JPH03264601A - Manufacture of hard particle dispersed alloy powder and itself - Google Patents

Manufacture of hard particle dispersed alloy powder and itself

Info

Publication number
JPH03264601A
JPH03264601A JP2063794A JP6379490A JPH03264601A JP H03264601 A JPH03264601 A JP H03264601A JP 2063794 A JP2063794 A JP 2063794A JP 6379490 A JP6379490 A JP 6379490A JP H03264601 A JPH03264601 A JP H03264601A
Authority
JP
Japan
Prior art keywords
powder
alloy powder
hard
alloy
plasma arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2063794A
Other languages
Japanese (ja)
Other versions
JP3000610B2 (en
Inventor
Yasushi Watanabe
靖 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2063794A priority Critical patent/JP3000610B2/en
Publication of JPH03264601A publication Critical patent/JPH03264601A/en
Application granted granted Critical
Publication of JP3000610B2 publication Critical patent/JP3000610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture spherical alloy powder, in which hard particles are uniformly and finely dispersed, with simple operation by supplying granulated powder of metal (alloy) powder and hard particles into plasma arc, melting and making this the composite powder. CONSTITUTION:the plasma arc is generated between a tungsten electrode 2 and an electrode passage hole 9. The granulated powder 1 produced by granulating the metal (alloy) powder and the hard particles is supplied into the annular passage 6 and charged into the plasma arc. The granular powder 1 is sufficiently melted and dripped down as the molten particles. During dripping, the molten particles are spheroidized. Fining of carbide is promoted with uniform molten material forming and crystallizing reaction in the molten particles and solidified to obtain the hard particle dispersed alloy powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマアーク溶接等の粉体肉盛溶接に用いら
れる粉末肉盛溶接材の製造方法及び粉末肉盛溶接材に関
し、特に炭化物、酸化物、窒化物、ホウ化物等の硬質粒
子が均一に分散した合金粉末及びその製造方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a powder overlay welding material and a powder overlay welding material used in powder overlay welding such as plasma arc welding, and particularly relates to a method for producing a powder overlay welding material used in powder overlay welding such as plasma arc welding. The present invention relates to an alloy powder in which hard particles such as nitrides, nitrides, borides, etc. are uniformly dispersed, and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来から、プラズマアーク肉盛溶接によりバルブ、パイ
プ、ロール等の加工部材に合金粉末と炭化物を肉盛溶接
することにより、加工部材表面の耐摩耗性、耐熱性、耐
食性等を改善することが行われている。
Conventionally, it has been possible to improve the wear resistance, heat resistance, corrosion resistance, etc. of the surface of the workpiece by welding alloy powder and carbide to workpieces such as valves, pipes, and rolls using plasma arc overlay welding. It is being said.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の肉盛溶接方法は、プラ
ズマアーク中に供給された炭化物が未溶解のままで存在
して充分に微粒化しないこと等の理由により、得られる
溶接肉盛材の靭性、耐摩耗性が充分でないという問題が
ある。この問題点については特願平1201747号の
発明により解決したが、この出願に係る発明においては
、肉盛ビードを粉砕した後の粉末はトーチ内で目詰まり
や湯玉などが発生しやすく実用性に欠けるという問題が
ある。
However, in such conventional build-up welding methods, the toughness of the resulting weld build-up material deteriorates due to reasons such as the fact that carbides supplied into the plasma arc remain undissolved and are not sufficiently atomized. There is a problem that the wear resistance is not sufficient. This problem was solved by the invention of Japanese Patent Application No. 1201747, but in the invention of this application, the powder after pulverizing the overlay bead tends to clog or form hot spots in the torch, making it impractical. There is a problem with missing parts.

この問題点を改善するために粉末肉盛溶接材を球状化す
る方法を発明し、特願平1−247755号として出願
した。この方法においてはプラズマアーク中に合金粉末
と硬質粒子を供給して溶解された合金を肉盛し、この肉
盛ビードを粉砕して再度プラズマアーク中に供給して溶
解し、自由落下凝固させて球状化するので、得られる粉
末肉盛溶接材はトーチ内での目詰まりや湯玉などの発生
がなくなり、粉体肉盛溶接作業性を大幅に改善すること
になるが、ビードを粉砕することが必要である。
In order to improve this problem, we invented a method for spheroidizing powder overlay welding material and filed an application as Japanese Patent Application No. 1-247755. In this method, alloy powder and hard particles are fed into a plasma arc to build up the molten alloy, and this build-up bead is crushed and fed into the plasma arc again to melt and solidify in free fall. Because it is spheroidized, the resulting powder overlay welding material will not clog or form hot water beads in the torch, greatly improving the workability of powder overlay welding, but it will not crush the beads. is necessary.

ところでビードを粉砕するのには長時間を必要とし工業
的でなく、実用的ではなかった。
However, grinding the beads requires a long time and is not industrially practical.

一 〔課題を解決するための手段〕 前記課題を解決するための本発明の第1の発明は、プラ
ズマアーク中に金属及び/または合金粉末と硬質粒子と
の造粒粉末を供給して溶融し、複合粉末化することを特
徴とする硬質粒子分散合金粉末の製造方法である。第2
の発明はプラズマアーク中に金属及び/または合金粉末
と硬質粒子との造粒粉末を供給して溶融し、保護雰囲気
中に落下凝固させて球状化するとともに硬質粒子を微細
、均一に分散せしめて複合粉末化することを特徴とする
硬質粒子分散合金粉末の製造方法。さらに第3、第4の
発明は第1、第2の発明を用いて得られた硬質粒子が金
属及び/または合金中に均一に分散された硬質粒子分散
合金粉末である。
[Means for Solving the Problems] A first aspect of the present invention for solving the above problems is to supply a granulated powder of metal and/or alloy powder and hard particles into a plasma arc and melt it. , a method for producing a hard particle-dispersed alloy powder, which is characterized by forming a composite powder. Second
The invention involves supplying a granulated powder of metal and/or alloy powder and hard particles into a plasma arc, melting the powder, solidifying it by falling into a protective atmosphere, and making it spheroidal, while finely and uniformly dispersing the hard particles. A method for producing a hard particle-dispersed alloy powder, characterized by forming it into a composite powder. Furthermore, the third and fourth inventions are hard particle-dispersed alloy powders in which the hard particles obtained using the first and second inventions are uniformly dispersed in the metal and/or alloy.

本発明に用いる金属及び合金粉末は、ハステロイC、ス
テライト、ナイモニツク、AQ。
The metals and alloy powders used in the present invention include Hastelloy C, Stellite, Nimonik, and AQ.

Co、 Fe、 W、 Ni粉末等が含まれ、また硬質
粒子としてNbC,Fe5C,SiC,TaC,TiC
,WC,VC4 等の炭化物、TiN、 BN等の窒化物、AQ203Z
r03等の酸化物やホウ化物、ケイ化物等が含まれる。
Contains Co, Fe, W, Ni powder, etc., and hard particles such as NbC, Fe5C, SiC, TaC, TiC
, WC, VC4 and other carbides, TiN, BN and other nitrides, AQ203Z
It includes oxides such as r03, borides, silicides, etc.

本発明の方法において使用する金属及び/または合金粉
末と硬質粒子との造粒粉末は一般の造粒法により得るこ
とができる。例えば、粗粉−分級法、転動造粒法、スプ
レィドライヤ法、液滴アトマイジング法等により造粒粉
末を得る。
The granulated powder of metal and/or alloy powder and hard particles used in the method of the present invention can be obtained by a general granulation method. For example, granulated powder is obtained by a coarse powder classification method, a rolling granulation method, a spray dryer method, a droplet atomizing method, or the like.

本発明において使用する金属及び/または合金粉末と硬
質粒子との配合割合は本発明の硬質粒子分散合金粉末の
使用目的等により適宜に変更できるが金属及び/または
合金粉末:硬質粒子=10〜90:90〜10vO1%
の範囲で配合される。また、金属及び/または合金粉末
と硬質粒子との造粒粉末の大きさはプラズマアーク溶接
装置のノズル等を効率よく通過させるために6〜350
メツシュ程度にするのが好ましい。
The mixing ratio of the metal and/or alloy powder and hard particles used in the present invention can be changed as appropriate depending on the purpose of use of the hard particle-dispersed alloy powder of the present invention, but metal and/or alloy powder: hard particles = 10 to 90 :90~10vO1%
It is blended within the range of. In addition, the size of the granulated powder of metal and/or alloy powder and hard particles is 6 to 350 in order to efficiently pass through the nozzle of plasma arc welding equipment.
It is preferable to make it about mesh level.

このように造粒された造粒粉末はプラズマアーク装置に
供給され、プラズマアーク中で溶融し複合粉末化され硬
質粒子分散合金粉末が得られる。上記のプラズマアーク
中で溶融された粉末は落下凝固させて球状化するととも
に複合粉末化して硬質粒子分散粉末が得られる。自由落
下させる距離はプラズマアーク溶接装置、造粒粉末の種
類等により適宜設定することができる。
The granulated powder thus granulated is supplied to a plasma arc device, and melted in the plasma arc to form a composite powder to obtain a hard particle dispersed alloy powder. The powder melted in the above-mentioned plasma arc is solidified by falling and spheroidized, and is also made into a composite powder to obtain a hard particle dispersed powder. The free fall distance can be appropriately set depending on the plasma arc welding device, the type of granulated powder, etc.

〔実施例〕〔Example〕

本発明を実施例に基づいて詳細に説明する。 The present invention will be explained in detail based on examples.

第1図、第2図は本発明の硬質粒子分散合金粉末の製造
装置を示す。この装置はプラズマ装置10と溶融合金を
自由落下させるためのチャンバ20とから構成される。
FIGS. 1 and 2 show an apparatus for producing hard particle dispersed alloy powder according to the present invention. This device consists of a plasma device 10 and a chamber 20 for free-falling the molten alloy.

プラズマ装置10は中心部にタングステン電極2を備え
、この電極2の外側にトーチ内筒3及びトーチ外筒4が
それぞれ所定の距離を隔てて同軸的に配備されている。
The plasma device 10 includes a tungsten electrode 2 at the center, and a torch inner cylinder 3 and a torch outer cylinder 4 are coaxially arranged outside the electrode 2 at a predetermined distance from each other.

そして電極2とトーチ内筒3との間及びトーチ内筒3と
トーチ外筒4との間に環状の通路5,6が形成されてい
る。
Annular passages 5 and 6 are formed between the electrode 2 and the torch inner cylinder 3 and between the torch inner cylinder 3 and the torch outer cylinder 4.

プラズマ装置10のトーチ内筒3とタングステン電極2
との間にはパイロット電源PSIから所定のパイロット
アークが供給されるようになっている。
Torch inner cylinder 3 and tungsten electrode 2 of plasma device 10
A predetermined pilot arc is supplied from a pilot power source PSI between the two.

チャンバ20の上部にはプラズマ装置10のタングステ
ン電極2と同軸的に電極通路口9が配設されていて、タ
ングステン電極2との間にメイン電源PS2から所定の
電流が供給されるようになっている。
An electrode passage port 9 is disposed in the upper part of the chamber 20 coaxially with the tungsten electrode 2 of the plasma device 10, and a predetermined current is supplied between it and the tungsten electrode 2 from the main power supply PS2. There is.

このように構成された硬質粒子分散合金粉末の製造装置
により、硬質粒子分散合金粉末を製造するには、まずパ
イロット電源PSIからパイロット電流を供給してタン
グステン電極2の先端とトーチ内筒3のノズル部7との
間にパイロットアークを発生させると同時に図示しない
プラズマガス供給装置によりプラズマガスを環状通路5
内に供給する。これにより、タングステン電極2の先端
にプラズマアークが形成される。このプラズマアークは
高周波発振器HFから供給される高周波型流に同期して
発生される。その後、メイン電源PS2からメイン電流
を供給してタングステン電極2と電極通路口9との間に
プラズマアークを発生させる。なお、チャンバ内はAr
ガス等により置換されており、またプラズマ装置10と
チャンバ20との間はArガス等のシルトガス11によ
り大気とは遮断されている。
In order to manufacture hard particle dispersed alloy powder using the hard particle dispersed alloy powder manufacturing apparatus configured as described above, first, a pilot current is supplied from the pilot power source PSI to the tip of the tungsten electrode 2 and the nozzle of the torch inner cylinder 3. At the same time, the plasma gas is supplied to the annular passage 5 by a plasma gas supply device (not shown).
supply within. As a result, a plasma arc is formed at the tip of the tungsten electrode 2. This plasma arc is generated in synchronization with a high frequency type flow supplied from a high frequency oscillator HF. Thereafter, a main current is supplied from the main power supply PS2 to generate a plasma arc between the tungsten electrode 2 and the electrode passageway opening 9. Note that the inside of the chamber is Ar
The space between the plasma device 10 and the chamber 20 is separated from the atmosphere by a silt gas 11 such as Ar gas.

続いて金属及び/または合金粉末と硬質粒子とを造粒し
た造粒粉末1を図示しない粉末供給装置により環状通路
6に供給してプラズマアーク中に投入することにより硬
質粒子分散合金粉末を製造することができる。
Next, the granulated powder 1 obtained by granulating metal and/or alloy powder and hard particles is supplied to the annular passage 6 by a powder supply device (not shown) and thrown into a plasma arc, thereby producing hard particle dispersed alloy powder. be able to.

本実施例において造粒粉末は次の方法により準備した。In this example, granulated powder was prepared by the following method.

数ミクロン−数十ミクロンオーダのアルミニウム粉末5
0Vo1%と数ミクロン−数十ミクロンオーダの炭化珪
素粉末50Vo1%を1 kgにバインダとして水を0
.5kg加え配合した。次いでボールミルにより20時
間40rpmで湿式混合した後乾燥し、スタンプミルに
より10分間解砕した後48/150メツシユに分級し
て造粒粉末を得た。この造粒粉末をプラズマアーク中に
投入すると造粒粉末は十分に溶解し、溶融液体粒子とな
って滴下する。この場合滴下距離は1.000nunに
設定した。この際滴下中に溶融液体粒子の球状化がなさ
れるとともに溶融液体粒子中の均一融体形成と晶出反応
により炭化物の微細化が促進され、凝固して硬質粒子分
散合金粉末が得られた。
Aluminum powder on the order of several microns to tens of microns 5
0Vo1% and 50Vo1% silicon carbide powder on the order of several microns to several tens of microns were mixed into 1 kg with water as a binder.
.. 5 kg was added and blended. Next, the mixture was wet mixed in a ball mill at 40 rpm for 20 hours, dried, crushed in a stamp mill for 10 minutes, and then classified into a 48/150 mesh to obtain a granulated powder. When this granulated powder is introduced into a plasma arc, the granulated powder is sufficiently melted and drips as molten liquid particles. In this case, the dropping distance was set to 1.000nun. At this time, during the dropping, the molten liquid particles were spheroidized, and the formation of a homogeneous melt in the molten liquid particles and the crystallization reaction promoted the refinement of the carbide, and solidified to obtain a hard particle-dispersed alloy powder.

以上の如くして得られた硬質粒子分散合金粉末を光学顕
微鏡により400倍に拡大してみると粉末が球形に近く
、硬質粒子である炭化珪素が微細化され、均一に分散さ
れていることが明瞭に判る、この顕微鏡写真を第3図に
示す。
When the hard particle-dispersed alloy powder obtained as described above was magnified 400 times using an optical microscope, the powder was nearly spherical, indicating that the hard particles of silicon carbide were finely divided and uniformly dispersed. A clearly visible micrograph is shown in Figure 3.

なお、本実施例と同様にAQ−Fe:+C,Al2AQ
20:l、ハステロイC−NbC,Co−WC,Fe−
Aff203゜W−NbC,W−Aff203の組合せ
で硬質粒子分散合金粉末を製造したがいずれも粉体が球
形に近く、硬質粒子である炭化物及び酸化物が微細化さ
れ、均一に分散されていることが認められた。以上各硬
質粒子分散合金粉末の顕微鏡400倍写真を第4〜第1
0図に示す。
Note that, similarly to this example, AQ-Fe: +C, Al2AQ
20:l, Hastelloy C-NbC, Co-WC, Fe-
A hard particle dispersed alloy powder was produced using a combination of Aff203°W-NbC and W-Aff203, but in both cases the powder was nearly spherical, and the hard particles, carbides and oxides, were finely divided and uniformly dispersed. was recognized. The above 400x microscope photographs of each hard particle dispersed alloy powder are shown in 4th to 1st.
Shown in Figure 0.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように、本発明の硬質粒子分散合金粉末
の製造方法は硬質粒子を均一に微細分散化された球状の
合金粉末を操作簡易に製造することができ、得られた合
金粉末は硬質粒子が均一に分散され、溶接性、肉盛性、
靭性、耐摩耗性、加工性に良好な特性を有する極めて有
用なものである。
As explained below, the method for producing hard particle-dispersed alloy powder of the present invention can easily produce spherical alloy powder in which hard particles are uniformly and finely dispersed, and the obtained alloy powder Hard particles are uniformly dispersed, improving weldability, build-up properties,
It is extremely useful as it has good properties in terms of toughness, wear resistance, and workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用する硬質粒子分散合金粉末を製造
する装置を表わす概略構成図、第2図は第1図に示す装
置のトーチ部を表わす概略構成図、第3図は本発明によ
り得られたAQ−3iCの硬質粒子分散合金粉末の粒子
構造を表わす写真、第4図は本発明により得られたAQ
−Fe3Cの硬質粒子分散合金粉末の粒子構造を表わす
写真、第5図は本発明により得られたAfi−AQ20
.の硬質粒子分散合金粉末の粒子構造を表わす写真、第
6図は本発明により得られたハステロイC−NbCの硬
質粒子分散合金粉末の粒子構造を表わす写真、第7図は
本発明により得られたCo−WCの硬質粒子分散合金粉
末の粒子構造を表わす写真、第8図は本発明により得ら
れたFe−AQzO:+の硬質粒子分散合金粉末の粒子
構造を表わす写真、第9図は本発明により得られたW−
NbCの硬質粒子分散合金粉末の粒子構造を表わす写真
、第10図は本発明により得られたW−八〇203の硬
質粒子分散合金粉末の粒子構造を表わす写真である。 1・・・造粒粉末     2・・・電極3・・・トー
チ内筒    4・・・トーチ外筒5.6・・・環状通
路   7・・・ノズル部9・・・電極通過路    
10・・・プラズマ装置20・・・チャンバ
FIG. 1 is a schematic configuration diagram showing an apparatus for producing the hard particle dispersed alloy powder used in the present invention, FIG. 2 is a schematic configuration diagram showing the torch section of the apparatus shown in FIG. 1, and FIG. A photograph showing the particle structure of the obtained AQ-3iC hard particle dispersed alloy powder, FIG.
-A photograph showing the particle structure of Fe3C hard particle dispersed alloy powder, Figure 5 is Afi-AQ20 obtained by the present invention.
.. 6 is a photograph showing the particle structure of the hard particle dispersed alloy powder of Hastelloy C-NbC obtained by the present invention. FIG. 7 is a photograph showing the particle structure of the hard particle dispersed alloy powder of Hastelloy C-NbC obtained by the present invention. A photograph showing the particle structure of the Co-WC hard particle dispersed alloy powder, FIG. 8 a photograph showing the particle structure of the Fe-AQzO:+ hard particle dispersed alloy powder obtained according to the present invention, and FIG. 9 a photograph showing the particle structure of the Fe-AQzO:+ hard particle dispersed alloy powder obtained according to the present invention. W- obtained by
FIG. 10 is a photograph showing the particle structure of the NbC hard particle dispersed alloy powder. FIG. 10 is a photograph showing the particle structure of the W-80203 hard particle dispersed alloy powder obtained according to the present invention. 1... Granulated powder 2... Electrode 3... Torch inner cylinder 4... Torch outer cylinder 5.6... Annular passage 7... Nozzle part 9... Electrode passageway
10... Plasma device 20... Chamber

Claims (1)

【特許請求の範囲】 1、プラズマアーク中に金属及び/または合金粉末と硬
質粒子との造粒粉末を供給して溶融し、複合粉末化する
ことを特徴とする硬質粒子分散合金粉末の製造方法。 2、プラズマアーク中に金属及び/または合金粉末と硬
質粒子との造粒粉末を供給して溶融し、保護雰囲気中に
落下凝固させて球状化するとともに硬質粒子を微細、均
一に分散せしめて複合粉末化することを特徴とする硬質
粒子分散合金粉末の製造方法。 3、請求項1に記載の製造方法を用いて得られた硬質粒
子が金属及び/または合金中に均一に分散された硬質粒
子分散合金粉末。 4、請求項2に記載の製造方法を用いて得られた硬質粒
子が金属及び/または合金中に均一に分散された硬質粒
子分散合金粉末。
[Claims] 1. A method for producing hard particle-dispersed alloy powder, which comprises supplying a granulated powder of metal and/or alloy powder and hard particles into a plasma arc and melting the powder to form a composite powder. . 2. A granulated powder of metal and/or alloy powder and hard particles is supplied into a plasma arc, melted, dropped into a protective atmosphere, solidified, and spheroidized, and the hard particles are finely and uniformly dispersed to form a composite. A method for producing a hard particle-dispersed alloy powder, which comprises pulverizing it. 3. A hard particle-dispersed alloy powder in which hard particles obtained using the manufacturing method according to claim 1 are uniformly dispersed in a metal and/or an alloy. 4. A hard particle-dispersed alloy powder in which hard particles obtained using the production method according to claim 2 are uniformly dispersed in a metal and/or an alloy.
JP2063794A 1990-03-14 1990-03-14 Method for producing hard particle dispersed alloy powder and hard particle dispersed alloy powder Expired - Lifetime JP3000610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063794A JP3000610B2 (en) 1990-03-14 1990-03-14 Method for producing hard particle dispersed alloy powder and hard particle dispersed alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063794A JP3000610B2 (en) 1990-03-14 1990-03-14 Method for producing hard particle dispersed alloy powder and hard particle dispersed alloy powder

Publications (2)

Publication Number Publication Date
JPH03264601A true JPH03264601A (en) 1991-11-25
JP3000610B2 JP3000610B2 (en) 2000-01-17

Family

ID=13239641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063794A Expired - Lifetime JP3000610B2 (en) 1990-03-14 1990-03-14 Method for producing hard particle dispersed alloy powder and hard particle dispersed alloy powder

Country Status (1)

Country Link
JP (1) JP3000610B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2359096A (en) * 2000-02-10 2001-08-15 Tetronics Ltd Plasma production of fine powders using an electrode with a channel
US6744006B2 (en) 2000-04-10 2004-06-01 Tetronics Limited Twin plasma torch apparatus
US6796107B2 (en) 2000-02-29 2004-09-28 Tetronics Limited Method and apparatus for packaging ultra fine powders into containers
JP2005342615A (en) * 2004-06-02 2005-12-15 Central Res Inst Of Electric Power Ind Method and apparatus for producing spherical composite particle
US7022155B2 (en) 2000-02-10 2006-04-04 Tetronics Limited Plasma arc reactor for the production of fine powders
CN110842210A (en) * 2019-11-21 2020-02-28 安徽省春谷3D打印智能装备产业技术研究院有限公司 Plasma arc spheroidizing device and method for iron-based master alloy powder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2359096A (en) * 2000-02-10 2001-08-15 Tetronics Ltd Plasma production of fine powders using an electrode with a channel
GB2359096B (en) * 2000-02-10 2004-07-21 Tetronics Ltd Apparatus and process for the production of fine powders
US7022155B2 (en) 2000-02-10 2006-04-04 Tetronics Limited Plasma arc reactor for the production of fine powders
US7727460B2 (en) 2000-02-10 2010-06-01 Tetronics Limited Plasma arc reactor for the production of fine powders
US6796107B2 (en) 2000-02-29 2004-09-28 Tetronics Limited Method and apparatus for packaging ultra fine powders into containers
US6744006B2 (en) 2000-04-10 2004-06-01 Tetronics Limited Twin plasma torch apparatus
JP2005342615A (en) * 2004-06-02 2005-12-15 Central Res Inst Of Electric Power Ind Method and apparatus for producing spherical composite particle
JP4624006B2 (en) * 2004-06-02 2011-02-02 財団法人電力中央研究所 Spherical composite particle manufacturing method and manufacturing apparatus thereof
CN110842210A (en) * 2019-11-21 2020-02-28 安徽省春谷3D打印智能装备产业技术研究院有限公司 Plasma arc spheroidizing device and method for iron-based master alloy powder

Also Published As

Publication number Publication date
JP3000610B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
US10781512B2 (en) Method of coating a body, granules for the method and method of making granules
JP3653380B2 (en) Method for producing chromium carbide-nickel chromium atomized powder
JP6227808B2 (en) Thermal spray assembly and method using thermal spray assembly
JPS63243212A (en) Wet metallurgical method for producing finely divided globular high melting point metal base powder
CA2107421A1 (en) Atomization with low atomizing gas pressure
US4787934A (en) Hydrometallurgical process for producing spherical maraging steel powders utilizing spherical powder and elemental oxidizable species
US5114471A (en) Hydrometallurgical process for producing finely divided spherical maraging steel powders
US7628838B2 (en) Method for producing particle-shaped material
US4859237A (en) Hydrometallurgical process for producing spherical maraging steel powders with readily oxidizable alloying elements
JPH03264601A (en) Manufacture of hard particle dispersed alloy powder and itself
US4913731A (en) Process of making prealloyed tungsten alloy powders
US4502885A (en) Method for making metal powder
GB2154902A (en) Atomization nozzle with boron nitride surfaces
CN111422874B (en) Method for producing spherical titanium carbide powder by one-step method
CA1330622C (en) Hydrometallurgical process for producing finely divided iron based powders
US4885028A (en) Process for producing prealloyed tungsten alloy powders
US4279843A (en) Process for making uniform size particles
JPH03110075A (en) Manufacture of powder hard facing material for surface hardening
CN114394604B (en) Preparation method of superhard spherical tungsten boride powder
CA1330625C (en) Hydrometallurgical process for producing finely divided spherical metal powders
JPS6024302A (en) Production of amorphous alloy powder
JP6227809B2 (en) Thermal spray assembly
JPH05105918A (en) Method and device for producing finely dispersed composite powder
JPH0366477A (en) Manufacture of hard facing material for surface hardening
JPH03193805A (en) Manufacture of metal fine powder