JP6559118B2 - Nickel powder - Google Patents

Nickel powder Download PDF

Info

Publication number
JP6559118B2
JP6559118B2 JP2016512640A JP2016512640A JP6559118B2 JP 6559118 B2 JP6559118 B2 JP 6559118B2 JP 2016512640 A JP2016512640 A JP 2016512640A JP 2016512640 A JP2016512640 A JP 2016512640A JP 6559118 B2 JP6559118 B2 JP 6559118B2
Authority
JP
Japan
Prior art keywords
gas
nickel
nickel powder
sulfur
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016512640A
Other languages
Japanese (ja)
Other versions
JPWO2015156080A1 (en
Inventor
広介 六角
広介 六角
浅井 剛
剛 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Publication of JPWO2015156080A1 publication Critical patent/JPWO2015156080A1/en
Application granted granted Critical
Publication of JP6559118B2 publication Critical patent/JP6559118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt

Description

本発明は、電子部品などに使用される導電ペースト用途に適したニッケル粉末に係り、特に積層セラミックコンデンサの内部電極用途の導電ペーストに用いて好適なニッケル粉末に関する。  The present invention relates to a nickel powder suitable for use in a conductive paste used for electronic parts and the like, and more particularly to a nickel powder suitable for use in a conductive paste for use as an internal electrode of a multilayer ceramic capacitor.

スマートフォンやタブレット端末に代表される携帯通信端末は、多機能化、高機能化に伴い消費電力が大きくなり、バッテリーの容量も大きくなるため、限られた筐体内で電子部品が搭載されるメイン基板は小さくなる傾向がある。一方、メイン基板に搭載される電子部品の数は増加する傾向にある。このため、メイン基板に搭載される積層セラミックコンデンサは小型かつ大容量であることが求められる。  Mobile communication terminals, such as smartphones and tablet terminals, have increased power consumption and battery capacity due to their increased functionality and functionality. Main boards on which electronic components are mounted in a limited housing Tend to be smaller. On the other hand, the number of electronic components mounted on the main board tends to increase. For this reason, the multilayer ceramic capacitor mounted on the main substrate is required to be small and have a large capacity.

積層セラミックコンデンサの小型化、大容量化に伴い、積層セラミックコンデンサの内部電極も薄層化・低抵抗化等が要求されている。このため、内部電極に使用されるニッケル粉末は、一次粒子の個数50%径が0.3μm以下は勿論のこと、0.2μm以下、更には0.1μm以下の超微粉が要望されている。  With the reduction in size and increase in capacity of multilayer ceramic capacitors, the internal electrodes of multilayer ceramic capacitors are also required to be thinner and have lower resistance. For this reason, the nickel powder used for the internal electrode is required to have an ultrafine powder having a 50% primary particle diameter of 0.3 μm or less, 0.2 μm or less, and further 0.1 μm or less.

一般に、ニッケル粉末は積層セラミックコンデンサの誘電体に用いられるセラミック粉末よりも焼結開始温度が低く、熱収縮が大きい。このため、積層セラミックコンデンサの製造工程で焼成する際、電極層と誘電体層の間の剥離や電極層でのクラックの発生といった欠陥が発生し易いという問題がある。また、ニッケル粉末中に一次粒子の個数50%径の3倍を超える粗大粒子や粒子どうしが凝結した凝集粒子が存在すると電極層表面の凹凸が大きくなり、電極層間のショートや積層セラミックコンデンサの耐電圧の低下の原因となる。  In general, nickel powder has a lower sintering start temperature and a larger thermal shrinkage than ceramic powder used for a dielectric of a multilayer ceramic capacitor. For this reason, when firing in the manufacturing process of the multilayer ceramic capacitor, there is a problem that defects such as separation between the electrode layer and the dielectric layer and generation of cracks in the electrode layer are likely to occur. In addition, if there are coarse particles in the nickel powder that are more than three times the number of primary particles 50% in diameter or aggregated particles in which the particles condense, the irregularities on the electrode layer surface become large, causing shorts between the electrode layers and resistance to multilayer ceramic capacitors. Cause voltage drop.

上記のような焼成時の欠陥の発生に対応する手段として、例えば特許文献1には、硫黄含有率が0.02〜1.0重量%であるニッケル粉末が開示されている。また、特許文献2には、表面に硫化ニッケル又は硫酸ニッケルの被覆膜が形成されているニッケル粉末が開示されている。  As a means corresponding to the occurrence of defects during firing as described above, for example, Patent Document 1 discloses nickel powder having a sulfur content of 0.02 to 1.0% by weight. Patent Document 2 discloses a nickel powder having a coating film of nickel sulfide or nickel sulfate formed on the surface thereof.

しかしながら、上記のような従来技術では、ニッケル粉末の個数50%径が0.1μmよりも小さくなるとニッケル粉末の焼成時の欠陥発生の防止効果が十分ではなく、さらなる改善が求められていた。  However, in the prior art as described above, when the 50% number of nickel powders becomes smaller than 0.1 μm, the effect of preventing the occurrence of defects during firing of the nickel powder is not sufficient, and further improvement has been demanded.

特開平11−80817号公報(特許請求の範囲)Japanese Patent Laid-Open No. 11-80817 (Claims) 特開2008−223145号公報(特許請求の範囲)JP 2008-223145 A (Claims)

したがって、本発明は積層セラミックコンデンサの製造工程において優れた焼結特性を有し、積層セラミックコンデンサの電極層と誘電体層の間の剥離や電極層のクラックといった欠陥の発生を防止することができる個数50%径が0.1μmよりも小さいニッケル粉末を得ることを目的としている。  Therefore, the present invention has excellent sintering characteristics in the production process of the multilayer ceramic capacitor, and can prevent the occurrence of defects such as separation between the electrode layer and the dielectric layer of the multilayer ceramic capacitor and cracks in the electrode layer. The object is to obtain a nickel powder having a 50% diameter smaller than 0.1 μm.

さらに、本発明は積層セラミックコンデンサの製造工程において凝集粒子の発生を抑制することができ、電極層間のショートや耐電圧の低下といった不良の発生を防止することができる個数50%径が0.1μmよりも小さいニッケル粉末を提供することを目的としている。  Furthermore, the present invention can suppress the generation of agglomerated particles in the production process of the multilayer ceramic capacitor, and can prevent the occurrence of defects such as a short circuit between electrode layers and a decrease in withstand voltage. The aim is to provide smaller nickel powders.

本発明のニッケル粉末は、1.0〜5.0質量%の硫黄を含有し、個数50%径が0.09μm以下であることを特徴とする。  The nickel powder of the present invention contains 1.0 to 5.0% by mass of sulfur and has a 50% number diameter of 0.09 μm or less.

本発明によれば、1.0〜5.0質量%の硫黄を含有することにより、個数50%径が0.09μm以下であってもニッケル粉末の焼結挙動を改善することができ、焼結による積層セラクミックコンデンサの特性劣化等の問題点を解決することができる。  According to the present invention, by containing 1.0 to 5.0% by mass of sulfur, the sintering behavior of nickel powder can be improved even if the number 50% diameter is 0.09 μm or less. Problems such as deterioration of characteristics of the multilayer ceramic capacitor due to bonding can be solved.

本発明のニッケル粉末より、積層セラミックコンデンサの製造工程において優れた焼結特性を有し、積層セラミックコンデンサの電極層と誘電体層の間の剥離や電極層のクラックといった欠陥の発生を防止することができる。さらに、本発明のニッケル粉末は、凝集粒子の発生を抑制することができ、電極層間のショートや耐電圧の低下といった不良の発生を抑制することができる。  The nickel powder of the present invention has excellent sintering characteristics in the production process of a multilayer ceramic capacitor, and prevents the occurrence of defects such as peeling between the electrode layer and dielectric layer of the multilayer ceramic capacitor and cracks in the electrode layer. Can do. Furthermore, the nickel powder of the present invention can suppress the generation of agglomerated particles, and can suppress the occurrence of defects such as a short circuit between electrode layers and a decrease in withstand voltage.

実施例及び比較例で使用したニッケル粉末製造装置を示す概略図である。It is the schematic which shows the nickel powder manufacturing apparatus used by the Example and the comparative example.

本発明のニッケル粉末には、種々の製造方法によって製造されたニッケル粉末とニッケルを主成分とするニッケル合金粉末が含まれる。ニッケル合金粉末としてはニッケルに耐酸化性等の付与や電気伝導率向上のためクロム、珪素、ホウ素、リンや希土類元素、貴金属元素等が添加された合金粉末がある。  The nickel powder of the present invention includes nickel powder produced by various production methods and nickel alloy powder mainly composed of nickel. As the nickel alloy powder, there is an alloy powder in which chromium, silicon, boron, phosphorus, a rare earth element, a noble metal element or the like is added to nickel for imparting oxidation resistance or the like and improving electric conductivity.

本発明のニッケル粉末の個数50%径は、0.09μm以下である。本発明のニッケル粉末の個数50%径の下限については、特に制限されるものではないが、通常のニッケル粉末の生産コストや用途の観点から0.01μm以上であることが好ましい。  The number 50% diameter of the nickel powder of the present invention is 0.09 μm or less. The lower limit of the 50% diameter of the nickel powder of the present invention is not particularly limited, but is preferably 0.01 μm or more from the viewpoint of production cost and use of ordinary nickel powder.

本発明のニッケル粉末の個数50%径は、走査電子顕微鏡によりニッケル粉末の写真を撮影し、その写真から画像解析ソフトを使用して、粒子約1,000個の粒径を測定し、得られたニッケル粉末の粒度分布より、その個数50%径を算出したものである。この場合において、粒径は粒子を包み込む最小円の直径である。  The 50% diameter of the nickel powder of the present invention is obtained by taking a photograph of the nickel powder with a scanning electron microscope and measuring the particle size of about 1,000 particles using the image analysis software from the photograph. The 50% diameter is calculated from the particle size distribution of the nickel powder. In this case, the particle size is the diameter of the smallest circle that encloses the particles.

本発明のニッケル粉末は、硫黄を1.0〜5.0重量%含有する。硫黄濃度を1.0重量%以上にすることにより、ニッケル粉末の焼結挙動を改善することができる。一方、硫黄濃度が、5.0重量%を超えると、焼結時に腐食性ガスを発生して積層セラミックコンデンサの特性を劣化させる等の問題が生じる。ニッケル粉末中の硫黄濃度は、より好ましくは1.2〜4.0重量%、さらに好ましくは1.5〜3.0重量%である。  The nickel powder of the present invention contains 1.0 to 5.0% by weight of sulfur. By making the sulfur concentration 1.0% by weight or more, the sintering behavior of the nickel powder can be improved. On the other hand, when the sulfur concentration exceeds 5.0% by weight, problems such as generation of corrosive gas during sintering and deterioration of the characteristics of the multilayer ceramic capacitor occur. The sulfur concentration in the nickel powder is more preferably 1.2 to 4.0% by weight, still more preferably 1.5 to 3.0% by weight.

また、本発明のニッケル粉末は、粉末の表面に存在する硫黄の内、硫酸イオンとして存在する硫黄と硫化物として存在する硫黄のモル比(硫酸イオン/硫化物イオン比)が、0.10以下であることが好ましく、0.05以下であればより好ましい。硫酸イオンとして存在する硫黄と硫化物イオンとして存在する硫黄のモル比を上記範囲にすることで、ニッケル粉末ペースト製造時の凝集粒子の発生を防止することができる。なお、ニッケル粉末表面の硫酸イオンとして存在する硫黄と硫化物イオンとして存在する硫黄の比(硫酸イオン/硫化物イオン比)は、X線光電子分光装置を使用して測定したS2pスペクトルの168eVのピークと162eVのピークの強度比から算出する。Further, the nickel powder of the present invention has a molar ratio (sulfate ion / sulfide ion ratio) of sulfur existing as sulfate ions and sulfur existing as sulfides among sulfur existing on the surface of the powder is 0.10 or less. It is preferable that it is 0.05 or less. By setting the molar ratio of sulfur existing as sulfate ions to sulfur existing as sulfide ions within the above range, it is possible to prevent the generation of aggregated particles during the production of nickel powder paste. The ratio of sulfur existing as sulfate ions on the nickel powder surface to sulfur existing as sulfide ions (sulfate ion / sulfide ion ratio) is 168 eV of S 2p spectrum measured using an X-ray photoelectron spectrometer. It calculates from the intensity ratio of a peak and the peak of 162 eV.

また、本発明のニッケル粉末は、ニッケル粉末中に含まれる個数50%径の3倍以上の粒径を有する粒子(以下、「粗大粒子」と記載することもある)の存在率は個数基準で100ppm以下が好ましく、50ppm以下であればより好ましい。粒度分布をこの範囲とすることで、積層セラミックコンデンサの製造時に電極層を平滑にすることができる。なお、粗大粒子の存在率の評価は、前記と同様に走査電子顕微鏡によりニッケル粉末の写真を撮影し、その写真から画像解析ソフトを使用して、粒子約100,000個のうち、粒径が前記で求めた個数50%径の3倍を超える粒子の数を数えて算出する。  In the nickel powder of the present invention, the abundance ratio of particles having a particle size 3 times or more than the 50% diameter contained in the nickel powder (hereinafter sometimes referred to as “coarse particles”) is based on the number. 100 ppm or less is preferable, and 50 ppm or less is more preferable. By setting the particle size distribution within this range, the electrode layer can be smoothed during the production of the multilayer ceramic capacitor. In addition, evaluation of the abundance of coarse particles was performed by taking a photograph of nickel powder with a scanning electron microscope in the same manner as described above, and using image analysis software from the photograph, the particle size of about 100,000 particles was The number of particles exceeding 3 times the 50% diameter obtained above is counted and calculated.

本発明のニッケル粉末は例えば、気相法や液相法など既知の方法で製造することができる。特に塩化ニッケルガスと還元性ガスとを接触させることによりニッケル粉末を生成する気相還元法、あるいは熱分解性のニッケル化合物を噴霧して熱分解する噴霧熱分解法は、生成する金属微粉末の粒径を容易に制御することができ、さらに球状の粒子を効率よく製造することができるという点において好ましい。特に、塩化ニッケルガスを還元性ガスと接触させることによる気相還元法は、生成するニッケル粉末の粒径を精密に制御でき、さらに粗大粒子の発生を防止できる点から好ましい。  The nickel powder of the present invention can be produced, for example, by a known method such as a gas phase method or a liquid phase method. In particular, the vapor phase reduction method in which nickel powder is produced by bringing nickel chloride gas into contact with a reducing gas, or the spray pyrolysis method in which a thermally decomposable nickel compound is sprayed to thermally decompose is used to produce fine metal powder. It is preferable in that the particle size can be easily controlled, and spherical particles can be efficiently produced. In particular, the vapor phase reduction method in which nickel chloride gas is brought into contact with a reducing gas is preferable from the viewpoint that the particle diameter of the produced nickel powder can be precisely controlled and the generation of coarse particles can be prevented.

気相還元法においては、気化させた塩化ニッケルのガスと水素等の還元性ガスとを反応させる。この場合に固体の塩化ニッケルを加熱し蒸発させて塩化ニッケルガスを生成してもよい。しかしながら、塩化ニッケルの酸化または吸湿防止、およびエネルギー効率を考慮すると、金属ニッケルに塩素ガスを接触させて塩化ニッケルガスを連続的に発生させ、この塩化ニッケルガスを還元工程に直接供給し、次いで還元性ガスと接触させ塩化ニッケルガスを連続的に還元してニッケル微粉末を製造する方法が有利である。  In the gas phase reduction method, vaporized nickel chloride gas is reacted with a reducing gas such as hydrogen. In this case, nickel chloride gas may be generated by heating and evaporating solid nickel chloride. However, in consideration of nickel chloride oxidation or moisture absorption prevention and energy efficiency, the metal chloride is brought into contact with chlorine gas to continuously generate nickel chloride gas, and this nickel chloride gas is directly supplied to the reduction process and then reduced. It is advantageous to produce nickel fine powder by contacting nickel chloride gas and continuously reducing nickel chloride gas.

ニッケルを主成分とする合金粉末の製造方法に使用される場合の塩化ニッケルガス以外のガスは、三塩化珪素(III)ガス、四塩化珪素(IV)ガス、モノシランガス、塩化銅(I)ガス、塩化銅(II)ガス、塩化銀ガス、塩化モリブデンガス(III)ガス、塩化モリブデン(V)ガス、塩化鉄(II)ガス、塩化鉄(III)ガス、塩化クロム(III)ガス、塩化クロム(VI)ガス、塩化タングステン(II)ガス、塩化タングステン(III)ガス、塩化タングステン(IV)ガス、塩化タングステン(V)ガス、塩化タングステン(VI)ガス、塩化タンタル(III)ガス、塩化タンタル(V)ガス、塩化コバルトガス、塩化レニウム(III)ガス、塩化レニウム(IV)ガス、塩化レニウム(V)ガス、ジボランガス、ホスフィンガス等及びこれらの混合ガスが挙げられる。  Gases other than nickel chloride gas when used in a method for producing an alloy powder containing nickel as a main component are silicon trichloride (III) gas, silicon tetrachloride (IV) gas, monosilane gas, copper chloride (I) gas, Copper (II) chloride gas, silver chloride gas, molybdenum chloride gas (III) gas, molybdenum chloride (V) gas, iron chloride (II) gas, iron chloride (III) gas, chromium chloride (III) gas, chromium chloride ( VI) gas, tungsten chloride (II) gas, tungsten chloride (III) gas, tungsten chloride (IV) gas, tungsten chloride (V) gas, tungsten chloride (VI) gas, tantalum chloride (III) gas, tantalum chloride (V ) Gas, cobalt chloride gas, rhenium chloride (III) gas, rhenium chloride (IV) gas, rhenium chloride (V) gas, diborane gas Phosphine gas or the like, and include a mixture of these gases.

また還元性ガスには、水素ガス、硫化水素ガス、アンモニアガス、一酸化炭素ガス、メタンガスおよびこれらの混合ガスが挙げられる。特に好ましくは、水素ガス、硫化水素ガス、アンモニアガス、およびこれらの混合ガスである。  Examples of the reducing gas include hydrogen gas, hydrogen sulfide gas, ammonia gas, carbon monoxide gas, methane gas, and a mixed gas thereof. Particularly preferred are hydrogen gas, hydrogen sulfide gas, ammonia gas, and mixed gas thereof.

気相還元反応によるニッケル粉末の製造過程では、塩化ニッケルガスと還元性ガスとが接触した瞬間にニッケル原子が生成し、ニッケル原子どうしが衝突・凝集することによってニッケル粒子が生成し、成長する。そして、還元工程での塩化ニッケルガスの分圧や温度等の条件によって、生成するニッケル粉末の粒径が決まる。上記のようなニッケル粉末の製造方法によれば、塩素ガスの供給量に応じた量の塩化ニッケルガスが発生するから、塩素ガスの供給量を制御することで還元工程へ供給する塩化ニッケルガスの量を調整することができ、これによって生成するニッケル粉末の粒径を制御することができる。  In the production process of nickel powder by a gas phase reduction reaction, nickel atoms are generated at the moment when the nickel chloride gas and the reducing gas come into contact with each other, and nickel particles collide and agglomerate to generate and grow nickel particles. The particle diameter of the nickel powder to be generated is determined by conditions such as the partial pressure and temperature of the nickel chloride gas in the reduction step. According to the nickel powder manufacturing method as described above, an amount of nickel chloride gas corresponding to the supply amount of chlorine gas is generated. Therefore, the amount of nickel chloride gas supplied to the reduction process is controlled by controlling the supply amount of chlorine gas. The amount can be adjusted, thereby controlling the particle size of the nickel powder produced.

さらに、塩化ニッケルガスは、塩素ガスと金属との反応で発生するから、固体塩化ニッケルの加熱蒸発により塩化ニッケルガスを発生させる方法とは異なり、キャリアガスの使用を少なくすることができるばかりでなく、製造条件によっては使用しないことも可能である。したがって、気相還元反応の方が、キャリアガスの使用量低減とそれに伴う加熱エネルギーの低減により、製造コストの削減を図ることができる。  Furthermore, since nickel chloride gas is generated by the reaction of chlorine gas and metal, unlike the method of generating nickel chloride gas by heating evaporation of solid nickel chloride, not only can the use of carrier gas be reduced. Depending on the manufacturing conditions, it is possible not to use them. Therefore, in the gas phase reduction reaction, the production cost can be reduced by reducing the amount of carrier gas used and the accompanying reduction in heating energy.

また、塩化工程で発生した塩化ニッケルガスに不活性ガスを混合することにより、還元工程における塩化ニッケルガスの分圧を制御することができる。このように、塩素ガスの供給量もしくは還元工程に供給する塩化ニッケルガスの分圧を制御することにより、ニッケル粉末の粒径を制御することができ、粒径のばらつきを抑えることができるとともに、粒径を任意に設定することができる。  Moreover, the partial pressure of the nickel chloride gas in the reduction process can be controlled by mixing an inert gas with the nickel chloride gas generated in the chlorination process. Thus, by controlling the supply amount of chlorine gas or the partial pressure of nickel chloride gas supplied to the reduction process, the particle size of nickel powder can be controlled, and variation in particle size can be suppressed, The particle size can be arbitrarily set.

上記のような気相還元法によるニッケル粉末の製造条件は、個数50%径が0.09μm以下になるように任意に設定するが、例えば、出発原料である金属ニッケルの粒径は約5〜20mmの粒状、塊状、板状等が好ましく、また、その純度は概して99.5%以上が好ましい。この金属ニッケルを、まず塩素ガスと反応させて塩化ニッケルガスを生成させるが、その際の温度は、反応を十分進めるために800℃以上とし、かつニッケルの融点である1453℃以下とする。反応速度と塩化炉の耐久性を考慮すると、実用的には900℃〜1100℃の範囲が好ましい。  The production conditions of the nickel powder by the gas phase reduction method as described above are arbitrarily set so that the 50% diameter is 0.09 μm or less. For example, the particle diameter of metallic nickel as a starting material is about 5 to 5%. A 20 mm granular shape, a lump shape, a plate shape, and the like are preferable, and the purity is generally preferably 99.5% or more. The nickel metal is first reacted with chlorine gas to produce nickel chloride gas, and the temperature at that time is set to 800 ° C. or higher and 1453 ° C. or lower, which is the melting point of nickel, to sufficiently advance the reaction. Considering the reaction rate and the durability of the chlorination furnace, the range of 900 ° C. to 1100 ° C. is preferable for practical use.

次いで、この塩化ニッケルガスを還元工程に直接供給し、水素ガス等の還元性ガスと接触反応させる。その際に、塩化ニッケルガスを適宜アルゴン、窒素等の不活性ガスで希釈して塩化ニッケルガスの分圧を制御することができる。塩化ニッケルガスの分圧を制御することにより、還元部で生成する金属粉末の粒度分布等の品質を制御することができる。これにより生成する金属粉末の品質を任意に設定できるとともに、品質を安定させることができる。通常、個数50%径が0.09μm以下のニッケル粉末を得るためには塩化ニッケルガスの分圧を30kPa以下に制御する。還元反応の温度は反応完結に十分な温度以上であればよい。固体状のニッケル粉末を生成する方が、取扱いが容易であるので、ニッケルの融点以下が好ましく、経済性を考慮すると900℃〜1100℃が実用的である。  Next, this nickel chloride gas is directly supplied to the reduction step and brought into contact with a reducing gas such as hydrogen gas. At that time, the partial pressure of the nickel chloride gas can be controlled by appropriately diluting the nickel chloride gas with an inert gas such as argon or nitrogen. By controlling the partial pressure of the nickel chloride gas, the quality such as the particle size distribution of the metal powder produced in the reducing part can be controlled. Thereby, while being able to set arbitrarily the quality of the metal powder to produce | generate, quality can be stabilized. Usually, in order to obtain nickel powder having a 50% diameter of 0.09 μm or less, the partial pressure of nickel chloride gas is controlled to 30 kPa or less. The temperature of the reductive reaction should just be more than temperature sufficient for reaction completion. Since it is easier to handle solid nickel powder, the melting point of nickel or lower is preferable, and 900 to 1100 ° C. is practical in view of economy.

このように還元反応を行なったニッケル粉末を生成したら、生成したニッケル粉末を冷却する。冷却の際、生成したニッケルの一次粒子同士の凝集による二次粒子の生成を防止して所望の粒径のニッケル粉末を得るために、窒素ガス等の不活性ガスを吹き込むことにより、還元反応を終えた1000℃付近のガス流を400〜800℃程度までに急速冷却することが望ましい。その後、生成したニッケル粉末を、例えばバグフィルタ等により分離、回収する。  When the nickel powder subjected to the reduction reaction is generated as described above, the generated nickel powder is cooled. During cooling, in order to prevent the formation of secondary particles due to aggregation of primary particles of the generated nickel and obtain nickel powder with a desired particle size, a reduction reaction is performed by blowing an inert gas such as nitrogen gas. It is desirable to rapidly cool the finished gas flow around 1000 ° C. to about 400 to 800 ° C. Thereafter, the produced nickel powder is separated and collected by, for example, a bag filter or the like.

噴霧熱分解法によるニッケル粉末の製造方法では、熱分解性のニッケル化合物を原料とする。具体的には、硝酸塩、硫酸塩、オキシ硝酸塩、オキシ硫酸塩、塩化物、アンモニウム錯体、リン酸塩、カルボン酸塩、アルコキシ化合物などの1種または2種以上が含まれる。このニッケル化合物を含む溶液を噴霧して、微細な液滴を作る。このときの溶媒としては、水、アルコール、アセトン、エーテル等が用いられる。また、噴霧の方法は、超音波または二重ジェットノズル等の噴霧方法により行う。このようにして微細な液滴とし、高温で加熱して金属化合物を熱分解し、ニッケル粉末を生成する。このときの加熱温度は、使用される特定のニッケル化合物が熱分解する温度以上であり、好ましくは金属の融点付近である。  In the method for producing nickel powder by the spray pyrolysis method, a heat decomposable nickel compound is used as a raw material. Specifically, one or more of nitrate, sulfate, oxynitrate, oxysulfate, chloride, ammonium complex, phosphate, carboxylate, alkoxy compound and the like are included. The solution containing the nickel compound is sprayed to form fine droplets. As the solvent at this time, water, alcohol, acetone, ether or the like is used. The spraying method is performed by a spraying method such as ultrasonic or double jet nozzle. In this way, fine droplets are formed and heated at a high temperature to thermally decompose the metal compound to produce nickel powder. The heating temperature at this time is equal to or higher than the temperature at which the specific nickel compound used is thermally decomposed, and is preferably near the melting point of the metal.

液相法によるニッケル粉末の製造方法では、硫酸ニッケル、塩化ニッケルあるいはニッケル錯体を含むニッケル水溶液を、水酸化ナトリウムなどのアルカリ金属水酸化物中に添加するなどして接触させてニッケル水酸化物を生成し、次いでヒドラジンなどの還元剤でニッケル水酸化物を還元し金属ニッケル粉末を得る。このようにして生成した金属ニッケル粉末は、均一な粒子を得るために必要に応じて解砕処理を行う。  In the method for producing nickel powder by the liquid phase method, nickel hydroxide containing nickel sulfate, nickel chloride or a nickel complex is brought into contact by adding it to an alkali metal hydroxide such as sodium hydroxide. Then, the nickel hydroxide is reduced with a reducing agent such as hydrazine to obtain metallic nickel powder. The nickel metal powder thus produced is crushed as necessary to obtain uniform particles.

以上の方法で得られたニッケル粉末は、残留する原料を除去するため、液相中に分散させ、洗浄を行うことが好ましい。たとえば、以上の方法で得られたニッケル粉末を、pHや温度を制御した特定の条件で炭酸水溶液中に懸濁させて処理を行う。炭酸水溶液で処理することにより、ニッケル粉末の表面に付着している塩素などの不純物が十分に除去されるとともに、ニッケル粉末の表面に存在する水酸化ニッケルなどの水酸化物や粒子同士の摩擦などにより表面から離間して形成された微粒子が除去されるため、表面に均一な酸化ニッケルの被膜を形成することができる。炭酸水溶液での処理方法としては、ニッケル粉末と炭酸水溶液を混合する方法、あるいはニッケル粉末を純水で一旦洗浄した後の水スラリー中に炭酸ガスを吹き込むか、あるいはニッケル粉末を純水で一旦洗浄した後の水スラリー中に炭酸水溶液を添加して処理することもできる。  The nickel powder obtained by the above method is preferably dispersed and washed in the liquid phase in order to remove the remaining raw material. For example, the nickel powder obtained by the above method is treated by suspending it in a carbonic acid aqueous solution under specific conditions with controlled pH and temperature. By treating with an aqueous carbonate solution, impurities such as chlorine adhering to the surface of the nickel powder are sufficiently removed, and hydroxide such as nickel hydroxide present on the surface of the nickel powder and friction between particles, etc. Thus, the fine particles formed away from the surface are removed, so that a uniform nickel oxide film can be formed on the surface. As a treatment method with a carbonic acid aqueous solution, a method in which nickel powder and a carbonic acid aqueous solution are mixed, or carbon dioxide gas is blown into a water slurry after the nickel powder is once washed with pure water, or the nickel powder is once washed with pure water. The aqueous slurry can be treated by adding an aqueous carbonate solution.

本発明のニッケル粉末に硫黄を含有させる方法は、特に限定されるものではなく、例えば以下の方法を採用することができる。
(1)上記還元反応中に硫黄含有ガスを添加する方法
(2)ニッケル粉末を硫黄含有ガスと接触処理する方法
(3)ニッケル粉末と固体の硫黄含有化合物を乾式で混合する方法
(4)ニッケル粉末を液相中に分散させたスラリー中に硫黄含有化合物溶液を添加する方法
(5)ニッケル粉末を液相中に分散させたスラリー中に硫黄含有ガスをバブリングする方法
The method for incorporating sulfur into the nickel powder of the present invention is not particularly limited, and for example, the following method can be employed.
(1) Method of adding sulfur-containing gas during the reduction reaction (2) Method of contacting nickel powder with sulfur-containing gas (3) Method of mixing nickel powder and solid sulfur-containing compound in a dry process (4) Nickel Method of adding sulfur-containing compound solution in slurry in which powder is dispersed in liquid phase (5) Method of bubbling sulfur-containing gas in slurry in which nickel powder is dispersed in liquid phase

特に、硫黄含有量を精密に制御できる点や硫黄を均一に添加できる観点から(1)および(4)の方法が好ましい。(1)、(2)、(5)の方法において使用される硫黄含有ガスは、特に限定されるものではなく、硫黄蒸気、二酸化硫黄ガス、硫化水素ガス等、還元工程の温度下において気体であるガスをそのまま、あるいは希釈して使用することができる。この中でも常温で気体であり流量の制御が容易な点や不純物の混入のおそれの低い点から二酸化硫黄ガス、および硫化水素ガスが有利である。  In particular, the methods (1) and (4) are preferable from the viewpoint that the sulfur content can be precisely controlled and that sulfur can be added uniformly. The sulfur-containing gas used in the methods (1), (2), and (5) is not particularly limited, and is a gas at the temperature of the reduction process, such as sulfur vapor, sulfur dioxide gas, and hydrogen sulfide gas. A certain gas can be used as it is or after being diluted. Of these, sulfur dioxide gas and hydrogen sulfide gas are advantageous because they are gases at room temperature and the flow rate can be easily controlled and impurities are less likely to be mixed.

(1)の方法では、これらのガスを塩化ニッケルガス、不活性ガス、還元性ガスのいずれかに混合することにより還元反応で生成するニッケル粉末に硫黄を均一に含有させることができる。また、塩化ニッケルガスと硫黄含有ガスの流量比を制御することでニッケル粉末の硫黄含有量を制御することができる。  In the method (1), sulfur can be uniformly contained in the nickel powder produced by the reduction reaction by mixing these gases with any of nickel chloride gas, inert gas, and reducing gas. Further, the sulfur content of the nickel powder can be controlled by controlling the flow ratio of the nickel chloride gas and the sulfur-containing gas.

(3)、(4)の方法において使用される硫黄含有化合物は、特に限定されるのではなく、トリアジンチオール、2−メルカプトベンゾチアゾール、チオ尿素等の硫黄含有化合物を使用することができる。中でもチオ尿素を使用する方法が最も効果的である。  The sulfur-containing compound used in the methods (3) and (4) is not particularly limited, and sulfur-containing compounds such as triazine thiol, 2-mercaptobenzothiazole, and thiourea can be used. Of these, the method using thiourea is the most effective.

(4)の方法では、ニッケルスラリーと硫黄含有化合物の溶液を混合した後、撹拌、あるいは超音波処理等を行う。上記の処理の際の液温の範囲は20〜60℃、より好ましくは20〜40℃である。硫黄含有化合物の添加量を調整することでニッケル粉末の硫黄含有量を任意に調整することができる。気相還元法により得られたニッケル粉末に(4)の方法を適用する場合、前述の洗浄工程の後に硫黄添加処理を行うことが好ましい。  In the method (4), the nickel slurry and the sulfur-containing compound solution are mixed, and then stirred or sonicated. The range of the liquid temperature in the case of said process is 20-60 degreeC, More preferably, it is 20-40 degreeC. The sulfur content of the nickel powder can be arbitrarily adjusted by adjusting the addition amount of the sulfur-containing compound. When the method (4) is applied to the nickel powder obtained by the gas phase reduction method, it is preferable to perform a sulfur addition treatment after the above-described cleaning step.

前述の洗浄工程および硫黄添加工程の後、ニッケル粉末スラリーを乾燥する。乾燥方法は特に限定されるものではなく、既知の方法を使用することができる。具体的には高温のガスと接触させ乾燥する気流乾燥、加熱乾燥、真空乾燥などが挙げられる。このうち、気流乾燥は粒子どうしの衝突による硫黄含有層の破壊がないため好ましい。  After the aforementioned washing step and sulfur addition step, the nickel powder slurry is dried. The drying method is not particularly limited, and a known method can be used. Specific examples include air-flow drying, drying by heating, and vacuum drying that are brought into contact with a high-temperature gas to dry. Among these, air drying is preferable because there is no destruction of the sulfur-containing layer due to collision between particles.

本発明のニッケル粉末は上述の乾燥工程の後、雰囲気制御下で加熱処理を行う。加熱処理は、還元雰囲気中で100〜400℃、好ましくは100〜250℃、より好ましくは150〜250℃の温度下において0.5〜10時間の加熱処理を行う。還元雰囲気は、例えば窒素、アルゴン等の不活性ガスと水素ガスの混合ガスの雰囲気があげられる。還元雰囲気中の水素分圧は0.001〜0.01MPaである。この処理により、ニッケル粉末の表面に存在する硫酸イオンを硫化物イオンに変換し、ニッケル粉末表面の硫酸イオンとして存在する硫黄と硫化物イオンとして存在する硫黄のモル比(硫酸イオン/硫化物イオン比)を安定して0.10以下にすることができる。  The nickel powder of the present invention is heat-treated under atmospheric control after the above-described drying step. The heat treatment is performed in a reducing atmosphere at a temperature of 100 to 400 ° C., preferably 100 to 250 ° C., more preferably 150 to 250 ° C. for 0.5 to 10 hours. Examples of the reducing atmosphere include an atmosphere of a mixed gas of inert gas such as nitrogen and argon and hydrogen gas. The hydrogen partial pressure in the reducing atmosphere is 0.001 to 0.01 MPa. This treatment converts sulfate ions present on the surface of nickel powder into sulfide ions, and the molar ratio of sulfur present as sulfate ions on the nickel powder surface to sulfur present as sulfide ions (sulfate ion / sulfide ion ratio). ) Can be stably reduced to 0.10 or less.

図1はニッケル粉末を製造するための装置を示す図である。図1において符号10は還元炉である。還元炉10は有底円筒状をなし、その上流側には塩化ニッケルガスノズル11が取り付けられており、還元炉10内に塩化ニッケルガス、二酸化硫黄ガス、および濃度調整のための窒素ガスが供給されるようになっている。また、還元炉10の上流側側壁には水素ガスノズル12が取り付けられている。水素ガスノズル12から還元炉10内に供給される水素ガスにより塩化ニッケルが還元されてニッケル粉末Pが生成される。還元炉10の下流側側壁には、冷却ガスノズル13が取り付けられており、冷却ガスノズル13から還元炉10内に供給される窒素ガスなどの不活性ガスにより生成したニッケル粉末Pが迅速に冷却され、ニッケル粉末Pの粗大化を防止する。還元炉10の下流側には回収管14が取り付けられており、ニッケル粉末Pは回収管14を流通して回収装置に送られる。  FIG. 1 is a view showing an apparatus for producing nickel powder. In FIG. 1, reference numeral 10 denotes a reduction furnace. The reduction furnace 10 has a bottomed cylindrical shape, and a nickel chloride gas nozzle 11 is attached to the upstream side thereof. Nickel chloride gas, sulfur dioxide gas, and nitrogen gas for concentration adjustment are supplied into the reduction furnace 10. It has become so. A hydrogen gas nozzle 12 is attached to the upstream side wall of the reduction furnace 10. Nickel chloride is reduced by the hydrogen gas supplied from the hydrogen gas nozzle 12 into the reduction furnace 10 to produce nickel powder P. A cooling gas nozzle 13 is attached to the downstream side wall of the reduction furnace 10, and the nickel powder P generated by an inert gas such as nitrogen gas supplied from the cooling gas nozzle 13 into the reduction furnace 10 is rapidly cooled. The coarsening of the nickel powder P is prevented. A recovery pipe 14 is attached to the downstream side of the reduction furnace 10, and the nickel powder P flows through the recovery pipe 14 and is sent to the recovery device.

(実施例1,2、比較例1〜3)
個数50%径が0.03μm程度で硫黄含有率を種々変化させたニッケル粉末を図1に示すニッケル粉末製造装置を用いて気相還元法で作製した。
(Examples 1 and 2, Comparative Examples 1 to 3)
A nickel powder having a 50% diameter of about 0.03 μm and various sulfur contents varied was produced by a vapor phase reduction method using the nickel powder production apparatus shown in FIG.

ヒーターにより1,100℃の雰囲気温度とした還元炉10内に、塩化ニッケルガスノズル11より、塩化ニッケルガス、二酸化硫黄ガス、および窒素ガスの混合ガスを、流速2.8m/秒(1,100℃換算)で導入した。同時に水素ガスノズル12から水素ガスを流速2.2m/秒(1,100℃換算)で還元炉10内に導入し、還元炉10内で塩化ニッケルガスを還元してニッケル粉末Pを得た。  A mixed gas of nickel chloride gas, sulfur dioxide gas, and nitrogen gas is fed from a nickel chloride gas nozzle 11 into a reduction furnace 10 having an atmospheric temperature of 1,100 ° C. by a heater at a flow rate of 2.8 m / sec (1,100 ° C. Introduced). At the same time, hydrogen gas was introduced from the hydrogen gas nozzle 12 into the reduction furnace 10 at a flow rate of 2.2 m / second (converted to 1,100 ° C.), and nickel chloride gas was reduced in the reduction furnace 10 to obtain nickel powder P.

この場合において、塩化ニッケルガスと二酸化硫黄ガスの流量比を制御することで、ニッケル粉末の硫黄含有量を調整した。なお、ニッケル生成反応の際、反応熱により生成するニッケル粉末は1,200℃まで加熱され、生成したニッケル粉末を含むガス流はニッケル粉末の黒体輻射により炭化水素等の気体燃料の燃焼炎に似た輝炎Fとして観察された。生成されたニッケル粉末Pは、冷却ガスノズル13からニッケル粉末の単位時間あたり生成量の200倍の質量流量で導入される25℃の窒素ガスと混合され、400℃以下まで冷却された後、回収管14により図示しないバグフィルタに導き、ニッケル粉末を分離、回収した。比較例3については塩化ニッケルガスに二酸化硫黄ガスを添加せずにニッケル粉末を作製した。  In this case, the sulfur content of the nickel powder was adjusted by controlling the flow ratio of nickel chloride gas and sulfur dioxide gas. During the nickel production reaction, the nickel powder produced by the reaction heat is heated to 1,200 ° C., and the gas stream containing the produced nickel powder is turned into a combustion flame of gaseous fuel such as hydrocarbons by the black body radiation of the nickel powder. A similar bright flame F was observed. The produced nickel powder P is mixed with nitrogen gas at 25 ° C. introduced from the cooling gas nozzle 13 at a mass flow rate of 200 times the amount of nickel powder produced per unit time, cooled to 400 ° C. or lower, and then recovered. 14 led to a bag filter (not shown), and nickel powder was separated and recovered. For Comparative Example 3, nickel powder was prepared without adding sulfur dioxide gas to nickel chloride gas.

回収したニッケル粉末は水中に分散、沈降する洗浄工程を5回繰り返して残留する塩化ニッケルを取り除いた後に、気流乾燥装置で水分含有率が0.5%以下になるように乾燥処理を行った。次いで2体積%水素‐アルゴンの還元雰囲気下(水素分圧:2kPa)で150℃の熱処理を3時間行い、実施例1,2、および比較例1〜3のニッケル粉末を得た。  The recovered nickel powder was dispersed and settled in water for 5 times to remove the remaining nickel chloride, and then subjected to a drying treatment with an air dryer so that the water content was 0.5% or less. Next, heat treatment was performed at 150 ° C. for 3 hours under a 2 vol% hydrogen-argon reducing atmosphere (hydrogen partial pressure: 2 kPa) to obtain nickel powders of Examples 1 and 2 and Comparative Examples 1 to 3.

得られたニッケル粉末につき、個数50%径、硫黄濃度、ニッケル粉末表面の硫酸イオン/硫化物イオン比、粗大粒子率、焼結挙動、および凝集挙動を以下の方法で評価した。  About the obtained nickel powder, the number 50% diameter, the sulfur concentration, the sulfate ion / sulfide ion ratio on the nickel powder surface, the coarse particle ratio, the sintering behavior, and the aggregation behavior were evaluated by the following methods.

a.個数50%径
走査電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名S−4700)により金属ニッケル粉末の写真を撮影し、その写真から画像解析ソフト(株式会社マウンテック製、商品名MacView4.0)を使用して、粒子約1,000個の粒径を測定してその個数50%径を算出した。なお、粒径は粒子を包み込む最小円の直径とした。
a. Number 50% diameter A photograph of metallic nickel powder was taken with a scanning electron microscope (trade name S-4700, manufactured by Hitachi High-Technologies Corporation), and image analysis software (trade name: MacView 4.0, manufactured by Mountec Co., Ltd.) was taken from the photograph. In use, the particle size of about 1,000 particles was measured and the 50% size was calculated. The particle diameter was the diameter of the smallest circle enclosing the particles.

b.硫黄濃度
誘導結合プラズマ発光分光分析装置(SIIナノテクノロジー株式会社製、商品名SPS3100)を使用して測定した。
b. Sulfur concentration Measured using an inductively coupled plasma emission spectrometer (trade name SPS3100, manufactured by SII Nanotechnology Co., Ltd.).

c.ニッケル粉末表面の硫酸イオン/硫化物イオン比
X線光電子分光装置(アルバック・ファイ株式会社製、商品名QVuantum2000)を使用して測定したS2pスペクトルの168eVのピークと162eVのピークの強度比からニッケル粉末表面の硫酸イオン/硫化物イオン比を算出した。
c. Sulfate ion / sulfide ion ratio on nickel powder surface Nickel from the intensity ratio of the 168 eV peak and 162 eV peak in the S 2p spectrum measured using an X-ray photoelectron spectrometer (trade name QVuantum 2000, manufactured by ULVAC-PHI Co., Ltd.) The ratio of sulfate ion / sulfide ion on the powder surface was calculated.

d.粗大粒子率
走査電子顕微鏡(株式会社日立ハイテクノロジーズ製、商品名S−4700)により金属ニッケル粉末の写真を撮影し、その写真から画像解析ソフト(株式会社マウンテック製、商品名MacView4.0)を使用して、粒子約100,000個のうち、粒径が個数50%径の3倍以上の粗大粒子の数を測定して粗大粒子率を求めた。
d. Coarse particle ratio A photograph of metallic nickel powder was taken with a scanning electron microscope (trade name S-4700, manufactured by Hitachi High-Technologies Corporation), and image analysis software (trade name: MacView 4.0, manufactured by Mountec Co., Ltd.) was used from the photograph. Then, among about 100,000 particles, the number of coarse particles having a particle size 3 times or more than the 50% diameter was measured to obtain the coarse particle ratio.

e.焼結挙動
ニッケル粉末1g、樟脳3重量%、及びアセトン3重量%を混合し、この混合物を内径5mm、長さ10mmの円柱状金属容器に充填し、500MPaで圧縮して試験ペレットを作製した。この試験ペレットの熱収縮挙動を、熱機械分析装置(株式会社リガク製、商品名TMA8310)を使用して1.5体積%水素‐窒素の還元雰囲気下で昇温速度5℃/分の条件で測定した。測定結果から5%収縮温度を求め、ニッケル粉末の焼結挙動を表1のように評価した。
e. Sintering behavior 1 g of nickel powder, 3% by weight of camphor, and 3% by weight of acetone were mixed, and this mixture was filled into a cylindrical metal container having an inner diameter of 5 mm and a length of 10 mm, and compressed at 500 MPa to prepare a test pellet. The thermal contraction behavior of this test pellet was measured under the condition of a heating rate of 5 ° C./min under a 1.5% by volume hydrogen-nitrogen reducing atmosphere using a thermomechanical analyzer (trade name: TMA8310, manufactured by Rigaku Corporation). It was measured. The 5% shrinkage temperature was determined from the measurement results, and the sintering behavior of the nickel powder was evaluated as shown in Table 1.

Figure 0006559118
Figure 0006559118

f.凝集粒子
ニッケル粉末0.5gにポリカルボン酸系分散剤5重量%水溶液100mlを加え、超音波分散機(株式会社ギンセン製、商品名GSD600AT)を使用して出力600W、振幅幅30μmで60秒分散した。分散後、メンブレンフィルター(孔径1μm、フィルター径25mm)(GEヘルスケアバイオサイエンス株式会社製、商品名ニュークリポアメンブレン)を使用して吸引圧0.1MPaで吸引ろ過を行い、その際の通過時間からニッケル粉末の凝集挙動を表2のように評価した。
f. Aggregated particles Add 100 ml of 5% by weight aqueous solution of polycarboxylic acid-based dispersant to 0.5 g of nickel powder, and disperse for 60 seconds using an ultrasonic disperser (trade name GSD600AT, manufactured by Ginsen Co., Ltd.) with an output of 600 W and an amplitude of 30 μm did. After dispersion, suction filtration is performed at a suction pressure of 0.1 MPa using a membrane filter (pore size: 1 μm, filter diameter: 25 mm) (trade name: New clip pore membrane, manufactured by GE Healthcare Bioscience Co., Ltd.). The aggregation behavior of the nickel powder was evaluated as shown in Table 2.

Figure 0006559118
Figure 0006559118

実施例1,2、比較例1〜3の測定結果および評価結果を表3に示す。なお比較例3は硫黄濃度が検出限界以下であり、ニッケル粉末表面の硫黄の状態についても評価することができなかった。  Table 3 shows the measurement results and evaluation results of Examples 1 and 2 and Comparative Examples 1 to 3. In Comparative Example 3, the sulfur concentration was below the detection limit, and the state of sulfur on the nickel powder surface could not be evaluated.

(実施例3〜5)
個数50%径が0.09μm程度、硫黄含有率1.5%程度で、表面の硫黄の状態を種々変化させたニッケル粉末を作製した。図1に示すニッケル粉末製造装置を用いて、塩化ニッケルガスに二酸化硫黄ガスを加えずに製造した硫黄を含まないニッケル粉末に対して、水中に分散、沈降する洗浄工程を5回繰り返して残留する塩化ニッケルを取り除いた。その後、ニッケル粉末に対して硫黄含有率が1.5%になるよう、チオ尿素のエタノール溶液を添加し、35℃で30分撹拌処理をした。次いで、気流乾燥装置で水分含有率が0.5%以下になるように乾燥処理を行った後、2体積%水素‐アルゴンの還元雰囲気下(水素分圧:2kPa)、200℃の熱処理を、ニッケル粉末表面の硫黄の状態を変えるため処理時間を0.5〜3時間に変化させて行い、実施例3〜5のニッケル粉末を得た。実施例3〜5の測定結果および評価結果を表3に示す。
(Examples 3 to 5)
Nickel powders having a 50% diameter of about 0.09 μm and a sulfur content of about 1.5% were produced with various changes in the state of sulfur on the surface. Using the nickel powder production apparatus shown in FIG. 1, the washing process of dispersing and settling in water remains for five times with respect to nickel powder that is produced without adding sulfur dioxide gas to nickel chloride gas and remains in water. Nickel chloride was removed. Thereafter, an ethanol solution of thiourea was added so that the sulfur content was 1.5% with respect to the nickel powder, followed by stirring at 35 ° C. for 30 minutes. Next, after performing a drying treatment so that the water content becomes 0.5% or less with an air flow drying device, a heat treatment at 200 ° C. under a reducing atmosphere of 2 volume% hydrogen-argon (hydrogen partial pressure: 2 kPa), In order to change the state of sulfur on the surface of the nickel powder, the treatment time was changed from 0.5 to 3 hours to obtain nickel powders of Examples 3 to 5. The measurement results and evaluation results of Examples 3 to 5 are shown in Table 3.

(比較例4)
実施例3の洗浄工程後のチオ尿素のエタノール溶液中での攪拌処理以降の工程を、洗浄工程後、気流乾燥装置で水分含有率が0.5%以下になるように乾燥処理を行った後、石英反応管中で1.5体積%水素−5体積%硫化水素−窒素雰囲気下(水素分圧:1.5kPa、硫化水素分圧:5kPa)、230℃で10分間の硫化処理を行ったこと以外は、実施例3と同様にニッケル粉末を得た。比較例4の測定結果および評価結果を表3に示す。
(Comparative Example 4)
After the washing process of Example 3 after the washing process in the ethanol solution of thiourea, after the washing process, the drying process is performed so that the moisture content is 0.5% or less with an air flow drying device. In a quartz reaction tube, sulfidation treatment was performed at 230 ° C. for 10 minutes under an atmosphere of 1.5% by volume hydrogen-5% by volume hydrogen sulfide-nitrogen (hydrogen partial pressure: 1.5 kPa, hydrogen sulfide partial pressure: 5 kPa). Except this, nickel powder was obtained in the same manner as in Example 3. The measurement results and evaluation results of Comparative Example 4 are shown in Table 3.

得られたニッケル粉末につき、個数50%径、硫黄濃度、ニッケル粉末表面の硫酸イオン/硫化物イオン比、粗大粒子率、焼結挙動、および凝集粒子を先述の方法で評価した。その結果を表3に併記する。  About the obtained nickel powder, the number 50% diameter, the sulfur concentration, the sulfate ion / sulfide ion ratio on the nickel powder surface, the coarse particle ratio, the sintering behavior, and the aggregated particles were evaluated by the method described above. The results are also shown in Table 3.

Figure 0006559118
Figure 0006559118

表3から明らかなように、実施例1、2のニッケル粉は、比較例1〜3と比較して個数50%径が同程度であるにもかかわらず、硫黄濃度が1.0〜5.0重量%の範囲内であるため、焼結挙動が優れていることが分かる。また実施例3、4のニッケル粉は、実施例5、比較例4と比較して個数50%径が同程度であるのにもかかわらず、硫黄濃度が上記範囲内であり、かつ、硫酸イオン/硫化物イオン比が0.10以下であるため、凝集粒子の発生が少ないことが分かる。なお、実施例5は凝集挙動の評価が「△」であったが、より重要な焼結挙動の評価が「○」であったため、本発明の性能としては充分である。  As is clear from Table 3, the nickel powders of Examples 1 and 2 have a sulfur concentration of 1.0 to 5. Since it is in the range of 0% by weight, it can be seen that the sintering behavior is excellent. In addition, the nickel powders of Examples 3 and 4 have a sulfur concentration within the above range despite the fact that the number 50% of the diameter is comparable to that of Example 5 and Comparative Example 4, and the sulfate ion Since the / sulfide ion ratio is 0.10 or less, it can be seen that the generation of aggregated particles is small. In Example 5, the evaluation of the aggregation behavior was “Δ”, but the evaluation of the more important sintering behavior was “◯”, which is sufficient for the performance of the present invention.

以上の結果から、本発明のニッケル粉末は積層セラミックコンデンサの製造工程において優れた焼結特性を有し、結果として積層セラミックコンデンサの電極層と誘電体層の間の剥離や電極層のクラックといった欠陥の発生の防止に有効なものであることが実証された。さらに、凝集粒子の発生防止効果を有し、結果として電極層間のショートや耐電圧の低下といった不良の発生の防止に有効なものであることが実証された。  From the above results, the nickel powder of the present invention has excellent sintering characteristics in the production process of the multilayer ceramic capacitor, resulting in defects such as separation between the electrode layer and the dielectric layer of the multilayer ceramic capacitor and cracks in the electrode layer. It was proved to be effective in preventing the occurrence of Furthermore, it has been proved that it has an effect of preventing the generation of aggregated particles and as a result is effective in preventing the occurrence of defects such as a short circuit between electrode layers and a decrease in withstand voltage.

本発明は、積層セラミックコンデンサの内部電極用途の導電ペースト用のニッケル粉末として有用である。

INDUSTRIAL APPLICABILITY The present invention is useful as nickel powder for a conductive paste for use as an internal electrode of a multilayer ceramic capacitor.

Claims (3)

1.2〜5.0質量%の硫黄を含有し、個数50%径が0.09μm以下であることを特徴とするニッケル粉末。  Nickel powder characterized by containing 1.2 to 5.0% by mass of sulfur and having a 50% number diameter of 0.09 μm or less. 前記ニッケル粉末の表面に存在する硫黄のうち、硫酸イオンとして存在する硫黄と硫化物イオンとして存在する硫黄のモル比が0.10以下であることを特徴とする請求項1に記載のニッケル粉末。  2. The nickel powder according to claim 1, wherein among the sulfur present on the surface of the nickel powder, a molar ratio of sulfur present as sulfate ions to sulfur present as sulfide ions is 0.10 or less. 前記ニッケル粉末の個数50%径の3倍以上の粒径を持つ粗大粒子の存在率が個数基準で100ppm以下であることを特徴とする請求項1または2に記載のニッケル粉末。  3. The nickel powder according to claim 1, wherein the abundance of coarse particles having a particle size of 3 times or more of the 50% diameter of the nickel powder is 100 ppm or less on a number basis.
JP2016512640A 2014-04-08 2015-03-12 Nickel powder Active JP6559118B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014079126 2014-04-08
JP2014079126 2014-04-08
PCT/JP2015/057325 WO2015156080A1 (en) 2014-04-08 2015-03-12 Nickel powder

Publications (2)

Publication Number Publication Date
JPWO2015156080A1 JPWO2015156080A1 (en) 2017-04-13
JP6559118B2 true JP6559118B2 (en) 2019-08-14

Family

ID=54287661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016512640A Active JP6559118B2 (en) 2014-04-08 2015-03-12 Nickel powder

Country Status (5)

Country Link
JP (1) JP6559118B2 (en)
KR (1) KR102292897B1 (en)
CN (1) CN106457379B (en)
TW (1) TWI638051B (en)
WO (1) WO2015156080A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589697B1 (en) * 2016-01-12 2023-10-16 도호 티타늄 가부시키가이샤 nickel powder
JP6799936B2 (en) * 2016-03-31 2020-12-16 日鉄ケミカル&マテリアル株式会社 Nickel particles, conductive paste, internal electrodes and multilayer ceramic capacitors
CN110461503B (en) * 2017-03-10 2022-01-14 东邦钛株式会社 Nickel powder and nickel paste
KR102278500B1 (en) * 2017-07-05 2021-07-15 도호 티타늄 가부시키가이샤 Metal powder and its manufacturing method
KR102484793B1 (en) * 2018-06-28 2023-01-05 도호 티타늄 가부시키가이샤 Metal powder, manufacturing method thereof, and method for predicting sintering temperature
JP7314507B2 (en) * 2018-12-20 2023-07-26 住友金属鉱山株式会社 Nickel powder and its manufacturing method
JP7406047B2 (en) 2021-04-26 2023-12-26 三井金属鉱業株式会社 Method for producing nickel powder and nickel particles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3640511B2 (en) * 1997-09-05 2005-04-20 Jfeミネラル株式会社 Nickel super fine powder
JP4168773B2 (en) * 2003-02-12 2008-10-22 住友金属鉱山株式会社 Method for producing nickel powder with excellent sinterability
EP1785207A4 (en) * 2004-06-16 2009-05-20 Toho Titanium Co Ltd Nickel powder and manufacturing method thereof
JP4807581B2 (en) * 2007-03-12 2011-11-02 昭栄化学工業株式会社 Nickel powder, method for producing the same, conductor paste, and multilayer ceramic electronic component using the same
JP5060227B2 (en) * 2007-09-19 2012-10-31 東邦チタニウム株式会社 Method for producing nickel powder
JP4960210B2 (en) * 2007-12-12 2012-06-27 東邦チタニウム株式会社 Nickel powder and method for producing nickel powder
JP4844589B2 (en) 2008-05-08 2011-12-28 住友金属鉱山株式会社 Nickel powder with excellent sinterability
CN102665969B (en) * 2009-09-24 2015-03-04 住友金属矿山株式会社 Nickel powder and production method thereof
KR101718584B1 (en) * 2011-03-17 2017-03-21 신닛테츠 수미킨 가가쿠 가부시키가이샤 Composite nickel nanoparticles and method for producing same

Also Published As

Publication number Publication date
TW201542832A (en) 2015-11-16
TWI638051B (en) 2018-10-11
WO2015156080A1 (en) 2015-10-15
KR20160142842A (en) 2016-12-13
JPWO2015156080A1 (en) 2017-04-13
CN106457379B (en) 2020-12-08
KR102292897B1 (en) 2021-08-24
CN106457379A (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6559118B2 (en) Nickel powder
TWI716526B (en) Nickel powder
JP5626217B2 (en) Nickel fine powder and method for producing the same
JPWO2005123307A1 (en) Nickel powder and method for producing the same
JP5318463B2 (en) Fine particle production method and production apparatus used therefor
JP2011195888A (en) Nickel fine powder and method for producing the same
JP6282648B2 (en) Method for producing cuprous oxide fine particles
TWI803486B (en) Copper particle and its manufacturing method
JP4921806B2 (en) Tungsten ultrafine powder and method for producing the same
TW201637993A (en) Silver nanoparticles
JP6425367B1 (en) Nickel powder and nickel paste
WO2017056741A1 (en) Nickel powder and nickel paste
JP2004124257A (en) Metal copper particulate, and production method therefor
JP5008377B2 (en) Method for producing true spherical tin fine powder
JP4960210B2 (en) Nickel powder and method for producing nickel powder
JPWO2019146414A1 (en) Copper fine particles
WO2021100320A1 (en) Microparticles
JP5354398B2 (en) True spherical fine powder
JP4394535B2 (en) Method for producing nickel powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190716

R150 Certificate of patent or registration of utility model

Ref document number: 6559118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250