JP4511714B2 - Ofdm受信装置 - Google Patents

Ofdm受信装置 Download PDF

Info

Publication number
JP4511714B2
JP4511714B2 JP2000369484A JP2000369484A JP4511714B2 JP 4511714 B2 JP4511714 B2 JP 4511714B2 JP 2000369484 A JP2000369484 A JP 2000369484A JP 2000369484 A JP2000369484 A JP 2000369484A JP 4511714 B2 JP4511714 B2 JP 4511714B2
Authority
JP
Japan
Prior art keywords
signal
ofdm
circuit
delay
ofdm signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000369484A
Other languages
English (en)
Other versions
JP2002171238A5 (ja
JP2002171238A (ja
Inventor
健一郎 林
知弘 木村
茂 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000369484A priority Critical patent/JP4511714B2/ja
Publication of JP2002171238A publication Critical patent/JP2002171238A/ja
Publication of JP2002171238A5 publication Critical patent/JP2002171238A5/ja
Application granted granted Critical
Publication of JP4511714B2 publication Critical patent/JP4511714B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、直交周波数分割多重(以下、OFDM:Orthogonal Frequency Division Multiplex という)方式を用いて変調された信号を受信して、データを復調するOFDM受信装置に係り、特に復調処理のための時間窓の制御技術に関する。
【0002】
【従来の技術】
OFDM信号は、シンボル周期毎に互いに直交する多数のキャリアを、伝送データにより変調したものである。同じ伝送レートのシングルキャリア方式の信号と比較すると、シンボル時間が長くなるため、マルチパス干渉に対する耐性が高いという特徴が得られる。また上記の特徴に加えて、ガード期間と呼ばれる冗長な期間を設けることにより、マルチパス干渉に対する耐性を更に高めている。
【0003】
ここで、キャリア番号をk、シンボル番号をn、キャリア数をK、シンボル期間長をTs、ガード期間長をTg、有効シンボル期間長をTu、センターキャリアのキャリア番号をKcとし、シンボル番号n及びキャリア番号kに対応する複素信号点ベクトルをc(n, k)とすると、ベースバンドのOFDM信号S(t)は、次の(1)式のように表される。
【数1】
Figure 0004511714
【0004】
図16に1シンボル分のOFDM信号の構成を示す。実際には各々のキャリアは複素正弦波であるが、ここでは実軸のみを示している。図の斜線領域で示すように、ガード期間の信号は有効シンボル期間後部の信号と同一であることが特徴である。
【0005】
図16のOFDM信号S(t)を模式的に表したものが図17である。図17において、OFDM信号の1つのシンボル期間はガード期間(・・、G1、G2、・・)と有効シンボル期間(・・、S0、S1、S2、・・)とからなる。有効シンボル期間のOFDM信号は、有効シンボル期間長で直交する周波数関係、即ち有効シンボル期間長の逆数の周波数間隔にある複数のキャリアの位相、振幅、又はその両方に対して、夫々変調を施して合成したものである。
【0006】
ガード期間のOFDM信号は、同一シンボルに属する有効シンボル期間のOFDM信号を巡回的に繰り返した信号として生成される。ガード期間によって有効シンボル期間の信号を巡回的に配置することによって、同一シンボル内であれば、ガード期間を含め任意の有効シンボル期間長の信号を切り出しても前述のキャリアの直交性は保たれる。このため、キャリア間の干渉を生じることなくデータを復調することができる。
【0007】
異なるシンボル期間に跨がって信号を切り出すと、キャリア間の直交性が崩れて干渉を起こすのみならず、シンボル間の干渉を引き起こす。故に、図17に示す期間Aから期間Bまでが、前述のキャリア間干渉及びシンボル間干渉を起こさない切り出し期間になる。
【0008】
また、OFDM方式では、ガード期間を設けることでマルチパスなどの影響を受けにくくしている。マルチパスによる遅延波が重畳された場合の受信処理について、図18を用いて説明する。図18において、信号S(t)に対して信号S’(t)は、遅延時間差Δtをもって到来した遅延波のOFDM信号を模式的に表わしたものである。実際には、信号S(t)と信号S’(t)が加算された信号が受信される。遅延時間差Δtに相当する期間D及び期間Eは、信号S(t)と信号S’(t)の間で異なったシンボルが受信される期間である。この場合、期間Fから期間Gの間で受信信号を切り出せば、キャリア間干渉及びシンボル間干渉を起こさないことが判る。
【0009】
このようにOFDM受信装置においては、キャリア間干渉及びシンボル間干渉を起こさないように、受信されたOFDM信号から有効シンボル期間長の信号を切り出して復調することが重要である。
【0010】
このような信号処理を行う従来のOFDM受信装置の構成例を図19に示す。以下にこのOFDM受信装置の動作について説明する。図19において、アンテナ1は無線周波数帯の信号を受信し、チューナ2に与える。チューナ2は、無線周波数帯の信号から所望のチャネルの信号を選択した後、基底周波数帯に周波数変換し、その出力を直交検波回路3に与える。直交検波回路3は、基底周波数帯のOFDM信号を直交検波することにより、同相軸(以下、I(In phase)軸という)の信号と、直交軸(以下、Q(Quadrature phase)軸という)の信号とからなる複素信号に変換する。その変換出力は遅延回路4、相関算出回路5、及び高速フーリエ変換(以下、FFT(Fast Fourier Transform)という)回路8に与えられる。
【0011】
遅延回路4は、直交検波されたOFDM信号を有効シンボル期間に相当する時間だけ遅延させ、遅延出力を相関算出回路5に与える。相関算出回路5は、直交検波回路3から与えられたOFDM信号と、遅延回路4で遅延されOFDM信号とを入力し、両OFDM信号の相関を演算する。演算結果は移動積分回路6に供給される。移動積分回路6は、相関回路5から出力された相関量をガード期間に相当する時間だけ積分を行う(1Tg期間の積分)。その積分結果は時間窓制御回路7に供給される。時間窓制御回路7は、移動積分回路6で積分された相関量が最大となる時刻に同期して窓信号を発生し、この窓信号をFFT回路8に供給する。
【0012】
FFT回路8は、時間窓制御回路7から供給される窓信号に従って、直交検波回路3から供給されるOFDM信号から、有効シンボル期間長の信号を切り出してFFT処理を施し、周波数領域の信号へ変換する。復調回路9は、FFT回路8によって周波数領域に変換されたOFDM信号を復調し、その出力を誤り訂正回路10に供給する。誤り訂正回路10は、復調結果に対して誤り訂正処理を施すことにより、伝送された情報系列(データ)を復元する。
【0013】
時間窓制御回路7が窓信号を生成する過程を図20〜図22に基づいて説明する。図20は遅延波が無い場合の時間窓制御回路7の動作を示すタイムチャートである。図20において、(a)は受信されたOFDM信号である。(b)は遅延回路4によって有効シンボル期間長だけ遅延されたOFDM信号である。OFDM信号はガード期間に有効シンボル期間の信号が巡回的に複写されているため、(c)の斜線部に示す期間における(a)のOFDM信号と、(b)の遅延されたOFDM信号とに相関がある。相関算出回路5でその相関量が求められ、移動積分回路6でガード期間長積分された相関量は(d)のようになる。
【0014】
時間窓制御回路7は、(d)の積分された相関量が最大になる時刻に同期して、(e)に示すようなHレベルの窓信号を発生する。FFT回路8は、(e)の窓信号に従って信号を切り出してFFT処理を施す。(e)の窓信号は、(a)のOFDM信号からシンボル間干渉を起こさずに有効シンボル期間長の信号を切り出せることが判る。
【0015】
次に、遅延波が重畳された場合に、時間窓制御回路7が窓信号を生成する過程を図21に基づいて説明する。図21において、(a)は遅延なく受信されたOFDM信号である。(b)は時間Δtだけ遅延して受信されたOFDM信号である。(b)の遅延して受信されたOFDM信号が(a)の遅延なく受信されたOFDM信号よりも受信電力が小さい場合に、移動積分回路6で積分された相関量は(e)のようになる。即ち(e)に示す相関量は、遅延なく受信されたOFDM信号の(c)の相関量と、遅延して受信されたOFDM信号の(d)の相関量との合成結果と等しくなる。
【0016】
時間窓制御回路7は、積分された(e)の相関量が最大になる時刻に同期して(f)に示す窓信号を発生する。(f)の窓信号は、遅延なく受信された(a)のOFDM信号に対しても、遅延して受信された(b)のOFDM信号に対しても、シンボル間干渉を起こさずに有効シンボル期間長の信号を切り出し得ることが判る。
【0017】
【発明が解決しようとする課題】
しかしながら図22に示すように、遅延して受信された(b)のOFDM信号が、遅延なく受信された(a)のOFDM信号よりも受信電力が大きい場合、移動積分回路6で得られる積分された相関量は(e)のようになる。時間窓制御回路7は積分された相関量が最大になる時刻に同期して窓信号を発生するので、このときの窓信号は(f)のようになり、遅延なく受信された(a)のOFDM信号に対して、期間Hにおいてシンボル間干渉を起こすことが判る。
【0018】
本発明は、このような従来の問題点に鑑みてなされたものであって、遅延なく受信されたOFDM信号と、遅延して受信されたOFDM信号とが混在する場合にも、シンボル間干渉を起こさずに有効シンボル期間長の信号を切り出すことにより、放送データを安定して復調できるOFDM受信装置を実現することを目的とする。
【0019】
【課題を解決するための手段】
この課題を解決するために、本発明のOFDM受信装置は、直交周波数分割多重(OFDM)方式によって変調されたOFDM信号を受信し、デジタルデータを復調するOFDM受信装置であって、前記OFDM信号の1つのシンボル期間はガード期間と有効シンボル期間とからなり、前記ガード期間の信号は同一シンボルに属する前記有効シンボル期間の信号を巡回的に繰り返したものであるとき、前記OFDM信号を前記有効シンボル期間に相当する時間だけ遅延する遅延手段と、前記OFDM信号と前記遅延手段の遅延出力との相関量を求める相関演算手段と、前記相関演算手段で得られた相関量を入力し、前記ガード期間の1倍より大きく2倍以下の積分窓を用いて前記相関量の移動積分を行う移動積分手段と、前記移動積分手段の出力レベルが最大となる時刻に基づいて窓信号を発生する時間窓制御手段と、前記時間窓制御手段で発生した窓信号に従って前記OFDM信号を切り出して離散フーリエ変換するフーリエ変換手段と、を具備することを特徴とするものである。
【0020】
ここで前記移動積分手段の前段あるいは後段に、前記相関量をシンボル間で平滑化するシンボル周期フィルタ手段を具備するようにしてもよい。
【0021】
【発明の実施の形態】
(実施の形態1)
本発明の実施の形態1におけるOFDM受信装置について、図面を参照しつつ説明する。図1は本実施の形態のOFDM受信装置の構成を示すブロック図であり、従来例と同一部分は同一の符号を付けて説明する。チューナ2はアンテナ1により受信された無線周波数帯の信号を受信し、所望のチャネルの信号を選択した後、基底周波数帯の信号に変換するものである。直交検波回路3は、基底周波数帯のOFDM信号を直交検波することにより、同相軸(I軸)の信号と、直交軸(Q軸)の信号とからなる複素信号に変換するものである。この複素信号は遅延回路4、相関算出回路5、及び高速フーリエ変換(FFT)回路8に与えられる。
【0022】
遅延回路4は、直交検波されたOFDM信号を有効シンボル期間に相当する時間だけ遅延し、遅延出力を相関算出回路5に与えるものである。相関算出回路5は、直交検波回路3から与えられたOFDM信号と、遅延回路4で遅延されOFDM信号とを入力し、両OFDM信号の相関を演算する相関演算手段である。相関算出回路5の構成例を図2に示す。相関算出回路5は複素共役回路51と複素乗算回路52とから構成される。複素共役回路51は遅延回路4から出力されるOFDM信号、即ちI軸及びQ軸成分からなる複素信号(x+jy)に対して複素共役をとり、複素信号(x−jy)を出力するものである。複素乗算回路52は直交検波回路3から出力される遅延しない複素信号(x0 +jy0 )と、複素共役回路51から出力される遅延した複素信号(x−jy)とを複素乗算し、乗算結果を相関信号として出力する回路である。
【0023】
相関算出回路5の相関信号はシンボル周期フィルタ6Aに供給される。シンボル周期フィルタ6Aは相関信号を入力し、シンボル間で平滑化処理を施すことにより、無相関な部分を減衰させ、相関のある部分のみを抽出する回路である。シンボル周期フィルタ6Aの構成例を図3に示す。このシンボル周期フィルタ6Aは第1の係数器61A、加算器62A、シンボル時間遅延器63A、第2の係数器64Aにより構成される。シンボル周期フィルタ6Aの入力のz変換をXin(z)とし、シンボル周期フィルタ6Aの出力のz変換をXout (z)とし、係数器61Aの乗算係数をkとし、係数器64Aの乗算係数を(1−k)とし、シンボルに相当するサンプル数をNS とすると、加算器62Aでは、k・Xin(z)+(1−k)・z-Ns ・Xout (z)=Xout (z)が成立する。この場合シンボル周期フィルタ6Aの伝達周波数H(z)は、H(z)=(1−(1−k)・z-Ns )で表される。このようにIIR(Infinit Impulse Response)型のフィルタの構成をとることにより、シンボル周期の信号を平均化処理できる。
【0024】
シンボル周期フィルタ6Aで平均化処理された相関信号は時間窓制御回路7に供給される。時間窓制御回路7は、シンボル周期フィルタ6Aから出力された相関信号が最大となる時刻に基づいて窓信号を発生する回路である。時間窓制御回路7の構成例を図4に示す。この時間窓制御回路7は、振幅算出回路71、ピーク検出回路72、窓信号発生回路73を含んで構成される。またピーク検出回路72は、大小比較回路721、シンボル周期カウンタ722、第1の記憶回路723、第2の記憶回路724を有している。
【0025】
振幅算出回路71で相関信号の出力振幅が所定のサンプル周期毎に検出されると、この振幅値は大小比較回路721と第1の記憶回路723に与えられる。大小比較回路721は、前回までのサンプルで入力され、記憶回路723に保持された最大振幅値Bと、今回のサンプル時に入力された振幅値Aとを比較し、A>Bの場合には、記憶回路723及び記憶回路724の夫々が保持している内容を夫々の入力値に更新する信号を出力する。シンボル周期カウンタ722は、記憶回路723及び記憶回路724が夫々保持している内容をクリアする信号をシンボル周期毎に出力すると共に、シンボル周期中のサンプル数で示される時刻を記憶回路724に与える。このように構成されたピーク検出回路72は、シンボル期間中において相関信号が最大となる時刻を窓信号発生回路73に出力する。窓信号発生回路73は、ピーク検出回路72が出力する時刻に基づいてHレベルとなる窓信号を発生する。この窓信号は図1のFFT回路8に供給される。
【0026】
FFT回路8は、時間窓制御回路7から供給される窓信号に従って、直交検波回路3から供給されるOFDM信号から有効シンボル期間長の信号を切り出し、FFT処理を施して周波数領域の信号へ変換する回路である。復調回路9は、FFT回路8によって周波数領域に変換されたOFDM信号を復調する回路である。誤り訂正回路10は、復調回路9の復調結果に対して誤り訂正処理を施すことにより、伝送された情報系列(データ)を復元する回路である。
【0027】
以上のように構成されたOFDM受信装置の動作について、時間窓制御回路7が窓信号を生成する過程を中心に図5〜図7を用いて説明する。図5は遅延波がない場合のタイムチャートである。図5において、(a)は受信されたOFDM信号である。(b)は遅延回路4によって有効シンボル期間長だけ遅延されたOFDM信号である。OFDM信号はガード期間に有効シンボル期間の信号が巡回的に複写されているため、(c)の斜線部に示す期間において、(a)のOFDM信号と(b)の遅延されたOFDM信号とに大きな相関が得られる。相関算出回路5から相関信号が出力されると、シンボル周期フィルタ6Aは(d)に示すような平均化処理された相関信号を出力する。この場合、相関信号が最大となりえる期間は、遅延されたOFDM信号のガード期間と一致する。
【0028】
図4の窓信号発生回路73は、ピーク検出回路72が出力する時刻からガード期間Tgだけ経過した後にHレベルとなり、有効シンボル期間Tuだけ経過した後にLレベルとなる窓信号を発生する。ピーク検出回路72が出力する時刻の範囲は、前述のように遅延されたOFDM信号のガード期間(図中のt0 からt1 )と一致するので、窓信号は図5(e)から(g)の範囲で発生されることになる。これらの範囲の窓信号は、(a)のOFDM信号に対してシンボル間干渉を起こさずに、有効シンボル期間長の信号を切り出し得る。尚、前後の時間に対する窓信号のマージンを考慮すると、窓信号は(f)に示すように発生されることが望ましい。
【0029】
図6は遅延波が存在し、遅延して受信されたOFDM信号が、遅延なく受信されたOFDM信号よりも受信電力が小さい場合のタイムチャートである。図6において、(a)は遅延なく受信されたOFDM信号であり、(b)はΔtだけ遅延して受信されたOFDM信号である。このような場合、シンボル周期フィルタ6Aから出力される相関信号の内、(a)に対応する成分は(c)のようになり、(b)に対応する成分は(d)のように(c)よりレベルが小さくなる。従って実際に出力される相関信号は、(c)と(d)とが合成された信号、即ち(e)に示すような階段状の信号となる。図4のピーク検出回路72が出力する時刻の範囲は、図6中のt2 からt3 となるので、窓信号は図6の(f)から(h)の範囲で発生されることになる。これらの範囲の窓信号は、遅延なく受信された(a)のOFDM信号に対しても、遅延して受信された(b)のOFDM信号に対しても、シンボル間干渉を起こさずに、有効シンボル期間長の信号を切り出し得る。尚ここでも、前後の時間に対する窓信号のマージンを考慮すると、窓信号は(g)に示すように発生されることが望ましい。
【0030】
図7は遅延波が存在し、遅延して受信されたOFDM信号が、遅延なく受信されたOFDM信号よりも受信電力が大きい場合のタイムチャートである。図7において、(a)は遅延なく受信されたOFDM信号であり、(b)はΔtだけ遅延して受信されたOFDM信号である。このような場合、シンボル周期フィルタ6Aから出力される相関信号の内、(a)に対応する成分は(c)のようになり、(b)に対応する成分は(d)のように(c)よりレベルが大きくなる。従って実際に出力される相関信号は、(c)と(d)とが合成された信号、即ち(e)に示すような階段状の信号となる。図4のピーク検出回路72が出力する時刻の範囲は、図7中のt4 からt5 となるので、窓信号は図7の(f)から(h)の範囲で発生されることになる。これらの範囲の窓信号は、遅延なく受信された(a)のOFDM信号に対しても、遅延して受信された(b)のOFDM信号に対しても、シンボル間干渉を起こさずに、有効シンボル期間長の信号を切り出し得る。尚ここでも、前後の時間に対する窓信号のマージンを考慮すると、窓信号は(g)に示すように発生されることが望ましい。
【0031】
以上のような方法で窓信号を生成すると、遅延して受信されたOFDM信号が存在し、その受信電力が遅延なく受信されたOFDM信号の受信電力より大きい場合にも、シンボル間干渉を起こさずに有効シンボル期間長の信号を切り出すことができる。
【0032】
(実施の形態2)
次に本発明の実施の形態2におけるOFDM受信装置について、図面を参照しつつ説明する。図8は本実施の形態のOFDM受信装置の構成を示すブロック図であり、実施の形態1と同一部分は同一の符号を付けて詳細な説明を省略する。このOFDM受信装置も実施の形態1と同様に、チューナ2、直交検波回路3、遅延回路4、相関算出回路5、時間窓制御回路7、FFT回路8、復調回路9、誤り訂正回路10を有している。本実施の形態では図7のシンボル周期フィルタ6Aに代えて、移動積分回路6Bが設けられている。移動積分回路6Bは相関算出回路5の相関信号を入力し、ガード期間の2倍の積分窓を用いて移動積分を行う回路である。以下、前記の2倍の積分窓を用いて移動積分を行うことを、2Tg期間の移動積分と呼ぶ。
【0033】
移動積分回路6Bの構成例を図9に示す。この移動積分回路6Bは、シフトレジスタ61Bと総和算出回路62Bとからなる回路である。シフトレジスタ61Bは複数の1サンプル遅延器(Z-1)の従属接続体からなり、夫々のタップ出力を有する回路である。総和算出回路62Bは、複数の加算器の従属接続体からなる回路であり、入力信号と夫々遅延器の出力とを累積加算して加算結果を出力する機能を有する。ガード期間のサンプル数をNG とすると、移動積分回路6Bのタップ数は2NG であり、全てのタップ係数が1のFIR(Finite Impulse Response )型のフィルタと見なすことができる。
【0034】
以上のように構成されたOFDM受信装置の動作について、時間窓制御回路7が窓信号を生成する過程を中心に、図10〜図14を用いて説明する。図10は遅延波がない場合のタイムチャートである。図10において、(a)は受信されたOFDM信号である。(b)は遅延回路4によって有効シンボル期間長だけ遅延されたOFDM信号である。OFDM信号はガード期間に有効シンボル期間の信号が巡回的に複写されているため、(c)の斜線部に示す期間において、(a)のOFDM信号と(b)の遅延されたOFDM信号とに大きな相関が得られる。相関算出回路5から相関信号が与えられると、移動積分回路6Bは、サンプリング開始時刻を1サンプル遅延器(Z-1)の遅延時間だけずらしながら、相関信号を2Tg期間だけ入力し、サンプル値を図9の総和算出回路62Bを用いて加算する。こうすると(d)に示すような台形状に変化する積分信号が得られる。積分信号が最大となり得る期間はt6 〜t7 となり、受信されたOFDM信号のガード期間と一致する。
【0035】
図4の窓信号発生回路73は、ピーク検出回路72が出力する時刻にHレベルとなり、有効シンボル期間Tuだけ経過した後にLレベルとなる窓信号を発生する。ピーク検出回路72が出力する時刻の範囲は、前述のように受信されたOFDM信号のガード期間(図10中のt6 からt7 )と一致するので、窓信号は図10の(e)から(g)の範囲で発生されることになる。これらの範囲の窓信号は、(a)のOFDM信号に対してシンボル間干渉を起こさずに、有効シンボル期間長の信号を切り出し得る。尚、前後の時間に対する窓信号のマージンを考慮すると、窓信号は(f)に示すように台形状の積分信号、即ち(d)のフラットな部分の中央から発生されることが望ましい。
【0036】
次に、マルチパス環境下でのシンボル切り出しタイミングについて説明する。図11は遅延時間がΔt(但し、Δt<Tg)なる遅延波が存在し、遅延して受信されたOFDM信号が、遅延なく受信されたOFDM信号よりも受信電力が小さい場合のタイムチャートである。図11において、(a)は遅延なく受信されたOFDM信号であり、(b)はΔtだけ遅延して受信されたOFDM信号である。このような場合、移動積分回路6Bから出力される相関信号の内、(a)に対応する成分は(c)のようになり、(b)に対応する成分は(d)のように(c)よりレベルが小さくなる。従って実際に出力される積分信号は、(c)と(d)とが合成された信号、即ち(e)に示すように頂上部にフラットな部分を有する信号となる。
【0037】
図4のピーク検出回路72が出力する時刻の範囲は、図11中のt8 からt9 となるので、窓信号は図11の(f)から(h)の範囲で発生されることになる。これらの範囲の窓信号は、遅延なく受信された(a)のOFDM信号に対しても、遅延して受信された(b)のOFDM信号に対しても、シンボル間干渉を起こさずに有効シンボル期間長の信号を切り出し得る。ここでも、前後の時間に対する窓信号のマージンを考慮すると、窓信号は(g)に示すように発生されることが望ましい。
【0038】
図12は遅延時間がΔt(但し、Δt<Tg)なる遅延波が存在し、遅延して受信されたOFDM信号が、遅延なく受信されたOFDM信号よりも受信電力が大きい場合のタイムチャートである。図12において、(a)は遅延なく受信されたOFDM信号であり、(b)はΔtだけ遅延して受信されたOFDM信号である。このような場合、移動積分回路6Bから出力される相関信号の内、(a)に対応する成分は(c)のようになり、(b)に対応する成分は(d)のように(c)よりレベルが大きくなる。従って実際に出力される積分信号は、(c)と(d)とが合成された信号、即ち(e)に示すように頂上部にフラットな部分を有する信号となる。
【0039】
図4のピーク検出回路72が出力する時刻の範囲は、図12中のt10からt11となるので、窓信号は図12の(f)から(h)の範囲で発生されることになる。これらの範囲の窓信号は、遅延なく受信された(a)のOFDM信号に対しても、遅延して受信された(b)のOFDM信号に対しても、シンボル間干渉を起こさずに、有効シンボル期間長の信号を切り出し得る。尚ここでも、前後の時間に対する窓信号のマージンを考慮すると、窓信号は(g)に示すように発生されることが望ましい。
【0040】
図13は遅延時間がΔt(但し、Δt>Tg)なる遅延波が存在し、遅延して受信されたOFDM信号が、遅延なく受信されたOFDM信号よりも受信電力が小さい場合のタイムチャートである。図13において、(a)は遅延なく受信されたOFDM信号であり、(b)はΔtだけ遅延して受信されたOFDM信号である。このような場合、移動積分回路6Bから出力される相関信号の内、(a)に対応する成分は(c)のようになり、(b)に対応する成分は(d)のように(c)よりレベルが小さくなる。従って実際に出力される積分信号は、(c)と(d)とが合成された信号、即ち(e)に示すように頂上部にフラットな部分がない信号となる。
【0041】
図4のピーク検出回路72が出力する時刻は、図13中のt12となるので、窓信号は図13の(f)のタイミングで発生されることになる。この窓信号は、遅延なく受信された(a)のOFDM信号に対しては、シンボル間干渉を起こさずに有効シンボル期間長の信号を切り出し得る。しかし遅延して受信された(b)のOFDM信号に対しては、図13中の期間Iにおいてシンボル間干渉を引き起こす。しかしながらこの場合、(b)のOFDM信号の受信電力の方が小さいことと、干渉を起こす時間が最小限に抑えられていることから、シンボル間干渉の量は最小限に抑えられていることが判る。
【0042】
図14は遅延時間がΔt(但し、Δt>Tg)なる遅延波が存在し、遅延して受信されたOFDM信号が、遅延なく受信されたOFDM信号よりも受信電力が大きい場合のタイムチャートである。図14において、(a)は遅延なく受信されたOFDM信号であり、(b)はΔtだけ遅延して受信されたOFDM信号である。このような場合、移動積分回路6Bから出力される相関信号の内、(a)に対応する成分は(c)のようになり、(b)に対応する成分は(d)のように(c)よりレベルが大きくなる。従って実際に出力される積分信号は、(c)と(d)とが合成された信号、即ち(e)に示すように頂上部にフラットな部分がない信号となる。
【0043】
図4のピーク検出回路72が出力する時刻は、図14中のt13となるので、窓信号は図14の(f)のタイミングで発生されることになる。この窓信号は、遅延して受信された(b)のOFDM信号に対しては、シンボル間干渉を起こさずに有効シンボル期間長の信号を切り出し得る。しかし遅延なく受信された(a)のOFDM信号に対しては、図14中の期間Jにおいてシンボル間干渉を引き起こす。しかしながらこの場合も、(a)のOFDM信号の受信電力の方が小さいことと、干渉を起こす時間が最小限に抑えられていることから、シンボル間干渉の量は最小限に抑えられていることが判る。
【0044】
以上のような方法で窓信号を生成すると、実施の形態1と同様に、遅延して受信されたOFDM信号が存在し、その受信電力が遅延なく受信されたOFDM信号の受信電力よりも大きい場合にも、シンボル間干渉を起こさずに有効シンボル期間長の信号を切り出すことができる。更に、遅延時間がガード期間長Tgを越えるような場合にも、シンボル間干渉の量を最小限に抑えるような切り出しが可能となる。
【0045】
またここでは、移動積分回路6Bは2Tg期間の移動積分を行うものとして説明したが、移動積分の期間は1Tgより大きく、2Tg未満でもよい。但しこの場合は、シンボル間干渉を起こさずに有効シンホル期間長の信号を切り出し得る遅延波の遅延時間の範囲が狭まることになる。
【0046】
また実施の形態1及び2では、相関算出回路5の出力部にシンボル周期フィルタ又は移動積分回路を設けたが、図15に示すように、シンボル周期フィルタ6Aと移動積分回路6Bとの2つを同時に設けてもよい。またこれらの回路は信号処理が線形な演算なので、接続順序を入れ替えても良い。
【0047】
【発明の効果】
以上のような本発明によれば、地上波デジタル放送において、遅延なく受信されたOFDM信号と、遅延して受信されたOFDM信号とが混在する場合にも、シンボル間干渉を起こさずに有効シンボル期間長の信号を切り出すことにより、放送データを安定して復調できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるOFDM受信装置の構成を示すブロック図である。
【図2】本発明の各実施の形態において、夫々のOFDM受信装置に用いられる相関算出回路の構成図である。
【図3】実施の形態1において、OFDM受信装置に用いられるシンボル周期フィルタの構成図である。
【図4】本発明の各実施の形態において、夫々のOFDM受信装置に用いられる時間窓制御回路の構成図である。
【図5】実施の形態1のOFDM受信装置において、遅延波がない場合の時間窓制御方法を示すタイムチャートである。
【図6】実施の形態1のOFDM受信装置において、遅延波が存在し、その電力が小さい場合の時間窓制御方法を示すタイムチャートである。
【図7】実施の形態1のOFDM受信装置において、遅延波が存在し、その電力が大きい場合の時間窓制御方法を示すタイムチャートである。
【図8】本発明の実施の形態2におけるOFDM受信装置の構成を示すブロック図である。
【図9】実施の形態2において、OFDM受信装置に用いられる移動積分回路の構成図である。
【図10】実施の形態2のOFDM受信装置において、遅延波がない場合の時間窓制御方法を示すタイムチャートである。
【図11】実施の形態2のOFDM受信装置において、遅延波が存在し、その電力が小さい場合の時間窓制御方法を示すタイムチャートである。
【図12】実施の形態2のOFDM受信装置において、遅延波が存在し、その電力が大きい場合の時間窓制御方法を示すタイムチャートである。
【図13】実施の形態2のOFDM受信装置において、遅延波の遅延時間が長く、その電力が小さい場合の時間窓制御方法を示すタイムチャートである。
【図14】実施の形態2のOFDM受信装置において、遅延波の遅延時間が長く、その電力が大きい場合の時間窓制御方法を示すタイムチャートである。
【図15】本発明の実施の形態2におけるOFDM受信装置の他の構成例を示すブロック図である。
【図16】シンボル期間におけるOFDM信号の詳細を示す波形図である。
【図17】OFDM信号におけるシンボル期間の構成を示す模式図である。
【図18】遅延波が存在する場合のOFDM信号の切出期間を示す説明図である。
【図19】従来のOFDM受信装置の構成例を示すブロック図である。
【図20】従来のOFDM受信装置において、遅延波がない場合の時間窓制御方法を示すタイムチャートである。
【図21】従来のOFDM受信装置において、遅延波が存在し、その電力が小さい場合の時間窓制御方法を示すタイムチャートである。
【図22】従来のOFDM受信装置において、遅延波が存在し、その電力が大きい場合の時間窓制御方法を示すタイムチャートである。
【符号の説明】
1 アンテナ
2 チューナ
3 直交検波回路
4 遅延回路
5 相関算出回路
6 移動積分回路
6A シンボル周期フィルタ
7 時間窓制御回路
8 FFT回路
9 復調回路
10 誤り訂正回路
51 複素共役回路
52 複素乗算回路
61A,64A 係数器
61B シフトレジスタ
62B 総和算出回路
62A 加算器
63A シンボル時間遅延器
71 振幅算出回路
72 ピーク検出回路
73 窓信号発生回路
721 大小比較回路
722 シンボル周期カウンタ
723 第1の記憶回路
724 第2の記憶回路
Tg ガード期間
Ts シンボル期間
Tu 有効シンボル期間

Claims (2)

  1. 直交周波数分割多重(OFDM)方式によって変調されたOFDM信号を受信し、デジタルデータを復調するOFDM受信装置であって、
    前記OFDM信号の1つのシンボル期間はガード期間と有効シンボル期間とからなり、前記ガード期間の信号は同一シンボルに属する前記有効シンボル期間の信号を巡回的に繰り返したものであるとき、
    前記OFDM信号を前記有効シンボル期間に相当する時間だけ遅延する遅延手段と、
    前記OFDM信号と前記遅延手段の遅延出力との相関量を求める相関演算手段と、
    前記相関演算手段で得られた相関量を入力し、前記ガード期間の1倍より大きく2倍以下の積分窓を用いて前記相関量の移動積分を行う移動積分手段と、
    前記移動積分手段の出力レベルが最大となる時刻に基づいて窓信号を発生する時間窓制御手段と、
    記時間窓制御手段で発生した窓信号に従って前記OFDM信号を切り出して離散フーリエ変換するフーリエ変換手段と、を具備することを特徴とするOFDM受信装置。
  2. 前記移動積分手段の前段あるいは後段に、前記相関量をシンボル間で平滑化するシンボル周期フィルタ手段を具備することを特徴とする請求項1記載のOFDM受信装置。
JP2000369484A 2000-12-05 2000-12-05 Ofdm受信装置 Expired - Fee Related JP4511714B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000369484A JP4511714B2 (ja) 2000-12-05 2000-12-05 Ofdm受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000369484A JP4511714B2 (ja) 2000-12-05 2000-12-05 Ofdm受信装置

Publications (3)

Publication Number Publication Date
JP2002171238A JP2002171238A (ja) 2002-06-14
JP2002171238A5 JP2002171238A5 (ja) 2008-01-10
JP4511714B2 true JP4511714B2 (ja) 2010-07-28

Family

ID=18839514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000369484A Expired - Fee Related JP4511714B2 (ja) 2000-12-05 2000-12-05 Ofdm受信装置

Country Status (1)

Country Link
JP (1) JP4511714B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7991058B2 (en) 2004-12-21 2011-08-02 Panasonic Corporation OFDM reception device
US8675631B2 (en) 2005-03-10 2014-03-18 Qualcomm Incorporated Method and system for achieving faster device operation by logical separation of control information
US8165167B2 (en) 2005-03-10 2012-04-24 Qualcomm Incorporated Time tracking for a communication system
JP4856171B2 (ja) * 2005-04-21 2012-01-18 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Ofdmシステムにおける複雑度を低減したチャネル推定
US7623607B2 (en) 2005-10-31 2009-11-24 Qualcomm Incorporated Methods and apparatus for determining timing in a wireless communication system
US8948329B2 (en) 2005-12-15 2015-02-03 Qualcomm Incorporated Apparatus and methods for timing recovery in a wireless transceiver
KR100874353B1 (ko) 2007-02-06 2008-12-16 경북대학교 산학협력단 Ofdm 시스템의 프레임 동기 검출 방법
EP2053769A1 (en) 2007-04-13 2009-04-29 Panasonic Corporation Ofdm signal reception apparatus and ofdm signal reception method
JP2012044414A (ja) * 2010-08-18 2012-03-01 Lapis Semiconductor Co Ltd 相関器及びそれを含む復調装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355241A (ja) * 1998-06-08 1999-12-24 Matsushita Electric Ind Co Ltd シンボル同期回路
JP2000165345A (ja) * 1998-11-30 2000-06-16 Toshiba Corp Ofdm受信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355241A (ja) * 1998-06-08 1999-12-24 Matsushita Electric Ind Co Ltd シンボル同期回路
JP2000165345A (ja) * 1998-11-30 2000-06-16 Toshiba Corp Ofdm受信装置

Also Published As

Publication number Publication date
JP2002171238A (ja) 2002-06-14

Similar Documents

Publication Publication Date Title
US5787123A (en) Receiver for orthogonal frequency division multiplexed signals
EP1267539B1 (en) Symbol synchronization in multicarrier receivers
TWI258937B (en) Mode detection for OFDM signals
US5602835A (en) OFDM synchronization demodulation circuit
JP4920828B2 (ja) 直交周波数分割多重システムにおけるサンプリングオフセット補正
JP4388943B2 (ja) 相関器
GB2532308A (en) Receiver and method of receiving
KR19990043408A (ko) 직교분할대역 시스템의 간략 주파수 획득 방법 및 그 장치
JP2004282759A (ja) Ofdmシステムでの初期周波数の同期方法および装置
US20050100118A1 (en) Guard interval and FFT mode detector in DVB-T receiver
JP3058870B1 (ja) Afc回路
JP4511714B2 (ja) Ofdm受信装置
JP2883866B2 (ja) Ofdm復調装置
JP2005286636A (ja) デジタル放送受信装置
JP3905541B2 (ja) 遅延プロファイル推定装置及び相関器
JP2007074351A (ja) マルチキャリア無線通信システム、送信機及び受信機並びにマルチキャリア無線通信方法
JP2003051768A (ja) ダイバーシティ受信機
US7583770B2 (en) Multiplex signal error correction method and device
JP2818148B2 (ja) Ofdm復調装置
JPH11154925A (ja) ディジタル伝送装置
JP2000022660A (ja) ディジタル通信装置
JP4791307B2 (ja) 受信装置、中継装置のサンプリングクロック制御方法
JP2002344414A (ja) Ofdm復調装置及び方法
JP2001223668A (ja) 受信タイミング検出回路、周波数オフセット補正回路、受信装置及びその受信方法
JPH10308716A (ja) 受信装置および受信方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees