide contains ≥10 wt.% fine particles of the cuprous oxide. The average diameter of the secondary particles of the cuprous oxide is ≤80 nm, and the viscosity measured at 25°C at a shearing stress within a region of 1×10<SP>-1</SP>s<SP>-1</SP>-1×10<SP>2</SP>s<SP>-1</SP>by using a cone-plate type rotary viscometer is ≤100 mPa s. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高濃度化の微粒子を含み、経時的に安定な酸化第一銅のコロイド分散液及びこのコロイド分散液を用いて銅薄膜を製造する方法に関する。本発明のコロイド分散液は、塗料として用いることが可能である。また酸化第一銅微粒子は容易に還元して金属銅を与えるので、導電材料前駆体としても利用することができる。
【0002】
【従来の技術】
従来、酸化第一銅は、船底塗料やセラミックスの焼結助剤などの用途に、通常、数μmから数百μmの粒径をもつ粉体が用いられている。しかしながら、このサイズの粉体は、分散液に分散させると容易に沈降し、安定なコロイド分散液を得ることはできない。
一次粒径が100nmより小さい酸化第一銅微粒子の製造方法として、硝酸銅や硫酸銅を出発原料とし、大量の水酸化ナトリウムを加えた後、グルコース等の安定剤の存在下、ヒドラジンで還元する方法が公知である(例えば、非特許文献1、2参照)。この方法で得られる酸化第一銅粒子は、粒子間に強い凝集が起こり、二次粒径が数百ナノメートルになるために、分散液に分散させると容易に沈降し、安定なコロイド分散液を得ることはできない。
【0003】
一方、ポリオール溶媒中に、水と銅塩を加えて加熱還元する方法により、一次粒径が100nm未満の酸化第一銅微粒子が分散した、比較的安定なコロイド分散液が得られることが公知である(例えば、非特許文献3参照)。この方法で得られる分散液は、微粒子含量の少ない希薄コロイド系では安定性は比較的高い。しかし、分散液中の酸化第一銅分散液中の微粒子含量を10重量%程度まで増すと、粒子間が時間経過とともに凝集しやすくなる。例えば、この分散液を一晩放置すると、10〜20μmの粒径をもつ凝集体が発生して、コロイド分散液の安定性が崩れ、粒子の沈降が始まるという問題がある。
したがって、これまで、酸化第一銅微粒子のコロイド分散液に関して、高濃度の微粒子を含み、かつ、経時変化に対しても安定性に優れた分散液は存在しないのが現状である。
【0004】
【非特許文献1】
ジャーナル オブ コロイド アンド インタフェスサイエンス、189号、1997年、p.167(Journal of colloid and interface science, 1997,189, p167)
【非特許文献2】
ジャーナル オブ コロイド アンド インタフェスサイエンス、243号、2001年、p.85(Journal of colloid and interface science, 2001, 243, p85)
【非特許文献3】
アンゲバンテ ケミ インターナショナル エディション、 40号、2巻、p.359、2001年(Angewandte Chemie International edition,2001,No.40,Vol2,p359)
【0005】
【発明が解決しようとする課題】
本発明の課題は、高濃度化の微粒子を含み、かつ、経時変化に対しても優れた安定性を示す酸化第一銅微粒子分散液及びこの分散液を用いて銅薄膜を製造する方法を提供することである。
【0006】
【課題を解決するための手段】
本発明者は、上記の課題を解決するために鋭意検討を進めた結果、分散液中の酸化第一銅微粒子の平均二次粒径、含有量、及び分散液の特定条件における粘度を規定することによって、経時変化に対して安定な酸化第一銅コロイド分散液を得られることを見出し、本発明を完成させるに至った。
すなわち、本発明は、以下のとおりである。
(1) 酸化第一銅微粒子を10重量%以上含有する分散液であって、酸化第一銅粒子の平均二次粒径が80nm以下であり、かつ、コーン・プレート型回転粘度計を用いて測定した、ずり速度が1×10−1−1〜1×10−1の領域において、25℃における粘度が100mPa・s以下であることを特徴とする酸化第一銅コロイド分散液。
(2) 前記ずり速度領域における粘度が30mPa・s以下であることを特徴とする(1)に記載の酸化第一銅コロイド分散液。
(3) 酸化第一銅の一次粒径が30nm以下であることを特徴とする(1)又は(2)に記載の酸化第一銅コロイド分散液。
(4) 分散媒が、炭素数10以下の多価アルコールであることを特徴とする(1)〜(3)のいずれか1つに記載の酸化第一銅コロイド分散液。
(5) 分散媒が、炭素数10以下の多価アルコール及び炭素数10以下のモノアルコールの混合物である(1)〜(3)のいずれか1つに記載の酸化第一銅コロイド分散液。
(6) (1)〜(5)のいずれか1つに記載の酸化第一銅コロイド分散液を基材の上に塗布し、非酸化性雰囲気中で加熱処理して、酸化第一銅微粒子を還元することを特徴とする銅薄膜の製造方法。
【0007】
以下に本発明を詳細に説明する。
本発明のコロイド分散液に含まれる酸化第一銅粒子の平均二次粒径は80nm以下、好ましくは50nm以下、より好ましくは30nm以下である。平均二次粒径とは、酸化第一銅粒子の一次粒子が複数個集まって形成される凝集体のことである。平均二次粒径が80nmより大きくなると、凝集が進行しやすくなり、分散液の安定性が悪くなる。二次粒子を構成する一次粒子の粒径の好ましい範囲は30nm以下、より好ましくは10nm以下である
本発明のコロイド分散液には、酸化第一銅粒子が10重量%以上、好ましくは10〜60重量%、より好ましくは20〜60重量%含有されている。含有量が60重量%を越えると、酸化第一銅粒子が凝集しやすくなる傾向がある。
【0008】
本発明のコロイド分散液は、コーン・プレート型回転粘度計を用いて測定した、ずり速度が1×10−1−1〜1×10−1である領域において、25℃における粘度が100mPa・s以下、好ましくは30mPa・s以下である。25℃における粘度が100mPa・sを越えると、凝集が進行しやすくなる。
本発明のコロイド分散液の安定性が、酸化第一銅微粒子の二次粒径及び分散液の粘度特性と相関がある理由は必ずしも明確ではないが、二次粒径がある値より大きくなると、粒子のブラウン運動性が低下して、わずかな凝集作用により沈殿物を生じやすいこと、また、粘度がある値より大きくなることも粒子のブラウン運動性の低下につながり、コロイド分散液の安定性に悪影響を与えるものと推察される。
【0009】
本発明のコロイド分散液で用いられる分散媒として好ましいのは、炭素数10以下の多価アルコールである。例えば、エチレングリコール、ジエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール等が挙げられる。これらの多価アルコールを単独で用いてもよいし、複数を混合して用いてもよい。多価アルコールの炭素数が10を越えると、酸化第一銅微粒子の分散性が低下する場合がある。
【0010】
分散媒が、炭素数10以下の多価アルコールと炭素数10以下のモノアルコールの混合物である場合には、分散媒の粘度が適度に下がり、分散液の安定性が向上するのでより好ましい。炭素数10以下のモノアルコールを例示すると、メタノール、エタノール、プロパノール、ブタノール、ペンタノ−ル、オクタノール等が挙げられる。モノアルコールの炭素数が10を越えると、酸化第一銅微粒子の分散性が低下する場合がある。
【0011】
分散媒は酸化第一銅微粒子の分散安定性を崩さない範囲で、水分を含んでいてもよい。
酸化第一銅微粒子は、市販品を用いてもよいし、合成して用いてもよい。合成法として、次の方法が挙げられる。
(1)ポリオール溶媒中に、水と銅アセチルアセトナト錯体を加え、一旦有機銅化合物を加熱溶解させ、次に、反応に必要な水を後添加し、さらに昇温して有機銅の還元温度で加熱する加熱還元する方法。
(2)有機銅化合物(銅−N−ニトロソフェニルヒドロキシルアミン錯体)を、ヘキサデシルアミン等の保護剤存在下、不活性雰囲気中で、300℃程度の高温で加熱する方法。
(3)水溶液に溶解した銅塩をヒドラジンで還元する方法。
【0012】
この中でも、(3)の方法は操作が簡便で、かつ、粒径の小さい酸化第一銅が得られるので好ましい。
次に、得られた酸化第一銅微粒子を分散媒に分散させる。分散方法としては、粉体を液体に分散する一般的な方法を用いることができる。例えば、超音波法、ミキサー法、ボールミル法等が用いられる。これらの分散手段のうち、複数を組み合わせて分散を行うことも可能である。これらの分散処理は室温で行ってもよく、分散体の粘度を下げるために、加熱しながら行ってもよい。酸化第一銅粒子の凝集を防止するために、分散処理等の操作は可能な限り湿気の少ない雰囲気で行なうことが好ましく、より好ましくは、実質的に湿気を含まない乾燥窒素、乾燥アルゴン等の雰囲気で行うことが好ましい。
【0013】
本発明のコロイド分散液中には、必要に応じ、安定性を崩さない範囲内で、塗膜形成助剤等の添加剤を添加することができる。本発明の分散液を塗料として用いる場合には、添加剤として有機バインダー等を用いることができる。塗布後還元して銅薄膜として用いる場合には、添加剤として、還元剤、有機バインダー等を用いることができる。
次に、本発明のコロイド分散液を用いて、銅薄膜を形成する方法を説明する。
【0014】
まず、本発明の酸化第一銅コロイド分散液を基材上に塗布する。塗布方法としては、粘度の低い分散液を基材に塗布する場合に用いられる一般的な方法を用いることができる。塗布方法としては、例えば、ディップコーティング方法、スプレー塗布方法、スピンコーティング方法、インクジェット方法、コンタクトプリンティング方法等が挙げられる。基材には制限はなく、無機及び有機基材のいずれも使用可能である。無機基材としては、金属板、ガラス板、ITO(インジウム錫オキサイド)等のセラミック基板等を例示できる。有機基材としては、塗布の後、加熱処理が必要とする用途には、加熱処理温度において熱的な損傷を受けない基材を選ぶ必要があり、例えば、ポリイミド、ポリエチレンテレフタレート(PET)、アラミド、エポキシ等が用いられる。
【0015】
次に、分散液を塗布した基材を不活性雰囲気中で加熱処理することによって、基材上に銅薄膜を形成させる。不活性雰囲気とは、実質的に酸素を含まない雰囲気であり、アルゴンや窒素の不活性ガスで満たされた雰囲気である。これらのガス中には、金属銅の酸化に寄与しない程度ならば酸素を含んでいてもよい。その際の酸素濃度は、好ましくは2000ppm以下、より好ましくは500ppm以下である。加熱処理の際の雰囲気は、減圧雰囲気、常圧及び加圧雰囲気のいずれであってもよいが、好ましいのは常圧雰囲気における熱処理である。具体的には、市販の窒素リフロー装置を使って酸素濃度をコントロールしながら、チェーン搬送等で分散液を塗布した基材を搬送しつつ連続焼成することが、生産性の観点から好ましい。加熱処理温度は、好ましくは50℃以上500℃以下、より好ましくは80℃以上400℃以下、最も好ましくは80℃以上350℃以下である。
【0016】
得られた基材−銅薄膜積層体は、実装分野における樹脂付き金属箔等の用途等に好適に用いられる。基板上に塗布・積層する酸化第一銅コロイド分散液の厚みを制御することによって、得られる銅薄膜の膜厚を任意に制御することが可能である。この方法は、特に、微細回路を形成する際に必要となる極薄の銅層を容易に形成できるという利点を有する。また、あらかじめ電気回路の形状に本発明の分散液を塗布・焼成することにより、基板上に電気配線を直描することが可能であり、微細配線基板を安価に作れるという利点があり、この配線直描用途に特に好適に用いられる。
【0017】
本発明のコロイド分散液は、分散液中に多量の酸化第一銅粒子を含むので、1回の塗布によって基材の上に塗布される酸化第一銅の量が多く、したがって、酸化第一銅を塗布する用途において、生産性の高い塗布工程を実現できる。また、粒子の粒径が充分に小さく、粘度も充分に低いので、インクジェット法等による塗布法の適用が可能であり、必要な場所へ必要量のみを塗布することにより、省資源・省廃棄物のプロセス構築が可能になる。
【0018】
【発明の実施の形態】
以下に、実施例により本発明を具体的に説明するが、本発明はこれらによってなんら限定されるものではない。
本発明に用いられる測定法は以下のとおりである。
【0019】
(1)酸化第一銅微粒子の一次粒径
酸化第一銅粒子のコロイド分散液をよく攪拌した後、スポイトでスライドガラス上にとり、乾燥させる。(株)日立製作所製走査型電子顕微鏡(S−4700)を用いてこれを観察し、視野の中から、一次粒径が比較的そろっている個所を3ヶ所選択し、被測定物の粒径測定に最も適した倍率で撮影する。おのおのの写真から、一番多数存在すると思われる一次粒子を3点選択し、その直径をものさしで測り、粒倍率をかけて一次粒径を算出する。これらの値の平均値を一次粒径とする。
【0020】
ここで、一次粒径が20nm以下と測定されたものについては、走査型電子顕微鏡による測定では精度が充分でないので、さらに(株)日立製作所製透過型電子顕微鏡(JEM−4000FX)を用い、カーボン蒸着された銅メッシュ上に、溶解・希釈した分散液を1滴たらし、減圧乾燥した後、同様の手法で一次粒径を測定し、この値を用いる。
【0021】
(2)コロイド分散液中の酸化第一銅の平均二次粒径
堀場株式会社製レーザー散乱式粒度分布計LA−920を用いて粒径を測定する。平均二次粒径が1μm以上であれば、この測定におけるメジアン径の値を用いる。平均二次粒径が1μm未満の場合は、大塚電子株式会社製濃厚系粒径アナライザーFPAR1000を用いて、再度平均二次粒径を測定し、キュムラント平均粒径をその値として用いる。
【0022】
(3)粘度測定
Haake社製RS−100を用い、60mm 1°のコーンを使用して行う。具体的には、60mmコーンに対応した60mmプレート上に、必要量(約1ml)の分散液を、スポイト等で滴下し、コーン・プレート間を所定位置まで近づけた後、コーンのずり速度を変化させながらずり応力を測定し、粘度を求める。
(4)焼成して得られた銅薄膜の体積抵抗率
低抵抗率計ロレスタ−GP(三菱化学株式会社製)を用いて測定する。
【0023】
【実施例1】
精製水50mlとエタノール15mlの混合溶媒に無水酢酸銅(和光純薬工業(株)製)8gを加えた。20℃で攪拌しながらヒドラジン1水和物(和光純薬工業(株)製)をこれに加えて、さらに15分間攪拌し、一次粒径が8nmの酸化第一銅微粒子を得た。同微粒子3.2gにジエチレングリコール9.4gを加え、超音波分散を施して、酸化第一銅微粒子を25重量%含む酸化第一銅コロイド分散液を調整した。
【0024】
得られた分散液は、ずり速度1×10−1−1〜1×10−1の領域のすべての範囲において、25℃における粘度が40±15mPa・sであった。コロイド分散液作成直後の平均二次粒径は38nmであった。一晩放置しても平均二次粒径の値に変化はなく、沈殿も生じることはなく、作成したコロイド分散液の安定性が高いことが確認できた。
【0025】
【実施例2】
実施例1と同様にして得られた酸化第一銅微粒子2.0gにジエチレングリコール18.0gを加え、超音波分散を施して、酸化第一銅微粒子を10重量%含む酸化第一銅コロイド分散液を調整した。
得られた分散液は、ずり速度1×10−1−1〜1×10−1の領域のすべての範囲において、25℃における粘度が30±10mPa・sであった。コロイド分散液作成直後の平均二次粒径は30nmであった。一晩放置しても平均二次粒径の値に変化はなく、沈殿も生じることはなく、作成したコロイド分散液の安定性が高いことが確認できた。
【0026】
【実施例3】
実施例1と同様にして得られた酸化第一銅微粒子3.2gにジエチレングリコール6.2gと添加剤としてポリエチレングリコール(平均分子量200、和光純薬工業(株)製)3.2gを加え、超音波分散を施して、酸化第一銅微粒子を25重量%含む酸化第一銅コロイド分散液を調整した。
得られた分散液は、ずり速度1×10−1−1〜1×10−1の領域のすべての範囲において、25℃における粘度が70±20mPa・sであった。コロイド分散液作成直後の平均二次粒径は35nmであった。一晩放置しても平均二次粒径の値に変化はなく、沈殿も生じることはなく、作成したコロイド分散液の安定性が高いことが確認できた。
【0027】
【実施例4】
実施例1と同様にして得られた酸化第一銅微粒子2.0gにジエチレングリコール9.0gとエタノール2.0gを加え、超音波分散を施して、酸化第一銅微粒子を15重量%含む酸化第一銅コロイド分散液を調整した。
得られた分散液は、ずり速度1×10−1−1〜1×10−1の領域のすべての範囲において、25℃における粘度が18±7mPa・sであった。コロイド分散液作成直後の平均二次粒径は45nmであった。一晩放置しても平均二次粒径の値に変化はなく、沈殿も生じることはなく、作成したコロイド分散液の安定性が高いことが確認できた。
【0028】
【実施例5】
実施例1と同様にして得られた酸化第一銅微粒子2.0gにジエチレングリコール5.5gとプロパノール2.0gを加え、超音波分散を施して、酸化第一銅微粒子を21重量%含む酸化第一銅コロイド分散液を調整した。
得られた分散液は、ずり速度1×10−1−1〜1×10−1の領域のすべての範囲において、25℃における粘度が20±7mPa・sであった。コロイド分散液作成直後の平均二次粒径は45nmであった。一晩放置しても平均二次粒径の値に変化はなく、沈殿も生じることはなく、作成したコロイド分散液の安定性が高いことが確認できた。
【0029】
【実施例6】
実施例3で作成した酸化第一銅コロイド分散液を120mm□のガラス板上に、塗布厚50μmのバーコーターで50mm×100mmの面積に塗布を行った。塗布したガラス板を、窒素ガス気流下のホットプレート上で350℃×1h焼成を行なって、ガラス板上に銅薄膜を得た。得られた銅薄膜は、厚み2.5μm、体積抵抗値8×10−6Ωcmであった。
【0030】
【比較例1】
精製水50mlに無水酢酸銅(和光純薬工業(株)製)8gを加え、20℃で攪拌しながらヒドラジン1水和物(和光純薬工業(株)製)を加えてさらに15分間攪拌し、一次粒径が20nmの酸化第一銅微粒子を得た。この同微粒子2.5gにジエチレングリコール4.8gと、ポリエチレングリコール(平均分子量200)2.8gを加え、超音波分散を施して、酸化第一銅微粒子を25重量%含む酸化第一銅コロイド分散液を調整した。
【0031】
得られた分散液は、25℃において、ずり速度2×10−1〜1×10−1の領域では粘度が100mPa・s以下(70〜100mPa・s)であったが、1×10−1−1〜2×10−1の範囲においては、100mPa・sより大きかった(101〜800mPa・s)。コロイド分散液作成直後の平均二次粒径は65nmであった。このコロイド分散液を一晩放置すると、沈殿物が生じ、コロイド分散液の安定性が失われていることが観察された。
【0032】
【比較例2】
実施例1で得られた酸化第一銅微粒子3.0gにジエチレングリコール4.0gと、ポリエチレングリコール(平均分子量200)3.2gを加え、超音波分散を施して、酸化第一銅微粒子を29重量%含む酸化第一銅コロイド分散液を調整した。
得られた分散液は、25℃において、ずり速度3×10−1〜1×10−1の領域では粘度が100mPa・s以下(70〜100mPa・s)であったが、1×10−1−1〜3×10−1の範囲においては、100mPa・sより大きかった(101〜900mPa・s)。コロイド分散液作成直後の平均二次粒径は60nmであった。このコロイド分散液を一晩放置すると、沈殿物が生じ、コロイド分散液の安定性が失われていることが観察された。
【0033】
【比較例3】
ガラス製の三口フラスコ内で、酢酸銅(和光純薬工業製)2.7g及び精製水0.9gを、ジエチレングリコール90mlに加えた。オイルバス中で190℃まで昇温し、その温度のまま2時間加熱を続けた。室温まで冷却後、日立工機株式会社製の遠心分離機で未反応の酢酸銅等を分離した後、所定量のジエチレングリコールを加え、酸化第一銅粒子を10重量%含む酸化第一銅分散液を得た。
【0034】
得られた分散液は、ずり速度1×10−1−1〜1×10−1領域での25℃における粘度が30±5mPa・sであった。得られた酸化第一銅微粒子の一次粒径は65nmであった。コロイド分散液作成直後の平均二次粒径は90nmであった。コロイド分散液を一晩放置すると、約10μmの酸化第一銅微粒子凝集体が生成し、わずかな沈降物が認められ、コロイド分散液の安定性が失われていることが観察された。
【0035】
【比較例4】
比較例3と同様の方法で得た酸化第一銅微粒子2.0gに対し、ジエチレングリコール8.0gを添加して、酸化第一銅粒子を20重量%含む酸化第一銅分散液を得た。
得られた分散液は、ずり速度1×10−1−1〜1×10−1領域での25℃における粘度が35±5mPa・sであった。コロイド分散液作成直後の平均二次粒径は120nmであった。コロイド分散液を一晩放置すると、約10μmの酸化第一銅微粒子凝集体が生成し、わずかな沈降物が認められ、コロイド分散液の安定性が失われていることが観察された。
【0036】
【発明の効果】
本発明により、高濃度化の酸化第一銅微粒子を含み、かつ、経時変化に対しても安定なコロイド分散液を提供できる。得られたコロイド分散液は、塗料、金属配線材料、導電材料等の用途に好適に用いられる。また、本分散液は粘度が極めて低いので、インクジェット手法等の塗布方式の適用が可能であり、必要な場所に必要な量だけ塗布をすることによって、省資源なプロセス構築が可能であり、環境汚染の防止にも有効である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a colloidal dispersion of cuprous oxide containing fine particles of high concentration and stable over time, and a method for producing a copper thin film using the colloidal dispersion. The colloidal dispersion of the present invention can be used as a paint. Further, since the cuprous oxide fine particles are easily reduced to give metallic copper, they can also be used as a conductive material precursor.
[0002]
[Prior art]
Conventionally, as for cuprous oxide, powder having a particle diameter of several μm to several hundred μm is usually used for applications such as ship bottom paints and ceramic sintering aids. However, this size of powder easily settles when dispersed in a dispersion, and a stable colloidal dispersion cannot be obtained.
As a method for producing cuprous oxide fine particles having a primary particle size smaller than 100 nm, copper nitrate or copper sulfate is used as a starting material, a large amount of sodium hydroxide is added, and then reduced with hydrazine in the presence of a stabilizer such as glucose. Methods are known (for example, see Non-Patent Documents 1 and 2). The cuprous oxide particles obtained by this method have strong agglomeration between the particles, and the secondary particle size is several hundred nanometers. Can't get.
[0003]
On the other hand, it is known that a relatively stable colloidal dispersion in which cuprous oxide fine particles having a primary particle size of less than 100 nm are dispersed can be obtained by adding water and a copper salt to a polyol solvent and reducing by heating. Yes (see Non-Patent Document 3, for example). The dispersion obtained by this method has a relatively high stability in a dilute colloidal system having a small fine particle content. However, when the fine particle content in the cuprous oxide dispersion in the dispersion is increased to about 10% by weight, the particles tend to aggregate with time. For example, if this dispersion is left overnight, there is a problem that aggregates having a particle size of 10 to 20 μm are generated, the stability of the colloidal dispersion is lost, and sedimentation of the particles starts.
Therefore, to date, regarding the colloidal dispersion of cuprous oxide fine particles, there is currently no dispersion containing high concentration fine particles and excellent in stability over time.
[0004]
[Non-Patent Document 1]
Journal of Colloid and Interface Science, 189, 1997, p. 167 (Journal of colloid and interface science, 1997, 189, p167)
[Non-Patent Document 2]
Journal of Colloid and Interface Science, No. 243, 2001, p. 85 (Journal of colloid and interface science, 2001, 243, p85)
[Non-Patent Document 3]
Angelevante Kemi International Edition, Volume 40, Volume 2, p. 359, 2001 (Angewandte Chemie International edition, 2001, No. 40, Vol 2, p359)
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a cuprous oxide fine particle dispersion containing fine particles with a high concentration and exhibiting excellent stability over time, and a method for producing a copper thin film using this dispersion It is to be.
[0006]
[Means for Solving the Problems]
As a result of diligent investigations to solve the above problems, the present inventor prescribes the average secondary particle size of cuprous oxide fine particles in the dispersion, the content, and the viscosity of the dispersion under specific conditions. As a result, it was found that a cuprous oxide colloidal dispersion stable against changes with time can be obtained, and the present invention has been completed.
That is, the present invention is as follows.
(1) A dispersion containing 10% by weight or more of cuprous oxide fine particles, wherein the average secondary particle size of the cuprous oxide particles is 80 nm or less, and using a cone-plate type rotational viscometer A cuprous oxide colloidal dispersion characterized by having a viscosity at 25 ° C. of 100 mPa · s or less in a measured region of shear rate of 1 × 10 −1 s −1 to 1 × 10 2 s −1 .
(2) The cuprous oxide colloidal dispersion according to (1), wherein the viscosity in the shear rate region is 30 mPa · s or less.
(3) The cuprous oxide colloidal dispersion according to (1) or (2), wherein the primary particle size of cuprous oxide is 30 nm or less.
(4) The cuprous oxide colloidal dispersion according to any one of (1) to (3), wherein the dispersion medium is a polyhydric alcohol having 10 or less carbon atoms.
(5) The cuprous oxide colloidal dispersion according to any one of (1) to (3), wherein the dispersion medium is a mixture of a polyhydric alcohol having 10 or less carbon atoms and a monoalcohol having 10 or less carbon atoms.
(6) The cuprous oxide colloidal dispersion according to any one of (1) to (5) is applied on a base material, and heat-treated in a non-oxidizing atmosphere to obtain cuprous oxide fine particles. A method for producing a copper thin film, wherein
[0007]
The present invention is described in detail below.
The average secondary particle size of the cuprous oxide particles contained in the colloidal dispersion of the present invention is 80 nm or less, preferably 50 nm or less, more preferably 30 nm or less. The average secondary particle size is an aggregate formed by collecting a plurality of primary particles of cuprous oxide particles. When the average secondary particle size is larger than 80 nm, aggregation tends to proceed and the dispersion stability is deteriorated. In the colloidal dispersion liquid of the present invention in which the primary particle size constituting the secondary particles is preferably 30 nm or less, more preferably 10 nm or less, cuprous oxide particles are 10 wt% or more, preferably 10 to 60%. % By weight, more preferably 20 to 60% by weight. When the content exceeds 60% by weight, the cuprous oxide particles tend to aggregate.
[0008]
The colloidal dispersion of the present invention has a viscosity at 25 ° C. in a region where the shear rate is 1 × 10 −1 s −1 to 1 × 10 2 s −1 as measured using a cone-plate type rotational viscometer. 100 mPa · s or less, preferably 30 mPa · s or less. When the viscosity at 25 ° C. exceeds 100 mPa · s, aggregation tends to proceed.
The reason why the stability of the colloidal dispersion of the present invention is correlated with the secondary particle size of the cuprous oxide fine particles and the viscosity property of the dispersion is not necessarily clear, but when the secondary particle size becomes larger than a certain value, Decrease in Brownian mobility of particles, resulting in precipitates due to slight agglomeration, and increase in viscosity above a certain value also leads to a decrease in Brownian mobility of particles, resulting in stability of the colloidal dispersion. Presumed to have an adverse effect.
[0009]
Preferred as the dispersion medium used in the colloidal dispersion of the present invention is a polyhydric alcohol having 10 or less carbon atoms. For example, ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, pentane Examples include diol, hexanediol, and octanediol. These polyhydric alcohols may be used alone or in combination. If the polyhydric alcohol has more than 10 carbon atoms, the dispersibility of the cuprous oxide fine particles may be lowered.
[0010]
When the dispersion medium is a mixture of a polyhydric alcohol having 10 or less carbon atoms and a monoalcohol having 10 or less carbon atoms, it is more preferable because the viscosity of the dispersion medium is appropriately lowered and the stability of the dispersion is improved. Examples of monoalcohol having 10 or less carbon atoms include methanol, ethanol, propanol, butanol, pentanol, octanol and the like. If the carbon number of the monoalcohol exceeds 10, the dispersibility of the cuprous oxide fine particles may be lowered.
[0011]
The dispersion medium may contain moisture as long as the dispersion stability of the cuprous oxide fine particles is not lost.
As the cuprous oxide fine particles, commercially available products may be used or synthesized. Examples of the synthesis method include the following methods.
(1) Water and a copper acetylacetonate complex are added to a polyol solvent, and the organic copper compound is once dissolved by heating. Next, water necessary for the reaction is added afterwards, and the temperature is further raised to reduce the organic copper. Heating and reducing by heating at
(2) A method in which an organic copper compound (copper-N-nitrosophenylhydroxylamine complex) is heated at a high temperature of about 300 ° C. in an inert atmosphere in the presence of a protective agent such as hexadecylamine.
(3) A method of reducing a copper salt dissolved in an aqueous solution with hydrazine.
[0012]
Among these, the method (3) is preferable because the operation is simple and cuprous oxide having a small particle size can be obtained.
Next, the obtained cuprous oxide fine particles are dispersed in a dispersion medium. As a dispersion method, a general method for dispersing powder in a liquid can be used. For example, an ultrasonic method, a mixer method, a ball mill method, or the like is used. Of these dispersing means, a plurality of dispersing means can be combined for dispersion. These dispersion treatments may be performed at room temperature, or may be performed while heating in order to lower the viscosity of the dispersion. In order to prevent agglomeration of cuprous oxide particles, it is preferable to perform operations such as dispersion treatment in an atmosphere with as little moisture as possible, and more preferably, dry nitrogen, dry argon, etc. that are substantially free of moisture. It is preferably performed in an atmosphere.
[0013]
In the colloidal dispersion liquid of the present invention, additives such as a coating film forming auxiliary agent can be added as necessary within the range where stability is not lost. When using the dispersion liquid of this invention as a coating material, an organic binder etc. can be used as an additive. When it reduces after application | coating and uses it as a copper thin film, a reducing agent, an organic binder, etc. can be used as an additive.
Next, a method for forming a copper thin film using the colloidal dispersion of the present invention will be described.
[0014]
First, the cuprous oxide colloid dispersion of the present invention is applied on a substrate. As a coating method, a general method used when a dispersion having a low viscosity is coated on a substrate can be used. Examples of the coating method include a dip coating method, a spray coating method, a spin coating method, an ink jet method, and a contact printing method. There is no restriction | limiting in a base material, Both an inorganic and organic base material can be used. Examples of the inorganic substrate include metal plates, glass plates, ceramic substrates such as ITO (indium tin oxide), and the like. As an organic substrate, it is necessary to select a substrate that is not thermally damaged at the heat treatment temperature for applications that require heat treatment after coating, such as polyimide, polyethylene terephthalate (PET), and aramid. Epoxy or the like is used.
[0015]
Next, the copper thin film is formed on the base material by heat-treating the base material coated with the dispersion in an inert atmosphere. An inert atmosphere is an atmosphere that does not substantially contain oxygen and is an atmosphere filled with an inert gas such as argon or nitrogen. These gases may contain oxygen as long as they do not contribute to the oxidation of metallic copper. The oxygen concentration at that time is preferably 2000 ppm or less, more preferably 500 ppm or less. The atmosphere during the heat treatment may be any of a reduced pressure atmosphere, a normal pressure, and a pressurized atmosphere, but a heat treatment in a normal pressure atmosphere is preferred. Specifically, it is preferable from the viewpoint of productivity that continuous firing is performed while transporting the substrate coated with the dispersion by chain transportation or the like while controlling the oxygen concentration using a commercially available nitrogen reflow apparatus. The heat treatment temperature is preferably 50 ° C. or higher and 500 ° C. or lower, more preferably 80 ° C. or higher and 400 ° C. or lower, and most preferably 80 ° C. or higher and 350 ° C. or lower.
[0016]
The obtained base material-copper thin film laminate is suitably used for applications such as a metal foil with a resin in the mounting field. By controlling the thickness of the cuprous oxide colloidal dispersion applied / laminated on the substrate, the film thickness of the obtained copper thin film can be arbitrarily controlled. This method has an advantage that an extremely thin copper layer necessary for forming a fine circuit can be easily formed. In addition, by applying and firing the dispersion of the present invention in the shape of an electric circuit in advance, it is possible to directly draw electric wiring on the substrate, and there is an advantage that a fine wiring substrate can be made at low cost. It is particularly preferably used for direct drawing.
[0017]
Since the colloidal dispersion liquid of the present invention contains a large amount of cuprous oxide particles in the dispersion liquid, the amount of cuprous oxide applied on the substrate by one application is large. In applications where copper is applied, a highly productive coating process can be realized. In addition, since the particle size of the particles is sufficiently small and the viscosity is sufficiently low, it is possible to apply a coating method such as an ink jet method, and by applying only the necessary amount to the necessary place, resource saving and waste saving It is possible to construct a process.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
The measuring method used in the present invention is as follows.
[0019]
(1) Primary particle size of cuprous oxide fine particles After thoroughly stirring a colloidal dispersion of cuprous oxide particles, it is placed on a slide glass with a dropper and dried. This is observed using a scanning electron microscope (S-4700) manufactured by Hitachi, Ltd., and three locations where the primary particle size is relatively uniform are selected from the field of view. Shoot at the most suitable magnification for measurement. From each photograph, select the three primary particles that are most likely to be present, measure the diameter with a ruler, and calculate the primary particle size by multiplying the grain magnification. The average value of these values is taken as the primary particle size.
[0020]
Here, for those whose primary particle size was measured to be 20 nm or less, the measurement with a scanning electron microscope was not sufficient in accuracy, and further using a transmission electron microscope (JEM-4000FX) manufactured by Hitachi, Ltd., carbon One drop of the dissolved / diluted dispersion is deposited on the deposited copper mesh, dried under reduced pressure, the primary particle diameter is measured by the same method, and this value is used.
[0021]
(2) Average secondary particle size of cuprous oxide in colloidal dispersion The particle size is measured using a laser scattering particle size distribution analyzer LA-920 manufactured by Horiba. If the average secondary particle diameter is 1 μm or more, the median diameter value in this measurement is used. When the average secondary particle size is less than 1 μm, the average secondary particle size is measured again using the concentrated particle size analyzer FPAR1000 manufactured by Otsuka Electronics Co., Ltd., and the cumulant average particle size is used as the value.
[0022]
(3) Viscosity measurement Using RS-100 manufactured by Haake, a 60 mm 1 ° cone is used. Specifically, a required amount (approximately 1 ml) of the dispersion liquid is dropped on a 60 mm plate corresponding to a 60 mm cone with a dropper or the like, and the cone-shearing speed is changed after the distance between the cone and the plate is brought close to a predetermined position. The shear stress is measured while allowing the viscosity to be determined.
(4) The volume resistivity of the copper thin film obtained by firing is measured using a low resistivity meter Loresta GP (manufactured by Mitsubishi Chemical Corporation).
[0023]
[Example 1]
8 g of anhydrous copper acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added to a mixed solvent of 50 ml of purified water and 15 ml of ethanol. While stirring at 20 ° C., hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto and further stirred for 15 minutes to obtain cuprous oxide fine particles having a primary particle diameter of 8 nm. 9.4 g of diethylene glycol was added to 3.2 g of the fine particles and subjected to ultrasonic dispersion to prepare a cuprous oxide colloidal dispersion containing 25% by weight of cuprous oxide fine particles.
[0024]
The obtained dispersion had a viscosity at 25 ° C. of 40 ± 15 mPa · s in the entire range of the shear rate of 1 × 10 −1 s −1 to 1 × 10 2 s −1 . The average secondary particle size immediately after preparation of the colloidal dispersion was 38 nm. Even if left overnight, the average secondary particle size did not change and precipitation did not occur, confirming that the prepared colloidal dispersion had high stability.
[0025]
[Example 2]
A cuprous oxide colloidal dispersion containing 10 wt% of cuprous oxide fine particles obtained by adding 18.0 g of diethylene glycol to 2.0 g of cuprous oxide fine particles obtained in the same manner as in Example 1. Adjusted.
The obtained dispersion had a viscosity at 25 ° C. of 30 ± 10 mPa · s in the entire range of the shear rate of 1 × 10 −1 s −1 to 1 × 10 2 s −1 . The average secondary particle size immediately after preparation of the colloidal dispersion was 30 nm. Even if left overnight, the average secondary particle size did not change and precipitation did not occur, confirming that the prepared colloidal dispersion had high stability.
[0026]
[Example 3]
To 3.2 g of cuprous oxide fine particles obtained in the same manner as in Example 1, 6.2 g of diethylene glycol and 3.2 g of polyethylene glycol (average molecular weight 200, manufactured by Wako Pure Chemical Industries, Ltd.) as an additive were added. Sonic dispersion was performed to prepare a cuprous oxide colloidal dispersion containing 25% by weight of cuprous oxide fine particles.
The obtained dispersion had a viscosity at 25 ° C. of 70 ± 20 mPa · s in the entire range of the shear rate of 1 × 10 −1 s −1 to 1 × 10 2 s −1 . The average secondary particle size immediately after preparation of the colloidal dispersion was 35 nm. Even if left overnight, the average secondary particle size did not change and precipitation did not occur, confirming that the prepared colloidal dispersion had high stability.
[0027]
[Example 4]
To 2.0 g of cuprous oxide fine particles obtained in the same manner as in Example 1, 9.0 g of diethylene glycol and 2.0 g of ethanol were added, and subjected to ultrasonic dispersion to give an oxide containing 15 wt% of cuprous oxide fine particles. A cuprous colloidal dispersion was prepared.
The obtained dispersion had a viscosity at 25 ° C. of 18 ± 7 mPa · s in the entire range of the shear rate of 1 × 10 −1 s −1 to 1 × 10 2 s −1 . The average secondary particle size immediately after preparation of the colloidal dispersion was 45 nm. Even if left overnight, the average secondary particle size did not change and precipitation did not occur, confirming that the prepared colloidal dispersion had high stability.
[0028]
[Example 5]
To 2.0 g of cuprous oxide fine particles obtained in the same manner as in Example 1, 5.5 g of diethylene glycol and 2.0 g of propanol were added, and subjected to ultrasonic dispersion to give an oxide containing 21 wt% of cuprous oxide fine particles. A cuprous colloidal dispersion was prepared.
The obtained dispersion had a viscosity at 25 ° C. of 20 ± 7 mPa · s in the entire range of the shear rate of 1 × 10 −1 s −1 to 1 × 10 2 s −1 . The average secondary particle size immediately after preparation of the colloidal dispersion was 45 nm. Even if left overnight, the average secondary particle size did not change and precipitation did not occur, confirming that the prepared colloidal dispersion had high stability.
[0029]
[Example 6]
The cuprous oxide colloidal dispersion prepared in Example 3 was applied onto a 120 mm □ glass plate in an area of 50 mm × 100 mm with a bar coater having a coating thickness of 50 μm. The coated glass plate was baked at 350 ° C. for 1 h on a hot plate under a nitrogen gas stream to obtain a copper thin film on the glass plate. The obtained copper thin film had a thickness of 2.5 μm and a volume resistance value of 8 × 10 −6 Ωcm.
[0030]
[Comparative Example 1]
Add 50 g of anhydrous copper acetate (manufactured by Wako Pure Chemical Industries, Ltd.) to 50 ml of purified water, add hydrazine monohydrate (manufactured by Wako Pure Chemical Industries, Ltd.) with stirring at 20 ° C., and stir for another 15 minutes. Then, cuprous oxide fine particles having a primary particle size of 20 nm were obtained. A cuprous oxide colloidal dispersion containing 25% by weight of cuprous oxide fine particles is obtained by adding 4.8 g of diethylene glycol and 2.8 g of polyethylene glycol (average molecular weight 200) to 2.5 g of the fine particles and applying ultrasonic dispersion. Adjusted.
[0031]
The obtained dispersion had a viscosity of 100 mPa · s or less (70 to 100 mPa · s) in a region where the shear rate was 2 × 10 0 s −1 to 1 × 10 2 s −1 at 25 ° C. In the range of × 10 −1 s −1 to 2 × 10 0 s −1 , it was larger than 100 mPa · s (101 to 800 mPa · s). The average secondary particle size immediately after preparation of the colloidal dispersion was 65 nm. It was observed that when this colloidal dispersion was left overnight, precipitates were formed and the stability of the colloidal dispersion was lost.
[0032]
[Comparative Example 2]
To 3.0 g of the cuprous oxide fine particles obtained in Example 1, 4.0 g of diethylene glycol and 3.2 g of polyethylene glycol (average molecular weight 200) were added, and subjected to ultrasonic dispersion to obtain 29 wt. % Cuprous oxide colloidal dispersion was prepared.
The obtained dispersion had a viscosity of 100 mPa · s or less (70 to 100 mPa · s) in a region where the shear rate was 3 × 10 0 s −1 to 1 × 10 2 s −1 at 25 ° C. in the range of × 10 -1 s -1 ~3 × 10 0 s -1, greater than 100mPa · s (101~900mPa · s) . The average secondary particle size immediately after preparation of the colloidal dispersion was 60 nm. It was observed that when this colloidal dispersion was left overnight, precipitates were formed and the stability of the colloidal dispersion was lost.
[0033]
[Comparative Example 3]
In a glass three-necked flask, 2.7 g of copper acetate (manufactured by Wako Pure Chemical Industries) and 0.9 g of purified water were added to 90 ml of diethylene glycol. The temperature was raised to 190 ° C. in an oil bath, and heating was continued for 2 hours at that temperature. After cooling to room temperature, after separating unreacted copper acetate and the like with a centrifuge manufactured by Hitachi Koki Co., Ltd., a predetermined amount of diethylene glycol is added, and a cuprous oxide dispersion containing 10% by weight of cuprous oxide particles Got.
[0034]
The obtained dispersion had a viscosity at 25 ° C. in a shear rate of 1 × 10 −1 s −1 to 1 × 10 2 s −1 region of 30 ± 5 mPa · s. The primary particle diameter of the obtained cuprous oxide fine particles was 65 nm. The average secondary particle size immediately after preparation of the colloidal dispersion was 90 nm. When the colloidal dispersion was allowed to stand overnight, about 10 μm cuprous oxide fine particle aggregates were formed, a slight sediment was observed, and it was observed that the stability of the colloidal dispersion was lost.
[0035]
[Comparative Example 4]
To 2.0 g of cuprous oxide fine particles obtained in the same manner as in Comparative Example 3, 8.0 g of diethylene glycol was added to obtain a cuprous oxide dispersion containing 20 wt% of cuprous oxide particles.
The obtained dispersion had a viscosity of 35 ± 5 mPa · s at 25 ° C. in a shear rate of 1 × 10 −1 s −1 to 1 × 10 2 s −1 region. The average secondary particle size immediately after preparation of the colloidal dispersion was 120 nm. When the colloidal dispersion was allowed to stand overnight, about 10 μm cuprous oxide fine particle aggregates were formed, a slight sediment was observed, and it was observed that the stability of the colloidal dispersion was lost.
[0036]
【The invention's effect】
According to the present invention, it is possible to provide a colloidal dispersion liquid containing high-concentration cuprous oxide fine particles and stable against changes with time. The obtained colloid dispersion liquid is suitably used for applications such as paints, metal wiring materials, conductive materials and the like. In addition, since this dispersion has an extremely low viscosity, it is possible to apply an application method such as an ink jet method, and by applying only the required amount to the required place, it is possible to construct a resource-saving process, It is also effective in preventing contamination.

Claims (6)

酸化第一銅微粒子を10重量%以上含有する分散液であって、酸化第一銅粒子の平均二次粒径が80nm以下であり、かつ、コーン・プレート型回転粘度計を用いて測定した、ずり速度が1×10−1−1〜1×10−1の領域において、25℃における粘度が100mPa・s以下であることを特徴とする酸化第一銅コロイド分散液。A dispersion containing 10% by weight or more of cuprous oxide fine particles, wherein the average secondary particle size of the cuprous oxide particles is 80 nm or less, and measured using a cone-plate type rotational viscometer, A cuprous oxide colloidal dispersion having a viscosity at 25 ° C. of 100 mPa · s or less in a region where the shear rate is 1 × 10 −1 s −1 to 1 × 10 2 s −1 . 前記ずり速度領域における粘度が30mPa・s以下であることを特徴とする請求項1記載の酸化第一銅コロイド分散液。The cuprous oxide colloidal dispersion according to claim 1, wherein the viscosity in the shear rate region is 30 mPa · s or less. 酸化第一銅の一次粒径が30nm以下であることを特徴とする請求項1又は2記載の酸化第一銅コロイド分散液。The cuprous oxide colloidal dispersion according to claim 1 or 2, wherein the primary particle size of cuprous oxide is 30 nm or less. 分散媒が、炭素数10以下の多価アルコールであることを特徴とする請求項1〜3のいずれか1項に記載の酸化第一銅コロイド分散液。The cuprous oxide colloidal dispersion according to any one of claims 1 to 3, wherein the dispersion medium is a polyhydric alcohol having 10 or less carbon atoms. 分散媒が、炭素数10以下の多価アルコール及び炭素数10以下のモノアルコールの混合物である請求項1〜3のいずれか1項に記載の酸化第一銅コロイド分散液。The cuprous oxide colloidal dispersion according to any one of claims 1 to 3, wherein the dispersion medium is a mixture of a polyhydric alcohol having 10 or less carbon atoms and a monoalcohol having 10 or less carbon atoms. 請求項1〜5のいずれか1項に記載の酸化第一銅コロイド分散液を基材の上に塗布し、非酸化性雰囲気中で加熱処理して、酸化第一銅微粒子を還元することを特徴とする銅薄膜の製造方法。Applying the cuprous oxide colloidal dispersion according to any one of claims 1 to 5 on a substrate, and heat-treating in a non-oxidizing atmosphere to reduce cuprous oxide fine particles. A method for producing a copper thin film.
JP2003182109A 2003-06-26 2003-06-26 Cuprous oxide colloidal dispersion Expired - Lifetime JP4493942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003182109A JP4493942B2 (en) 2003-06-26 2003-06-26 Cuprous oxide colloidal dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003182109A JP4493942B2 (en) 2003-06-26 2003-06-26 Cuprous oxide colloidal dispersion

Publications (2)

Publication Number Publication Date
JP2005015628A true JP2005015628A (en) 2005-01-20
JP4493942B2 JP4493942B2 (en) 2010-06-30

Family

ID=34182582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003182109A Expired - Lifetime JP4493942B2 (en) 2003-06-26 2003-06-26 Cuprous oxide colloidal dispersion

Country Status (1)

Country Link
JP (1) JP4493942B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095182A (en) * 2006-09-11 2008-04-24 Mitsubishi Materials Corp Method for forming metal film and metal film obtained by the method
JP2011122177A (en) * 2009-12-08 2011-06-23 Tosoh Corp Complex particulate, method for manufacturing the same, composition for forming conductive film using the same, and method for forming the conductive film
WO2013073198A1 (en) 2011-11-17 2013-05-23 有限会社サンサーラコーポレーション Thermoplastic resin composition and molded article composed thereof
WO2014132606A1 (en) * 2013-02-27 2014-09-04 パナソニック株式会社 Cuprous oxide particle dispersion, coating agent composition, and antibacterial/antiviral member
WO2015012264A1 (en) 2013-07-23 2015-01-29 旭化成株式会社 Copper and/or copper oxide dispersion, and electroconductive film formed using dispersion
JP2015147987A (en) * 2014-02-07 2015-08-20 石原ケミカル株式会社 Aqueous copper colloidal catalyst solution for electroless copper plating and electroless copper plating method
KR20170139649A (en) 2015-06-02 2017-12-19 아사히 가세이 가부시키가이샤 Dispersant
JP2019160689A (en) * 2018-03-15 2019-09-19 旭化成株式会社 Dispersion, product containing coating film, method for producing structure with conductive pattern, and structure with conductive pattern
JP2019178389A (en) * 2018-03-30 2019-10-17 株式会社フジミインコーポレーテッド Slurry for spray
CN112742388A (en) * 2021-01-15 2021-05-04 新疆大学 Preparation method of organic pollutant reduction catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003051562A1 (en) * 2001-12-18 2003-06-26 Asahi Kasei Kabushiki Kaisha Metal oxide dispersion
JP2004155638A (en) * 2002-11-08 2004-06-03 Asahi Kasei Corp Metal oxide dispersion
WO2004050559A1 (en) * 2002-12-03 2004-06-17 Asahi Kasei Kabushiki Kaisha Copper oxide ultrafine particle
JP2004323568A (en) * 2003-04-22 2004-11-18 Asahi Kasei Corp Method for preparing dispersion of superfine particle of copper oxide
JP2005002418A (en) * 2003-06-12 2005-01-06 Asahi Kasei Corp Metallic oxide particulate-dispersed body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003051562A1 (en) * 2001-12-18 2003-06-26 Asahi Kasei Kabushiki Kaisha Metal oxide dispersion
JP2004155638A (en) * 2002-11-08 2004-06-03 Asahi Kasei Corp Metal oxide dispersion
WO2004050559A1 (en) * 2002-12-03 2004-06-17 Asahi Kasei Kabushiki Kaisha Copper oxide ultrafine particle
JP2004323568A (en) * 2003-04-22 2004-11-18 Asahi Kasei Corp Method for preparing dispersion of superfine particle of copper oxide
JP2005002418A (en) * 2003-06-12 2005-01-06 Asahi Kasei Corp Metallic oxide particulate-dispersed body

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095182A (en) * 2006-09-11 2008-04-24 Mitsubishi Materials Corp Method for forming metal film and metal film obtained by the method
JP2011122177A (en) * 2009-12-08 2011-06-23 Tosoh Corp Complex particulate, method for manufacturing the same, composition for forming conductive film using the same, and method for forming the conductive film
WO2013073198A1 (en) 2011-11-17 2013-05-23 有限会社サンサーラコーポレーション Thermoplastic resin composition and molded article composed thereof
WO2014132606A1 (en) * 2013-02-27 2014-09-04 パナソニック株式会社 Cuprous oxide particle dispersion, coating agent composition, and antibacterial/antiviral member
CN104936901A (en) * 2013-02-27 2015-09-23 松下知识产权经营株式会社 Cuprous oxide particle dispersion, coating agent composition, and antibacterial/antiviral member
JP5919528B2 (en) * 2013-02-27 2016-05-18 パナソニックIpマネジメント株式会社 Cuprous oxide particle dispersion, coating composition and antibacterial / antiviral component
US9414585B2 (en) 2013-02-27 2016-08-16 Panasonic Intellectual Property Management Co., Ltd. Cuprous oxide particle dispersion liquid, coating agent composition, and antibacterial/antiviral member
KR20180024039A (en) 2013-07-23 2018-03-07 아사히 가세이 가부시키가이샤 Copper and/or copper oxide dispersion, and electroconductive film formed using dispersion
WO2015012264A1 (en) 2013-07-23 2015-01-29 旭化成株式会社 Copper and/or copper oxide dispersion, and electroconductive film formed using dispersion
KR20160003840A (en) 2013-07-23 2016-01-11 아사히 가세이 가부시키가이샤 Copper and/or copper oxide dispersion, and electroconductive film formed using dispersion
JP2017143309A (en) * 2013-07-23 2017-08-17 旭化成株式会社 Copper and/or copper oxide dispersion, and conductive film formed by use thereof
US10424648B2 (en) 2013-07-23 2019-09-24 Asahi Kasei Kabushiki Kaisha Copper and/or copper oxide dispersion, and electroconductive film formed using dispersion
JP2015147987A (en) * 2014-02-07 2015-08-20 石原ケミカル株式会社 Aqueous copper colloidal catalyst solution for electroless copper plating and electroless copper plating method
KR20170139649A (en) 2015-06-02 2017-12-19 아사히 가세이 가부시키가이샤 Dispersant
US11104813B2 (en) 2015-06-02 2021-08-31 Asahi Kasei Kabushiki Kaisha Dispersion
JP2019160689A (en) * 2018-03-15 2019-09-19 旭化成株式会社 Dispersion, product containing coating film, method for producing structure with conductive pattern, and structure with conductive pattern
JP7176847B2 (en) 2018-03-15 2022-11-22 旭化成株式会社 Dispersion, product including coating film, method for producing structure with conductive pattern, and structure with conductive pattern
JP2019178389A (en) * 2018-03-30 2019-10-17 株式会社フジミインコーポレーテッド Slurry for spray
CN112742388A (en) * 2021-01-15 2021-05-04 新疆大学 Preparation method of organic pollutant reduction catalyst
CN112742388B (en) * 2021-01-15 2022-09-09 新疆大学 Preparation method of organic pollutant reduction catalyst

Also Published As

Publication number Publication date
JP4493942B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
US9168587B2 (en) Fine coated copper particles and method for producing same
KR101886263B1 (en) Copper nanoparticles and production method for same, copper nanoparticle fluid dispersion, copper nanoink, copper nanoparticle preservation method, and copper nanoparticle sintering method
JP5151476B2 (en) Ink composition and metallic material
JP5164239B2 (en) Silver particle powder, dispersion thereof, and method for producing silver fired film
EP3150306B1 (en) Coated copper particles and method for manufacturing same
TWI613678B (en) Method for producing dispersion containing silver nanoparticles and dispersion containing silver nanoparticles and use thereof
JP5047864B2 (en) Conductive paste and cured film containing fine silver particles
WO2012105682A1 (en) Coated metal microparticle and manufacturing method thereof
US11767443B2 (en) Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture
EP2946856B1 (en) Silver fine particle dispersion liquid
KR20130050906A (en) Low-temperature sintered silver nanoparticle composition and electronic articles formed using the same
JP2007039718A (en) Method for producing silver powder
JP4493942B2 (en) Cuprous oxide colloidal dispersion
TWI734797B (en) Conductive paste and forming method of conductive pattern
JP4879762B2 (en) Silver powder manufacturing method and silver powder
WO2010137080A1 (en) Process for producing metallic nanoparticle with low-temperature sinterability, metallic nanoparticle, and process for producing dispersion containing the same
KR102260398B1 (en) Method for producing metal nanoparticles
JP4674376B2 (en) Method for producing silver particle powder
KR101334052B1 (en) Silver particle dispersion and process for producing the same
JP6099160B2 (en) Complex compounds and suspensions
WO2016080544A1 (en) Method for treating metal surface, silver-coated copper treated by said method, and composite metal body
JP6404523B1 (en) Method for producing silver nanoparticles
WO2019171908A1 (en) Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing composite body using said paste-like metal particle aggregate composition
JP2014029017A (en) Method for producing metal fine particle composition
TW202122506A (en) Nickel nanoparticle composition and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4493942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term