JP2004091843A - Manufacturing method of high purity high melting point metal powder - Google Patents

Manufacturing method of high purity high melting point metal powder Download PDF

Info

Publication number
JP2004091843A
JP2004091843A JP2002253421A JP2002253421A JP2004091843A JP 2004091843 A JP2004091843 A JP 2004091843A JP 2002253421 A JP2002253421 A JP 2002253421A JP 2002253421 A JP2002253421 A JP 2002253421A JP 2004091843 A JP2004091843 A JP 2004091843A
Authority
JP
Japan
Prior art keywords
metal powder
powder
point metal
melting point
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002253421A
Other languages
Japanese (ja)
Inventor
Takeshi Kan
韓 剛
Nobuhiko Chiwata
千綿 伸彦
Shujiro Kamisaka
上坂 修治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002253421A priority Critical patent/JP2004091843A/en
Publication of JP2004091843A publication Critical patent/JP2004091843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process of a high purity high melting point metal powder which reduces impurities and a scattering of an amount of impurities contained after purification, and improves a recovery rate of a high purity metal powder, in a purification and spheroidization of a high melting point metal powder by a thermal plasma droplet refining process. <P>SOLUTION: This process is a method to manufacture the high purity high melting point metal powder by putting a high melting point metal powder of an average particle diameter of D<SB>a</SB>into a thermal plasma flame, and it is a feature that the particle diameter of the high melting point metal powder which occupies 90% or more of the whole with a mass fraction is 0.8D<SB>a</SB>-1.2D<SB>a</SB>, and it is desirable that D<SB>a</SB>is 10-260 μm. Desirably the high melting point metal powder is any of W, Ta, Ru or Mo. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、粉末冶金の焼結用原料あるいは化学工業用触媒などに用いる、高純度高融点金属粉末の製造方法に関するものである。
【0002】
【従来の技術】
近年、産業の急速な進展に伴って多くの技術分野で高純度高融点金属材料が求められている。例えば、スパッタリング用ターゲットの分野では、ターゲット材料は高融点金属を主成分とする高純度金属粉末の焼結による製造が最適であることが知られている。加えて、ターゲットの焼結による製造においてはニアネットシェップ製造のために、球状の粉末が求められている。
また、石油の分離精製の反応促進用触媒として、高純度Ruなどの金属の利用が検討されている。その他、導電ペーストや人工臓器の製造などの用途で、高純度かつ球状の高融点金属粉末が求められている。
【0003】
市販されている高融点金属粉末は、鉱石から化学湿式分離精製を繰り返して中間酸化物や化合物を製造し、得られた中間酸化物や化合物を分解、水素還元して製造される。
例えば、高融点金属であるW粉末の製造プロセスは、鉱石から溶媒抽出などの湿式方法によりFe,Al,Siなどの物質を分離して、アンモニウム塩(APT)の結晶とし、これを熱分解してWOを得る。その酸化物を水素還元してW粉末を製造する。Moの精製もWとほぼ同様のプロセスで製造され、Moアンモニウム塩結晶を熱分解してモリブデン酸化物(MoO)を製造する。その酸化物の還元により金属粉末を製造する。なお、Taは化学湿式分離により、Taを得た後、その酸化物の還元によりTa粉末を製造する。また、Ruは分離精製したRuOの還元によりRu粉末を製造する。
【0004】
上記の方法により得られる高融点金属粉末では純度が十分でないため、高純度高融点金属粉末を得る為には、市販されている高融点金属粉末を用いて、さらに高純度化のための精錬を行うことが必要である。従来行われている精錬方法として、市販の高融点金属粉末をEB溶解などの真空冶金法により高純度化精錬し、そのインゴットを粉砕して高純度高融点金属粉末を製造する方法が知られている。しかしながらこの方法では、高融点金属粉末の高純度化は可能であるものの、インゴットの粉砕により粉末を製造する為、球状の粉末を得ることが出来ない。また、インゴットの粉砕時に不純物が混入しやすいという問題も包含している。
球状の高融点金属粉末を製造する方法としては、プラズマ回転電極法(PREP法)による方法が、提案されているが(例えば、特許文献1参照。)、PREP法では高純度化精錬の効果が認められない。
【0005】
そこで、高融点金属粉末の高純度化と球状化を同時に実現する方法として、本発明者らは熱プラズマ液滴精錬法を提案した(特許文献2参照。)。この方法では、熱プラズマ炎に高融点金属粉末等を原料粉末として供給し、熱プラズマ炎を通過しながら、原料粉末の高純度化と球状化を同時に実現することが可能である。
【0006】
【特許文献1】
特開平3−173704号公報(第2頁)
【特許文献2】
特開2001−20065号公報(第4−5頁、図1)
【0007】
【発明が解決しようとする課題】
上述の熱プラズマ液滴精錬法では、高融点金属粉末の高純度化、球状化が可能であるものの、高純度化の効率を向上する課題が残されている。具体的には、熱プラズマ液滴精錬法では、原料粉末として用いる高融点金属粉末によって、高純度化後の金属粉末における不純物の低減の程度が異なるという課題を包含している。加えて、熱プラズマ炎に供給した原料粉末の重量に対する、高純度化後に回収できる金属粉末の重量、すなわち高純度化前後での金属粉末の回収率も用いる原料粉末によって異なるという課題を包含している。
【0008】
本発明は、熱プラズマ液滴精錬法による高融点金属粉末の高純度化、球状化において、高純度化後の不純物をより低減すると共に不純物含有量のばらつきを低減し、高純度金属粉末の回収率を向上できる、高純度高融点金属粉末の製造方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明者は上記の課題を解決するために鋭意研究を行った。その結果、熱プラズマ液滴精錬法に原料粉末として使用する高融点金属粉末の粒径分布の制御により、高純度化効果を飛躍的に向上し、高純度高融点金属粉末の回収率を改善できることを見出し、本発明に至った。
【0010】
すなわち本発明は、平均粒径がDの高融点金属粉末を熱プラズマ炎に導入する高純度高融点金属粉末の製造方法であって、質量分率で全体の90%以上を占める前記高融点金属粉末の粒径が0.8D〜1.2Dである高純度高融点金属粉末の製造方法である。Dは10〜260μmであることが好ましい。
また、高融点金属粉末はW、Ta、RuまたはMoの何れかであることが好ましい。
また、高純度高融点金属粉末の酸素含有量が100ppm以下、ガス成分を除いた純度が99.999質量%以上であることが好ましい。
また、熱プラズマ炎に水素ガスを導入することが好ましい。
【0011】
【発明の実施の形態】
本発明の最大の特徴は、原料粉末として熱プラズマ炎に導入する高融点金属粉末として、予め分級等により粒径分布を一定範囲に調整した高融点金属粉末を用いることである。
熱プラズマ液滴精錬法では、熱プラズマ炎中に導入された原料粉末は溶融した後、自身の表面張力により球状化して球状の液滴を形成し、この液滴が熱プラズマ炎の外で冷却、凝固し球状の金属粉末を形成する。この間に、原料粉末に含まれる不純物が、高温の熱プラズマ炎(5000℃以上)により蒸発することにより、金属粉末の高純度化を実現する。
【0012】
本発明者らは、この熱プラズマ液滴精錬法においては、原料粉末中の不純物の低減と金属粉末の回収率に対して、熱プラズマ炎中での原料粉末(液滴)の到達温度を、全ての原料粉末(液滴)について、できるだけ一定とすることが重要であることを想到した。そして、これを具体的に行う方法として、原料粉末である高融点金属粉末の粒径分布を一定範囲に調整することが有効であることを見出した。以下にこの知見について詳細に述べる。
【0013】
先ず、熱プラズマ炎中に導入した原料粉末において、加熱不足の原料粉末が存在すると、原料粉末(液滴)が完全に溶融しなかったり、あるいは不純物を蒸発できる温度にまで到達できない等の理由により、十分な精錬効果が得られない場合を生じる。
一方、加熱が過剰な原料粉末が存在すると、不純物の蒸発のみならずマトリックスである高融点金属粉末の蒸発も多くなり、金属粉末の回収率が下がる。また、蒸発した金属は微粉末として凝固する為、金属球に微粉末が混入することになる。混入した微粉末は金属球の表面に付着するが、微粉末は粒径の大きい粉末と比べて活性である為酸化等を生じやすく、その結果、高純度高融点金属粉末の純度を低下させる場合がある。
従って、原料粉末の高純度化を達成し、金属粉末の回収率を向上するには熱プラズマ炎中での原料粉末(液滴)の到達温度を全ての原料粉末(液滴)について、できるだけ一定とすることが重要である。
【0014】
一定の熱プラズマ処理条件において、粒径分布の広い原料粉末を熱プラズマ炎中に導入する場合、熱プラズマ炎中での単位体積あたりの受熱度合いが原料粉末(液滴)によって異なることになる。すなわち、大きい粒径の原料粉末では加熱不足となり、逆に小さい粒径の原料粉末では加熱過剰となる。
処理粒子の粒径分布を狭い範囲に制御し、それに整合した熱プラズマ処理条件を採用することで、原料粉末の加熱不足・過剰を減少できるため、液滴精錬の高純度化効果を飛躍的に向上することができる。同時に、マトリックスである高融点金属粉末の蒸発を抑制できるので、金属粉末の回収歩留まりも向上することができる。
【0015】
理想的には、全ての粒子の粒径が一定である原料粉末を採用する場合、高純度化効果、金属粉末の回収率は最も高く、粒径分布の範囲が広がることにより、高純度化効果は次第に低減する。
実際には、原料粉末の粒径分布において、平均粒径をDとした場合に、粒径が0.8D〜1.2D範囲である粒子が質量分率で90%以上を占める場合には、それに合わせて熱プラズマ炎等の処理条件を設定することにより、高い精錬効果と回収歩留まりを得ることができる。この範囲を超えて原料粉末の粒径分布が広くなると、精錬効果、回収歩留まりともに急激に低下する。
【0016】
従って、本発明では原料粉末である高融点金属粉末の粒径分布を、質量分率で全体の90%以上を占める高融点金属粉末の粒径が0.8D〜1.2Dとする。
望ましくは、質量分率で全体の98%以上を占める高融点金属粉末の粒径が0.8D〜1.2Dである。
本発明の製造方法に用いる高融点金属粉末は、市販されている高融点金属粉末をふるい等により分級して得ることが出来る。
【0017】
本発明では原料粉末には、平均粒径Dが10〜260μmである高融点金属粉末を用いることが好ましい。
原料粉末である高融点金属粉末が細かくなると、熱プラズマ炎に導入する前の高融点金属粉末が凝集しやすくなる。一旦、高融点金属粉末が凝集すると、熱プラズマ炎中では分散し難く、実質的に粒径が平均粒径から大きくはずれた金属粉末を用いるのと同じになってしまう。また、平均粒径が小さいほど、熱プラズマ炎の発生条件等の処理条件についての最適化が困難となるので、高融点金属粉末の平均粒径が小さすぎると、精錬効果、回収歩留まりとも低下し易い。
が10μm以上であれば、上記の問題を生じ難く好ましい。より望ましくは15μm以上である。
【0018】
一方、平均粒径Dの増大に伴って、熱プラズマ炎中に飛行期間での完全加熱が困難になり、精錬効果が低減する。本発明者らの検討によれば、Dは260μm以下の場合、熱プラズマ炎中で十分な高純度化の効果を達成することができる。よって、Dは260μm以下とすることが好ましい。望ましくは200μm以下である。
【0019】
本発明では、高融点金属粉末はW、Ta、RuまたはMoの何れかであることが好ましい。
既に述べたように、熱プラズマ液滴精錬では熱プラズマ炎中での低融点不純物の蒸発を通じて高純度化精錬を実現する。従って、マトリックスである高融点金属粉末の融点が高いほど、精錬温度でのマトリックス元素と不純物元素の蒸気圧差を大きくすることが可能であり、高純度化効果が大きくなる。本発者らの検討では、融点がFeの融点(1538℃)以上の高融点金属元素に対して有効であるが、特にW、Ta、Mo、Ruに有効である。
【0020】
このような方法で、製造した高融点金属粉末は、酸素含有量が100ppm以下、高純度高融点金属粉末の純度がガス分を除いた純度で99.999質量%以上を実現できる。このように、高純度化を達成し、さらに球状化された高純度高融点金属粉末は、ターゲット材に用いる粉末材料として好ましい。
【0021】
本発明では、熱プラズマ炎に水素ガスを導入することが好ましい。既に述べたように熱プラズマ炎を用いた場合、不純物元素の蒸発により高融点金属粉末の高純度化を達成することが出来るが、さらに水素ガスを導入することで、酸素等の不純物をより低減できることができる。加えて、水素ガスにより熱プラズマ炎の状態を制御することができる。さらにプラズマの熱伝導率も制御できるため、平均粒径Dに合わせて、液滴精錬の最適状態に制御することが可能となる。
【0022】
本発明に適用することができる、熱プラズマ炎には代表的なものとしてDCプラズマ、RFプラズマがあるが、本発明にはRFプラズマを用いることが好ましい。RFプラズマは、DCプラズマと異なり、電極が不要で、電極材料等に起因する不純物の混入の少ない為である。
【0023】
本願発明の製造方法は例えば図5に示す装置により実施することが出来る。
図5において、水冷管10により冷却されているRFプラズマトーチ8は、プラズマ動作ガス供給装置11によりプラズマ動作ガス供給位置6から供給されるプラズマ動作ガスと、コイル7から発生する高周波エネルギにより熱プラズマ炎3を発生する。
原料供給装置1(例えば電磁振動原料供給装置)に投入された高融点金属粉末は、キャリアガスと共に原料供給位置2より熱プラズマ炎3内部の高温部(5000〜10000℃)に投入される。熱プラズマ炎中に投入された原料粉末は瞬時に溶融し、表面張力により球状となる。
【0024】
熱プラズマ炎の上流側に位置する原料供給位置2から供給された原料粉末は、十分に加熱、溶融された状態で水素ガスを含有する精錬効果の高いプラズマ部分を通過し、不純物元素が低減される。
熱プラズマ炎内で処理された金属粉末はチャンバ4中を落下しながら不活性ガス雰囲気中で凝固し、高純度高融点金属粉末9として下部の金属粉末回収部5に集められ、回収される。
以上のようにして、球状の高純度高融点金属粉末を効率的に製造することができる。
【0025】
【実施例】
(実施例1)
網目サイズの異なるふるいを用いて分級を行った二種類の粒径分布のTa金属粉末(平均粒径Dが75μm)をTa原料粉末として、図5に示す装置を用い、高純度高融点金属粉末であるTa粉末を製造した。また、比較の為、分級を行っていない市販されているままのTa原料粉末を用いて同様に高純度高融点金属粉末の製造を行った。
Ta原料粉末の粒径分布を表1に、粒径分布以外の製造条件を表2に示す。なお、本発明例において、粒径分布の測定は日機装(株)製のレーザ光粒度分布測定装置であるマイクロトラックMT3000を用いて行った。
【0026】
【表1】

Figure 2004091843
【0027】
【表2】
Figure 2004091843
【0028】
製造終了後に装置の金属粉末回収部に回収することが出来たTa粉末の重量を、熱プラズマ炎中に導入したTa原料粉末の重量と比較し、Ta粉末の回収歩留まりを算出した。また、回収したTa粉末について、グロー放電質量分析法(GD−MS)によりTa、及び代表的な不純物の含有量を測定した。加えて、走査電子顕微鏡(SEM)により回収したTa粉末の形状の比較を行った。
Ta粉末の回収歩留まり、及びGD−MSによる測定の結果を表3に、Ta粉末の形状を図1〜3に示す。
【0029】
【表3】
Figure 2004091843
【0030】
表3に示すように平均粒径が75μmのTa粉末において、質量分率で全体の90%以上を占めるTa粉末の粒径が60〜90μmを達成している本発明例1、2では、Ta原料粉末の純度が3Nであるのに対し、回収されたTa粉末の純度において何れも5Nを達成している。本発明例1、2のTa粉末の純度は、分級を行っていない比較例と比べても一桁高い値となっている。
【0031】
また図1〜3に示すTa粉末の形状においても、比較例である図3では、殆ど溶融していないTa粉末が多く見られるのに対して、本発明例1、2である図1、2では何れのTa粉末もほぼ球形をしており、熱プラズマ炎中において十分溶融していることが分かる。特に分級が十分に行われている本発明例1では、球状化の程度が高い。図1、2に示す形状、及び表3に示す純度、回収歩留まりのデータと併せ、本発明の製造方法によれば、Ta粉末は熱プラズマ炎中において均一、かつ十分に溶融していることが分かる。
【0032】
(実施例2)
ふるいを用いた分級により、平均粒径Dを81μm、粒径65〜97μm(0.8D〜1.2D)粉末の質量分率を96%に調整したRu金属粉末をRu原料粉末として、図5に示す装置を用い、表4に示す製造条件により高純度高融点金属粉末であるRu粉末を製造した。なお、粒径分布の測定は実施例1と同様の方法で行った。
【0033】
【表4】
Figure 2004091843
【0034】
製造終了後に装置の金属粉末回収部に回収することが出来たRu粉末について、実施例1と同様の評価を行った。Ru粉末の回収歩留まり、及びGD−MSによる測定の結果を表5に、Ru粉末の形状を図4に示す。
【0035】
【表5】
Figure 2004091843
【0036】
表5示すようにRu粉末においても、平均粒径が81μm、質量分率で全体の90%以上を占めるRu粉末の粒径が65〜97μmを達成している本発明例3では、Ru原料粉末の純度が3Nであるのに対し、回収されたRu粉末の純度において5Nとなっており、高純度化が十分に達成されている。
【0037】
また図4に示す球状化後のRu粉末の形状においても、未溶融のRu粉末は見られず、何れのRu粉末も、ほぼ球形をしており、熱プラズマ炎中において十分溶融していることが分かる。
【0038】
【発明の効果】
本発明によれば、熱プラズマ液滴精錬法による高融点金属粉末の高純度化、球状化において、高純度化後の不純物をより低減すると共に不純物含有量のばらつきを低減し、高純度金属粉末の回収率を向上できる。したがって本発明の高純度高融点金属粉末の製造方法は、スパッタリング用ターゲット等に用いられる高純度高融点金属材料を工業的に製造するにおいて非常に有用である。
【図面の簡単な説明】
【図1】本発明例によるTa粉末の形状を示す模式図である。
【図2】本発明例によるTa粉末の形状を示す模式図である。
【図3】比較例によるTa粉末の形状を示す模式図である。
【図4】本発明例によるRu粉末の形状を示す模式図である。
【図5】本発明の製造方法を実施する製造装置の一例を示す模式図である。
【符号の説明】
1.原料供給装置、2.原料供給位置、3.熱プラズマ炎、4.チャンバ、5.金属粉末回収部、6.プラズマ動作ガス供給位置、7.コイル、8.RFプラズマトーチ、9.高純度高融点金属粉末、10.水冷管、11.プラズマ動作ガス供給装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a high-purity high-melting-point metal powder used as a raw material for sintering in powder metallurgy or a catalyst for the chemical industry.
[0002]
[Prior art]
In recent years, with the rapid progress of industry, high-purity high-melting point metal materials are required in many technical fields. For example, in the field of sputtering targets, it is known that the target material is optimally produced by sintering a high-purity metal powder containing a high-melting-point metal as a main component. In addition, in the production of a target by sintering, a spherical powder is required for the production of a near net shep.
Also, the use of metals such as high-purity Ru as a catalyst for accelerating the reaction of separating and refining petroleum has been studied. In addition, high-purity and spherical high-melting-point metal powders are required for applications such as production of conductive pastes and artificial organs.
[0003]
Commercially available high melting point metal powder is produced by repeating chemical wet separation and purification from ore to produce intermediate oxides and compounds, and decomposing and hydrogen reducing the obtained intermediate oxides and compounds.
For example, in the manufacturing process of W powder, which is a high melting point metal, a substance such as Fe, Al, or Si is separated from an ore by a wet method such as solvent extraction to form a crystal of ammonium salt (APT), which is thermally decomposed. obtain WO 3 Te. The oxide is hydrogen reduced to produce W powder. Mo is also purified by a process similar to that of W, and Mo ammonium salt crystals are thermally decomposed to produce molybdenum oxide (MoO 3 ). A metal powder is produced by reduction of the oxide. Note that Ta is obtained by obtaining Ta 2 O 5 by chemical wet separation and then reducing the oxide to produce Ta powder. Ru produces Ru powder by reduction of RuO 2 separated and purified.
[0004]
Since the high melting point metal powder obtained by the above method is not sufficiently pure, in order to obtain a high purity high melting point metal powder, use a commercially available high melting point metal powder and further refine it for further purification. It is necessary to do. As a conventional refining method, a method is known in which a commercially available refractory metal powder is refined and refined by vacuum metallurgy such as EB melting, and the ingot is pulverized to produce a high-purity refractory metal powder. I have. However, in this method, although the high melting point metal powder can be highly purified, a spherical powder cannot be obtained because the powder is produced by crushing the ingot. It also includes a problem that impurities are likely to be mixed in the pulverization of the ingot.
As a method for producing a spherical high melting point metal powder, a method using a plasma rotating electrode method (PREP method) has been proposed (for example, see Patent Document 1). unacceptable.
[0005]
Therefore, the present inventors have proposed a thermal plasma droplet refining method as a method for simultaneously realizing high purity and spheroidization of a high melting point metal powder (see Patent Document 2). According to this method, a high melting point metal powder or the like is supplied as a raw material powder to the thermal plasma flame, and the raw material powder can be simultaneously purified and spheroidized while passing through the thermal plasma flame.
[0006]
[Patent Document 1]
JP-A-3-173704 (page 2)
[Patent Document 2]
JP 2001-20065 A (page 4-5, FIG. 1)
[0007]
[Problems to be solved by the invention]
In the above-described thermal plasma droplet refining method, although the high melting point metal powder can be purified and spheroidized, there remains a problem of improving the efficiency of the purification. Specifically, the thermal plasma droplet refining method involves a problem that the degree of impurity reduction in the highly purified metal powder differs depending on the high melting point metal powder used as the raw material powder. In addition, with respect to the weight of the raw material powder supplied to the thermal plasma flame, the weight of the metal powder that can be recovered after the high purification, that is, the problem that the recovery rate of the metal powder before and after the high purification also varies depending on the raw material powder used. I have.
[0008]
In the present invention, the high-purity metal powder is refined and spheroidized by a thermal plasma droplet refining method, and the impurities after the purification are further reduced, and the dispersion of the impurity content is reduced. An object of the present invention is to provide a method for producing a high-purity high-melting point metal powder capable of improving the rate.
[0009]
[Means for Solving the Problems]
The present inventor has conducted intensive studies in order to solve the above problems. As a result, by controlling the particle size distribution of the high melting point metal powder used as the raw material powder in the thermal plasma droplet refining method, the effect of high purification can be dramatically improved, and the recovery rate of the high purity high melting point metal powder can be improved. And found the present invention.
[0010]
That is, the present invention relates to an average particle diameter of a method for producing high purity refractory metal powder introducing a refractory metal powder D a thermal plasma flame, the refractory which occupy the entire 90% by mass fraction the particle size of the metal powder is process for producing a high-purity refractory metal powder that is a 0.8D a ~1.2D a. D a is preferably 10~260Myuemu.
Further, the high melting point metal powder is preferably any of W, Ta, Ru and Mo.
Further, it is preferable that the oxygen content of the high-purity high-melting-point metal powder is 100 ppm or less, and the purity excluding gas components is 99.999% by mass or more.
Further, it is preferable to introduce hydrogen gas into the thermal plasma flame.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The greatest feature of the present invention is that a high melting point metal powder whose particle size distribution has been adjusted to a certain range in advance by classification or the like is used as a high melting point metal powder to be introduced into a thermal plasma flame as a raw material powder.
In the thermal plasma droplet refining method, the raw material powder introduced into the thermal plasma flame is melted and then sphericalized by its own surface tension to form spherical droplets, which are cooled outside the thermal plasma flame Solidifies to form a spherical metal powder. During this time, the impurities contained in the raw material powder are evaporated by the high-temperature thermal plasma flame (5000 ° C. or higher), so that the metal powder is highly purified.
[0012]
In the thermal plasma droplet refining method, the present inventors set the ultimate temperature of the raw material powder (droplets) in the thermal plasma flame to the reduction of impurities in the raw material powder and the recovery rate of the metal powder. It has been conceived that it is important for all the raw material powders (droplets) to be as constant as possible. As a method for specifically performing this, it has been found that it is effective to adjust the particle size distribution of the high melting point metal powder as the raw material powder to a certain range. Hereinafter, this finding will be described in detail.
[0013]
First, if the raw material powder introduced into the thermal plasma flame contains insufficiently heated raw material powder, the raw material powder (droplets) may not be completely melted or may not reach a temperature at which impurities can be evaporated. In some cases, a sufficient refining effect cannot be obtained.
On the other hand, if there is a raw material powder that is overheated, not only evaporation of impurities but also evaporation of the high melting point metal powder as a matrix increases, and the recovery rate of the metal powder decreases. Further, since the evaporated metal solidifies as fine powder, the fine powder is mixed into the metal sphere. The mixed fine powder adheres to the surface of the metal sphere, but the fine powder is more active than the powder having a large particle diameter, so it tends to oxidize.As a result, the purity of the high-purity high-melting metal powder is reduced. There is.
Therefore, in order to achieve high purity of the raw material powder and improve the recovery rate of the metal powder, the ultimate temperature of the raw material powder (droplets) in the thermal plasma flame is kept as constant as possible for all the raw material powders (droplets). It is important that
[0014]
When a raw material powder having a wide particle size distribution is introduced into a thermal plasma flame under certain thermal plasma processing conditions, the degree of heat reception per unit volume in the thermal plasma flame varies depending on the raw material powder (droplets). That is, the raw material powder having a large particle diameter is insufficiently heated, while the raw material powder having a small particle diameter is excessively heated.
By controlling the particle size distribution of the treated particles to a narrow range and adopting thermal plasma processing conditions matched to that, it is possible to reduce insufficient heating and excessive heating of the raw material powder, dramatically improving the high purification effect of droplet refining. Can be improved. At the same time, since the evaporation of the high melting point metal powder as the matrix can be suppressed, the recovery yield of the metal powder can be improved.
[0015]
Ideally, when using a raw material powder in which all particles have a uniform particle size, the purifying effect is the highest, the recovery rate of metal powder is the highest, and the range of particle size distribution is widened, resulting in a high purifying effect. Gradually decreases.
In practice, the particle size distribution of the raw material powder, when the average particle diameter is D a, if the particle diameter is 0.8D a ~1.2D a range grains account for more than 90% by mass fraction By setting processing conditions such as thermal plasma flame in accordance with the above, a high refining effect and a recovery yield can be obtained. If the particle size distribution of the raw material powder is widened beyond this range, both the refining effect and the recovery yield sharply decrease.
[0016]
Accordingly, the present invention the particle size distribution of the refractory metal powder as the starting material powder, the particle diameter of the high melting point metal powder occupying the entire 90% by mass fraction and 0.8D a ~1.2D a.
Desirably, the particle diameter of the high melting point metal powder, which accounts for 98% of the total mass fraction of 0.8D a ~1.2D a.
The high melting point metal powder used in the production method of the present invention can be obtained by classifying a commercially available high melting point metal powder using a sieve or the like.
[0017]
The raw material powder in the present invention, it is preferable that an average particle diameter D a is used a high melting point metal powder is 10~260Myuemu.
When the high melting point metal powder as the raw material powder is fine, the high melting point metal powder before being introduced into the thermal plasma flame is easily aggregated. Once the high-melting-point metal powder is agglomerated, it is difficult to disperse in a hot plasma flame, which is substantially the same as using metal powder whose particle size deviates greatly from the average particle size. Further, the smaller the average particle size, the more difficult it is to optimize processing conditions such as the generation condition of the thermal plasma flame, so if the average particle size of the high melting point metal powder is too small, the refining effect and the recovery yield also decrease. easy.
When the value of Da is 10 μm or more, the above-described problem hardly occurs, which is preferable. More preferably, it is 15 μm or more.
[0018]
On the other hand, with increasing average particle diameter D a, full heating of flight time in the thermal plasma flame becomes difficult and refining effect is reduced. According to the studies of the present inventors, D a in the following cases 260 .mu.m, it is possible to achieve a sufficient effect of high purification in the thermal plasma flame. Therefore, D a is preferably less 260 .mu.m. Desirably, it is 200 μm or less.
[0019]
In the present invention, the high melting point metal powder is preferably any of W, Ta, Ru and Mo.
As described above, in the thermal plasma droplet refining, high-purity refining is realized by evaporating low-melting-point impurities in a thermal plasma flame. Therefore, as the melting point of the high melting point metal powder as the matrix is higher, the vapor pressure difference between the matrix element and the impurity element at the refining temperature can be increased, and the high purification effect is increased. According to the study by the present inventors, it is effective for refractory metal elements whose melting point is equal to or higher than the melting point of Fe (1538 ° C.), but is particularly effective for W, Ta, Mo, and Ru.
[0020]
The high melting point metal powder produced by such a method can realize an oxygen content of 100 ppm or less, and a high purity high melting point metal powder having a purity of 99.999 mass% or more excluding gas. As described above, the high-purity, high-purity, high-melting-point metal powder that has been made more highly purified and spherical is preferable as the powder material used for the target material.
[0021]
In the present invention, it is preferable to introduce hydrogen gas into the thermal plasma flame. As described above, when a thermal plasma flame is used, high-purification of the refractory metal powder can be achieved by evaporation of impurity elements, but impurities such as oxygen are further reduced by further introducing hydrogen gas. You can do it. In addition, the state of the thermal plasma flame can be controlled by the hydrogen gas. Since more control the thermal conductivity of the plasma, in accordance with the average particle diameter D a, it is possible to control the optimal condition of the droplet refining.
[0022]
DC plasma and RF plasma are typical thermal plasma flames applicable to the present invention, but it is preferable to use RF plasma in the present invention. RF plasma is different from DC plasma in that an electrode is not required and impurities are less mixed due to an electrode material and the like.
[0023]
The manufacturing method of the present invention can be implemented by, for example, an apparatus shown in FIG.
In FIG. 5, an RF plasma torch 8 cooled by a water cooling tube 10 is a thermal plasma generated by a plasma operating gas supplied from a plasma operating gas supply position 6 by a plasma operating gas supply device 11 and high frequency energy generated from a coil 7. Generates Flame 3.
The high melting point metal powder supplied to the raw material supply device 1 (for example, an electromagnetic vibration raw material supply device) is supplied to the high temperature part (5000 to 10000 ° C.) inside the thermal plasma flame 3 from the raw material supply position 2 together with the carrier gas. The raw material powder charged in the thermal plasma flame is instantaneously melted and becomes spherical due to surface tension.
[0024]
The raw material powder supplied from the raw material supply position 2 located on the upstream side of the thermal plasma flame passes through a plasma portion having a high refining effect containing hydrogen gas in a sufficiently heated and molten state, and impurity elements are reduced. You.
The metal powder treated in the thermal plasma flame is solidified in an inert gas atmosphere while falling in the chamber 4 and is collected as a high-purity high-melting-point metal powder 9 in the lower metal powder collecting section 5 and collected.
As described above, a spherical high-purity high-melting metal powder can be efficiently produced.
[0025]
【Example】
(Example 1)
As Ta raw material powders of two kinds of Ta metal powder of the particle size distribution (75 [mu] m average particle diameter D a is) subjected to classifying using different sieve of mesh size, using the apparatus shown in FIG. 5, the high-purity refractory metal A Ta powder as a powder was produced. For comparison, a high-purity high-melting-point metal powder was similarly produced using a commercially available Ta raw material powder that had not been classified.
Table 1 shows the particle size distribution of the Ta raw material powder, and Table 2 shows production conditions other than the particle size distribution. In the examples of the present invention, the particle size distribution was measured using Microtrac MT3000, a laser light particle size distribution measuring device manufactured by Nikkiso Co., Ltd.
[0026]
[Table 1]
Figure 2004091843
[0027]
[Table 2]
Figure 2004091843
[0028]
After the production was completed, the weight of the Ta powder that could be recovered in the metal powder recovery section of the apparatus was compared with the weight of the Ta raw material powder introduced into the thermal plasma flame, and the recovery yield of the Ta powder was calculated. Further, for the recovered Ta powder, the contents of Ta and typical impurities were measured by glow discharge mass spectrometry (GD-MS). In addition, the shape of the recovered Ta powder was compared by a scanning electron microscope (SEM).
Table 3 shows the recovery yield of the Ta powder and the result of measurement by GD-MS, and FIGS. 1 to 3 show the shape of the Ta powder.
[0029]
[Table 3]
Figure 2004091843
[0030]
As shown in Table 3, in Ta powders having an average particle diameter of 75 μm, the Ta powders occupying 90% or more of the whole by mass fraction have a particle diameter of 60 to 90 μm. The purity of the raw material powder is 3N, whereas the purity of the recovered Ta powder achieves 5N in all cases. The purity of the Ta powders of Inventive Examples 1 and 2 is an order of magnitude higher than that of the comparative example in which classification is not performed.
[0031]
Also in the shape of the Ta powder shown in FIGS. 1 to 3, in FIG. 3 which is a comparative example, there are many Ta powders which are hardly melted, whereas in FIGS. It can be seen that each of the Ta powders has a substantially spherical shape and is sufficiently melted in the thermal plasma flame. In particular, in Example 1 of the present invention in which the classification was sufficiently performed, the degree of spheroidization was high. According to the manufacturing method of the present invention, together with the shape shown in FIGS. 1 and 2 and the data of the purity and the recovery yield shown in Table 3, the Ta powder is uniformly and sufficiently melted in the thermal plasma flame. I understand.
[0032]
(Example 2)
By classification using a sieve, the average particle diameter D a 81μm, the Ru metal powder by adjusting the particle size 65~97μm (0.8D a ~1.2D a) the mass fraction of powder 96% as Ru material powder Using the apparatus shown in FIG. 5, Ru powder as a high-purity high-melting-point metal powder was manufactured under the manufacturing conditions shown in Table 4. The measurement of the particle size distribution was performed in the same manner as in Example 1.
[0033]
[Table 4]
Figure 2004091843
[0034]
The same evaluation as in Example 1 was performed on the Ru powder that could be recovered in the metal powder recovery section of the device after the production was completed. Table 5 shows the recovery yield of Ru powder and the result of measurement by GD-MS, and FIG. 4 shows the shape of Ru powder.
[0035]
[Table 5]
Figure 2004091843
[0036]
As shown in Table 5, also in the Ru powder, the average particle diameter is 81 μm, and the Ru powder occupying 90% or more of the whole by mass fraction has a particle diameter of 65 to 97 μm. Has a purity of 3N, whereas the purity of the recovered Ru powder is 5N, and high purification has been sufficiently achieved.
[0037]
Also, in the shape of the Ru powder after spheroidization shown in FIG. 4, no unmelted Ru powder was observed, and all of the Ru powders were substantially spherical and were sufficiently melted in the thermal plasma flame. I understand.
[0038]
【The invention's effect】
According to the present invention, the high-purity metal powder is refined and refined by the thermal plasma droplet refining method. Recovery rate can be improved. Therefore, the method for producing a high-purity high-melting-point metal powder of the present invention is very useful in industrially producing a high-purity high-melting-point metal material used for a sputtering target or the like.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the shape of a Ta powder according to an example of the present invention.
FIG. 2 is a schematic view showing a shape of a Ta powder according to an example of the present invention.
FIG. 3 is a schematic diagram showing the shape of a Ta powder according to a comparative example.
FIG. 4 is a schematic view showing a shape of a Ru powder according to an example of the present invention.
FIG. 5 is a schematic view showing an example of a manufacturing apparatus for performing the manufacturing method of the present invention.
[Explanation of symbols]
1. Raw material supply device, 2. 2. Raw material supply position; 3. thermal plasma flame; 4. chamber; Metal powder collection unit, 6. 6. Plasma operation gas supply position; Coil, 8. 8. RF plasma torch, 10. High purity high melting point metal powder; 10. water-cooled tube; Plasma operation gas supply device

Claims (5)

平均粒径がDの高融点金属粉末を熱プラズマ炎に導入する高純度高融点金属粉末の製造方法であって、質量分率で全体の90%以上を占める前記高融点金属粉末の粒径が0.8D〜1.2Dであることを特徴とする高純度高融点金属粉末の製造方法。An average particle diameter of a method for producing high purity refractory metal powder introducing a refractory metal powder D a thermal plasma flame, the particle size of the refractory metal powder occupying the entire 90% by mass fraction high purity refractory metal powder manufacturing method, characterized in that but a 0.8D a ~1.2D a. は10〜260μmであることを特徴とする請求項1に記載の高純度高融点金属粉末の製造方法。D a manufacturing method of high purity refractory metal powder according to claim 1, characterized in that the 10~260Myuemu. 高融点金属粉末はW、Ta、RuまたはMoの何れかであることを特徴とする請求項1または2に記載の高純度高融点金属粉末の製造方法。The method for producing a high-purity high-melting-point metal powder according to claim 1 or 2, wherein the high-melting-point metal powder is any of W, Ta, Ru, and Mo. 高純度高融点金属粉末の酸素含有量が100ppm以下、ガス成分を除いた純度が99.999質量%以上であることを特徴とする請求項1乃至3の何れかに記載の高純度高融点金属粉末の製造方法。The high-purity high-melting-point metal according to any one of claims 1 to 3, wherein the high-purity high-melting-point metal powder has an oxygen content of 100 ppm or less and a purity excluding gas components of 99.999% by mass or more. Powder manufacturing method. 熱プラズマ炎に水素ガスを導入することを特徴とする請求項1乃至4の何れかに記載の高純度高融点金属粉末の製造方法。5. The method according to claim 1, wherein a hydrogen gas is introduced into the thermal plasma flame.
JP2002253421A 2002-08-30 2002-08-30 Manufacturing method of high purity high melting point metal powder Pending JP2004091843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253421A JP2004091843A (en) 2002-08-30 2002-08-30 Manufacturing method of high purity high melting point metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253421A JP2004091843A (en) 2002-08-30 2002-08-30 Manufacturing method of high purity high melting point metal powder

Publications (1)

Publication Number Publication Date
JP2004091843A true JP2004091843A (en) 2004-03-25

Family

ID=32059422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253421A Pending JP2004091843A (en) 2002-08-30 2002-08-30 Manufacturing method of high purity high melting point metal powder

Country Status (1)

Country Link
JP (1) JP2004091843A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021148A1 (en) * 2003-08-28 2005-03-10 Tekna Plasma Systems Inc. Process for the synthesis, separation and purification of powder materials
JP2006138012A (en) * 2004-10-15 2006-06-01 Hitachi Metals Ltd Method for producing low oxygen metal powder
JP2006274399A (en) * 2005-03-30 2006-10-12 Hitachi Metals Ltd Method for manufacturing fine powder of alloy, and fine powder of alloy
WO2011118931A2 (en) * 2010-03-25 2011-09-29 희성금속 주식회사 Method for preparing fine ruthenium powder having higher purity using waste ruthenium target
WO2012148074A1 (en) * 2011-04-26 2012-11-01 희성금속 주식회사 Production method for ultra-high-purity ruthenium (ru) powder and target by using waste ruthenium (ru) targets
CN103962567A (en) * 2014-05-31 2014-08-06 金堆城钼业股份有限公司 Method and equipment for preparing spherical molybdenum powder
CN108115147A (en) * 2017-12-04 2018-06-05 中国兵器科学研究院宁波分院 A kind of complete closely knit, the spherical molybdenum powder of high apparent density the preparation method of cold spraying
CN108500281A (en) * 2018-05-03 2018-09-07 宁夏东方钽业股份有限公司 Spherical tantalum, niobium and tantalum-niobium alloy powder, and preparation method thereof and its purposes in 3D printing and medical instrument
EP3368238A4 (en) * 2015-10-29 2019-06-19 AP&C Advanced Powders And Coatings Inc. Metal powder atomization manufacturing processes
CN110640134A (en) * 2018-06-27 2020-01-03 核工业西南物理研究院 Method for compacting granulated tungsten powder
JP2020158851A (en) * 2019-03-27 2020-10-01 株式会社フルヤ金属 Manufacturing method of solid spherical powder and manufacturing method of molded product
KR20200125668A (en) * 2018-03-05 2020-11-04 글로벌 어드밴스드 메탈스 유에스에이, 아이엔씨. Spherical tantalum powder, product containing same, and method for producing same
CN113165066A (en) * 2018-12-12 2021-07-23 全球先进金属美国股份有限公司 Spherical niobium alloy powder, product containing same, and method for producing same
CN113427008A (en) * 2021-06-30 2021-09-24 宁夏东方钽业股份有限公司 Tantalum-tungsten alloy powder and preparation method thereof
US11198179B2 (en) 2015-07-17 2021-12-14 Ap&C Advanced Powders & Coating Inc. Plasma atomization metal powder manufacturing processes and system therefor
US11235385B2 (en) 2016-04-11 2022-02-01 Ap&C Advanced Powders & Coating Inc. Reactive metal powders in-flight heat treatment processes
CN114367669A (en) * 2021-12-15 2022-04-19 重庆材料研究院有限公司 Preparation method of TaW10 alloy spherical powder for 3D printing

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021148A1 (en) * 2003-08-28 2005-03-10 Tekna Plasma Systems Inc. Process for the synthesis, separation and purification of powder materials
US7572315B2 (en) 2003-08-28 2009-08-11 Tekna Plasma Systems Inc. Process for the synthesis, separation and purification of powder materials
JP2006138012A (en) * 2004-10-15 2006-06-01 Hitachi Metals Ltd Method for producing low oxygen metal powder
JP4609763B2 (en) * 2004-10-15 2011-01-12 日立金属株式会社 Method for producing low oxygen metal powder
JP2006274399A (en) * 2005-03-30 2006-10-12 Hitachi Metals Ltd Method for manufacturing fine powder of alloy, and fine powder of alloy
WO2011118931A2 (en) * 2010-03-25 2011-09-29 희성금속 주식회사 Method for preparing fine ruthenium powder having higher purity using waste ruthenium target
WO2011118931A3 (en) * 2010-03-25 2011-12-22 희성금속 주식회사 Method for preparing fine ruthenium powder having higher purity using waste ruthenium target
KR101175676B1 (en) 2010-03-25 2012-08-22 희성금속 주식회사 Manufacturing method of a high purity and refining Ru powder using a waste-Ru target
WO2012148074A1 (en) * 2011-04-26 2012-11-01 희성금속 주식회사 Production method for ultra-high-purity ruthenium (ru) powder and target by using waste ruthenium (ru) targets
CN103962567A (en) * 2014-05-31 2014-08-06 金堆城钼业股份有限公司 Method and equipment for preparing spherical molybdenum powder
CN103962567B (en) * 2014-05-31 2015-10-21 金堆城钼业股份有限公司 A kind of preparation method of spherical molybdenum powder and equipment
US11198179B2 (en) 2015-07-17 2021-12-14 Ap&C Advanced Powders & Coating Inc. Plasma atomization metal powder manufacturing processes and system therefor
EP3368238A4 (en) * 2015-10-29 2019-06-19 AP&C Advanced Powders And Coatings Inc. Metal powder atomization manufacturing processes
US11794247B2 (en) 2016-04-11 2023-10-24 AP&C Advanced Powders & Coatings, Inc. Reactive metal powders in-flight heat treatment processes
US11235385B2 (en) 2016-04-11 2022-02-01 Ap&C Advanced Powders & Coating Inc. Reactive metal powders in-flight heat treatment processes
CN108115147A (en) * 2017-12-04 2018-06-05 中国兵器科学研究院宁波分院 A kind of complete closely knit, the spherical molybdenum powder of high apparent density the preparation method of cold spraying
JP2021515105A (en) * 2018-03-05 2021-06-17 グローバル アドバンスト メタルズ ユー.エス.エー.,インコーポレイティド Spherical tantalum powder, products containing it, and methods for producing them
KR20200125668A (en) * 2018-03-05 2020-11-04 글로벌 어드밴스드 메탈스 유에스에이, 아이엔씨. Spherical tantalum powder, product containing same, and method for producing same
US11691197B2 (en) 2018-03-05 2023-07-04 Global Advanced Metals Usa, Inc. Spherical tantalum powder, products containing the same, and methods of making the same
KR102503996B1 (en) 2018-03-05 2023-03-02 글로벌 어드밴스드 메탈스 유에스에이, 아이엔씨. Spherical tantalum powder, products containing the same, and methods for producing the same
CN108500281A (en) * 2018-05-03 2018-09-07 宁夏东方钽业股份有限公司 Spherical tantalum, niobium and tantalum-niobium alloy powder, and preparation method thereof and its purposes in 3D printing and medical instrument
CN110640134A (en) * 2018-06-27 2020-01-03 核工业西南物理研究院 Method for compacting granulated tungsten powder
CN113165066A (en) * 2018-12-12 2021-07-23 全球先进金属美国股份有限公司 Spherical niobium alloy powder, product containing same, and method for producing same
JP7296232B2 (en) 2019-03-27 2023-06-22 株式会社フルヤ金属 Method for producing solid spherical powder and method for producing shaped products
WO2020196578A1 (en) * 2019-03-27 2020-10-01 株式会社フルヤ金属 Method of producing solid spherical powder, and method of producing shaped product
JP2020158851A (en) * 2019-03-27 2020-10-01 株式会社フルヤ金属 Manufacturing method of solid spherical powder and manufacturing method of molded product
CN113427008A (en) * 2021-06-30 2021-09-24 宁夏东方钽业股份有限公司 Tantalum-tungsten alloy powder and preparation method thereof
CN113427008B (en) * 2021-06-30 2022-02-08 宁夏东方钽业股份有限公司 Tantalum-tungsten alloy powder and preparation method thereof
CN114367669A (en) * 2021-12-15 2022-04-19 重庆材料研究院有限公司 Preparation method of TaW10 alloy spherical powder for 3D printing

Similar Documents

Publication Publication Date Title
JP5746207B2 (en) Method for producing high-purity copper powder using thermal plasma
JP2004091843A (en) Manufacturing method of high purity high melting point metal powder
Sun et al. Review of the methods for production of spherical Ti and Ti alloy powder
KR102639133B1 (en) Process for producing spheroidized powder from feedstock materials
JP2980987B2 (en) Method and apparatus for producing nanostructured materials
US7572315B2 (en) Process for the synthesis, separation and purification of powder materials
TWI554344B (en) Nickel fine powder and its manufacturing method
JP4624006B2 (en) Spherical composite particle manufacturing method and manufacturing apparatus thereof
CN108883407A (en) Spherical dehydrogenation metal and metal alloy particle
CN114641462A (en) Unique raw material for spherical powder and manufacturing method
RU2489232C1 (en) Method of producing metal nano-sized powders
JP2014515792A5 (en)
JP4921806B2 (en) Tungsten ultrafine powder and method for producing the same
Zeng et al. Effect of central gas velocity and plasma power on the spheroidizing copper powders of radio frequency plasma
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
KR20100032240A (en) Method of ultra fine powder of precious metals
RU2616920C2 (en) Method for obtaining the nanopowder of titanide hydride
JP5382293B2 (en) Manufacturing method of inorganic material and metal material by high frequency plasma method
JP2005154834A (en) Ruthenium ultrafine powder and its production method
JP2002180112A (en) Method for manufacturing high melting point metal powder material
Zhu et al. Rapid preparation of tritium breeder material Li2TiO3 pebbles by thermal plasma
JP2006169559A (en) Copper alloy fine-particle and method for producing the same
JP2001158613A (en) Low-class silicon oxide powder and method for producing the same
JP5811002B2 (en) Method and apparatus for producing SiO using hollow carbon electrode
Bazdnikina et al. A New Method for Producing Complex-Alloyed Powders with a High Degree of Sphericity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080711