JP5615475B2 - Manufacturing method of insulation material for all-solid-state transformer - Google Patents

Manufacturing method of insulation material for all-solid-state transformer Download PDF

Info

Publication number
JP5615475B2
JP5615475B2 JP2006081378A JP2006081378A JP5615475B2 JP 5615475 B2 JP5615475 B2 JP 5615475B2 JP 2006081378 A JP2006081378 A JP 2006081378A JP 2006081378 A JP2006081378 A JP 2006081378A JP 5615475 B2 JP5615475 B2 JP 5615475B2
Authority
JP
Japan
Prior art keywords
particles
solid
spherical particles
aluminum nitride
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006081378A
Other languages
Japanese (ja)
Other versions
JP2007258015A (en
Inventor
幹正 岩田
幹正 岩田
静枝 古川
静枝 古川
嘉伸 水谷
嘉伸 水谷
和郎 足立
和郎 足立
正士 天川
正士 天川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2006081378A priority Critical patent/JP5615475B2/en
Publication of JP2007258015A publication Critical patent/JP2007258015A/en
Application granted granted Critical
Publication of JP5615475B2 publication Critical patent/JP5615475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、絶縁材用樹脂組成物及びその製造方法に関し、特に、高い絶縁破壊強度と高い熱伝導性とを両立し、電子・電気部品の用途のみならず、全固体変圧器にも好適な電気絶縁材用樹脂組成物、及びその製造方法に関する。   The present invention relates to a resin composition for an insulating material and a method for producing the same, and in particular, has both high dielectric breakdown strength and high thermal conductivity, and is suitable not only for use in electronic and electrical parts but also for all solid state transformers. The present invention relates to a resin composition for an electrical insulating material and a method for producing the same.

エポキシ樹脂は、その硬化物が優れた特性(接着性、強靱性、耐熱性、電気絶縁性、耐食性等)を有するため、電気・電子用途、塗料用途、土木・建築用途等、幅広い産業分野に使用されている。また、優れた電気絶縁性を持つため、従来より重電用の注型トランスに使用されてきた。   Epoxy resins have excellent properties (adhesiveness, toughness, heat resistance, electrical insulation, corrosion resistance, etc.) because of their cured products, so they can be used in a wide range of industrial fields such as electrical / electronic applications, paint applications, civil engineering / architecture applications, etc. It is used. In addition, since it has excellent electrical insulation, it has been used in casting transformers for heavy electricity.

前記電気・電子用途としては、特に、積層基板、半導体の封止材、絶縁塗料、コイル含浸用の材料が挙げられるが、近年、電気・電子部品の高性能化に伴い、該部品からの発熱量が増大する傾向にあり、過熱による障害を回避するために、使用するエポキシ樹脂組成物に対し、放熱による冷却効果を得るために熱伝導性の向上が求められている。   The electrical / electronic applications include, in particular, laminated substrates, semiconductor encapsulants, insulating paints, and materials for coil impregnation. The amount tends to increase, and in order to avoid obstacles due to overheating, the epoxy resin composition to be used is required to have improved thermal conductivity in order to obtain a cooling effect by heat radiation.

エポキシ樹脂組成物の熱伝導性を向上させる方法としては、例えば、熱伝導率の高い物質を充填する方法が挙げられ、そのようにして得られるエポキシ樹脂組成物としては、例えば、粒子径が10〜45μmの窒化アルミニウム粉と、最大粒子径が3μm以下の球状の酸化アルミニウム粉を含有させたもの(特許文献1参照)が提案されている。
また、粒子径が10〜50μmの電気絶縁物と金属粉とをエポキシ樹脂に含有させたもの(特許文献2参照)も提案されている。
しかし、前記特許文献1及び2のいずれの場合も、比重が異なる粉を用いているため、その粉を樹脂組成物内に均一に配置することが困難である。また、それぞれの粉は誘電率や熱伝導率などの物性値が異なるため、樹脂組成物内の電界分布や温度分布などが不均一となり、所要の電気絶縁性能や熱伝導性能を確保することが困難と考えられる。特に、前記特許文献2に記載の組成物は、金属粉を最大で20%(体積分率)も使用しているため、高い電気絶縁性能が期待できず、用途が限定されてしまうという問題がある。
As a method for improving the thermal conductivity of the epoxy resin composition, for example, a method of filling a substance having a high thermal conductivity can be mentioned. As an epoxy resin composition thus obtained, for example, a particle diameter of 10 is used. An aluminum nitride powder having a diameter of ˜45 μm and a spherical aluminum oxide powder having a maximum particle diameter of 3 μm or less (see Patent Document 1) has been proposed.
Moreover, what made the epoxy resin contain the electrical insulator and particle | grains whose particle diameter is 10-50 micrometers (refer patent document 2) is also proposed.
However, in both cases of Patent Documents 1 and 2, since powders having different specific gravities are used, it is difficult to uniformly arrange the powders in the resin composition. In addition, since each powder has different physical properties such as dielectric constant and thermal conductivity, the electric field distribution and temperature distribution in the resin composition become non-uniform, and the required electrical insulation performance and thermal conductivity performance can be ensured. It is considered difficult. In particular, since the composition described in Patent Document 2 uses metal powder as much as 20% (volume fraction), high electrical insulation performance cannot be expected, and the application is limited. is there.

ところで、絶縁性に優れ、かつ放熱性の高い固体絶縁材は、全固体変圧器としての用途が期待される。該全固体変圧器に用いられる固体絶縁材としては、高い交流絶縁破壊強度と高い熱伝導率とを両立することが求められ、そのような固体絶縁体を用いることにより、全固体変圧器の電力損失を低減させることが可能な全固体変圧器を設計することができる。   By the way, a solid insulating material having excellent insulating properties and high heat dissipation is expected to be used as an all-solid transformer. The solid insulating material used for the all-solid transformer is required to achieve both high AC breakdown strength and high thermal conductivity. By using such a solid insulator, the power of the all-solid transformer An all-solid-state transformer capable of reducing loss can be designed.

このように、熱伝導性に優れたフィラーを充填することにより、エポキシ樹脂の熱伝導率が改善されることは知れられているが、高い絶縁性(絶縁破壊強度)と高い熱伝導性とを両立し、電子・電気部品の用途のみならず、電力損失を低減可能な全固体変圧器の絶縁材として好適であり、かつ該全固体変圧器の設計裕度を確保可能な絶縁材は、未だ提供されておらず、更なる改良開発が望まれているのが現状である。   As described above, it is known that the thermal conductivity of the epoxy resin is improved by filling the filler with excellent thermal conductivity. However, high insulation (dielectric breakdown strength) and high thermal conductivity are achieved. Insulating materials that are suitable not only for use in electronic and electrical parts but also as an insulating material for all-solid-state transformers that can reduce power loss and that can ensure the design margin of the all-solid-state transformers are still available. It is not provided and the current situation is that further improvement and development is desired.

特開2002−322372号公報JP 2002-322372 A 特開2004−143368号公報JP 2004-143368 A

本発明は、従来における前記問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高い絶縁破壊強度と高い熱伝導性とを両立し、電子・電気部品の用途のみならず、全固体変圧器の絶縁材にも好適な絶縁材用樹脂組成物を提供することを目的とする。   An object of the present invention is to solve the conventional problems and achieve the following objects. That is, the present invention provides a resin composition for an insulating material that has both high dielectric breakdown strength and high thermal conductivity, and is suitable not only for use in electronic and electrical parts but also for insulating materials for all solid transformers. For the purpose.

前記課題を解決するため、本発明者らは鋭意検討を重ねた結果、球状粒子の表面に該球状粒子よりも粒径の小さな小粒子が分散付着してなる窒化アルミニウムの球状複合粒子を、エポキシ樹脂に添加して混合することにより、高い絶縁破壊強度を有するとともに、該球状複合粒子の充填率が高く熱伝導率に優れ、電子・電気部品の用途のみならず、全固体変圧器の固体絶縁材として好適なエポキシ樹脂組成物が得られることを見出し、本発明を完成するに至った。
前記球状複合粒子は例えば、アークプラズマを用いて創製された円形度(球形度)の高い粒子であって、図1に模式図を示すような断面の構造を有し、また高純度の窒化アルミニウム粒子である。
In order to solve the above problems, the present inventors have conducted intensive studies. As a result, spherical composite particles of aluminum nitride formed by dispersing and adhering small particles having a particle size smaller than the spherical particles on the surface of the spherical particles By adding to the resin and mixing, it has high dielectric breakdown strength, high filling rate of the spherical composite particles and excellent thermal conductivity, not only for electronic and electrical parts, but also for solid insulation of all solid transformers The inventors have found that an epoxy resin composition suitable as a material can be obtained, and have completed the present invention.
The spherical composite particles are, for example, particles having a high degree of circularity (sphericity) created using arc plasma, having a cross-sectional structure as shown in the schematic diagram of FIG. 1, and high-purity aluminum nitride Particles.

本発明は、本発明者による前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 熱硬化性樹脂組成物中に、無機充填材が分散してなり、前記無機充填材が、粒径が1〜100μmの球状粒子と、粒径が100nm以下の小粒子とからなることを特徴とする絶縁材用樹脂組成物である。
<2> 添加される無機充填材が、粒径が1〜100μmの球状粒子を核として、該球状粒子の表面に粒径が100nm以下の小粒子が付着してなる球状複合粒子であり、熱硬化性樹脂組成物中に該球状複合粒子由来の前記球状粒子及び前記小粒子が分散してなる前記<1>に記載の絶縁材用樹脂組成物である。
<3> 球状複合粒子が、プラズマに無機充填材粒子を導入しその表面を溶融・蒸発させることにより球状粒子を形成し、該球状粒子の周囲に、前記無機充填材が気化してなる無機充填材ガスが混在した場を形成し、前記球状粒子と前記無機充填材ガスとの混在場に反応・急冷ガスを吹き込むことにより、前記無機充填材ガスを反応・凝縮させて小粒子を生成させると共に、該小粒子を前記球状粒子の表面に分散付着させることにより得られた前記<1>から<2>のいずれかに記載の絶縁材用樹脂組成物である。
<4> 球状粒子と小粒子との体積比が、(球状粒子):(小粒子)=95:5〜50:50である前記<1>から<3>のいずれかに記載の絶縁材用樹脂組成物である。
<5> 球状粒子の円形度が0.8以上である前記<1>から<4>のいずれかに記載の絶縁材用樹脂組成物である。
<6> 球状複合粒子が、窒化アルミニウムである前記<1>から<5>のいずれかに記載の絶縁材である。
<7> 球状複合粒子の窒化アルミニウム純度が99質量%以上である前記<6>に記載の絶縁材である。
<8> 熱硬化性樹脂組成物が、エポキシ樹脂及び硬化剤からなる前記<1>から<7>のいずれかに記載の絶縁材用樹脂組成物である。
This invention is based on the said knowledge by this inventor, and as a means for solving the said subject, it is as follows. That is,
<1> An inorganic filler is dispersed in the thermosetting resin composition, and the inorganic filler includes spherical particles having a particle diameter of 1 to 100 μm and small particles having a particle diameter of 100 nm or less. It is the resin composition for insulating materials characterized by these.
<2> The inorganic filler to be added is a spherical composite particle in which small particles having a particle size of 100 nm or less are attached to the surface of the spherical particle with a spherical particle having a particle size of 1 to 100 μm as a core, and heat The resin composition for an insulating material according to <1>, wherein the spherical particles and the small particles derived from the spherical composite particles are dispersed in a curable resin composition.
<3> Spherical composite particles are formed by introducing inorganic filler particles into plasma and melting and evaporating the surface thereof to form spherical particles. The inorganic filler is formed by vaporizing the inorganic filler around the spherical particles. Forming a field in which the material gas is mixed, and blowing the reaction / quenching gas into the mixed field of the spherical particles and the inorganic filler gas, thereby reacting and condensing the inorganic filler gas to generate small particles The resin composition for insulating materials according to any one of <1> to <2>, obtained by dispersing and attaching the small particles to the surface of the spherical particles.
<4> The insulating material according to any one of <1> to <3>, wherein the volume ratio of the spherical particles to the small particles is (spherical particles) :( small particles) = 95: 5 to 50:50. It is a resin composition.
<5> The insulating resin composition according to any one of <1> to <4>, wherein the circularity of the spherical particles is 0.8 or more.
<6> The insulating material according to any one of <1> to <5>, wherein the spherical composite particles are aluminum nitride.
<7> The insulating material according to <6>, wherein the spherical composite particles have an aluminum nitride purity of 99% by mass or more.
<8> The insulating resin composition according to any one of <1> to <7>, wherein the thermosetting resin composition includes an epoxy resin and a curing agent.

<9> エポキシ樹脂と、複合球状粒子の無機充填材とを混合した後、硬化剤を添加して混合することを含み、
前記複合球状粒子が、プラズマに無機充填材粒子を導入しその表面を溶融・蒸発させることにより球状粒子を形成し、該球状粒子の周囲に、前記無機充填材が気化してなる無機充填材ガスが混在した場を形成し、前記球状粒子と前記無機充填材ガスとの混在場に反応・急冷ガスを吹き込むことにより、前記無機充填材ガスを反応・凝縮させて小粒子を生成させると共に、該小粒子を前記球状粒子の表面に分散付着させることにより製造されることを特徴とする絶縁材用樹脂組成物の製造方法である。
<9> After mixing the epoxy resin and the inorganic filler of the composite spherical particles, including adding and mixing a curing agent,
The composite spherical particles are formed by introducing inorganic filler particles into plasma and melting and evaporating the surface thereof to form spherical particles, and the inorganic filler gas formed by vaporizing the inorganic filler around the spherical particles. Is formed, and a reaction / quenching gas is blown into the mixed field of the spherical particles and the inorganic filler gas, thereby reacting and condensing the inorganic filler gas to generate small particles, and It is a method for producing a resin composition for an insulating material, which is produced by dispersing and adhering small particles to the surface of the spherical particles.

<10> 前記<1>から<8>のいずれかに記載の絶縁材用樹脂組成物からなることを特徴とする全固体変圧器用絶縁材である。   <10> An insulating material for an all-solid transformer, comprising the resin composition for an insulating material according to any one of <1> to <8>.

本発明によると、高い絶縁破壊強度と高い熱伝導性とを両立し、電子・電気部品の用途のみならず、全固体変圧器の絶縁材にも好適な絶縁材用樹脂組成物を提供することができる。   According to the present invention, to provide a resin composition for an insulating material that has both high dielectric breakdown strength and high thermal conductivity, and is suitable not only for use in electronic and electrical components but also for insulating materials for all-solid transformers. Can do.

(絶縁材用樹脂組成物)
本発明の絶縁材用樹脂組成物は、熱硬化性樹脂組成物中に、無機充填材が分散してなり、前記無機充填材が、粒径が1〜100μmの球状粒子(以下、「ミクロン粒子」ということがある)と、粒径が100nm以下の小粒子(以下、「ナノ粒子」ということがある)とからなる。
本発明の絶縁材用樹脂組成物は、粒径が異なる大小の無機充填材が分散してなることにより、一定範囲の略均一な粒径の無機充填材が分散してなる樹脂組成物に比べ、電気トリーが進展しにくく、かつ前記無機充填材の充填率が高く、熱伝導率が高くなるため、電気絶縁材として有利である。
(Resin composition for insulating material)
The resin composition for an insulating material of the present invention comprises an inorganic filler dispersed in a thermosetting resin composition, and the inorganic filler comprises spherical particles having a particle diameter of 1 to 100 μm (hereinafter referred to as “micron particles”). And a small particle having a particle size of 100 nm or less (hereinafter sometimes referred to as “nanoparticle”).
The resin composition for an insulating material of the present invention is formed by dispersing large and small inorganic fillers having different particle diameters, so that the resin composition is formed by dispersing inorganic fillers having a substantially uniform particle diameter within a certain range. Since the electrical tree is difficult to progress, the filling rate of the inorganic filler is high, and the thermal conductivity is high, it is advantageous as an electrical insulating material.

前記絶縁材用樹脂組成物は、製造時に添加される前記無機充填材の形態が、粒径が1〜100μmの前記球状粒子を核として、該球状粒子の表面に粒径が100nm以下の前記小粒子が付着してなる球状複合粒子であり、前記熱硬化性樹脂組成物中に、前記球状複合粒子由来の前記球状粒子及び前記小粒子が分散してなることが好ましい。
前記球状複合粒子として添加されない場合、特に、前記小粒子と同じ粒径のナノサイズの粒子を単独で添加した場合、該ナノサイズの粒子同士で凝集が生じ、前記樹脂組成物中における均一な分散が得られないことがある。
The form of the inorganic filler added at the time of manufacture of the resin composition for an insulating material is the small particle having a particle size of 100 nm or less on the surface of the spherical particle with the spherical particle having a particle size of 1 to 100 μm as a core. It is a spherical composite particle to which particles are attached, and the spherical particle and the small particle derived from the spherical composite particle are preferably dispersed in the thermosetting resin composition.
When not added as the spherical composite particles, in particular, when nano-sized particles having the same particle size as the small particles are added alone, aggregation occurs between the nano-sized particles, and uniform dispersion in the resin composition May not be obtained.

<無機充填材>
<<球状複合粒子>>
前記球状複合粒子であるとしては、プラズマに無機充填材粒子を導入しその表面を溶融・蒸発させることにより球状粒子を形成し、該球状粒子の周囲に、前記無機充填材が気化してなる無機充填材ガスが混在した場を形成し、前記球状粒子と前記無機充填材ガスとの混在場に反応・急冷ガスを吹き込むことにより、前記無機充填材ガスを反応・凝縮させて小粒子を生成させると共に、該小粒子を前記球状粒子の表面に分散付着させることにより得られたものが好ましく、具体的には、特開2005−342615号公報に記載された製造方法により得られる粒子が挙げられる。
<Inorganic filler>
<< Spherical composite particles >>
As the spherical composite particles, inorganic particles formed by introducing inorganic filler particles into plasma and melting and evaporating the surface thereof to form spherical particles, and vaporizing the inorganic filler around the spherical particles By forming a field where filler gas is mixed and blowing a reaction / quenching gas into the mixed field of the spherical particles and the inorganic filler gas, the inorganic filler gas is reacted and condensed to generate small particles. In addition, those obtained by dispersing and adhering the small particles to the surface of the spherical particles are preferable, and specific examples thereof include particles obtained by a production method described in JP-A-2005-342615.

前記絶縁材用樹脂組成物中の前記球状粒子と前記小粒子との体積比、すなわち添加される前記球状複合粒子における前記球状粒子と前記小粒子との体積比としては、例えば、(球状粒子):(小粒子)=95:5〜50:50であることが好ましく、90:10〜70:30であることがより好ましい。
前記球状粒子と前記小粒子との体積比が、前記の範囲を外れ、前記球状粒子の体積が過多となると、充填率を高くすることができないことがあり、前記小粒子の体積が過多となると、前記樹脂組成物の粘性が高くなることがある。
As a volume ratio of the spherical particles and the small particles in the resin composition for an insulating material, that is, a volume ratio of the spherical particles and the small particles in the added spherical composite particles, for example, (spherical particles) : (Small particles) = 95: 5 to 50:50 is preferable, and 90:10 to 70:30 is more preferable.
When the volume ratio of the spherical particles and the small particles is outside the above range and the volume of the spherical particles is excessive, the filling rate may not be increased, and the volume of the small particles is excessive. The viscosity of the resin composition may increase.

さらに、前記球状複合粒子の核となる前記球状粒子の円形度としては、0.8以上であることが好ましく、0.85以上であることがより好ましい。
円形度が0.8未満であると、前記無機充填材の粒子先鋭部に電界が集中したり、前記樹脂組成物と前記無機充填材との間に存在する微小な空隙に電界が集中したりするなどして、交流絶縁破壊強度が低下することがある。
なお、前記円形度は、走査型電子顕微鏡を用いて撮影した写真の画像解析により、前記球状粒子の面積及び周囲長を測定し、下記式を用いて求めることができる。
(円形度)=4π×(面積)/(周囲長)
Furthermore, the circularity of the spherical particles serving as the nucleus of the spherical composite particles is preferably 0.8 or more, and more preferably 0.85 or more.
When the circularity is less than 0.8, an electric field concentrates on the sharp particle part of the inorganic filler, or an electric field concentrates on a minute gap existing between the resin composition and the inorganic filler. As a result, the AC breakdown strength may decrease.
The circularity can be obtained by measuring the area and perimeter of the spherical particles by image analysis of a photograph taken using a scanning electron microscope and using the following equation.
(Circularity) = 4π × (Area) / (Perimeter length) 2

前記球状複合粒子の円形度が高く、より球形に近い形状であることにより、硬化前の樹脂組成物の粘度を低下させることができる。さらに、前記小粒子が存在することにより混練や成形に用いる装置や金型の磨耗を低減することができる。   When the spherical composite particles have a high degree of circularity and a shape closer to a sphere, the viscosity of the resin composition before curing can be reduced. Furthermore, the presence of the small particles can reduce wear of the apparatus and mold used for kneading and molding.

前記無機充填材の充填率(配合割合)としては、硬化物である前記絶縁材用樹脂組成物中30〜70体積%であることが好ましい。
70体積%を超えると、樹脂組成物の粘性が高くなることや、電気絶縁性能が低下することがあり、30体積%未満であると、熱伝導性能が低下することがある。
The filling rate (mixing ratio) of the inorganic filler is preferably 30 to 70% by volume in the insulating resin composition that is a cured product.
If it exceeds 70% by volume, the viscosity of the resin composition may increase and the electrical insulation performance may be reduced, and if it is less than 30% by volume, the heat conduction performance may be reduced.

前記無機充填材としては、絶縁性を有する無機材料である限り、特に制限はなく、目的に応じて適宜選択することができるが、例えば、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化アルミニウム、酸化ケイ素等が挙げられ、これらの中でも、窒化アルミニウム、窒化ホウ素が好ましい。   The inorganic filler is not particularly limited as long as it is an insulating inorganic material, and can be appropriately selected according to the purpose. For example, aluminum nitride, boron nitride, silicon nitride, aluminum oxide, silicon oxide Among these, aluminum nitride and boron nitride are preferable.

また、前記無機充填材は、その純度が高いことが好ましく、例えば、99質量%以上であることが好ましい。   Moreover, it is preferable that the said inorganic filler has the high purity, for example, it is preferable that it is 99 mass% or more.

前記無機充填材は、得られる前記絶縁材用樹脂組成物の特性を損なわない限り、その表面が公知のカップリング剤等で処理されたものであってもよい。   As long as the said inorganic filler does not impair the characteristic of the resin composition for insulating materials obtained, the surface may be processed by the well-known coupling agent etc.

<熱硬化性樹脂組成物>
前記熱硬化性樹脂組成物は、エポキシ樹脂及び硬化剤からなり、必要に応じて適宜選択されたその他の添加剤等を含んでいてもよい。
<Thermosetting resin composition>
The said thermosetting resin composition consists of an epoxy resin and a hardening | curing agent, and may contain the other additive etc. suitably selected as needed.

<<エポキシ樹脂>>
前記エポキシ樹脂としては、その一分子内に2個以上のエポキシ基を有しているものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、脂環型エポキシ樹脂、芳香族アミン型エポキシ樹脂等が挙げられる。
<< Epoxy resin >>
The epoxy resin is not particularly limited as long as it has two or more epoxy groups in one molecule, and can be appropriately selected according to the purpose. For example, bisphenol A type epoxy resin, Examples thereof include brominated bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, alicyclic epoxy resin, aromatic amine type epoxy resin and the like.

<<硬化剤>>
前記硬化剤としては、特に制限はなく、公知のエポキシ樹脂硬化剤から適宜選択することができ、例えば、アミン系硬化剤、酸無水物系硬化剤、フェノール系硬化剤等が挙げられる。
<< Curing agent >>
There is no restriction | limiting in particular as said hardening | curing agent, It can select suitably from a well-known epoxy resin hardening | curing agent, For example, an amine type hardening | curing agent, an acid anhydride type hardening | curing agent, a phenol type hardening | curing agent etc. are mentioned.

<<添加剤>>
前記添加剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硬化促進剤、レべリング剤、消泡剤、湿潤分散剤、安定剤等が挙げられる。
<< Additives >>
There is no restriction | limiting in particular as said additive, According to the objective, it can select suitably, For example, a hardening accelerator, a leveling agent, an antifoamer, a wet dispersing agent, a stabilizer, etc. are mentioned.

(絶縁材用樹脂組成物の製造方法)
本発明の絶縁材用樹脂組成物の製造方法は、エポキシ樹脂と、複合球状粒子の無機充填材とを混合した後、硬化剤を添加して混合することを含み、
前記複合球状粒子が、プラズマに無機充填材粒子を導入しその表面を溶融・蒸発させることにより球状粒子を形成し、該球状粒子の周囲に、前記無機充填材が気化してなる無機充填材ガスが混在した場を形成し、前記球状粒子と前記無機充填材ガスとの混在場に反応・急冷ガスを吹き込むことにより、前記無機充填材ガスを反応・凝縮させて小粒子を生成させると共に、該小粒子を前記球状粒子の表面に分散付着させることにより製造される。
(Method for producing resin composition for insulating material)
The method for producing a resin composition for an insulating material of the present invention includes mixing an epoxy resin and an inorganic filler of composite spherical particles, and then adding and mixing a curing agent,
The composite spherical particles are formed by introducing inorganic filler particles into plasma and melting and evaporating the surface thereof to form spherical particles, and the inorganic filler gas formed by vaporizing the inorganic filler around the spherical particles. Is formed, and a reaction / quenching gas is blown into the mixed field of the spherical particles and the inorganic filler gas, thereby reacting and condensing the inorganic filler gas to generate small particles, and It is produced by dispersing and attaching small particles to the surface of the spherical particles.

前記複合球状粒子の製造方法としては、特開2005−342615号公報に記載された製造方法が挙げられ、該製造に用いられる装置としては、特開2005−342615号公報に記載された製造装置が好適に挙げられる。   Examples of the method for producing the composite spherical particles include the production method described in JP-A-2005-342615, and the apparatus used for the production includes a production apparatus described in JP-A-2005-342615. Preferably mentioned.

(全固体変圧器用絶縁材)
本発明の全固体変圧器用絶縁材は、本発明の絶縁材用樹脂組成物からなり、必要に応じて適宜選択したその他の成分を含んでなる。
(Insulating material for all-solid-state transformer)
The all-solid-state transformer insulating material of the present invention comprises the resin composition for insulating material of the present invention, and includes other components appropriately selected as necessary.

前記全固体変圧器用絶縁材としては、高い熱伝導率と高い電気絶縁破壊強度とを両立しうる材料である必要がある。
例えば、135℃における熱伝導率が1.5W/m・K以上であり、かつ交流絶縁破壊強度が23kV/mm以上であることが好ましい。
The all-solid-state transformer insulating material needs to be a material that can achieve both high thermal conductivity and high electrical breakdown strength.
For example, it is preferable that the thermal conductivity at 135 ° C. is 1.5 W / m · K or more and the AC breakdown strength is 23 kV / mm or more.

前記全固体変圧器用絶縁材は、変圧器内部で発生した熱を外部に放熱し、変圧器における熱量を抑制することができる材料であるため、前記全固体変圧器の電力損失を低減することができる。
ここで、電力損失とは、変圧器内における巻線のジュール発熱と鉄心のヒステリシス損などの合計の値を意味し、定格容量運転時の条件下における値を示す。
Since the all-solid-state transformer insulating material is a material that can radiate heat generated inside the transformer to the outside and suppress the amount of heat in the transformer, the power loss of the all-solid-state transformer can be reduced. it can.
Here, the power loss means a total value such as Joule heat generation of the winding in the transformer and hysteresis loss of the iron core, and indicates a value under the condition of rated capacity operation.

また、前記全固体変圧器用絶縁材は、高い熱伝導率と高い電気絶縁破壊強度とを両立しうるため、前記全固体変圧器の設計裕度を確保することができる。
ここで、設計裕度とは、前記全固体変圧器に必要とされる熱伝導率及び交流絶縁破壊強度の値と、前記全固体変圧器用絶縁材の熱伝導率及び交流絶縁破壊強度の値との差異を意味する。なお、前記全固体変圧器用絶縁材の熱伝導率及び交流絶縁破壊強度の値は、標準偏差σを考慮する必要がある。
In addition, since the all-solid-state transformer insulating material can achieve both high thermal conductivity and high electrical breakdown strength, the design margin of the all-solid-state transformer can be ensured.
Here, the design margin is the value of the thermal conductivity and AC breakdown strength required for the all-solid transformer, and the value of the thermal conductivity and AC breakdown strength of the insulating material for the all-solid transformer. Means the difference. In addition, it is necessary to consider the standard deviation σ for the values of the thermal conductivity and the AC breakdown strength of the all-solid-state transformer insulating material.

以下、本発明の実施例について説明するが、本発明はこの実施例に何ら限定されるものではない。   Hereinafter, although the Example of this invention is described, this invention is not limited to this Example at all.

(実施例1、比較例1〜3)
エピビス系エポキシ(ビスフェノールAエポキシ樹脂)と酸無水物系硬化剤とからなる熱硬化性樹脂組成物に、無機充填材として窒化アルミニウムを充填し、加熱しつつ真空脱泡させて厚さ0.5mmの平板に成型した。前記エポキシ樹脂は,注型変圧器のコイル絶縁材料として一般的に用いられている樹脂組成物である。
(Example 1, Comparative Examples 1-3)
The Bis epoxy (a bisphenol A epoxy resin) and Sanna anhydride-based thermosetting resin composition comprising a curing agent, aluminum nitride was filled as an inorganic filler, the thickness was vacuum defoamed with heating zero. Molded into a 5 mm flat plate. The epoxy resin is a resin composition generally used as a coil insulating material for a casting transformer.

前記無機充填材の窒化アルミニウムとしては、特開2005−342615号公報に記載の方法により製造された本発明の複合球状粒子(実施例1)、市販の破砕粒子(比較例1)、市販の球状化粒子(比較例2)をそれぞれ用いた。また、比較対照として、無機充填材を含まない熱硬化性樹脂組成物をあわせて評価した(比較例3)。図3〜5に示すグラフとの対応を下記表1に示す。
実施例1で用いた複合球状粒子の走査型電子顕微鏡写真を図2に示す。
As aluminum nitride of the said inorganic filler, the composite spherical particle (Example 1) of this invention manufactured by the method of Unexamined-Japanese-Patent No. 2005-342615, commercial crushing particle (comparative example 1), and commercially available spherical shape Particles (Comparative Example 2) were used. Further, as a comparative control, a thermosetting resin composition not containing an inorganic filler was also evaluated (Comparative Example 3). The correspondence with the graphs shown in FIGS.
A scanning electron micrograph of the composite spherical particles used in Example 1 is shown in FIG.

*1:東洋アルミニウム(株)製、R15S
*2:東洋アルミニウム(株)製、FLE
* 1: Toyo Aluminum Co., Ltd., R15S
* 2: Toyo Aluminum Co., Ltd., FLE

(1)熱伝導率の測定
上記のようにして得た実施例1及び比較例1〜3の平板から、直径10mmの円板形状を切り出して試料とし、レーザーフラッシュ装置(ULVAC社,TC−7000)を用いて常温(25℃)の熱伝導率を測定した。
結果を図3に示す。
(1) Measurement of thermal conductivity From the flat plates of Example 1 and Comparative Examples 1 to 3 obtained as described above, a disk shape having a diameter of 10 mm was cut out as a sample and a laser flash device (ULVAC, TC-7000). ) Was used to measure the thermal conductivity at room temperature (25 ° C.).
The results are shown in FIG.

(2)交流絶縁破壊強度の測定
上記のようにして得た実施例1及び比較例1〜3の平板から、約50mm角の四角片を切り出して試料とし、常温(25℃)における交流絶縁破壊強度を測定した。直径10mmφ球電極(高圧側)と、直径30mm円板電極(接地側)との間に測定対象の試料を配置した。当該試料を絶縁油(鉱油)に入れ、常温にて商用周波数50Hzの交流1kV/分ステップで絶縁破壊するまで電圧を上昇させた。その絶縁破壊した電圧を試料厚さで除して交流絶縁破壊強度とした。結果を図4に示す。
(2) Measurement of AC dielectric breakdown strength From the flat plates of Example 1 and Comparative Examples 1 to 3 obtained as described above, a square piece of about 50 mm square was cut out and used as a sample, and AC dielectric breakdown at normal temperature (25 ° C.). The strength was measured. A sample to be measured was placed between a 10 mm diameter spherical electrode (high voltage side) and a 30 mm diameter disk electrode (ground side). The sample was put in insulating oil (mineral oil), and the voltage was increased until dielectric breakdown occurred at room temperature at an AC 1 kV / min step at a commercial frequency of 50 Hz. The breakdown voltage was divided by the sample thickness to obtain the AC breakdown strength. The results are shown in FIG.

(3)全固体変圧器用絶縁材としての評価
現用275kV/66kV 300MVAの大容量変圧器(ガス絶縁変圧器,油入変圧器)の負荷率60%における損失が800kW、占有体積が72.8m、変圧器重量が117tである。
そこで、前記現用の変圧器と同等の電圧及び容量で設計する全固体変圧器の目標値として、占有体積を72.8m以下、変圧器重量を117t以下としつつ、COP3(京都議定書)目標値の達成に向けて、損失を800kWから32.6%低減した540kW以下とした。なお、ここでの損失は、前記現用の変圧器の場合は75℃における値であるのに対して、全固体変圧器の場合は定格運転温度135℃(耐熱クラスFの巻線平均温度)における値とした。
前記(2)で測定した交流絶縁破壊強度(厚さが0.5mm)から、交流絶縁破壊強度の試料厚さ依存性を考慮して、275kV級の耐電圧試験値(330kV)、66kV級の耐電圧試験値(140kV)の概念設計が可能となる絶縁厚さ領域を試算した。次に、この絶縁厚さから、前記全固体変圧器の前記設計目標値を実現可能とする熱伝導率を計算した。交流絶縁破壊強度が低いほど高い熱伝導率が必要となる。
結果を図5に示す。
(3) Evaluation as an insulation material for an all-solid-state transformer Loss at a load factor of 60% of a current high-capacity transformer (gas-insulated transformer, oil-filled transformer) of 275 kV / 66 kV 300 MVA is 800 kW, and the occupied volume is 72.8 m 3. The transformer weight is 117 t.
Accordingly, examples of the target value of the total solids transformer designed in transformer equivalent voltage and capacity of the active, the occupied volume 72.8M 3 below, while the transformer weight not more than 117t, COP3 (Kyoto) target value In order to achieve this, the loss was reduced by 32.6% from 800 kW to 540 kW or less. The loss here is a value at 75 ° C. in the case of the current transformer, whereas in the case of an all solid transformer, the loss is at a rated operating temperature of 135 ° C. (heat resistance class F winding average temperature). Value.
From the AC breakdown strength (thickness of 0.5 mm) measured in (2) above, considering the sample thickness dependence of AC breakdown strength, the withstand voltage test value (330 kV) of 275 kV class, 66 kV class The insulation thickness region where the conceptual design of the withstand voltage test value (140 kV) is possible was calculated. Next, the thermal conductivity enabling the design target value of the all-solid-state transformer to be realized was calculated from the insulation thickness. The lower the AC breakdown strength, the higher the thermal conductivity.
The results are shown in FIG.

図3〜5の結果から、本発明の絶縁材用樹脂組成物は、熱伝導率と交流絶縁破壊強度とを両立するため、全固体変圧器の損失を、目標値の540kWからさらに15%程度低減することができ、かつ3σ(標準偏差)を考慮しても十分に設計裕度を確保することができることがわかり、全固体変圧器用絶縁材として好適であることが明らかになった。   From the result of FIGS. 3-5, since the resin composition for insulating materials of the present invention achieves both thermal conductivity and alternating current breakdown strength, the loss of the all-solid-state transformer is further about 15% from the target value of 540 kW. It was found that the design margin can be sufficiently ensured even when 3σ (standard deviation) is taken into consideration, and it has become clear that it is suitable as an insulating material for an all-solid-state transformer.

得られた実施例1の絶縁用樹脂組成物を透過型電子顕微鏡にて観察した。透過型電子顕微鏡写真を図6に示し、説明図を図7A及び図7Bに示す。
図6、図7A、及び図7Bから明らかなように、本発明の絶縁用樹脂組成物は、エポキシ樹脂20中において、前記球状粒子11(ミクロン粒子)どうしの間に、前記小粒子12(ナノ粒子)が分散していることがわかった。
The obtained insulating resin composition of Example 1 was observed with a transmission electron microscope. A transmission electron micrograph is shown in FIG. 6, and explanatory diagrams are shown in FIGS. 7A and 7B.
As is apparent from FIGS. 6, 7A, and 7B, the insulating resin composition of the present invention includes the small particles 12 (nanoparticles) between the spherical particles 11 (micron particles) in the epoxy resin 20. Particles) were found to be dispersed.

本発明の絶縁材用樹脂組成物は、高い絶縁破壊強度と高い熱伝導性とを両立するため、電子・電気部品の用途のみならず、全固体変圧器の絶縁材などに好適に使用することができる。
本発明の絶縁材用樹脂組成物の製造方法は、高い絶縁破壊強度と高い熱伝導性とを両立する絶縁材用樹脂組成物を効率よく、大量に調製することができるため、電子・電気部品の用途のみならず、全固体変圧器の絶縁材などの絶縁材の製造方法として好適である。
The resin composition for an insulating material of the present invention is suitable for not only the use of electronic / electrical parts but also the insulating material of an all-solid-state transformer in order to achieve both high dielectric breakdown strength and high thermal conductivity. Can do.
The method for producing a resin composition for an insulating material according to the present invention can efficiently prepare a large amount of a resin composition for an insulating material that achieves both high dielectric breakdown strength and high thermal conductivity. It is suitable not only for the above-mentioned use but also as a method for producing an insulating material such as an insulating material for an all-solid-state transformer.

図1は、本発明の絶縁材用樹脂組成物に添加される複合球状粒子の断面図の一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a cross-sectional view of composite spherical particles added to the insulating resin composition of the present invention. 図2は、実施例1で添加した窒化アルミニウムの複合球状粒子の一例を示す走査型電子顕微鏡写真(5,000倍)である。2 is a scanning electron micrograph (5,000 magnifications) showing an example of composite spherical particles of aluminum nitride added in Example 1. FIG. 図3は、実施例1及び比較例1〜3の各樹脂組成物における熱伝導率を測定した結果を示すグラフである。FIG. 3 is a graph showing the results of measuring the thermal conductivity of each resin composition of Example 1 and Comparative Examples 1 to 3. 図4は、実施例1及び比較例1〜3の各樹脂組成物における交流絶縁破壊強度を測定した結果を示すグラフである。FIG. 4 is a graph showing the results of measuring the AC breakdown strength in the resin compositions of Example 1 and Comparative Examples 1 to 3. 図5は、実施例1及び比較例1〜3の各樹脂組成物における全固体変圧器用絶縁材としての評価結果を示すグラフである。図5中、*aは、耐熱クラスFの巻線平均温度を表し、*bは、COP3目標値の達成に向けて、現用変圧器の損失800kWを32.6%低減させて540kWとした場合の計算結果を表し、*cは、破砕粒子を充填したエポキシ樹脂の交流絶縁破壊強度の温度依存性データ傾向からの推定値を表す。FIG. 5 is a graph showing evaluation results as insulating materials for all-solid-state transformers in the resin compositions of Example 1 and Comparative Examples 1 to 3. In FIG. 5, * a represents the winding average temperature of heat-resistant class F, and * b represents a case where the loss of the current transformer is reduced by 32.6% to 540 kW in order to achieve the COP3 target value. * C represents the estimated value from the temperature dependence data tendency of the AC dielectric breakdown strength of the epoxy resin filled with crushed particles. 図6は、実施例1の絶縁材用樹脂組成物の透過型電子顕微鏡写真(50,000倍)である。6 is a transmission electron micrograph (50,000 magnifications) of the resin composition for an insulating material of Example 1. FIG. 図7Aは、実施例1の絶縁材用樹脂組成物中の無機充填材の分散状態を説明する模式図の一例である。FIG. 7A is an example of a schematic diagram illustrating a dispersion state of an inorganic filler in the insulating resin composition of Example 1. 図7Bは、図7Aの破線で囲まれた領域Aを示す透過型電子顕微鏡写真であり、図6の一部を示したものである。倍率は、上段が10,000倍、下段が50,000倍である。FIG. 7B is a transmission electron micrograph showing a region A surrounded by a broken line in FIG. 7A, and shows a part of FIG. The magnification is 10,000 times in the upper stage and 50,000 times in the lower stage.

符号の説明Explanation of symbols

10 複合球状粒子
11 球状粒子(ミクロン粒子)
12 小粒子(ナノ粒子)
20 エポキシ樹脂
10 Composite spherical particles 11 Spherical particles (micron particles)
12 Small particles (nanoparticles)
20 Epoxy resin

Claims (1)

プラズマに窒化アルミニウムを導入しその表面を溶融・蒸発させることにより球状粒子を形成し、該球状粒子の周囲に、前記窒化アルミニウムが気化してなる窒化アルミニウムガスが混在した場を形成し、前記球状粒子と前記窒化アルミニウムガスとの混在場に反応・急冷ガスを吹き込むことにより、前記窒化アルミニウムガスを反応・凝縮させて小粒子を生成させると共に、前記球状粒子の表面に前記小粒子が分散付着してなる窒化アルミニウムの複合球状粒子の製造工程と、
ビスフェノールA型エポキシ樹脂と、前記窒化アルミニウムの複合球状粒子とを混合した後、酸無水物系硬化剤を添加して混合し、加熱しつつ真空脱泡する工程とを含む全固体変圧器用絶縁材の製造方法であって、
前記球状粒子の円形度が0.85以上であり、
前記窒化アルミニウムの複合球状粒子が、粒径が16μmの前記球状粒子を核として、該球状粒子の表面に粒径が100nm以下の前記小粒子が付着してなり、
前記窒化アルミニウムの複合球状粒子の充填率が、前記ビスフェノールA型エポキシ樹脂中で40体積%であり、
前記ビスフェノールA型エポキシ樹脂中において、前記球状粒子どうしの間に、前記小粒子が分散しており、
前記全固体変圧器が、275kV/66kV 300MVAの大容量変圧器であり、
前記全固体変圧器用絶縁材の135℃における熱伝導率が1.5W/m・K以上であり、かつ、前記全固体変圧器用絶縁材の交流絶縁破壊強度が、厚み0.5mmで、23kV/mm以上であることを特徴とする全固体変圧器用絶縁材の製造方法。
A spherical particle is formed by introducing aluminum nitride into the plasma and melting and evaporating the surface thereof, and a field in which aluminum nitride gas formed by vaporizing the aluminum nitride is mixed is formed around the spherical particle. By blowing a reaction / quenching gas into a mixed field of particles and the aluminum nitride gas, the aluminum nitride gas reacts and condenses to generate small particles, and the small particles are dispersed and attached to the surface of the spherical particles. A process for producing composite spherical particles of aluminum nitride,
An insulating material for an all-solid transformer including a step of mixing a bisphenol A-type epoxy resin and the composite spherical particles of aluminum nitride, adding an acid anhydride-based curing agent, mixing, and vacuum degassing while heating A manufacturing method of
The circularity of the spherical particles is 0.85 or more,
The aluminum nitride composite spherical particles have the spherical particles with a particle size of 16 μm as nuclei, and the small particles with a particle size of 100 nm or less adhere to the surface of the spherical particles,
The filling rate of the composite spherical particles of aluminum nitride is 40% by volume in the bisphenol A type epoxy resin,
In the bisphenol A type epoxy resin, the small particles are dispersed between the spherical particles,
The all-solid-state transformer is a 275 kV / 66 kV 300 MVA high-capacity transformer,
The all-solid-state transformer insulation material has a thermal conductivity at 135 ° C. of 1.5 W / m · K or more, and the all-solid-state transformer insulation material has an AC dielectric breakdown strength of 0.5 mm in thickness, 23 kV / The manufacturing method of the insulation material for all-solid-state transformers characterized by being more than mm.
JP2006081378A 2006-03-23 2006-03-23 Manufacturing method of insulation material for all-solid-state transformer Active JP5615475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081378A JP5615475B2 (en) 2006-03-23 2006-03-23 Manufacturing method of insulation material for all-solid-state transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081378A JP5615475B2 (en) 2006-03-23 2006-03-23 Manufacturing method of insulation material for all-solid-state transformer

Publications (2)

Publication Number Publication Date
JP2007258015A JP2007258015A (en) 2007-10-04
JP5615475B2 true JP5615475B2 (en) 2014-10-29

Family

ID=38632034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081378A Active JP5615475B2 (en) 2006-03-23 2006-03-23 Manufacturing method of insulation material for all-solid-state transformer

Country Status (1)

Country Link
JP (1) JP5615475B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099183A (en) * 2011-11-04 2013-05-20 Hitachi Ltd Composite insulating resin and insulating spacer comprising the same, and gas-insulated apparatus
CN109643591B (en) * 2016-08-25 2021-02-26 3M创新有限公司 Heat conductive electric insulating material
JPWO2019077793A1 (en) * 2017-10-18 2019-11-14 三菱電機株式会社 Insulating coating material for stator coil and rotating machine using the same
JP7320603B2 (en) * 2018-10-10 2023-08-03 ロード コーポレーション Highly conductive additive to reduce sedimentation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4624006B2 (en) * 2004-06-02 2011-02-02 財団法人電力中央研究所 Spherical composite particle manufacturing method and manufacturing apparatus thereof

Also Published As

Publication number Publication date
JP2007258015A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
Fang et al. Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength
Wang et al. Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets
Adnan et al. Epoxy‐based nanocomposites for high‐voltage insulation: a review
Donnay et al. Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
Ahmad et al. State-of-art in nano-based dielectric oil: A review
JP6692050B2 (en) Boron nitride-containing resin composition
Wu et al. Thermal and electrical properties of epoxy composites at high alumina loadings and various temperatures
JP2009073933A (en) Epoxy resin composition having thermal degradation resistance
Ramu et al. Alumina and silica based epoxy nano-composites for electrical insulation
Qian et al. Efficient thermal properties enhancement to hyperbranched aromatic polyamide grafted aluminum nitride in epoxy composites
Wang et al. Dielectric properties and thermal conductivity of epoxy resin composite modified by Zn/ZnO/Al 2 O 3 core–shell particles
JP2013159748A (en) Resin composition, and method for producing the same
JP5615475B2 (en) Manufacturing method of insulation material for all-solid-state transformer
Li et al. Electrically insulating ZnOs/ZnOw/silicone rubber nanocomposites with enhanced thermal conductivity and mechanical properties
Xie et al. Dielectric and thermal properties of epoxy resins with TiO 2 nanowires
Nouri-Borujerdi et al. Thermal and electrical conductivity of a graphene-based hybrid filler epoxy composite
JP2015083663A (en) Electric insulation resin composition and cured product thereof as well as coil, stator, rotating machine and high-voltage equipment using the same
Ghahramani et al. The effect of filler localization on morphology and thermal conductivity of the polyamide/cyclic olefin copolymer blends filled with boron nitride
JP6101122B2 (en) Epoxy resin composition for mold transformer, mold transformer, and method for producing mold transformer
Awais et al. Investigation on optimal filler loadings for dielectric strength enhancement of epoxy/TiO2@ SiO2 nanocomposite
Eker et al. The influence of Al2O3 and TiO2 additives on the electrical resistivity of epoxy resin‐based composites at low temperature
Ryu et al. Magnetic alignment of electrochemically exfoliated graphite in epoxy as a thermal interface material with high through-plane thermal conductivity
Park Tensile and electrical insulation properties of epoxy/micro-silica composites
JP2022059058A (en) Thermosetting material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130711

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5615475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250