JP4624006B2 - Spherical composite particle manufacturing method and manufacturing apparatus thereof - Google Patents

Spherical composite particle manufacturing method and manufacturing apparatus thereof Download PDF

Info

Publication number
JP4624006B2
JP4624006B2 JP2004164910A JP2004164910A JP4624006B2 JP 4624006 B2 JP4624006 B2 JP 4624006B2 JP 2004164910 A JP2004164910 A JP 2004164910A JP 2004164910 A JP2004164910 A JP 2004164910A JP 4624006 B2 JP4624006 B2 JP 4624006B2
Authority
JP
Japan
Prior art keywords
particles
spherical
raw material
plasma
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004164910A
Other languages
Japanese (ja)
Other versions
JP2005342615A (en
Inventor
幹正 岩田
静枝 古川
正士 天川
和郎 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2004164910A priority Critical patent/JP4624006B2/en
Publication of JP2005342615A publication Critical patent/JP2005342615A/en
Application granted granted Critical
Publication of JP4624006B2 publication Critical patent/JP4624006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、球状の大粒子と小粒子とを合成した球状複合粒子の製造方法およびその製造装置に関する。さらに詳しくは、本発明は、ミクロンオーダーの大粒子と直径が100nm以下の小粒子とを合成した球状複合粒子の製造に適した製造方法およびその製造装置に関するものである。   The present invention relates to a method for producing spherical composite particles obtained by synthesizing spherical large particles and small particles and an apparatus for producing the same. More specifically, the present invention relates to a production method suitable for producing spherical composite particles obtained by synthesizing large particles on the order of microns and small particles having a diameter of 100 nm or less, and a production apparatus therefor.

従来、粒径が異なる球状複合粒子の製造は、球状の大粒子と小粒子を別々に製造し、これらを混合することで行っていた。例えば、特開2003−275281号公報に開示されている薬物含有複合粒子の製造方法では、流動層乾燥造粒法または乾式機械的粒子複合化法を利用して、大粒子(直径1〜500μm)の表面に小粒子(直径0.01〜500μm)を付着させている。   Conventionally, spherical composite particles having different particle sizes have been manufactured by separately manufacturing spherical large particles and small particles and mixing them. For example, in the method for producing drug-containing composite particles disclosed in Japanese Patent Application Laid-Open No. 2003-275281, large particles (diameter: 1 to 500 μm) are obtained using a fluidized bed dry granulation method or a dry mechanical particle composite method. Small particles (diameter of 0.01 to 500 μm) are attached to the surface of.

図11に基づいて説明する。この方法では、まず最初に、ナノ粒子60を凝集させてナノ粒子凝集体61を製造する。ナノ粒子凝集体61としては、ナノ粒子60のみを凝集させてなる非キャリア型のナノ粒子凝集体61aであっても良く(図11の左上)、一次キャリア59を介してナノ粒子60を凝集させてなるキャリア型のナノ粒子凝集体61bでも良い(図11の左下)。ここで、キャリア型のナノ粒子凝集体61bは、流動層乾燥造粒法を利用して大粒子(一次キャリア59)の表面に小粒子(ナノ粒子60)を付着させることで製造される。   This will be described with reference to FIG. In this method, first, nanoparticles 60 are aggregated to produce nanoparticle aggregate 61. The nanoparticle aggregate 61 may be a non-carrier-type nanoparticle aggregate 61a formed by aggregating only the nanoparticles 60 (upper left in FIG. 11), and the nanoparticles 60 are aggregated via the primary carrier 59. The carrier-type nanoparticle aggregate 61b may be used (lower left in FIG. 11). Here, the carrier-type nanoparticle aggregate 61b is manufactured by attaching small particles (nanoparticles 60) to the surface of large particles (primary carrier 59) using a fluidized bed drying granulation method.

次に、ナノ粒子凝集体61を複合化して複合粒子62を製造する。即ち、大粒子(結合剤64又はキャリア粒子63)の表面に小粒子(ナノ粒子凝集体61)を付着させる。複合化工程としては、流動層乾燥造粒法または乾燥機械的粒子複合化法を用いる。流動層乾燥造粒法では、結合剤64を用いて造粒された結合剤凝集型の複合粒子62aが得られ(図11の上側のルート)、乾式機械的粒子複合化法では、キャリア粒子63を用いて造粒されたキャリア型の複合粒子62bが得られる(図11の下側のルート)。   Next, the nanoparticle aggregate 61 is combined to produce composite particles 62. That is, small particles (nanoparticle aggregate 61) are attached to the surface of large particles (binder 64 or carrier particles 63). As the compounding step, a fluidized bed dry granulation method or a dry mechanical particle compounding method is used. In the fluidized bed dry granulation method, binder-aggregated composite particles 62a granulated using the binder 64 are obtained (upper route in FIG. 11), and in the dry mechanical particle composite method, carrier particles 63 are obtained. Thus, carrier-type composite particles 62b granulated using the above are obtained (the lower route in FIG. 11).

なお、複合粒子62は薬物のナノ粒子60を含む複合粒子であり、口腔内への噴霧によって複合粒子62を崩壊させてナノ粒子凝集体61を分散させ、口腔内から肺へと吸収させている。   The composite particles 62 are composite particles containing drug nanoparticles 60. The composite particles 62 are disintegrated by spraying into the oral cavity to disperse the nanoparticle aggregates 61 and absorbed from the oral cavity to the lungs. .

特開2003−275281号JP 2003-275281 A

しかしながら、上述の複合粒子の製造方法では、大粒子を製造するプロセス、小粒子を製造するプロセス、これらの大小粒子を混合するプロセスなど、多くの別々のプロセスが必要となる。このため、複合粒子の製造コストが高くなる。   However, the above-described method for producing composite particles requires many separate processes such as a process for producing large particles, a process for producing small particles, and a process for mixing these large and small particles. For this reason, the manufacturing cost of a composite particle becomes high.

本発明は、球状の大粒子の表面に小粒子が分散付着した球状複合粒子を一つのプロセスで製造することができる球状複合粒子の製造方法およびその製造装置を提供することを目的とする。   An object of the present invention is to provide a method for producing spherical composite particles and a production apparatus thereof, which can produce spherical composite particles in which small particles are dispersed and adhered to the surface of large spherical particles in one process.

かかる目的を達成するために請求項1記載の球状複合粒子の製造方法は、プラズマに原材料粒子を導入しその表面を溶融させて蒸発させることにより原材料粒子を球形に近づけつつ、その球状粒子の周囲に原材料蒸気が混在した場を形成し、さらに、プラズマ通過後の球状粒子と原材料蒸気の混在場に原材料蒸気を急冷させながら原材料蒸気と反応する反応・急冷ガスを吹き込むことにより、原材料蒸気を反応・急冷ガスと反応させながら凝縮させて球状粒子よりも直径の小さな小粒子を生成させると共に、その小粒子を球状粒子の表面に分散付着させるものである。 In order to achieve this object, the method for producing spherical composite particles according to claim 1 is characterized in that the raw material particles are brought close to a spherical shape by introducing the raw material particles into the plasma, melting the surface thereof and evaporating it, and surrounding the spherical particles. In addition, a reaction that reacts with the raw material vapor and a quenching gas is blown into the mixed field of spherical particles and raw material vapor after passing through the plasma , while the raw material vapor reacts. Condensation while reacting with a quenching gas to generate small particles having a diameter smaller than that of the spherical particles, and the small particles are dispersed and attached to the surface of the spherical particles.

したがって、プラズマ中に原材料粒子を導入すると、原材料粒子の表面が溶融して蒸発し、原材料粒子が丸くなって球状粒子となる。また、球状粒子の周囲には蒸発した原材料蒸気が混在し、混在場を形成する。この混在場に反応・急冷ガスが吹き込まれると、原材料蒸気が急速に冷やされ、反応・急冷ガスと反応しながら凝縮し、小粒子となる。即ち、球状粒子の周囲に多数の小粒子が生成される。多数の小粒子は球状粒子の表面に付着する。これにより、球状粒子の表面に小粒子を分散付着させた球状複合粒子が製造される。これらは一連の過程によって行われ、例えば一つのチャンバー内で球状複合粒子の製造が行われる。   Therefore, when the raw material particles are introduced into the plasma, the surface of the raw material particles melts and evaporates, and the raw material particles become round and become spherical particles. In addition, the vaporized raw material vapor is mixed around the spherical particles to form a mixed field. When the reaction / quenching gas is blown into this mixed field, the raw material vapor is rapidly cooled and condensed while reacting with the reaction / quenching gas to form small particles. That is, a large number of small particles are generated around the spherical particles. Many small particles adhere to the surface of the spherical particles. Thereby, spherical composite particles in which small particles are dispersed and adhered to the surface of the spherical particles are produced. These are performed by a series of processes. For example, spherical composite particles are produced in one chamber.

ここで、請求項2記載の球状複合粒子の製造方法のように、小粒子は直径が100nm以下の超微粒子であることが好ましい。   Here, as in the method for producing spherical composite particles according to claim 2, the small particles are preferably ultrafine particles having a diameter of 100 nm or less.

また、請求項3記載の球状複合粒子の製造方法は、球状粒子の粒子寸法条件と小粒子の粒子寸法条件の少なくともいずれか一方を制御することで、球状複合粒子の粒子寸法条件を調節するものである。   The method for producing spherical composite particles according to claim 3 adjusts the particle size conditions of the spherical composite particles by controlling at least one of the particle size conditions of the spherical particles and the particle size conditions of the small particles. It is.

球状複合粒子は球状粒子と小粒子より成るものであり、球状粒子の粒子寸法条件と小粒子の粒子寸法条件の少なくともいずれか一方が変化すると、球状複合粒子の粒子寸法条件も変化する。このため、前者の制御によって後者を調節することができる。このとき、球状粒子の粒子寸法条件を制御することで製造する球状複合粒子の粒子寸法条件を調節するようにしても良く、あるいは小粒子の粒子寸法条件を制御することで製造する球状複合粒子の粒子寸法条件を調節するようにしても良い。又は、球状粒子の粒子寸法条件と小粒子の粒子寸法条件の両方を制御することで、製造する球状複合粒子の粒子寸法条件を調節するようにしても良い。   The spherical composite particles are composed of spherical particles and small particles. When at least one of the particle size conditions of the spherical particles and the particle size conditions of the small particles changes, the particle size conditions of the spherical composite particles also change. For this reason, the latter can be adjusted by the former control. At this time, the particle size conditions of the spherical composite particles to be manufactured may be adjusted by controlling the particle size conditions of the spherical particles, or the spherical composite particles to be manufactured by controlling the particle size conditions of the small particles. The particle size condition may be adjusted. Alternatively, the particle size condition of the spherical composite particles to be manufactured may be adjusted by controlling both the particle size condition of the spherical particles and the particle size condition of the small particles.

ここで、球状粒子の粒子寸法条件は、球状粒子の球形度、球状粒子の直径のうち、少なくともいずれか1つである。また、小粒子の粒子寸法条件は、小粒子の直径、球状粒子1個に付着する小粒子の個数のうち、少なくともいずれか1つである。さらに、球状複合粒子の粒子寸法条件、球状複合粒子の球形度、球状複合粒子における球状粒子と小粒子との粒径比、球状複合粒子における球状粒子と小粒子との体積比のうち、少なくともいずれか1つである。 Here, the particle size condition of the spherical particles is at least one of the sphericity of the spherical particles and the diameter of the spherical particles. The particle size condition of the small particles is at least one of the diameter of the small particles and the number of small particles attached to one spherical particle. Furthermore, the particle size condition of the spherical composite particles is at least one of the sphericity of the spherical composite particles, the particle size ratio of the spherical particles to the small particles in the spherical composite particles, and the volume ratio of the spherical particles to the small particles in the spherical composite particles. One of them.

また、請求項4記載の球状複合粒子の製造方法は、原材料粒子の表面を溶融させて蒸発させる加熱パラメータを制御することにより、球状粒子の粒子寸法条件を制御するものである。加熱パラメータが変わると、プラズマによる原材料粒子の加熱の条件が変わるので、球状粒子の粒子寸法条件が変化する。このため、加熱パラメータを制御することで、球状粒子の粒子寸法条件を制御することができる。ここで、加熱パラメータは、プラズマの温度、プラズマ中の原材料粒子の滞留時間、プラズマのガスの種類、プラズマの圧力、原材料粒子の種類、原材料粒子の粒径のうち、少なくともいずれか1つである。 In the method for producing spherical composite particles according to claim 4, the particle size condition of the spherical particles is controlled by controlling the heating parameters for melting and evaporating the surface of the raw material particles. When the heating parameters change, the conditions for heating the raw material particles by plasma change, so the particle size conditions of the spherical particles change. For this reason, the particle size conditions of the spherical particles can be controlled by controlling the heating parameters. Here, the heating parameter is at least one of plasma temperature, residence time of raw material particles in the plasma, plasma gas type, plasma pressure, raw material particle type, and raw material particle size. .

また、請求項5記載の球状複合粒子の製造方法は、原材料粒子の表面を溶融させて蒸発させる加熱パラメータを制御することにより、原材料粒子の蒸発量を制御して、小粒子の粒子寸法条件を制御するものである。 The method for producing spherical composite particles according to claim 5 controls the heating parameter for melting and evaporating the surface of the raw material particles, thereby controlling the evaporation amount of the raw material particles, thereby reducing the particle size condition of the small particles. It is something to control.

加熱パラメータが変わると、プラズマによる原材料粒子の加熱の条件が変わるので、原材料粒子の蒸発量が変化する。原材料蒸気は小粒子の素であり、反応・急冷ガスによって生成される小粒子の粒子寸法条件も変化する。このため、加熱パラメータを制御することで小粒子の粒子寸法条件を制御することができる。   When the heating parameter changes, the conditions for heating the raw material particles by plasma change, so the evaporation amount of the raw material particles changes. The raw material vapor is an element of small particles, and the particle size conditions of the small particles generated by the reaction / quenching gas also change. For this reason, the particle size conditions of the small particles can be controlled by controlling the heating parameters.

ここで、加熱パラメータ、プラズマの温度、プラズマ中の原材料粒子の滞留時間、プラズマのガスの種類、プラズマの圧力、原材料粒子の種類、原材料粒子の粒径のうち、少なくともいずれか1つである。 Here, pressurized thermal parameters, the plasma temperature, the residence time of the raw material particles in the plasma, the type of plasma gas, plasma pressure, the kind of raw materials particles, of particle size of raw material particles, at least one one is there.

また、請求項6記載の球状複合粒子の製造方法は、原材料蒸気を反応・急冷ガスと反応させながら凝縮させる反応・凝縮パラメータを制御することにより、小粒子の粒子寸法条件を制御するものである。反応・凝縮パラメータが変わると、反応・急冷ガスによる原材料蒸気の冷却の条件が変わるので、小粒子の粒子寸法条件が変化する。このため、反応・凝縮パラメータを制御することで、小粒子の粒子寸法条件を制御することができる。 The method for producing spherical composite particles according to claim 6 controls the particle size conditions of the small particles by controlling the reaction / condensation parameters for condensing the raw material vapor while reacting with the reaction / quenching gas. . When the reaction / condensation parameters change, the conditions for cooling the raw material vapor with the reaction / quenching gas change, so the particle size conditions for the small particles change. For this reason, the particle size conditions of small particles can be controlled by controlling the reaction / condensation parameters.

ここで、反応・凝縮パラメータ、反応・急冷ガスの種類、反応・急冷ガスの流量、反応・急冷ガスの吹き込み位置の温度、混在場の圧力のうち、少なくともいずれか1つである。 Here, reaction and condensation parameters, the type of reaction and quench gas flow rate of the reaction-quenching gases, blowing position of the temperature of the reaction and quench gases, among mixed field pressure is at least any one.

さらに、請求項7記載の球状複合粒子の製造装置は、チャンバーと、チャンバー内にプラズマを発生させるプラズマ発生手段と、プラズマに原材料粒子を導入する原材料供給手段と、原材料粒子の表面溶融させて蒸発させることによって形成された球状粒子と原材料蒸気の混在場であってプラズマ通過後の位置に原材料蒸気を急冷させながら原材料蒸気と反応する反応・急冷ガスを吹き込んで原材料蒸気を反応・急冷ガスと反応させながら凝縮させて球状粒子よりも直径の小さな小粒子を生成させるガス供給手段を備え、チャンバーは小粒子が球状粒子の表面に分散付着する領域を内部に有しており、さらに、小粒子が分散付着した球状粒子をチャンバー内から回収する回収手段を備えるものである。 Furthermore, apparatus for producing spherical composite particles according to claim 7 includes a chamber, a plasma generating means for generating a plasma in the chamber, and raw materials supply means for introducing the raw material particles in the plasma, by melting the surface of the raw material particles a reaction-quenching gas raw material vapors by blowing reaction and quench gas that reacts with the raw material vapor while quenching the raw material vapor to a mixed park of spherical particles and raw materials vapor formed at a position after the plasma passage by evaporation Gas supply means for condensing while reacting to produce small particles having a smaller diameter than the spherical particles, the chamber has a region in which the small particles are dispersed and attached to the surface of the spherical particles, and the small particles Is provided with a collecting means for collecting the spherical particles dispersed and adhered from the inside of the chamber.

したがって、プラズマ発生手段によってチャンバー内に発生させたプラズマに原材料供給手段によって原材料粒子を導入すると、原材料粒子の表面が溶融して蒸発し、原材料粒子が丸くなって球状粒子となる。また、球状粒子の周囲には蒸発した原材料蒸気が混在し、混在場を形成する。この混在場にガス供給手段によって反応・急冷ガスを吹き込むと、原材料蒸気が急速に冷やされ、反応・急冷ガスと反応しながら凝縮し、小粒子となる。即ち、球状粒子の周囲に小粒子が生成され、球状粒子と小粒子が混在する領域がチャンバー内に形成される。この領域で小粒子が球状粒子の表面に分散付着し、球状複合粒子となる。回収手段は球状複合粒子をチャンバー内から回収する。   Accordingly, when the raw material particles are introduced into the plasma generated in the chamber by the plasma generating means by the raw material supply means, the surface of the raw material particles melts and evaporates, and the raw material particles become round and become spherical particles. In addition, the vaporized raw material vapor is mixed around the spherical particles to form a mixed field. When the reaction / quenching gas is blown into the mixed field by the gas supply means, the raw material vapor is rapidly cooled and condensed while reacting with the reaction / quenching gas to form small particles. That is, small particles are generated around the spherical particles, and a region where the spherical particles and the small particles are mixed is formed in the chamber. In this region, small particles disperse and adhere to the surface of the spherical particles to form spherical composite particles. The collection means collects the spherical composite particles from the chamber.

しかして、請求項1記載の球状複合粒子の製造方法では、上述のようにして球状複合粒子を製造するので、一つのプロセスで球状複合粒子を製造することができる。このため、粒径が異なる球状複合粒子の製造が簡単なものとなり、製造コストを削減することができる。   Thus, in the method for producing spherical composite particles according to claim 1, since the spherical composite particles are produced as described above, the spherical composite particles can be produced in one process. For this reason, the manufacture of spherical composite particles having different particle sizes becomes simple, and the manufacturing cost can be reduced.

また、請求項2記載の球状複合粒子の製造方法では、小粒子が直径100nm以下の超微粒子であるので、例えば熱伝導率や電気絶縁破壊強度の向上などいわゆるナノコンポジット効果の発揮を図ることができる。   In the method for producing spherical composite particles according to claim 2, since the small particles are ultrafine particles having a diameter of 100 nm or less, so-called nanocomposite effects such as improvement of thermal conductivity and electrical breakdown strength can be achieved. it can.

また、請求項3記載の球状複合粒子の製造方法では、球状粒子の粒子寸法条件と小粒子の粒子寸法条件の少なくともいずれか一方を制御することで、球状複合粒子の粒子寸法条件を調節するので、様々な要求に応じた球状複合粒子を製造することができる。   In the method for producing spherical composite particles according to claim 3, the particle size conditions of the spherical composite particles are adjusted by controlling at least one of the particle size conditions of the spherical particles and the particle size conditions of the small particles. Spherical composite particles that meet various requirements can be produced.

また、請求項4記載の球状複合粒子の製造方法では、原材料粒子の表面を溶融させて蒸発させる加熱パラメータを制御することにより、球状粒子の粒子寸法条件を制御するので、球状粒子の粒子寸法条件の制御が容易である。 In the method for producing spherical composite particles according to claim 4, since the particle size conditions of the spherical particles are controlled by controlling the heating parameter for melting and evaporating the surface of the raw material particles, the particle size conditions of the spherical particles Is easy to control.

また、請求項5記載の球状複合粒子の製造方法では、原材料粒子の表面を溶融させて蒸発させる加熱パラメータを制御することにより、原材料粒子の蒸発量を制御して、小粒子の粒子寸法条件を制御するので、小粒子の粒子寸法条件の制御が容易である。 In the method for producing spherical composite particles according to claim 5, the amount of the raw material particles is controlled by controlling the heating parameter for melting and evaporating the surface of the raw material particles, so that the particle size condition of the small particles is set. Since it controls, the particle size conditions of a small particle are easy to control.

また、請求項6記載の球状複合粒子の製造方法では、原材料蒸気を反応・急冷ガスと反応させながら凝縮させる反応・凝縮パラメータを制御することにより、小粒子の粒子寸法条件を制御するので、小粒子の粒子寸法条件の制御が容易である。 In the method for producing spherical composite particles according to claim 6, the particle size condition of the small particles is controlled by controlling the reaction / condensation parameters for condensing the raw material vapor while reacting with the reaction / quenching gas. Control of the particle size condition of the particles is easy.

さらに、請求項記載の球状複合粒子の製造装置では、上述のように構成しているので、球状複合粒子を一つのプロセスで製造することができる。このため、粒径が異なる球状複合粒子の製造が簡単なものとなり、製造コストを安くすることができる。 Furthermore, since the spherical composite particle manufacturing apparatus according to the seventh aspect is configured as described above, the spherical composite particles can be manufactured in one process. For this reason, it becomes easy to manufacture spherical composite particles having different particle diameters, and the manufacturing cost can be reduced.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に本発明の球状複合粒子の製造装置の実施形態の一例を示す。球状複合粒子の製造装置(以下、単に製造装置という)は、チャンバー1と、チャンバー1内にプラズマ2を発生させるプラズマ発生手段3と、プラズマ2に原材料粒子を導入する原材料供給手段4と、原材料粒子の表面溶融させて蒸発させることによって形成された球状粒子と原材料蒸気の混在場22であって前記プラズマ通過後の位置に原材料蒸気を急冷させながら原材料蒸気と反応する反応・急冷ガス23を吹き込んで原材料蒸気を反応・急冷ガスと反応させながら凝縮させて球状粒子よりも直径の小さな小粒子を生成させるガス供給手段5を備え、チャンバー1は小粒子が球状粒子の表面に分散付着する領域21を内部に有しており、さらに、小粒子が分散付着した球状粒子をチャンバー1内から回収する回収手段6を備えている。 FIG. 1 shows an example of an embodiment of the apparatus for producing spherical composite particles of the present invention. A spherical composite particle manufacturing apparatus (hereinafter simply referred to as a manufacturing apparatus) includes a chamber 1, plasma generating means 3 for generating plasma 2 in the chamber 1, raw material supply means 4 for introducing raw material particles into the plasma 2, and raw materials. the reaction-quenching gas 23 to react with the raw material vapor while quenched raw material vapor to a position after the plasma passing a mixed field 22 of the spherical particles and the raw material vapor that is formed by causing evaporation of the surface of the particles are melted A gas supply means 5 for generating small particles having a diameter smaller than that of the spherical particles by condensing the raw material vapor with the reaction / quenching gas while being blown in is provided, and the chamber 1 is a region in which the small particles are dispersed and attached to the surface of the spherical particles. And a recovery means 6 for recovering spherical particles with small particles dispersed and attached from inside the chamber 1.

プラズマ発生手段3は、プラズマトーチ7と、プラズマトーチ7内の陰極8と、プラズマトーチ7から離れて配置された陽極9とを有している。陽極9はチャンバー1の例えば中央に設けられている。また、プラズマトーチ7は、チャンバー1上に設けられた支持手段11に高さ調節可能に且つ下向きに取り付けられている。陰極8と陽極9は図示しないアーク電源に接続されており、プラズマトーチ7から噴射されるプラズマガス10を利用してプラズマ(アークプラズマ)2を発生させる。   The plasma generating means 3 has a plasma torch 7, a cathode 8 in the plasma torch 7, and an anode 9 disposed away from the plasma torch 7. The anode 9 is provided, for example, in the center of the chamber 1. The plasma torch 7 is attached to a support means 11 provided on the chamber 1 so that the height thereof can be adjusted and downward. The cathode 8 and the anode 9 are connected to an arc power source (not shown), and plasma (arc plasma) 2 is generated using a plasma gas 10 injected from the plasma torch 7.

図1(b)にプラズマトーチ7の先端部の断面を示す。プラズマトーチ7は、例えば2重管構造になっており、陰極8によって内管(以下、内管8という)を構成している。図示しないプラズマガス源から供給されたプラズマガス10を内管8と外管12との間から噴射させる。また、粒子供給装置13からプラズマガス10とともに供給された原材料粒子を内管8内から噴射させる。即ち、本実施形態では、プラズマトーチ7内の陰極8が原材料供給手段4となっている。プラズマガス10は、例えばNガスである。また、アークプラズマ2の温度は、例えば6000K〜7000Kである。ただし、アークプラズマ2の温度はこれに限るものではなく、原材料粒子の表面を溶融させて蒸発させることができる温度であれば特に限定されない。 FIG. 1B shows a cross section of the tip of the plasma torch 7. The plasma torch 7 has, for example, a double tube structure, and an inner tube (hereinafter referred to as an inner tube 8) is constituted by a cathode 8. A plasma gas 10 supplied from a plasma gas source (not shown) is injected from between the inner tube 8 and the outer tube 12. Further, the raw material particles supplied together with the plasma gas 10 from the particle supply device 13 are jetted from the inner tube 8. That is, in this embodiment, the cathode 8 in the plasma torch 7 is the raw material supply means 4. The plasma gas 10 is, for example, N 2 gas. The temperature of the arc plasma 2 is, for example, 6000K to 7000K. However, the temperature of the arc plasma 2 is not limited to this, and is not particularly limited as long as the surface can melt and evaporate the surface of the raw material particles.

回収手段6はプラズマトーチ7の真下に設けられた回収筒14と、エタノール入りの回収タンク15と、回収筒14内に落下した球状複合粒子を回収タンク15に導くチューブ16より構成されている。回収タンク15は、フィルタ17および排ガス浄化装置18を介して真空ポンプ19に接続されている。また、回収筒14は支持体20によって高さ調節可能に支持されている。   The recovery means 6 includes a recovery cylinder 14 provided immediately below the plasma torch 7, a recovery tank 15 containing ethanol, and a tube 16 that guides spherical composite particles that have fallen into the recovery cylinder 14 to the recovery tank 15. The recovery tank 15 is connected to a vacuum pump 19 via a filter 17 and an exhaust gas purification device 18. The collection cylinder 14 is supported by the support 20 so that the height can be adjusted.

図1(c)に回収筒14の先端部の断面を示す。回収筒14の先端部の内周面には、反応・急冷ガス23を混在場22に向けて噴射させるノズルが設けられている。即ち、本実施形態では、回収筒14に設けられたノズルがガス供給手段5となっている。ノズル5へは図示しないガス源から反応・急冷ガス23が供給されている。反応・急冷ガス23は、例えばNHガスである。 FIG. 1C shows a cross section of the distal end portion of the collection cylinder 14. A nozzle that injects the reaction / quenching gas 23 toward the mixed field 22 is provided on the inner peripheral surface of the distal end portion of the recovery cylinder 14. That is, in this embodiment, the nozzle provided in the collection cylinder 14 is the gas supply means 5. The nozzle 5 is supplied with reaction / quenching gas 23 from a gas source (not shown). The reaction / quenching gas 23 is, for example, NH 3 gas.

原材料粒子は、例えばAlN粒子(AlN粉)である。原材料粒子は、例えば所定の大きさのAlN塊を粉砕した粉砕粒子である。このため、図2に示すように、原材料粒子は角張った形状を成している。   The raw material particles are, for example, AlN particles (AlN powder). The raw material particles are, for example, pulverized particles obtained by pulverizing an AlN lump having a predetermined size. For this reason, as shown in FIG. 2, the raw material particles have an angular shape.

チャンバー1内には、アークプラズマ2の圧力を計測する圧力センサが設けられている。また、チャンバー1の外には、アークプラズマ2の温度を離れた位置から計測する温度センサが設けられている。   A pressure sensor for measuring the pressure of the arc plasma 2 is provided in the chamber 1. In addition, a temperature sensor that measures the temperature of the arc plasma 2 from a position away from the chamber 1 is provided.

次に、本発明の球状複合粒子の製造方法について説明する。球状複合粒子の製造方法(以下、単に製造方法という)は、プラズマ2に原材料粒子を導入しその表面を溶融させて蒸発させることにより原材料粒子を球形に近づけつつ、その球状粒子の周囲に原材料蒸気が混在した場を形成し、さらに、プラズマ2通過後の球状粒子と原材料蒸気の混在場22に原材料蒸気を急冷させながら原材料蒸気と反応する反応・急冷ガス23を吹き込むことにより、原材料蒸気を反応・急冷ガスと反応させながら凝縮させて球状粒子よりも直径の小さな小粒子を生成させると共に、その小粒子を球状粒子の表面に分散付着させるものである。 Next, the manufacturing method of the spherical composite particles of the present invention will be described. A method for producing spherical composite particles (hereinafter simply referred to as production method) is to introduce raw material particles into the plasma 2 and melt and evaporate the surface thereof to evaporate the raw material particles, thereby bringing the raw material vapor around the spherical particles. In addition, the reaction of the raw material vapor is performed by blowing a reaction / quenching gas 23 that reacts with the raw material vapor while rapidly cooling the raw material vapor into the mixed field 22 of the spherical particles and the raw material vapor after passing through the plasma 2. Condensation while reacting with a quenching gas to generate small particles having a diameter smaller than that of the spherical particles, and the small particles are dispersed and attached to the surface of the spherical particles.

プラズマトーチ7からプラズマガス10を噴射させ、陰極8と陽極9間に所定温度のアークプラズマ2を発生させる。また、真空ポンプ19を作動させて回収手段6を通じてチャンバー1内を吸引する。   A plasma gas 10 is jetted from the plasma torch 7 to generate arc plasma 2 having a predetermined temperature between the cathode 8 and the anode 9. In addition, the inside of the chamber 1 is sucked through the recovery means 6 by operating the vacuum pump 19.

この状態で原材料供給手段4から原材料粒子をアークプラズマ2内に導入すると、原材料粒子の表面が溶融して蒸発し、原材料粒子が丸くなって例えばミクロンオーダーの球状粒子となる。また、原材料粒子の表面が蒸発することで、球状粒子と原材料蒸気が混在する混在場22が形成される。   When the raw material particles are introduced into the arc plasma 2 from the raw material supply means 4 in this state, the surface of the raw material particles is melted and evaporated, and the raw material particles become round and become, for example, micron-order spherical particles. Further, the surface of the raw material particles evaporates to form a mixed field 22 in which spherical particles and raw material vapor are mixed.

この混在場22にガス供給手段5によって反応・急冷ガス23を吹き込むと、混在場22の原材料蒸気が急速に冷やされ、反応・急冷ガス23と反応しながら凝集して球状粒子よりも小さな球状の小粒子が生成される。本実施形態では、小粒子として例えば直径が100nm以下の超微粒子を生成させる。このため、回収筒14内に球状粒子と超微粒子が混在する領域21が形成され、球状粒子の表面に超微粒子が分散付着しながら落下する。即ち、図3に示すように、球状複合粒子が合成される。このようにして球状複合粒子が製造される。本実施形態では、原材料粒子として例えばAlN粒子を使用しているので、窒化アルミニウム複合粒子を製造することができる。   When the reaction / quenching gas 23 is blown into the mixed field 22 by the gas supply means 5, the raw material vapor in the mixed field 22 is rapidly cooled and agglomerates while reacting with the reaction / quenched gas 23 to form a spherical shape smaller than the spherical particles. Small particles are produced. In the present embodiment, for example, ultrafine particles having a diameter of 100 nm or less are generated as small particles. For this reason, a region 21 in which spherical particles and ultrafine particles are mixed is formed in the collection cylinder 14, and the ultrafine particles fall while being adhered to the surface of the spherical particles. That is, as shown in FIG. 3, spherical composite particles are synthesized. In this way, spherical composite particles are produced. In the present embodiment, for example, AlN particles are used as raw material particles, so that aluminum nitride composite particles can be produced.

製造された球状複合粒子は、排気ガス即ちプラズマガス10及び反応・急冷ガス23とともに真空ポンプ19に吸引されて回収筒14からチューブ16を通って回収タンク15に到達し、回収タンク15内で排気ガスと分離されて回収される。一方、回収タンク15を通過した排気ガスはフィルタ17、排ガス浄化装置18、真空ポンプ19を通過した後、大気に放出される。   The produced spherical composite particles are sucked by the vacuum pump 19 together with the exhaust gas, that is, the plasma gas 10 and the reaction / quenching gas 23, reach the recovery tank 15 through the tube 16 from the recovery cylinder 14, and exhaust in the recovery tank 15. Separated from gas and recovered. On the other hand, the exhaust gas that has passed through the recovery tank 15 passes through the filter 17, the exhaust gas purification device 18, and the vacuum pump 19, and is then released to the atmosphere.

本発明の製造装置、製造方法では、図10に示すように、球状粒子の粒子寸法条件27と小粒子の粒子寸法条件(本実施形態では小粒子が例えば直径100nm以下の超微粒子であるので、超微粒子の粒子寸法条件という)28の少なくともいずれか一方を制御することで、製造する球状複合粒子の粒子寸法条件29を調節することができる。ここで、制御する球状粒子の粒子寸法条件27は、球状粒子の球形度、球状粒子の直径のうち、少なくともいずれか1つである。また、制御する超微粒子の粒子寸法条件28は、超微粒子の直径、球状粒子1個に付着する超微粒子の個数(以下、超微粒子の個数比という)のうち、少なくともいずれか1つである。さらに、調節する球状複合粒子の粒子寸法条件29は、球状複合粒子の球形度、球状複合粒子における球状粒子と超微粒子との粒径比(以下、単に球状複合粒子の粒径比という)、球状複合粒子における球状粒子と超微粒子との体積比(以下、単に球状複合粒子の体積比という)のうち、少なくともいずれか1つである。   In the production apparatus and production method of the present invention, as shown in FIG. 10, the particle size condition 27 for spherical particles and the particle size condition for small particles (in this embodiment, the small particles are ultrafine particles having a diameter of 100 nm or less, for example. The particle size condition 29 of the spherical composite particles to be manufactured can be adjusted by controlling at least one of 28 (referred to as the particle size condition of ultrafine particles). Here, the particle size condition 27 of the spherical particles to be controlled is at least one of the sphericity of the spherical particles and the diameter of the spherical particles. The particle size condition 28 of the ultrafine particles to be controlled is at least one of the diameter of the ultrafine particles and the number of ultrafine particles attached to one spherical particle (hereinafter referred to as the number ratio of ultrafine particles). Furthermore, the particle size condition 29 of the spherical composite particles to be adjusted includes the sphericity of the spherical composite particles, the particle size ratio between the spherical particles and the ultrafine particles in the spherical composite particles (hereinafter simply referred to as the particle size ratio of the spherical composite particles), spherical It is at least one of the volume ratio of the spherical particles to the ultrafine particles in the composite particles (hereinafter simply referred to as the volume ratio of the spherical composite particles).

つまり、球状複合粒子の粒子寸法条件29の要素である球状複合粒子の球形度は、球状粒子の球形度、球状粒子の直径、超微粒子の直径、超微粒子の個数比によって変化するので、これらの値のうち少なくとも1つを変化させることで球状複合粒子の球形度を調節することができる。また、球状複合粒子の粒子寸法条件29の要素である球状複合粒子の粒径比は、球状粒子の球形度、球状粒子の直径、超微粒子の直径、超微粒子の個数比によって変化するので、これらの値のうち少なくとも1つを変化させることで球状複合粒子の粒径比を調節することができる。さらに、球状複合粒子の粒子寸法条件29の要素である球状複合粒子の体積比は、球状粒子の球形度、球状粒子の直径、超微粒子の直径、超微粒子の個数比によって変化するので、これらの値のうち少なくとも1つを変化させることで球状複合粒子の体積比を調節することができる。   That is, the sphericity of the spherical composite particles, which is an element of the particle size condition 29 of the spherical composite particles, varies depending on the sphericity of the spherical particles, the diameter of the spherical particles, the diameter of the ultrafine particles, and the number ratio of the ultrafine particles. The sphericity of the spherical composite particles can be adjusted by changing at least one of the values. In addition, the particle size ratio of the spherical composite particles that are elements of the particle size condition 29 of the spherical composite particles varies depending on the sphericity of the spherical particles, the diameter of the spherical particles, the diameter of the ultrafine particles, and the number ratio of the ultrafine particles. The particle size ratio of the spherical composite particles can be adjusted by changing at least one of the values. Furthermore, the volume ratio of the spherical composite particles that are elements of the particle size condition 29 of the spherical composite particles varies depending on the sphericity of the spherical particles, the diameter of the spherical particles, the diameter of the ultrafine particles, and the number ratio of the ultrafine particles. The volume ratio of the spherical composite particles can be adjusted by changing at least one of the values.

球状複合粒子の粒子寸法条件29の調節は、球状複合粒子の球形度、粒径比、体積比のいずれか1つのみについて行っても良く、又はいずれか2つについて或いは3つ全てについて行っても良い。即ち、球状粒子の粒子寸法条件27と超微粒子の粒子寸法条件28の各要素の決め方によって、球状複合粒子の粒子寸法条件29の各要素を種々決定可能である。   The particle size condition 29 of the spherical composite particles may be adjusted for only one of the sphericity, the particle size ratio, and the volume ratio of the spherical composite particles, or for any two or all three. Also good. That is, various elements of the particle size condition 29 of the spherical composite particles can be variously determined by determining the elements of the particle size condition 27 of the spherical particles and the particle size condition 28 of the ultrafine particles.

球状粒子の粒子寸法条件27の制御は、原材料粒子の表面を溶融させて蒸発させる加熱パラメータ24を制御することで行われる。ここで、制御する加熱パラメータ24は、プラズマ2の温度、プラズマ2中の原材料粒子の滞留時間、プラズマガスの種類、プラズマ2の圧力、原材料粒子の種類、原材料粒子の粒径のうち、少なくともいずれか1つである。ただし、これらの要素以外の要素を加熱パラメータ24の要素にしても良い。 The particle size condition 27 of the spherical particles is controlled by controlling a heating parameter 24 for melting and evaporating the surface of the raw material particles. Here, the heating parameter 24 to be controlled is at least one of the temperature of the plasma 2, the residence time of the raw material particles in the plasma 2, the type of the plasma gas, the pressure of the plasma 2, the type of the raw material particles, and the particle size of the raw material particles. Or one. However, elements other than these elements may be elements of the heating parameter 24.

つまり、球状粒子の粒子寸法条件27の要素である球状粒子の球形度は、アークプラズマ2の温度、アークプラズマ2中の原材料粒子の滞留時間、プラズマガス10の種類、アークプラズマ2の圧力、原材料粒子の種類、原材料粒子の粒径によって変化するので、これらの値のうち少なくとも1つを変化させることで球状粒子の球形度を変化させることができる。また、球状粒子の粒子寸法条件27の要素である球状粒子の直径は、アークプラズマ2の温度、アークプラズマ2中の原材料粒子の滞留時間、プラズマガス10の種類、アークプラズマ2の圧力、原材料粒子の種類、原材料粒子の粒径によって変化するので、これらの値のうち少なくとも1つを変化させることで球状粒子の直径を変化させることができる。   That is, the sphericity of the spherical particles, which is an element of the particle size condition 27 of the spherical particles, is the temperature of the arc plasma 2, the residence time of the raw material particles in the arc plasma 2, the type of the plasma gas 10, the pressure of the arc plasma 2, and the raw material Since it changes with the kind of particle | grains and the particle size of raw material particle | grains, the sphericity of a spherical particle can be changed by changing at least 1 of these values. In addition, the diameter of the spherical particle, which is an element of the particle size condition 27 of the spherical particle, includes the temperature of the arc plasma 2, the residence time of the raw material particles in the arc plasma 2, the type of the plasma gas 10, the pressure of the arc plasma 2, and the raw material particles Therefore, the diameter of the spherical particles can be changed by changing at least one of these values.

超微粒子の粒子寸法条件28の制御も、加熱パラメータ24を制御することで行われる。つまり、超微粒子の粒子寸法条件28の要素である超微粒子の直径は原材料粒子の蒸発量26によって変化し、原材料粒子の蒸発量26はアークプラズマ2の温度、アークプラズマ2中の原材料粒子の滞留時間、プラズマガス10の種類、アークプラズマ2の圧力、原材料粒子の種類、原材料粒子の粒径によって変化するので、これらの値のうち少なくとも1つを変化させることで原材料粒子の蒸発量26を制御して超微粒子の直径を制御することができる。また、超微粒子の粒子寸法条件28である超微粒子の個数比は原材料粒子の蒸発量26によって変化し、原材料粒子の蒸発量26はアークプラズマ2の温度、アークプラズマ2中の原材料粒子の滞留時間、プラズマガス10の種類、アークプラズマ2の圧力、原材料粒子の種類、原材料粒子の粒径によって変化するので、これらの値のうち少なくとも1つを変化させることで原材料粒子の蒸発量26を制御して超微粒子の個数比を制御することができる。   The control of the particle size condition 28 of the ultrafine particles is also performed by controlling the heating parameter 24. That is, the diameter of the ultrafine particles, which is an element of the particle size condition 28 of the ultrafine particles, varies depending on the evaporation amount 26 of the raw material particles, and the evaporation amount 26 of the raw material particles depends on the temperature of the arc plasma 2 and the retention of the raw material particles in the arc plasma 2. Since it changes depending on the time, the type of plasma gas 10, the pressure of the arc plasma 2, the type of raw material particles, and the particle size of the raw material particles, the evaporation amount 26 of the raw material particles is controlled by changing at least one of these values. Thus, the diameter of the ultrafine particles can be controlled. The number ratio of ultrafine particles, which is the particle size condition 28 of the ultrafine particles, varies depending on the evaporation amount 26 of the raw material particles. The evaporation amount 26 of the raw material particles depends on the temperature of the arc plasma 2 and the residence time of the raw material particles in the arc plasma 2. The amount of vaporization 26 of the raw material particles is controlled by changing at least one of these values because it varies depending on the type of plasma gas 10, the pressure of the arc plasma 2, the type of raw material particles, and the particle size of the raw material particles. Thus, the number ratio of ultrafine particles can be controlled.

また、超微粒子の粒子寸法条件28の制御は、原材料蒸気を反応・急冷ガスと反応させながら凝縮させる反応・凝縮パラメータ25を制御することでも行われる。ここで、制御する反応・凝縮パラメータ25は、反応・急冷ガス23の種類、反応・急冷ガス23の流量、反応・急冷ガス23の吹き込み位置の温度、混在場22の圧力のうち、少なくともいずれか1つである。ただし、これらの要素以外の要素を反応・凝縮パラメータ25の要素にしても良い。 The control of the particle size condition 28 of the ultrafine particles is also performed by controlling the reaction / condensation parameter 25 that condenses the raw material vapor while reacting with the reaction / quenching gas . Here, the reaction / condensation parameter 25 to be controlled is at least one of the type of the reaction / quenching gas 23, the flow rate of the reaction / quenching gas 23, the temperature at the blowing position of the reaction / quenching gas 23, and the pressure of the mixed field 22. One. However, elements other than these elements may be elements of the reaction / condensation parameter 25.

つまり、超微粒子の粒子寸法条件28の要素である超微粒子の直径は、反応・急冷ガス23の種類、反応・急冷ガス23の流量、反応・急冷ガス23の吹き込み位置の温度、混在場22の圧力によって変化するので、これらの値のうち少なくとも1つを変化させることで超微粒子の直径を変化させることができる。また、超微粒子の粒子寸法条件28の要素である超微粒子の個数比は、反応・急冷ガス23の種類、反応・急冷ガス23の流量、反応・急冷ガス23の吹き込み位置の温度、混在場22の圧力によって変化するので、これらの値のうち少なくとも1つを変化させることで超微粒子の個数比を変化させることができる。   That is, the diameter of the ultrafine particles, which is an element of the particle size condition 28 of the ultrafine particles, is the type of the reaction / quenching gas 23, the flow rate of the reaction / quenching gas 23, the temperature of the blowing position of the reaction / quenching gas 23, Since it changes with pressure, the diameter of the ultrafine particles can be changed by changing at least one of these values. The number ratio of the ultrafine particles, which is an element of the particle size condition 28 of the ultrafine particles, includes the type of the reaction / quenching gas 23, the flow rate of the reaction / quenching gas 23, the temperature at the blowing position of the reaction / quenching gas 23, and the mixed field 22 Therefore, the number ratio of the ultrafine particles can be changed by changing at least one of these values.

なお、超微粒子の粒子寸法条件28の制御を、加熱パラメータ24と反応・凝縮パラメータ25の両方を制御することで行っても良いし、いずれか一方のみを制御することで行っても良い。   The control of the particle size condition 28 of the ultrafine particles may be performed by controlling both the heating parameter 24 and the reaction / condensation parameter 25, or may be performed by controlling only one of them.

加熱パラメータ24の制御の例は以下の通りである。つまり、アークプラズマ2の温度は、例えば電極8,9間の電流値や電圧値等を変えることで制御可能である。アークプラズマ2中の原材料粒子の滞留時間は、例えばプラズマ長(アークプラズマ2の長さ)、プラズマガス10の供給速度、真空ポンプ19による排気速度等を変えることで制御可能である。プラズマガス10の種類は、例えば使用するプラズマガス10の種類を変えることで制御可能である。アークプラズマ2の圧力は、例えばプラズマガス10の供給速度、真空ポンプ19による排気速度等を変えることで制御可能である。原材料粒子の種類は、例えば採用する原材料粒子の材料を変えることで制御可能である。原材料粒子の粒径は、例えば原材料粒子の粉砕の程度等を変えることで制御可能である。   An example of the control of the heating parameter 24 is as follows. That is, the temperature of the arc plasma 2 can be controlled, for example, by changing the current value or voltage value between the electrodes 8 and 9. The residence time of the raw material particles in the arc plasma 2 can be controlled by changing the plasma length (the length of the arc plasma 2), the supply speed of the plasma gas 10, the exhaust speed by the vacuum pump 19, and the like. The type of the plasma gas 10 can be controlled, for example, by changing the type of the plasma gas 10 to be used. The pressure of the arc plasma 2 can be controlled, for example, by changing the supply speed of the plasma gas 10 and the exhaust speed of the vacuum pump 19. The type of raw material particles can be controlled, for example, by changing the material of the raw material particles employed. The particle diameter of the raw material particles can be controlled, for example, by changing the degree of pulverization of the raw material particles.

また、反応・凝縮パラメータ25の制御の例は以下の通りである。つまり、反応・急冷ガス23の種類は、例えば使用する反応・急冷ガス23の種類を変えることで制御可能である。反応・急冷ガス23の流量は、例えば反応・急冷ガス23を供給するガスボンベの圧力を変えることで制御可能である。反応・急冷ガス23の吹き込み位置の温度は、例えば反応・急冷ガス23の予熱の有無、予熱温度、アークプラズマ2と回収筒14との距離等を変えることで制御可能である。混在場22の圧力は、例えばプラズマガス10の供給速度、反応・急冷ガス23の供給速度、真空ポンプ19による排気速度等を変えることで制御可能である。   An example of control of the reaction / condensation parameter 25 is as follows. That is, the type of the reaction / quenching gas 23 can be controlled, for example, by changing the type of the reaction / quenching gas 23 to be used. The flow rate of the reaction / quenching gas 23 can be controlled, for example, by changing the pressure of a gas cylinder that supplies the reaction / quenching gas 23. The temperature at the position where the reaction / quenching gas 23 is blown can be controlled, for example, by changing the presence / absence of preheating of the reaction / quenching gas 23, the preheating temperature, the distance between the arc plasma 2 and the recovery cylinder 14, and the like. The pressure in the mixed field 22 can be controlled by changing the supply rate of the plasma gas 10, the supply rate of the reaction / quenching gas 23, the exhaust rate by the vacuum pump 19, and the like.

このように本発明の製造装置、製造方法では、図10に示すように、加熱パラメータ24を制御することで球状粒子の粒子寸法条件27を制御する。また、加熱パラメータ24を制御することで原材料粒子の蒸発量26を制御し、超微粒子の粒子寸法条件28を制御する。さらに、反応・凝縮パラメータ25を制御することで超微粒子の粒子寸法条件28を制御する。そして、球状粒子の粒子寸法条件27と超微粒子の粒子寸法条件28のうち、少なくともいずれか一方の制御によって製造する球状複合粒子の粒子寸法条件29を調節することができる。即ち、加熱パラメータ24や反応・凝縮パラメータ25の制御によって球状複合粒子の粒子寸法条件29を調節することができる。   Thus, in the manufacturing apparatus and manufacturing method of the present invention, the particle size condition 27 of the spherical particles is controlled by controlling the heating parameter 24 as shown in FIG. Further, the evaporation parameter 26 is controlled by controlling the heating parameter 24, and the particle size condition 28 of the ultrafine particles is controlled. Further, the particle size condition 28 of the ultrafine particles is controlled by controlling the reaction / condensation parameter 25. The particle size condition 29 of the spherical composite particles to be produced can be adjusted by controlling at least one of the particle size condition 27 of the spherical particles and the particle size condition 28 of the ultrafine particles. That is, the particle size condition 29 of the spherical composite particles can be adjusted by controlling the heating parameter 24 and the reaction / condensation parameter 25.

本発明の製造装置、製造方法では、原材料粒子の表面を溶融させて蒸発させることにより球状粒子と原材料蒸気の混在場22を形成すると共に、この混在場22に反応・急冷ガス23を吹き込むことで小粒子を生成させて球状粒子の表面に分散付着させている。このため、一つのプロセスで球状複合粒子を製造することができ、製造工程が簡単なものとなって製造コストを削減することができる。また、製造する球状複合粒子の粒子寸法条件29を調節することができるので、様々な要求に応じた球状複合粒子を製造することができる。 Manufacturing apparatus of the present invention, in the manufacturing method, by Rukoto evaporated by melting the surface of the raw material particles together to form a mixed field 22 of the spherical particles and the raw material vapor, blowing reaction and quench gas 23 into the mixed field 22 Thus, small particles are generated and dispersed and adhered to the surface of the spherical particles. For this reason, spherical composite particles can be manufactured in one process, the manufacturing process becomes simple, and the manufacturing cost can be reduced. In addition, since the particle size condition 29 of the spherical composite particles to be manufactured can be adjusted, spherical composite particles that meet various requirements can be manufactured.

本発明の製造装置、製造方法は、例えばミクロンオーダーの球状粒子と直径が100nm以下の超微粒子(小粒子)とを合成した球状複合粒子の製造に適している。ただし、球状粒子はミクロンオーダー以外の大きさの粒子でも良く、また、小粒子は直径が100nm以下の超微粒子以外の粒子であっても良いことは勿論である。なお、本実施形態のように、例えばミクロンオーダーの球状粒子と直径が100nm以下の超微粒子とを合成させた球状複合粒子は、例えば熱伝導率や電気絶縁破壊強度の向上などいわゆるナノコンポジット効果の発揮を図ることができる粒子である。   The production apparatus and production method of the present invention are suitable for producing spherical composite particles obtained by synthesizing, for example, micron-order spherical particles and ultrafine particles (small particles) having a diameter of 100 nm or less. However, the spherical particle may be a particle having a size other than a micron order, and the small particle may be a particle other than an ultrafine particle having a diameter of 100 nm or less. As in the present embodiment, for example, spherical composite particles obtained by synthesizing spherical particles of micron order and ultrafine particles having a diameter of 100 nm or less have so-called nanocomposite effects such as improvement in thermal conductivity and electrical breakdown strength. It is a particle that can be demonstrated.

また、本実施形態では、原材料粒子として例えばAlN粒子を使用しており、高熱伝導性や高電気絶縁性などの特長を持つ窒化アルミニウム複合粒子を製造できるので、電子機器やエネルギー変換機器に高機能材料を導入でき、これらの機器のコンパクト化・高効率化に大いに貢献できる。   Moreover, in this embodiment, for example, AlN particles are used as raw material particles, and aluminum nitride composite particles having features such as high thermal conductivity and high electrical insulation can be manufactured, so that it has high functionality for electronic devices and energy conversion devices. Materials can be introduced, which can greatly contribute to the compactness and high efficiency of these devices.

また、例えば電子機器内の高放熱性制御基板やエネルギー変換機器内の電気絶縁材料などの開発を行う分野では、異なる直径の球状粒子を混合して充填密度を向上させることにより焼結体や電気絶縁材料などの熱伝導性や絶縁破壊強度等の性能を向上させることが行われる。本発明では、このような分野等に使用される球状複合粒子を安価で提供することができる。   For example, in the field of developing high heat dissipation control boards in electronic devices and electrical insulating materials in energy conversion devices, by mixing spherical particles of different diameters to improve the packing density, Performance such as thermal conductivity and dielectric breakdown strength of an insulating material is improved. In the present invention, spherical composite particles used in such fields can be provided at low cost.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば上述の説明では、原材料粒子としてAlN粒子を使用していたが、原材料粒子の材質はAlNに限るものではない。例えば、各種金属、セラミックス(酸化物、窒化物、炭化物など)、金属とセラミックスの複合物等であっても良い。例えば、金属酸化物としては、SiO、Al、TiO、CaO、Sb、ZrO、MgO、ZnO等でも良い。また、金属窒化物としては、Si、TiN、BN、ZrN等でも良い。さらに、金属炭化物としては、SiC、TiC、WC等でも良い。 The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above description, AlN particles are used as the raw material particles, but the material of the raw material particles is not limited to AlN. For example, various metals, ceramics (oxide, nitride, carbide, etc.), a composite of metal and ceramics, and the like may be used. For example, a metal oxide, SiO 2, Al 2 O 3 , TiO 2, CaO, Sb 2 O 3, ZrO 2, MgO, or ZnO, or the like. The metal nitride may be Si 3 N 4 , TiN, BN, ZrN, or the like. Further, the metal carbide may be SiC, TiC, WC or the like.

また、上述の説明では、プラズマガス10としてNを使用していたが、これに限るものではない。プラズマガス10として、例えばAr、He、H、O、NH等を使用しても良く、又はAr、He、H、O、NH等のうち少なくとも2つ以上を混合したガスを使用しても良い。 In the above description, N 2 is used as the plasma gas 10, but the present invention is not limited to this. As the plasma gas 10, for example, Ar, He, H 2 , O 2 , NH 3 or the like may be used, or a gas in which at least two of Ar, He, H 2 , O 2 , NH 3, etc. are mixed. May be used.

さらに、上述の説明では、反応・急冷ガス23としてNHを使用していたが、これに限るものではない。反応・急冷ガス23として、例えばAr、He、H、O、N等を使用しても良く、又はAr、He、H、O、N等のうち少なくとも2つ以上を混合したガスを使用しても良い。 Furthermore, in the above description, NH 3 is used as the reaction / quenching gas 23, but is not limited thereto. For example, Ar, He, H 2 , O 2 , N 2 or the like may be used as the reaction / quenching gas 23, or at least two of Ar, He, H 2 , O 2 , N 2, etc. are mixed. The gas used may be used.

図1の製造装置を使用して、球状複合粒子を製造する実験を行った。実験では、プラズマトーチ7と陽極9との間に発生させた超高温(6000〜7000K)のアークプラズマ2にプラズマガス(N)10とともに原材料粒子であるAlN粒子(破砕粉、直径:25μm以下)を注入し、その表面を蒸発させて球状AlN粒子(球状粒子)およびAl蒸気(原材料蒸気)を生成させた。さらに、その下流側に設置した回収筒14内に反応・急冷ガス(NH)23を吹き込むことにより、Al蒸気を反応・凝縮させてAlN超微粒子を生成させると同時に球状AlN粒子の表面に分散付着させて球状複合粒子を合成した。この球状複合粒子をエタノール液が封入された回収タンク15にて回収した。 An experiment for producing spherical composite particles was performed using the production apparatus of FIG. In the experiment, AlN particles (crushed powder, diameter: 25 μm or less) as raw material particles together with plasma gas (N 2 ) 10 in the arc plasma 2 of ultrahigh temperature (6000 to 7000 K) generated between the plasma torch 7 and the anode 9. ) And the surface was evaporated to produce spherical AlN particles (spherical particles) and Al vapor (raw material vapor). In addition, reaction / quenching gas (NH 3 ) 23 is blown into the collection cylinder 14 installed on the downstream side thereof to react and condense Al vapor to generate AlN ultrafine particles and at the same time disperse on the surface of the spherical AlN particles. Spherical composite particles were synthesized by adhering. The spherical composite particles were collected in a collection tank 15 in which an ethanol solution was enclosed.

図2に、原材料粒子であるAlN粒子の走査型電子顕微鏡(SEM)写真を示す。また、図3に合成(製造)した球状複合粒子のSEM写真を示す。なお、図3の条件は、アーク電流:140A、プラズマ長:50mm、プラズマガス:N、プラズマガス流量:10L/min(プラズマ中の原材料粒子の滞留時間2.5ms)、反応・急冷ガス:NH、反応・急冷ガス流量:5L/minである。図2の原材料粒子の球形度は0.70、図3の球状複合粒子の球形度は0.82であった。図3からも明らかなように、ほぼ球状のミクロンオーダーの粒子(球状粒子)が得られていることが分かる。 FIG. 2 shows a scanning electron microscope (SEM) photograph of AlN particles as raw material particles. FIG. 3 shows an SEM photograph of the synthesized (manufactured) spherical composite particles. The conditions in FIG. 3 are: arc current: 140 A, plasma length: 50 mm, plasma gas: N 2 , plasma gas flow rate: 10 L / min (retention time of raw material particles in plasma: 2.5 ms), reaction / quenching gas: NH 3 , reaction / quenching gas flow rate: 5 L / min. The raw material particles in FIG. 2 had a sphericity of 0.70, and the spherical composite particles in FIG. 3 had a sphericity of 0.82. As is apparent from FIG. 3, it can be seen that substantially spherical micron-order particles (spherical particles) are obtained.

また、図4に、別の条件で製造した球状複合粒子の表面の透過型電子顕微鏡(TEM)写真を示す。球状粒子の表面に20〜50nm程度の超微粒子が多く付着している状況が観察された。なお、図4の条件は、アーク電流:140A、プラズマ長:50mm、プラズマガス流量:5L/min(プラズマ中の原材料粒子の滞留時間5ms)、反応・急冷ガス流量:20L/minである。   FIG. 4 shows a transmission electron microscope (TEM) photograph of the surface of spherical composite particles produced under different conditions. It was observed that many ultrafine particles of about 20 to 50 nm were attached to the surface of the spherical particles. The conditions in FIG. 4 are: arc current: 140 A, plasma length: 50 mm, plasma gas flow rate: 5 L / min (retention time of raw material particles in plasma 5 ms), reaction / quenching gas flow rate: 20 L / min.

図5に、プラズマ中の原材料粒子の滞留時間が球状複合粒子の球形度(円形度)に及ぼす影響を示す。球形度が0.75程度の原材料粒子をプラズマ2中に2ms以上滞留させることにより、球状複合粒子の球形度を0.9程度まで向上でき、ほぼ円形(球形)の球状複合粒子が得られることが判明した。また、このような球形の球状複合粒子は、原材料粒子溶融させて蒸発させることにより得られるものである。プラズマ2中の原材料粒子の溶融・蒸発挙動を支配するパラメータは、上述したプラズマ2中の原材料粒子の滞留時間だけではなく、プラズマ2の温度、プラズマガス10の種類、プラズマ2の圧力、原材料粒子の種類や粒径などが挙げられる。従って、これらの加熱パラメータ24を変化させることにより球状複合粒子の球形度を調節できると考えられる。なお、図5においてσは標準偏差を意味している(他の図も同様)。 FIG. 5 shows the influence of the residence time of the raw material particles in the plasma on the sphericity (circularity) of the spherical composite particles. By retaining the raw material particles having a sphericity of about 0.75 in the plasma 2 for 2 ms or longer, the sphericity of the spherical composite particles can be improved to about 0.9, and a substantially circular (spherical) spherical composite particle can be obtained. There was found. Further, the spherical composite particles of such spherical is obtained by evaporation by melting raw material particles. The parameters governing the melting / evaporation behavior of the raw material particles in the plasma 2 include not only the residence time of the raw material particles in the plasma 2 but also the temperature of the plasma 2, the type of the plasma gas 10, the pressure of the plasma 2, and the raw material particles. Types and particle sizes. Therefore, it is considered that the sphericity of the spherical composite particles can be adjusted by changing these heating parameters 24. In FIG. 5, σ means a standard deviation (the same applies to other drawings).

図6に、プラズマ2中の原材料粒子の滞留時間が球状粒子(ミクロンオーダーの粒子)の粒径に及ぼす影響を示す。プラズマ2中の原材料粒子の滞留時間の増加とともに球状粒子の直径が減少した。例えば、8.6μm程度の原材料粒子をプラズマ2中に5ms滞留させた場合、その原材料粒子(即ち、原材料粒子の表面が溶融して蒸発することで形成された球状粒子)の直径は3.2μm程度まで減少した。なお、図6の破線は、プラズマ2中の原材料粒子の直径減少を考慮した蒸発挙動計算を行った結果である。プラズマ2の温度、プラズマガス10の熱物性値、原材料粒子の熱物性値や粒径などを用いて、プラズマ2から粒子への伝熱量、粒子の温度上昇および粒子の粒径減少のそれぞれの経時変化を計算したものである。この計算結果は実験結果と概略一致し、プラズマ2温度、原材料粒子の直径およびプラズマ2中の滞留時間を用いて、球状粒子の直径を予測できることが明らかになった。また、得られる球状粒子の直径、原材料粒子の蒸発量26(得られる球状粒子と原材料粒子の直径の違いから計算可)は、プラズマ2中の原材料粒子の溶融・蒸発挙動により影響を受け、これを支配するパラメータは、プラズマ2の温度、原材料粒子の直径およびプラズマ2中の原材料粒子の滞留時間だけでなく、プラズマガス10の種類、プラズマ2の圧力、原材料粒子の種類などが挙げられる。従って、これらの加熱パラメータ24を変化させることにより、得られる球状粒子の直径、原材料粒子の蒸発量26を制御できる。 FIG. 6 shows the influence of the residence time of the raw material particles in the plasma 2 on the particle size of the spherical particles (micron order particles). As the residence time of the raw material particles in the plasma 2 increased, the diameter of the spherical particles decreased. For example, when raw material particles of about 8.6 μm are retained in the plasma 2 for 5 ms, the diameter of the raw material particles (that is, spherical particles formed by melting and evaporating the surface of the raw material particles) is 3.2 μm. Decreased to a degree. The broken line in FIG. 6 is the result of the evaporation behavior calculation considering the diameter reduction of the raw material particles in the plasma 2. Using the temperature of the plasma 2, the thermophysical value of the plasma gas 10, the thermophysical value and particle size of the raw material particles, the amount of heat transfer from the plasma 2 to the particles, the temperature rise of the particles, and the particle size decrease of the particles The change is calculated. This calculation result roughly agreed with the experimental result, and it became clear that the diameter of the spherical particles can be predicted using the plasma 2 temperature, the diameter of the raw material particles, and the residence time in the plasma 2. In addition, the diameter of the obtained spherical particles and the evaporation amount of raw material particles 26 (which can be calculated from the difference between the diameters of the obtained spherical particles and raw material particles) are affected by the melting / evaporation behavior of the raw material particles in the plasma 2. The parameters governing are not only the temperature of the plasma 2, the diameter of the raw material particles and the residence time of the raw material particles in the plasma 2, but also the type of the plasma gas 10, the pressure of the plasma 2, the type of the raw material particles, and the like. Therefore, by changing these heating parameters 24, the diameter of the spherical particles and the evaporation amount 26 of the raw material particles can be controlled.

図7に、プラズマ2中の原材料粒子の滞留時間が、球状複合粒子(合成粒子)中の球状粒子(ミクロンオーダーの粒子)の体積割合に及ぼす影響について示す。プラズマ2中の原材料粒子の滞留時間を2〜5msとすることにより、球状粒子と超微粒子の体積比を8:2から5:5程度まで制御できた(図7の○印)。また、図5と同様、プラズマ2中の原材料粒子の蒸発挙動計算を行った結果、実験結果(図7の破線)と概略一致し、球状粒子と超微粒子の体積比を予測できることが明らかになった。この球状粒子と超微粒子の体積比は、原材料粒子の蒸発量26、超微粒子の回収率(原材料蒸気から生成される超微粒子が球状粒子の表面に付着・回収される割合;今回の実験では超微粒子のみを生成させた別の実験結果を参考にして10%と仮定した)に影響を受ける。原材料粒子の蒸発量26は上述したように、プラズマ2中の原材料粒子の溶融・蒸発挙動により影響を受ける。従って、これを支配するプラズマガス10の種類、プラズマ2の圧力、原材料粒子の種類や粒径などの加熱パラメータ24を変化させることによっても、原材料粒子の蒸発量26を制御でき、それゆえ、球状粒子と超微粒子の体積比を調節できる。   FIG. 7 shows the influence of the residence time of the raw material particles in the plasma 2 on the volume ratio of the spherical particles (micron order particles) in the spherical composite particles (synthetic particles). By setting the residence time of the raw material particles in the plasma 2 to 2 to 5 ms, the volume ratio of the spherical particles to the ultrafine particles could be controlled from about 8: 2 to about 5: 5 (circles in FIG. 7). Also, as in FIG. 5, the calculation of the evaporation behavior of the raw material particles in the plasma 2 revealed that the volume ratio between the spherical particles and the ultrafine particles can be predicted, which is roughly consistent with the experimental results (broken line in FIG. 7). It was. The volume ratio between the spherical particles and the ultrafine particles is as follows: the evaporation amount of the raw material particles, the recovery rate of the ultrafine particles (the rate at which the ultrafine particles generated from the raw material vapor are attached to and recovered on the surface of the spherical particles; (Assuming 10% with reference to the result of another experiment that produced only fine particles). The evaporation amount 26 of the raw material particles is affected by the melting / evaporation behavior of the raw material particles in the plasma 2 as described above. Therefore, the evaporation amount 26 of the raw material particles can also be controlled by changing the heating parameter 24 such as the type of the plasma gas 10, the pressure of the plasma 2, the type and the particle size of the raw material particles, and the like. The volume ratio of particles and ultrafine particles can be adjusted.

なお、図7に破線で示す計算は以下の手順によるものである。つまり、図6の挙動計算で得られる球状粒子の直径と原材料粒子の直径の違いから、原材料粒子の蒸発量26を求めることができる。そして、この原材料蒸気から生成される超微粒子が球状粒子の表面に付着・回収される割合(今回の実験では、超微粒子のみを生成させた別の実験結果を参考にして10%とした)を仮定して、超微粒子の体積を計算する。この超微粒子の体積と、球状粒子の直径から求められる体積とを比較することにより、その体積比を求めている。   In addition, the calculation shown with a broken line in FIG. 7 is based on the following procedures. That is, the evaporation amount 26 of the raw material particles can be obtained from the difference between the diameter of the spherical particles and the diameter of the raw material particles obtained by the behavior calculation of FIG. Then, the ratio of the ultrafine particles generated from the raw material vapor adhered to and recovered from the surface of the spherical particles (in this experiment, 10% was set with reference to the result of another experiment in which only ultrafine particles were generated). Assuming the volume of ultrafine particles is calculated. By comparing the volume of the ultrafine particles with the volume determined from the diameter of the spherical particles, the volume ratio is determined.

図8(△印)に、プラズマ2中の原材料粒子の滞留時間が超微粒子の直径に及ぼす影響を示す。滞留時間を1msから5msまで増加させると、超微粒子の直径は20nmから40nm程度へと増加した。また、図8(○印)に、反応・急冷ガス23の流量が超微粒子の直径に及ぼす影響を示す。反応・急冷ガス23の流量を20L/minから5L/minに減少させると、超微粒子の直径は35nmから80nm程度へと増加した。超微粒子の直径は急冷場の蒸気濃度や温度の増加に伴い増大することが知られている。このことから、今回の実験において、プラズマ2中の原材料粒子の滞留時間の増加に伴い蒸気濃度が増加し、また、反応・急冷ガス23の流量の低減により反応・急冷場のAlN蒸気(原材料蒸気)の濃度が相対的に増加するとともにその場の温度が上昇したために、AlN超微粒子の直径が増大したと考えられる。また、反応・急冷ガス23の種類を変化させることにより、反応・急冷ガス23の熱伝導率、比熱、密度などの熱物性値も変わるので、反応・急冷場(混在場22)の温度も変化すると思われる。従って、反応・急冷ガス23の種類を変化させた場合でも、超微粒子の直径を制御できる。また、反応・急冷場の圧力を変化させることにより、蒸気同士の衝突確率が変わるので、生成される超微粒子の粒径を制御できる。また、上述したように超微粒子の直径は急冷場の蒸気量に影響される。この蒸気量は、プラズマ2中の原材料粒子の溶融・蒸発挙動により影響を受ける。従って、これを支配するプラズマ2の温度、プラズマガス10の種類、プラズマ2の圧力、原材料粒子の種類や粒径などの加熱パラメータ24を変化させることによっても原材料粒子の蒸発量26を制御でき、それゆえ、超微粒子の直径を制御できる。   FIG. 8 (Δ mark) shows the influence of the residence time of the raw material particles in the plasma 2 on the diameter of the ultrafine particles. When the residence time was increased from 1 ms to 5 ms, the ultrafine particle diameter increased from 20 nm to about 40 nm. FIG. 8 (circles) shows the influence of the flow rate of the reaction / quenching gas 23 on the diameter of the ultrafine particles. When the flow rate of the reaction / quenching gas 23 was decreased from 20 L / min to 5 L / min, the diameter of the ultrafine particles increased from 35 nm to about 80 nm. It is known that the diameter of ultrafine particles increases with increasing vapor concentration and temperature in the quenching field. Therefore, in this experiment, the vapor concentration increases with the increase of the residence time of the raw material particles in the plasma 2, and the reaction / quenching field AlN vapor (raw material vapor) is reduced by reducing the flow rate of the reaction / quenching gas 23. It is considered that the diameter of the AlN ultrafine particles increased due to the relative increase in the concentration of) and the increase in the in-situ temperature. In addition, by changing the type of reaction / quenching gas 23, the thermal properties such as thermal conductivity, specific heat, density, etc. of reaction / quenching gas 23 also change, so the temperature of reaction / quenching field (mixed field 22) also changes. It seems to be. Therefore, the diameter of the ultrafine particles can be controlled even when the kind of the reaction / quenching gas 23 is changed. Moreover, since the probability of collision between vapors changes by changing the pressure of the reaction / quenching field, the particle size of the generated ultrafine particles can be controlled. As described above, the diameter of the ultrafine particles is affected by the amount of steam in the quenching field. This amount of vapor is affected by the melting and evaporation behavior of the raw material particles in the plasma 2. Therefore, the evaporation amount 26 of the raw material particles can be controlled also by changing the heating parameter 24 such as the temperature of the plasma 2, the type of the plasma gas 10, the pressure of the plasma 2, the type of the raw material particles, and the particle size. Therefore, the diameter of the ultrafine particles can be controlled.

図6および図8の結果から求めた球状粒子(ミクロンオーダーの粒子)と超微粒子の粒径の比を図9に示す。即ち、球状粒子の直径(図6)と超微粒子の直径(図8)とから、これらの比を計算した結果を図9に示す。プラズマ2中に原材料粒子を2〜5ms程度滞留させ、反応・急冷ガス23の流量を5〜20L/minと変化させることにより、球状粒子と超微粒子の粒径比を30:1から250:1程度まで制御できた。この粒径比は、これまで述べたことから明らかなように、プラズマ2中の原材料粒子の滞留時間以外の加熱パラメータ24、反応・急冷ガス23流量以外の反応・凝縮パラメータ25を変化させることによっても制御できる。   FIG. 9 shows the ratio of the particle diameters of the spherical particles (micron order particles) and the ultrafine particles obtained from the results of FIG. 6 and FIG. That is, FIG. 9 shows the result of calculating these ratios from the diameter of the spherical particles (FIG. 6) and the diameter of the ultrafine particles (FIG. 8). By keeping the raw material particles in the plasma 2 for about 2 to 5 ms and changing the flow rate of the reaction / quenching gas 23 to 5 to 20 L / min, the particle size ratio of the spherical particles to the ultrafine particles is changed from 30: 1 to 250: 1. We were able to control to the extent. As is apparent from the above description, this particle size ratio is obtained by changing the heating parameter 24 other than the residence time of the raw material particles in the plasma 2 and the reaction / condensation parameter 25 other than the flow rate of the reaction / quenching gas 23. Can also be controlled.

本発明の球状複合粒子の製造装置の実施形態の一例を示し、(a)はその全体の概略構成図、(b)はプラズマトーチの先端部の断面図、(c)は回収筒の先端部の断面図である。1 shows an example of an embodiment of an apparatus for producing spherical composite particles according to the present invention, where (a) is a schematic configuration diagram of the whole, (b) is a sectional view of the tip of a plasma torch, and (c) is the tip of a recovery cylinder. FIG. 原材料粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of raw material particles. 球状複合粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of spherical composite particles. 球状複合粒子表面の透過型電子顕微鏡写真である。It is a transmission electron micrograph of the spherical composite particle surface. プラズマ中の原材料粒子の滞留時間と球状複合粒子の球形度との関係を示す図である。It is a figure which shows the relationship between the residence time of the raw material particle | grains in plasma, and the sphericity of a spherical composite particle. プラズマ中の原材料粒子の滞留時間と球状粒子(ミクロンオーダーの粒子)の粒径との関係を示す図である。It is a figure which shows the relationship between the residence time of the raw material particle | grains in plasma, and the particle size of a spherical particle (particle | grains of a micron order). プラズマ中の原材料粒子の滞留時間と球状複合粒子(合成粒子)中の球状粒子(ミクロンオーダーの粒子)の体積割合との関係を示す図である。It is a figure which shows the relationship between the residence time of the raw material particle | grains in plasma, and the volume ratio of the spherical particle (micron order particle | grains) in a spherical composite particle (synthetic particle). プラズマ中の原材料粒子の滞留時間と超微粒子の直径との関係、および反応・急冷ガスの流量と超微粒子の直径との関係を示す図である。It is a figure which shows the relationship between the residence time of the raw material particle | grains in plasma, and the diameter of an ultrafine particle, and the relationship between the flow volume of reaction and quenching gas, and the diameter of an ultrafine particle. 反応・急冷ガスの流量と粒径比との関係、およびプラズマ中の原材料粒子の滞留時間と粒径比との関係を示す図である。It is a figure which shows the relationship between the flow volume of reaction and quenching gas, and a particle size ratio, and the relationship between the residence time of the raw material particle | grains in plasma, and a particle size ratio. 本発明の制御の流れを示す図である。It is a figure which shows the flow of control of this invention. 従来の複合粒子の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the conventional composite particle.

符号の説明Explanation of symbols

1 チャンバー
2 プラズマ
3 プラズマ発生手段
4 原材料供給手段
5 ガス供給手段
6 回収手段
21 超微粒子が球状粒子の表面に分散付着する領域
22 球状粒子と原材料蒸気の混在場
23 反応・急冷ガス
24 加熱パラメータ
25 反応・凝縮パラメータ
26 原材料粒子の蒸発量
27 球状粒子の粒子寸法条件
28 超微粒子の粒子寸法条件
29 球状複合粒子の粒子寸法条件
DESCRIPTION OF SYMBOLS 1 Chamber 2 Plasma 3 Plasma generating means 4 Raw material supply means 5 Gas supply means 6 Collection | recovery means 21 Area | region where ultrafine particles disperse and adhere to the surface of spherical particles 22 Mixed field of spherical particles and raw material vapors 23 Reaction and quenching gas 24 Heating parameter 25 Reaction / condensation parameters 26 Amount of evaporation of raw material particles 27 Particle size conditions for spherical particles 28 Particle size conditions for ultrafine particles 29 Particle size conditions for spherical composite particles

Claims (7)

プラズマに原材料粒子を導入しその表面を溶融させて蒸発させることにより前記原材料粒子を球形に近づけつつ、その球状粒子の周囲に原材料蒸気が混在した場を形成し、さらに、前記プラズマ通過後の前記球状粒子と原材料蒸気の混在場に前記原材料蒸気を急冷させながら前記原材料蒸気と反応する反応・急冷ガスを吹き込むことにより、前記原材料蒸気を前記反応・急冷ガスと反応させながら凝縮させて前記球状粒子よりも直径の小さな小粒子を生成させると共に、その小粒子を前記球状粒子の表面に分散付着させることを特徴とする球状複合粒子の製造方法。 The raw material particles are introduced into the plasma, and the surface is melted and evaporated to form a field in which raw material vapor is mixed around the spherical particles while bringing the raw material particles close to a spherical shape. by blowing reaction and quench gas that reacts with the raw material vapor while quenching the raw material vapor to mixed field of the spherical particles and the raw material vapor, the spherical particles the raw material vapor is condensed while reacting with the reaction and quench gas A method for producing spherical composite particles, characterized in that small particles having a smaller diameter are produced and the small particles are dispersed and adhered to the surface of the spherical particles. 前記小粒子は直径が100nm以下の超微粒子であることを特徴とする請求項1記載の球状複合粒子の製造方法。   2. The method for producing spherical composite particles according to claim 1, wherein the small particles are ultrafine particles having a diameter of 100 nm or less. 前記球状粒子の粒子寸法条件と前記小粒子の粒子寸法条件の少なくともいずれか一方を制御することで、球状複合粒子の粒子寸法条件を調節するものであって、前記球状粒子の粒子寸法条件は、前記球状粒子の球形度、前記球状粒子の直径のうち、少なくともいずれか1つであり、前記小粒子の粒子寸法条件は、前記小粒子の直径、前記球状粒子1個に付着する小粒子の個数のうち、少なくともいずれか1つであり、前記球状複合粒子の粒子寸法条件は、前記球状複合粒子の球形度、前記球状複合粒子における前記球状粒子と前記小粒子との粒径比、前記球状複合粒子における前記球状粒子と前記小粒子との体積比のうち、少なくともいずれか1つであることを特徴とする請求項1又は2記載の球状複合粒子の製造方法。   The particle size condition of the spherical composite particles is adjusted by controlling at least one of the particle size conditions of the spherical particles and the particle size conditions of the small particles, and the particle size conditions of the spherical particles are: It is at least one of the sphericity of the spherical particles and the diameter of the spherical particles, and the particle size condition of the small particles is the diameter of the small particles and the number of small particles attached to one spherical particle. At least one of the particle size conditions of the spherical composite particles are the sphericity of the spherical composite particles, the particle size ratio of the spherical particles to the small particles in the spherical composite particles, and the spherical composite particles 3. The method for producing spherical composite particles according to claim 1, wherein the volume ratio of the spherical particles to the small particles in the particles is at least one of the volume ratios. 前記原材料粒子の表面を溶融させて蒸発させる加熱パラメータを制御することにより、前記球状粒子の粒子寸法条件を制御するものであって、前記加熱パラメータは、前記プラズマの温度、前記プラズマ中の前記原材料粒子の滞留時間、前記プラズマのガスの種類、前記プラズマの圧力、前記原材料粒子の種類、前記原材料粒子の粒径のうち、少なくともいずれか1つであることを特徴とする請求項3記載の球状複合粒子の製造方法。 By controlling a heating parameter for melting and evaporating the surface of the raw material particles, the particle size condition of the spherical particles is controlled, and the heating parameter includes the temperature of the plasma, the raw material in the plasma 4. The spherical shape according to claim 3, wherein the spherical shape is at least one of a particle residence time, a plasma gas type, a plasma pressure, a raw material particle type, and a raw material particle size. A method for producing composite particles. 前記原材料粒子の表面を溶融させて蒸発させる加熱パラメータを制御することにより、前記原材料粒子の蒸発量を制御して、前記小粒子の粒子寸法条件を制御するものであって、前記加熱パラメータは、前記プラズマの温度、前記プラズマ中の前記原材料粒子の滞留時間、前記プラズマのガスの種類、前記プラズマの圧力、前記原材料粒子の種類、前記原材料粒子の粒径のうち、少なくともいずれか1つであることを特徴とする請求項3記載の球状複合粒子の製造方法。 By controlling the heating parameter for melting and evaporating the surface of the raw material particles, the amount of the raw material particles is controlled to control the particle size condition of the small particles, and the heating parameter is It is at least one of the temperature of the plasma, the residence time of the raw material particles in the plasma, the kind of the plasma gas, the pressure of the plasma, the kind of the raw material particles, and the particle diameter of the raw material particles. The method for producing spherical composite particles according to claim 3. 前記原材料蒸気を前記反応・急冷ガスと反応させながら凝縮させる反応・凝縮パラメータを制御することにより、前記小粒子の粒子寸法条件を制御するものであって、前記反応・凝縮パラメータは、前記反応・急冷ガスの種類、前記反応・急冷ガスの流量、前記反応・急冷ガスの吹き込み位置の温度、前記混在場の圧力のうち、少なくともいずれか1つであることを特徴とする請求項3記載の球状複合粒子の製造方法。 By controlling the reaction / condensation parameters for condensing the raw material vapor while reacting with the reaction / quenching gas, the particle size conditions of the small particles are controlled, and the reaction / condensation parameters include the reaction / condensation parameters. The spherical shape according to claim 3, wherein the spherical shape is at least one of a kind of quenching gas, a flow rate of the reaction / quenching gas, a temperature at a blowing position of the reaction / quenching gas, and a pressure of the mixed field. A method for producing composite particles. チャンバーと、前記チャンバー内にプラズマを発生させるプラズマ発生手段と、前記プラズマに原材料粒子を導入する原材料供給手段と、前記原材料粒子の表面溶融させて蒸発させることによって形成された球状粒子と原材料蒸気の混在場であって前記プラズマ通過後の位置に前記原材料蒸気を急冷させながら前記原材料蒸気と反応する反応・急冷ガスを吹き込んで前記原材料蒸気を前記反応・急冷ガスと反応させながら凝縮させて前記球状粒子よりも直径の小さな小粒子を生成させるガス供給手段を備え、前記チャンバーは前記小粒子が前記球状粒子の表面に分散付着する領域を内部に有しており、さらに、前記小粒子が分散付着した前記球状粒子を前記チャンバー内から回収する回収手段を備えることを特徴とする球状複合粒子の製造装置。 A chamber, and a plasma generating means for generating plasma within said chamber, and raw materials supply means for introducing the raw material particles in the plasma, spherical particles and raw materials vapor formed by evaporation by melting the surface of said raw material particles A reaction / quenching gas that reacts with the raw material vapor while quenching the raw material vapor at a position after passing through the plasma, and condenses the raw material vapor while reacting with the reaction / quenching gas. Gas supply means for generating small particles having a diameter smaller than that of the spherical particles are provided, the chamber has a region in which the small particles are dispersed and attached to the surface of the spherical particles, and the small particles are dispersed. Production of spherical composite particles characterized by comprising recovery means for recovering the adhered spherical particles from within the chamber Location.
JP2004164910A 2004-06-02 2004-06-02 Spherical composite particle manufacturing method and manufacturing apparatus thereof Active JP4624006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164910A JP4624006B2 (en) 2004-06-02 2004-06-02 Spherical composite particle manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164910A JP4624006B2 (en) 2004-06-02 2004-06-02 Spherical composite particle manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2005342615A JP2005342615A (en) 2005-12-15
JP4624006B2 true JP4624006B2 (en) 2011-02-02

Family

ID=35495469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164910A Active JP4624006B2 (en) 2004-06-02 2004-06-02 Spherical composite particle manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP4624006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107907B2 (en) 2019-09-26 2022-07-27 トヨタ自動車株式会社 vehicle body

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615475B2 (en) * 2006-03-23 2014-10-29 一般財団法人電力中央研究所 Manufacturing method of insulation material for all-solid-state transformer
US9173967B1 (en) 2007-05-11 2015-11-03 SDCmaterials, Inc. System for and method of processing soft tissue and skin with fluids using temperature and pressure changes
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
JP5710177B2 (en) * 2010-08-20 2015-04-30 東芝三菱電機産業システム株式会社 Fine particle generation apparatus and fine particle generation method
JP2012101958A (en) * 2010-11-08 2012-05-31 Furukawa Electric Co Ltd:The Nanoscale particle, negative electrode material for lithium ion secondary battery containing the same, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for producing the nanoscale particle
JP2012102354A (en) * 2010-11-08 2012-05-31 Furukawa Electric Co Ltd:The Nano-size particle, negative electrode material for lithium ion secondary battery including the nano-size particle, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing the nano-size particle
JP5656570B2 (en) * 2010-11-08 2015-01-21 古河電気工業株式会社 Method for producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode material for lithium ion secondary battery
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
CA2845129A1 (en) 2011-08-19 2013-02-28 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
CN105592921A (en) 2013-07-25 2016-05-18 Sdc材料公司 Washcoats and coated substrates for catalytic converters and method for manufacturing and using same
CA2926133A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
EP3068517A4 (en) 2013-10-22 2017-07-05 SDCMaterials, Inc. Compositions of lean nox trap
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems
KR101766004B1 (en) * 2015-03-20 2017-08-24 오씨아이 주식회사 Apparatus and method of manufacturing aluminum nitride powder and aluminum nitride powder prepared thereby
JP7039997B2 (en) * 2017-12-26 2022-03-23 大同特殊鋼株式会社 Manufacturing method of metal powder material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266001A (en) * 1987-04-22 1988-11-02 Sumitomo Metal Mining Co Ltd Production of composite spherical powder
JPH03264601A (en) * 1990-03-14 1991-11-25 Daido Steel Co Ltd Manufacture of hard particle dispersed alloy powder and itself
JPH0731873A (en) * 1993-07-21 1995-02-03 Natl Inst For Res In Inorg Mater Prep aration of self-gradient-type composite particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266001A (en) * 1987-04-22 1988-11-02 Sumitomo Metal Mining Co Ltd Production of composite spherical powder
JPH03264601A (en) * 1990-03-14 1991-11-25 Daido Steel Co Ltd Manufacture of hard particle dispersed alloy powder and itself
JPH0731873A (en) * 1993-07-21 1995-02-03 Natl Inst For Res In Inorg Mater Prep aration of self-gradient-type composite particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107907B2 (en) 2019-09-26 2022-07-27 トヨタ自動車株式会社 vehicle body

Also Published As

Publication number Publication date
JP2005342615A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4624006B2 (en) Spherical composite particle manufacturing method and manufacturing apparatus thereof
TWI554344B (en) Nickel fine powder and its manufacturing method
JP5318463B2 (en) Fine particle production method and production apparatus used therefor
US8062406B2 (en) Process for producing metallic ultrafine powder
KR101167668B1 (en) Process for producing ultrafine metal powder
US7125537B2 (en) Method for manufacturing nanopowders of oxide through DC plasma thermal reaction
WO2011071225A1 (en) Production method for high purity copper powder using a thermal plasma
US20080274042A1 (en) Nanostructured Zinc Oxide and a Method of Producing the Same
JP6559118B2 (en) Nickel powder
KR20090026512A (en) Method and apparatus for producing nickel nanopowder using arc plasma apparatus
EP1018386B1 (en) Method for producing nickel powder
JP6890291B2 (en) Fine particle manufacturing equipment and manufacturing method
KR20110070400A (en) Preparation method of copper nano powder using transfeered arc or non-transferred arc plasma system
JP2004091843A (en) Manufacturing method of high purity high melting point metal powder
JP2004124257A (en) Metal copper particulate, and production method therefor
JP2012246203A (en) Method for manufacturing spherical titanium oxide particle
JP5008377B2 (en) Method for producing true spherical tin fine powder
KR101537216B1 (en) A making process of silicon powder Using Plasma Arc Discharge
JP4957901B2 (en) Method for producing ultrafine molybdenum powder
JPH0625717A (en) Method and device for producing globular grain by high-frequency plasma
TWI471266B (en) Method for manufacturing carbide fine particles
Chazelas et al. Synthesis of nanometer alumina particles by plasma transferred arc alternative
JP5354398B2 (en) True spherical fine powder
JP2017155279A (en) Method for producing metal fine particle
TW202124068A (en) Fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Ref document number: 4624006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250