JP4426244B2 - Carbon nanotube production method and purification method - Google Patents

Carbon nanotube production method and purification method Download PDF

Info

Publication number
JP4426244B2
JP4426244B2 JP2003344380A JP2003344380A JP4426244B2 JP 4426244 B2 JP4426244 B2 JP 4426244B2 JP 2003344380 A JP2003344380 A JP 2003344380A JP 2003344380 A JP2003344380 A JP 2003344380A JP 4426244 B2 JP4426244 B2 JP 4426244B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
carbon
carbon nanotubes
acidic solution
porous carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003344380A
Other languages
Japanese (ja)
Other versions
JP2005104813A (en
Inventor
正昭 河村
和彦 佐藤
英昭 新田
トマ ロード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2003344380A priority Critical patent/JP4426244B2/en
Publication of JP2005104813A publication Critical patent/JP2005104813A/en
Application granted granted Critical
Publication of JP4426244B2 publication Critical patent/JP4426244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は炭素化合物を多孔性担体に金属触媒を担持させた基体上に接触させ熱分解し粗カーボンナノチューブを得て、ついで前記基体を除去することを特徴とするカーボンナノチューブの製造方法に関する。   The present invention relates to a method for producing carbon nanotubes, characterized in that a carbon compound is brought into contact with a substrate on which a metal catalyst is supported on a porous carrier, pyrolyzed to obtain crude carbon nanotubes, and then the substrate is removed.

また本発明はカーボンナノチューブに含有される不純物を取り除くためのカーボンナノチューブの精製方法に関する。特に本発明は、金属触媒を担持させた多孔性担体を含むカーボンナノチューブの精製方法に関する。   The present invention also relates to a carbon nanotube purification method for removing impurities contained in the carbon nanotube. In particular, the present invention relates to a method for purifying a carbon nanotube including a porous support on which a metal catalyst is supported.

カーボンナノチューブは炭素6員環からなるグラファイトシートが円筒状を形成した物質であり、優れた機械特性を利用した複合材料、半導体素子、導電材料、水素吸蔵材料などとしての実用化に向けた研究が進められている。カーボンナノチューブの製造方法として、初期には黒鉛電極のアーク放電を用いるアーク放電法や黒鉛にレーザーパルス光を照射するレーザー蒸発法が適用されたが、収量が少ないことやアモルファスカーボン等の不純物が多いなど、ナノチューブの工業的製造技術としては課題を有している。また、近年注目される手法として、炭素化合物を高温下で触媒金属微粒子に接触させて熱分解する化学気相成長法(以下、CVD法とする)がある。CVD法には、触媒金属を気相中に浮遊させる方法(特許文献1参照)や、シリカ粉末やアルミナ粉末などの多孔性担体に触媒金属を担持する方法(特許文献2参照)が知られている。特に多孔性担体を用いたCVD法は、担体の種類や温度条件を変えて単層や多層のカーボンナノチューブを作り分けることが可能であり、原料を気体として供給するため大量合成に適した方法として期待されている。   Carbon nanotubes are substances in which graphite sheets consisting of carbon 6-membered rings form a cylindrical shape, and research aimed at practical application as composite materials, semiconductor elements, conductive materials, hydrogen storage materials, etc. using excellent mechanical properties. It is being advanced. As the carbon nanotube production method, the arc discharge method using the arc discharge of the graphite electrode and the laser evaporation method of irradiating the graphite with laser pulse light were initially applied, but the yield was low and there were many impurities such as amorphous carbon. Thus, there are problems as an industrial manufacturing technique of nanotubes. Further, as a technique attracting attention in recent years, there is a chemical vapor deposition method (hereinafter referred to as a CVD method) in which a carbon compound is thermally decomposed by contacting with catalytic metal fine particles at a high temperature. Known CVD methods include a method in which a catalytic metal is suspended in a gas phase (see Patent Document 1) and a method in which a catalytic metal is supported on a porous carrier such as silica powder or alumina powder (see Patent Document 2). Yes. In particular, the CVD method using a porous carrier can change the type and temperature conditions of the carrier to produce single-walled or multi-walled carbon nanotubes, and is a suitable method for mass synthesis because the raw material is supplied as a gas. Expected.

篠原らは、多孔性珪酸塩の一種であるゼオライトに触媒金属としてFe/Vを担持した粉末に、700℃で窒素/アセチレン混合気体を接触させることによって多層のカーボンナノチューブを得たことを報告している(非特許文献1参照)。さらに、触媒金属にFe/Coを用い、原料にアルゴン/アセチレン混合気体を用いて、600−900℃の温度条件下で単層のカーボンナノチューブが得られている(特許文献2参照)。   Shinohara et al. Reported that multi-walled carbon nanotubes were obtained by contacting a nitrogen / acetylene mixed gas at 700 ° C. with a powder in which Fe / V was supported as a catalyst metal on zeolite, a kind of porous silicate. (See Non-Patent Document 1). Furthermore, single-walled carbon nanotubes are obtained under a temperature condition of 600 to 900 ° C. using Fe / Co as the catalyst metal and an argon / acetylene mixed gas as the raw material (see Patent Document 2).

丸山らは、ゼオライトに触媒金属としてFe/Coを担持した粉末に、700−800℃でアルゴン/エタノール混合気体を接触させることによって単層のカーボンナノチューブを得られることを報告している(非特許文献2参照)。   Maruyama et al. Reported that single-walled carbon nanotubes can be obtained by contacting an argon / ethanol mixed gas at 700-800 ° C. with a powder in which Fe / Co is supported on zeolite as a catalyst metal (non-patent document). Reference 2).

しかしながら、ゼオライトなどの無機多孔性担体を用いてCVD法で製造したカーボンナノチューブには、製造プロセスから必然的に触媒金属とともに多量の無機担体が不純物として混入している。   However, carbon nanotubes produced by the CVD method using an inorganic porous carrier such as zeolite are inevitably mixed with a large amount of inorganic carrier as an impurity together with the catalyst metal from the production process.

そのため、CVD法で得られたカーボンナノチューブを工業的に利用するためには、これらの触媒金属および多孔性担体を除去して純度を上げることが必要である。   Therefore, in order to industrially use the carbon nanotubes obtained by the CVD method, it is necessary to remove these catalytic metals and the porous carrier to increase the purity.

ここで、触媒金属については、カーボンナノチューブを塩酸、硫酸、硝酸などの酸性溶液に浸漬する方法や、これらの酸性溶液で還流する方法によって除去可能であることが知られている。   Here, it is known that the catalyst metal can be removed by a method in which carbon nanotubes are immersed in an acidic solution such as hydrochloric acid, sulfuric acid, or nitric acid, or a method in which the carbon nanotube is refluxed with these acidic solutions.

また、ゼオライトなどの多孔性担体を除去する方法としては、フッ酸浸漬処理や2000℃程度の熱処理によって除去できることが知られている(非特許文献3、特許文献2参照)。しかしながら、フッ酸のような反応性の高い酸で処理することや高温熱処理することによりカーボンナノチューブの分解や劣化がおこることが懸念される。   As a method for removing a porous carrier such as zeolite, it is known that it can be removed by hydrofluoric acid immersion treatment or heat treatment at about 2000 ° C. (see Non-Patent Document 3 and Patent Document 2). However, there is a concern that the carbon nanotubes may be decomposed or deteriorated by treatment with a highly reactive acid such as hydrofluoric acid or high temperature heat treatment.

特許第2899407号公報 2頁Japanese Patent No. 2899407, page 2 特開2002−255519号公報 3頁JP 2002-255519 A, page 3 Jpn.J.Appl.Phys.37(1998)L1257−L1259Jpn. J. et al. Appl. Phys. 37 (1998) L1257-L1259 Chem.Phys.Lett.360(2002)229−234Chem. Phys. Lett. 360 (2002) 229-234 Mater.Sci.Eng.C 19(2002)9−13Mater. Sci. Eng. C 19 (2002) 9-13

本発明の課題はゼオライトなどの多孔性担体を効率良く除去し、高純度かつ高品質のカーボンナノチューブを得るためのカーボンナノチューブの製造方法を提供することを目的とする。   An object of the present invention is to provide a carbon nanotube production method for efficiently removing a porous carrier such as zeolite and obtaining high-purity and high-quality carbon nanotubes.

本発明者らは、上記目的を達成するため、多孔性担体に金属触媒を担持した基体に炭素化合物気体を接触させて熱分解するCVD法で製造したカーボンナノチューブを、特定の酸性溶液に浸漬処理して前記基体を除去することを特徴とするカーボンナノチューブの製造方法および精製方法を提供しうることを見出した。   In order to achieve the above object, the present inventors have immersed carbon nanotubes produced by a CVD method in which a carbon compound gas is brought into contact with a substrate carrying a metal catalyst on a porous carrier and thermally decomposed into a specific acidic solution. The present inventors have found that a method for producing and purifying carbon nanotubes characterized by removing the substrate can be provided.

本発明は、
1.炭素化合物を多孔性担体に金属触媒を担持させた基体上に接触させ熱分解し粗カーボンナノチューブを得て、ついでテトラフルオロホウ酸を含む酸性溶液に該粗カーボンナノチューブを浸漬処理することにより前記基体を除去することを特徴とするカーボンナノチューブの製造方法である。
The present invention
1. A carbon compound is brought into contact with a substrate on which a metal catalyst is supported on a porous carrier and thermally decomposed to obtain crude carbon nanotubes, and then the crude carbon nanotubes are immersed in an acidic solution containing tetrafluoroboric acid to thereby treat the substrate. This is a method for producing a carbon nanotube, characterized by removing water.

2.前記テトラフルオロホウ酸を含む酸性溶液がさらに塩酸を含み、テトラフルオロホウ酸と塩酸の混合比がテトラフルオロホウ酸1重量部に対して塩酸が0.1〜50重量部であることを特徴とする上記に記載のカーボンナノチューブの製造方法である。   2. The acidic solution containing tetrafluoroboric acid further contains hydrochloric acid, and the mixing ratio of tetrafluoroboric acid and hydrochloric acid is 0.1 to 50 parts by weight with respect to 1 part by weight of tetrafluoroboric acid. This is a method for producing a carbon nanotube as described above.

3.テトラフルオロホウ酸を含む酸性溶液に浸漬する処理に加えて、塩酸を含む酸性溶液への浸漬処理を逐次併用して前記基体を除去することを特徴とする上記に記載のカーボンナノチューブの製造方法である。   3. In addition to the treatment of immersing in an acidic solution containing tetrafluoroboric acid, the substrate is removed by sequentially using an immersing treatment in an acidic solution containing hydrochloric acid. is there.

4.カーボンナノチューブを酸性溶液に浸漬処理する際に、マイクロウェーブを照射しながら加熱および加圧処理をおこなうことを特徴とする上記に記載のカーボンナノチューブの製造方法である。   4). The carbon nanotube production method according to the above, wherein when the carbon nanotube is immersed in an acidic solution, heating and pressure treatment are performed while irradiating microwaves.

5.金属触媒を担持させた多孔性担体を含む粗カーボンナノチューブを、テトラフルオロホウ酸を含む酸性溶液に浸漬処理して前記基体を除去することを特徴とするカーボンナノチューブの精製方法である。   5. A method for purifying carbon nanotubes, comprising immersing a crude carbon nanotube containing a porous carrier carrying a metal catalyst in an acidic solution containing tetrafluoroboric acid to remove the substrate.

6.浸漬処理後のカーボンナノチューブの純度が50重量%以上100重量%以下である上記に記載の製造方法により得られるカーボンナノチューブである。   6). It is a carbon nanotube obtained by the manufacturing method as described above, wherein the purity of the carbon nanotube after the immersion treatment is 50 wt% or more and 100 wt% or less.

7.浸漬処理後の多孔性担体の濃度が1.0重量%〜0重量%である上記に記載の製造方法により得られるカーボンナノチューブである。   7). It is a carbon nanotube obtained by the manufacturing method as described above, wherein the concentration of the porous carrier after the immersion treatment is 1.0% by weight to 0% by weight.

本発明のカーボンナノチューブの製造方法および精製方法により、高純度で欠陥の少ないカーボンナノチューブを得ることができる。   By the carbon nanotube production method and purification method of the present invention, carbon nanotubes with high purity and few defects can be obtained.

本発明のカーボンナノチューブの製造方法および精製方法について以下に説明する。
本発明においてカーボンナノチューブは、多孔性担体に金属触媒を担持した基体に原料炭素源となる炭素化合物気体を接触させて熱分解させるCVD法によって粗カーボンナノチューブを製造する。図1はCVD法によってカーボンナノチューブを製造するためのCVD装置の模式図である。CVD装置は、電気炉、石英管、気体導入系、真空排気系、および石英管内で多孔性担体に金属触媒を担持した基体を保持するための石英ボートからなる。さらに図示されていないが、温度制御系、真空制御系、気体流量計などが設置されている。
The carbon nanotube production method and purification method of the present invention will be described below.
In the present invention, carbon nanotubes are produced by a CVD method in which a carbon compound gas serving as a raw material carbon source is brought into contact with a substrate having a metal catalyst supported on a porous carrier and thermally decomposed. FIG. 1 is a schematic view of a CVD apparatus for producing carbon nanotubes by a CVD method. The CVD apparatus includes an electric furnace, a quartz tube, a gas introduction system, a vacuum exhaust system, and a quartz boat for holding a substrate carrying a metal catalyst on a porous carrier in the quartz tube. Although not shown, a temperature control system, a vacuum control system, a gas flow meter, and the like are installed.

この装置を用い、粗カーボンナノチューブは以下の手順で好ましく製造される。予め調製した多孔性担体に金属触媒を担持した基体を石英ボートに載せ、石英管内に設置する。石英管を真空排気した後、気体導入系より不活性気体(アルゴン、窒素など)を導入しながら排気速度を調整して石英管内を一定圧力に保持する。さらに、電気炉をカーボンナノチューブの生成温度まで昇温した後、キャリア気体(例えば、アルゴン、窒素、水素またはそれらの混合気体等)と炭素化合物気体を適当な流量比で流して数分から数時間保持することで粗カーボンナノチューブを製造することができる。   Using this apparatus, the crude carbon nanotube is preferably produced by the following procedure. A substrate in which a metal catalyst is supported on a porous carrier prepared in advance is placed on a quartz boat and placed in a quartz tube. After evacuating the quartz tube, the inside of the quartz tube is maintained at a constant pressure by adjusting the exhaust speed while introducing an inert gas (argon, nitrogen, etc.) from the gas introduction system. Furthermore, after raising the temperature of the electric furnace to the carbon nanotube production temperature, a carrier gas (for example, argon, nitrogen, hydrogen, or a mixed gas thereof) and a carbon compound gas are allowed to flow at an appropriate flow ratio and held for several minutes to several hours. By doing so, crude carbon nanotubes can be produced.

なお、上記の製造方法で多孔性担体、金属触媒および生成温度条件を選ぶことにより、単層または多層のカーボンナノチューブを選択的に製造できる。   In addition, single-walled or multi-walled carbon nanotubes can be selectively produced by selecting a porous carrier, a metal catalyst, and a production temperature condition in the above production method.

上記の多孔性担体としては、無機酸化物構造体が用いられる。多孔性担体の公知の具体例はゼオライト、シリカ、アルミナ、マグネシア、ジルコニア、チタニア、およびそれらの組み合わせなどである。   An inorganic oxide structure is used as the porous carrier. Known specific examples of the porous carrier include zeolite, silica, alumina, magnesia, zirconia, titania, and combinations thereof.

また、触媒としては、例えば公知のFe、Coなどの酢酸塩等の金属化合物が用いられるが、これに限定されるものではない。触媒の例としては、Fe、Coの他にNi、Mo、Cr、Mo、Y、Ru、Rh、Pd、Ir、Ptなどの金属および化合物からなる群から選ばれる少なくとも一種が挙げられる。   Moreover, as a catalyst, although metal compounds, such as well-known acetates, such as Fe and Co, are used, for example, it is not limited to this. Examples of the catalyst include at least one selected from the group consisting of metals and compounds such as Ni, Mo, Cr, Mo, Y, Ru, Rh, Pd, Ir, and Pt in addition to Fe and Co.

触媒は、例えばエタノールなどの有機溶媒に多孔性担体と一緒に投入攪拌した後に乾燥させ、触媒微粒子の形で多孔性担体の表面/内部に担持したものを用いる。   As the catalyst, for example, a catalyst that is charged and stirred together with a porous carrier in an organic solvent such as ethanol and dried and supported on the surface / inside of the porous carrier in the form of catalyst fine particles is used.

カーボンナノチューブの原料炭素源となる炭素化合物は、公知のエタノール、メタノール、イソプロパノール、ブタノールなどのアルコール類やフェノール、アセトン、ベンゼンなどが挙げられ、これらを気化して用いる。また、メタン、エチレン、アセチレン、一酸化炭素などの気体を使用することができる。   Examples of the carbon compound serving as a carbon source material for carbon nanotubes include known alcohols such as ethanol, methanol, isopropanol, and butanol, phenol, acetone, benzene, and the like, which are used after being vaporized. Moreover, gases, such as methane, ethylene, acetylene, carbon monoxide, can be used.

以上説明した、多孔性担体に金属触媒を担持した基体に原料炭素源となる炭素化合物気体を接触させて熱分解するCVD法を用いて得られた粗カーボンナノチューブは、ゼオライトなどの多孔性担体と金属触媒が不純物として含まれているため、これらの不純物を除去して精製する必要がある。   As described above, the crude carbon nanotubes obtained by the CVD method in which the carbon compound gas serving as the raw material carbon source is brought into contact with the substrate on which the metal catalyst is supported on the porous carrier are thermally decomposed. Since the metal catalyst is contained as impurities, it is necessary to remove these impurities for purification.

次に、本発明における多孔性担体に金属触媒を担持した基体に炭素化合物気体を接触させて熱分解するCVD法で得られた粗カーボンナノチューブを精製する方法について説明する。   Next, a method for purifying crude carbon nanotubes obtained by a CVD method in which a carbon compound gas is brought into contact with a substrate carrying a metal catalyst on a porous carrier in the present invention and thermally decomposed will be described.

上記の方法で得られた粗カーボンナノチューブを、少なくともテトラフルオロホウ酸を含む酸性溶液に例えば数時間ないし数十時間浸漬処理してゼオライトなどの多孔性担体およびFe、Coなどの金属触媒からなる基体を除去する。このとき使用する酸性溶液のテトラフルオロホウ酸の濃度は1%以上とすることが好ましく、さらに好ましい濃度は、5%以上、50%以下である。テトラフルオロホウ酸の濃度が5%未満であると、カーボンナノチューブ中に含まれるゼオライトなどの多孔性担体およびFe、Coなどの金属触媒を十分に溶解することができず、純度の高いカーボンナノチューブが得られない。また、テトラフルオロホウ酸の濃度が50%を超えると、精製されたカーボンナノチューブの劣化や分解が生じてしまうことがある。   A substrate comprising a porous support such as zeolite and a metal catalyst such as Fe and Co by immersing the crude carbon nanotube obtained by the above method in an acidic solution containing at least tetrafluoroboric acid for several hours to several tens of hours, for example. Remove. The concentration of tetrafluoroboric acid in the acidic solution used at this time is preferably 1% or more, and more preferably 5% or more and 50% or less. When the concentration of tetrafluoroboric acid is less than 5%, a porous carrier such as zeolite and a metal catalyst such as Fe and Co contained in the carbon nanotube cannot be sufficiently dissolved, and a high purity carbon nanotube is obtained. I can't get it. Further, when the concentration of tetrafluoroboric acid exceeds 50%, the purified carbon nanotubes may be deteriorated or decomposed.

粗カーボンナノチューブの精製に用いる酸性溶液は、テトラフルオロホウ酸と塩酸の混合物を用いることも有効である。塩酸を加えることにより、Fe、Coなどの金属触媒をより確実にカーボンナノチューブから除去することができる。このときテトラフルオロホウ酸と塩酸の混合比はテトラフルオロホウ酸と塩酸の混合比がテトラフルオロホウ酸1重量部に対して塩酸が0.1〜50重量部の範囲が好適である。テトラフルオロホウ酸に対すると塩酸の重量部が0.1未満では塩酸添加の効果が十分得られず、塩酸の重量部が50より大きいとテトラフルオロホウ酸が希釈されるためゼオライトなど多孔性担体の除去が不十分となる。   It is also effective to use a mixture of tetrafluoroboric acid and hydrochloric acid as the acidic solution used for the purification of the crude carbon nanotubes. By adding hydrochloric acid, metal catalysts such as Fe and Co can be more reliably removed from the carbon nanotubes. At this time, the mixing ratio of tetrafluoroboric acid and hydrochloric acid is preferably such that the mixing ratio of tetrafluoroboric acid and hydrochloric acid is 0.1 to 50 parts by weight of hydrochloric acid with respect to 1 part by weight of tetrafluoroboric acid. When the weight part of hydrochloric acid is less than 0.1 with respect to tetrafluoroboric acid, the effect of adding hydrochloric acid is not sufficiently obtained, and when the weight part of hydrochloric acid is more than 50, tetrafluoroboric acid is diluted. Removal is insufficient.

少なくともテトラフルオロホウ酸を含む酸性溶液としては、上記の塩酸のほかに、硫酸、硝酸、酢酸などの酸性溶液を混合して用いることができる。   As an acidic solution containing at least tetrafluoroboric acid, an acidic solution such as sulfuric acid, nitric acid, and acetic acid can be mixed and used in addition to the above hydrochloric acid.

酸性溶液による粗カーボンナノチューブの精製方法として、少なくともテトラフルオロホウ酸を含む酸性溶液に浸漬する処理と、少なくとも塩酸を含む酸性溶液との浸漬処理とを逐次併用して前記基体を除去することも有効である。少なくともテトラフルオロホウ酸を含む酸性溶液で粗カーボンナノチューブを浸漬処理することにより、主としてゼオライトなどの多孔性担体を除去することができる。また、少なくとも塩酸を含む酸性溶液で粗カーボンナノチューブを浸漬処理することにより、主としてFe、Coなどの金属触媒を除去することができる。   As a method of purifying crude carbon nanotubes with an acidic solution, it is also effective to remove the substrate by sequentially using a treatment of immersing in an acidic solution containing at least tetrafluoroboric acid and an immersing treatment with an acidic solution containing at least hydrochloric acid. It is. By immersing the crude carbon nanotube with an acidic solution containing at least tetrafluoroboric acid, a porous carrier such as zeolite can be mainly removed. Further, by immersing the crude carbon nanotubes with an acidic solution containing at least hydrochloric acid, it is possible to mainly remove metal catalysts such as Fe and Co.

粗カーボンナノチューブを上記の酸性溶液に浸漬処理する場合に、室温下で処理をおこなっても多孔性担体および金属触媒の除去効果が得られるが、反応を促進するために溶液の沸騰がおきない温度範囲で加温してもよい。好ましい温度範囲としては40〜95℃である。   When the crude carbon nanotubes are immersed in the above acidic solution, the effect of removing the porous support and the metal catalyst can be obtained even if the treatment is performed at room temperature, but the solution does not boil to accelerate the reaction. You may heat in the range. A preferred temperature range is 40 to 95 ° C.

あるいは、粗カーボンナノチューブを上記の酸性溶液に浸漬処理する場合に、密閉容器中でマイクロ波を照射しながら加熱および加圧処理を加えることも有効である。これにより、ゼオライトなどの多孔性担体および金属触媒の分解を促進して短時間で処理を完了することができる。好ましい加圧条件の範囲としては1〜10MPaである。   Alternatively, when the crude carbon nanotube is immersed in the above acidic solution, it is also effective to add heat and pressure treatment while irradiating microwaves in a sealed container. Thereby, decomposition | disassembly of porous supports, such as a zeolite, and a metal catalyst can be accelerated | stimulated, and a process can be completed in a short time. A preferable pressure condition range is 1 to 10 MPa.

以上説明した精製方法で得られたカーボンナノチューブの純度は、50重量%以上、より好ましくは95重量%以上100重量%以下であり、実質的に多孔質担体を含まない高純度のカーボンナノチューブが得られる。   The purity of the carbon nanotube obtained by the purification method described above is 50% by weight or more, more preferably 95% by weight or more and 100% by weight or less, and a high-purity carbon nanotube substantially free of a porous carrier is obtained. It is done.

得られたカーボンナノチューブに含まれるゼオライトなどの多孔性担体の濃度は、1.0〜0重量%であり、極めて純度の高いカーボンナノチューブが得られる。
以上説明したカーボンナノチューブの精製方法は、高純度で欠陥の少ないカーボンナノチューブを得るための極めて有用な製造方法である。
The concentration of the porous carrier such as zeolite contained in the obtained carbon nanotubes is 1.0 to 0% by weight, and carbon nanotubes with extremely high purity can be obtained.
The carbon nanotube purification method described above is an extremely useful production method for obtaining carbon nanotubes with high purity and few defects.

以下、実施例により本発明方法をさらに詳しく具体的に説明する。ただしこれらの実施例は本発明の範囲を何ら限定するものではない。   Hereinafter, the method of the present invention will be described in more detail with reference to examples. However, these examples do not limit the scope of the present invention.

[実施例1]
多孔性担体にY型ゼオライト粉末(東ソー製;HSZ−390HUA)を用い、触媒金属化合物に酢酸第二鉄と酢酸コバルトを用いて、Fe/Co触媒をゼオライトに担持した。触媒の担持量はそれぞれ2.5重量%に調製した。その後、石英ボートに多孔性担体/触媒粉末を乗せてCVD装置の石英管内に設置して真空排気をおこない、Ar流量10ml/分で導入しながら室温から800℃まで昇温した。所定の800℃に達した後、エタノール蒸気を流量3000ml/分で導入し、Ar/エタノール雰囲気下で30分間保持した。得られた粗カーボンナノチューブをレーザーラマン分光法(レーザー波長:514nm)で測定した結果を図2に示す。ラマンスペクトルから、波数1590cm−1付近のGバンドと波数150〜300cm−1のラジアルブリージングモードが検出され、単層のカーボンナノチューブが生成していることが確認された。ついで、得られた粗カーボンナノチューブ(カーボンナノチューブ/ゼオライト/金属触媒)を、濃度17%のテトラフルオロホウ酸の酸性水溶液に、室温下で24時間浸漬してゼオライトおよび金属触媒を除去した。精製前後のカーボンナノチューブについて、熱重量分析法(空気雰囲気、室温〜800℃、10度/分昇温)による減量率測定と、電子線マイクロアナライザーによる元素分析を実施しカーボンナノチューブの純度を比較した結果を表1に示す。なお、熱重量分析法での減量率は、試料の炭素重量率に相当することからカーボンナノチューブの純度と等価である。
[Example 1]
An Fe / Co catalyst was supported on zeolite using Y-type zeolite powder (manufactured by Tosoh; HSZ-390HUA) as the porous carrier, ferric acetate and cobalt acetate as the catalytic metal compound. The catalyst loading was adjusted to 2.5% by weight, respectively. Thereafter, the porous carrier / catalyst powder was placed on a quartz boat, placed in a quartz tube of a CVD apparatus, evacuated, and heated from room temperature to 800 ° C. while being introduced at an Ar flow rate of 10 ml / min. After reaching a predetermined 800 ° C., ethanol vapor was introduced at a flow rate of 3000 ml / min, and maintained for 30 minutes in an Ar / ethanol atmosphere. FIG. 2 shows the result of measuring the obtained crude carbon nanotube by laser Raman spectroscopy (laser wavelength: 514 nm). Raman spectra are detected radial breathing mode of wave number 1590 cm -1 vicinity of the G band and the wave number 150~300Cm -1, it was confirmed that single-walled carbon nanotubes are produced. Subsequently, the obtained crude carbon nanotube (carbon nanotube / zeolite / metal catalyst) was immersed in an acidic aqueous solution of tetrafluoroboric acid having a concentration of 17% at room temperature for 24 hours to remove the zeolite and the metal catalyst. The carbon nanotubes before and after purification were subjected to thermogravimetric analysis (air atmosphere, room temperature to 800 ° C., 10 ° C./minute temperature increase), weight loss measurement, and elemental analysis using an electron microanalyzer to compare the purity of carbon nanotube The results are shown in Table 1. Note that the weight loss rate in the thermogravimetric analysis method is equivalent to the carbon weight rate of the sample and is therefore equivalent to the purity of the carbon nanotube.

Figure 0004426244
Figure 0004426244

表1の結果から、精製前のカーボンナノチューブの熱重量分析法における減量率は4重量%、元素分析では大量のゼオライト(Si)および金属触媒(Fe、Co)が検出されカーボンナノチューブの純度は低いものであった。精製後のカーボンナノチューブの減量率は77重量%で、ゼオライト構成元素のSiは検出されず少量の金属触媒(Fe、Co)が残留していた。これより、酸性溶液の浸漬処理により純度77重量%のカーボンナノチューブが得られることが確認された。   From the results in Table 1, the weight loss rate in the thermogravimetric analysis method of carbon nanotubes before purification is 4% by weight. In elemental analysis, a large amount of zeolite (Si) and metal catalysts (Fe, Co) are detected, and the purity of carbon nanotubes is low. It was a thing. The weight loss rate of the carbon nanotubes after purification was 77% by weight, and the zeolite constituent element Si was not detected, and a small amount of metal catalyst (Fe, Co) remained. From this, it was confirmed that carbon nanotubes having a purity of 77% by weight were obtained by the immersion treatment of the acidic solution.

さらに、精製後のカーボンナノチューブを誘導結合プラズマ発光分光法による定量分析を行なった結果、Si含有量は0.05重量%でSiO換算したゼオライトの濃度は0.11重量%であった。 Further, as a result of quantitative analysis of the purified carbon nanotubes by inductively coupled plasma emission spectroscopy, the Si content was 0.05% by weight and the zeolite concentration in terms of SiO 2 was 0.11% by weight.

[実施例2]
実施例1と同様条件のCVD法で得られた粗カーボンナノチューブを、テトラフルオロホウ酸1重量部に対して塩酸が3.0重量部からなる酸性水溶液に、室温下で24時間浸漬してゼオライトおよび金属触媒を除去した。精製後のカーボンナノチューブの熱重量分析法の減量率から求めた純度は75重量%で、元素分析ではゼオライト(Si)は検出されずに金属触媒(Fe、Co)のみが検出された。
[Example 2]
A crude carbon nanotube obtained by a CVD method under the same conditions as in Example 1 was immersed in an acidic aqueous solution consisting of 3.0 parts by weight of hydrochloric acid with respect to 1 part by weight of tetrafluoroboric acid at room temperature for 24 hours. And the metal catalyst was removed. The purity obtained from the weight loss rate of the purified carbon nanotubes by thermogravimetric analysis was 75% by weight. In elemental analysis, zeolite (Si) was not detected, but only metal catalysts (Fe, Co) were detected.

[実施例3]
実施例1と同様条件のCVD法で得られた粗カーボンナノチューブを、実施例1と同組成のテトラフルオロホウ酸からなる酸性水溶液に浸漬し、さらに密閉容器中でマイクロ波(出力:400W)を照射し、温度80℃,圧力10MPaで20分間処理してゼオライトおよび金属触媒を除去してカーボンナノチューブを精製した。
得られたカーボンナノチューブの減量率から求めた純度は59重量%で、元素分析ではゼオライト(Si)は検出されずに金属触媒(Fe、Co)のみが検出された。
[Example 3]
The crude carbon nanotubes obtained by the CVD method under the same conditions as in Example 1 were immersed in an acidic aqueous solution made of tetrafluoroboric acid having the same composition as in Example 1, and microwaves (output: 400 W) were applied in a sealed container. Irradiation was performed at a temperature of 80 ° C. and a pressure of 10 MPa for 20 minutes to remove the zeolite and the metal catalyst, thereby purifying the carbon nanotube.
The purity obtained from the weight loss rate of the obtained carbon nanotubes was 59% by weight, and zeolite (Si) was not detected by elemental analysis, but only metal catalysts (Fe, Co) were detected.

[実施例4]
多孔性担体にY型ゼオライト粉末(東ソー製;HSZ−320NAA)を用い、触媒金属化合物に酢酸第二鉄と酢酸コバルトを用いて、Fe/Co触媒をゼオライトに担持した。触媒の担持量はそれぞれ2.5重量%に調製した。その後、石英ボートに触媒粉末を乗せてCVD装置の石英管内に設置して真空排気をおこない、Ar流量10ml/分で導入しながら室温から600℃まで昇温した。所定の600℃に達した後、エタノール蒸気を流量3000ml/分で導入し、Ar/エタノール雰囲気下で30分間保持した。得られた黒色の生成物をレーザーラマン分光法および透過型電子顕微鏡で分析した結果、多層カーボンナノチューブが生成していることが確認された。ついで、得られた粗カーボンナノチューブ(多層カーボンナノチューブ/ゼオライト/金属触媒)を、実施例3と同様条件で処理し、ゼオライトおよび金属触媒を除去してカーボンナノチューブを精製した。精製前後の純度分析結果を表2に示す。
[Example 4]
An Fe / Co catalyst was supported on zeolite using Y-type zeolite powder (manufactured by Tosoh; HSZ-320NAA) as a porous carrier, ferric acetate and cobalt acetate as catalyst metal compounds. The catalyst loading was adjusted to 2.5% by weight, respectively. Thereafter, the catalyst powder was placed on a quartz boat, placed in a quartz tube of a CVD apparatus, evacuated, and heated from room temperature to 600 ° C. while being introduced at an Ar flow rate of 10 ml / min. After reaching the predetermined 600 ° C., ethanol vapor was introduced at a flow rate of 3000 ml / min, and maintained for 30 minutes in an Ar / ethanol atmosphere. As a result of analyzing the obtained black product by laser Raman spectroscopy and a transmission electron microscope, it was confirmed that multi-walled carbon nanotubes were produced. Next, the obtained crude carbon nanotube (multi-walled carbon nanotube / zeolite / metal catalyst) was treated under the same conditions as in Example 3 to remove the zeolite and the metal catalyst, thereby purifying the carbon nanotube. Table 2 shows the results of purity analysis before and after purification.

Figure 0004426244
Figure 0004426244

精製後のカーボンナノチューブは純度95重量%で、少量の金属触媒(Fe、Co)が残留していた。   The purified carbon nanotubes had a purity of 95% by weight and a small amount of metal catalyst (Fe, Co) remained.

カーボンナノチューブを製造するためのCVD装置の模式図を示す。The schematic diagram of the CVD apparatus for manufacturing a carbon nanotube is shown. 実施例1で得られた粗カーボンナノチューブのラマンスペクトルを示す。The Raman spectrum of the crude carbon nanotube obtained in Example 1 is shown.

符号の説明Explanation of symbols

1.原料気体
2.金属触媒/多孔性担体
3.石英管
4.電気炉
1. Raw material gas2. 2. Metal catalyst / porous support Quartz tube 4. Electric furnace

Claims (7)

炭素化合物を無機酸化物構造体からなる多孔性担体に金属触媒を担持させた基体上に接触させ熱分解し粗カーボンナノチューブを得て、ついでテトラフルオロホウ酸を含む酸性溶液に該粗カーボンナノチューブを浸漬処理することにより前記基体を除去することを特徴とするカーボンナノチューブの製造方法。 A carbon compound is brought into contact with a porous carrier made of an inorganic oxide structure on a substrate on which a metal catalyst is supported and thermally decomposed to obtain crude carbon nanotubes, and then the crude carbon nanotubes are added to an acidic solution containing tetrafluoroboric acid. A method for producing a carbon nanotube, wherein the substrate is removed by dipping treatment. 多孔性担体がゼオライト、シリカ、アルミナ、マグネシア、ジルコニア、およびチタニア、からなる群より選ばれる少なくとも一種である請求項1に記載のカーボンナノチューブの製造方法。The method for producing a carbon nanotube according to claim 1, wherein the porous carrier is at least one selected from the group consisting of zeolite, silica, alumina, magnesia, zirconia, and titania. 前記テトラフルオロホウ酸を含む酸性溶液がさらに塩酸を含み、テトラフルオロホウ酸と塩酸の混合比がテトラフルオロホウ酸1重量部に対して塩酸が0.1〜50重量部であることを特徴とする請求項1〜2のいずれかに記載のカーボンナノチューブの製造方法。 The acidic solution containing tetrafluoroboric acid further contains hydrochloric acid, and the mixing ratio of tetrafluoroboric acid and hydrochloric acid is 0.1 to 50 parts by weight with respect to 1 part by weight of tetrafluoroboric acid. The manufacturing method of the carbon nanotube in any one of Claims 1-2 . テトラフルオロホウ酸を含む酸性溶液に浸漬する処理に加えて、塩酸を含む酸性溶液への浸漬処理を逐次併用して前記基体を除去することを特徴とする請求項1〜3のいずれかに記載のカーボンナノチューブの製造方法。 In addition to the treatment by immersing in an acid solution containing tetrafluoroboric acid, according to any immersion treatment in an acidic solution sequentially in combination with the claims 1-3, characterized in that the removal of the substrate containing hydrochloric acid Carbon nanotube manufacturing method. カーボンナノチューブを酸性溶液に浸漬処理する際に、マイクロ波を照射しながら加熱および加圧処理をおこなうことを特徴とする請求項1〜のいずれかに記載のカーボンナノチューブの製造方法。 The method for producing carbon nanotubes according to any one of claims 1 to 4 , wherein when the carbon nanotubes are immersed in an acidic solution, heating and pressure treatment are performed while irradiating microwaves. 無機酸化物構造体からなる多孔性担体に金属触媒を担持した基体を含むカーボンナノチューブ粗生成物を、テトラフルオロホウ酸を含む酸性溶液に浸漬処理して前記基体を除去することを特徴とするカーボンナノチューブの精製方法。 A carbon characterized in that a carbon nanotube crude product including a substrate carrying a metal catalyst supported on a porous carrier comprising an inorganic oxide structure is immersed in an acidic solution containing tetrafluoroboric acid to remove the substrate. Nanotube purification method. 多孔性担体がゼオライト、シリカ、アルミナ、マグネシア、ジルコニア、およびチタニア、からなる群より選ばれる少なくとも一種である請求項6に記載のカーボンナノチューブの精製方法。The method for purifying a carbon nanotube according to claim 6, wherein the porous carrier is at least one selected from the group consisting of zeolite, silica, alumina, magnesia, zirconia, and titania.
JP2003344380A 2003-10-02 2003-10-02 Carbon nanotube production method and purification method Expired - Fee Related JP4426244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003344380A JP4426244B2 (en) 2003-10-02 2003-10-02 Carbon nanotube production method and purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003344380A JP4426244B2 (en) 2003-10-02 2003-10-02 Carbon nanotube production method and purification method

Publications (2)

Publication Number Publication Date
JP2005104813A JP2005104813A (en) 2005-04-21
JP4426244B2 true JP4426244B2 (en) 2010-03-03

Family

ID=34538035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003344380A Expired - Fee Related JP4426244B2 (en) 2003-10-02 2003-10-02 Carbon nanotube production method and purification method

Country Status (1)

Country Link
JP (1) JP4426244B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899044B2 (en) * 2005-08-26 2012-03-21 国立大学法人大阪大学 Surface-modified carbons and method for producing the same
KR100784791B1 (en) 2006-07-24 2007-12-14 세메스 주식회사 Facility for treating rear process of carbon nano tube, and facility and method for manufacturing carbon nano tube with the same
WO2019199228A1 (en) * 2018-04-12 2019-10-17 Agency For Science, Technology And Research Carbon purification method and carbon product

Also Published As

Publication number Publication date
JP2005104813A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP3963893B2 (en) Method for producing single-walled carbon nanotube
Prasek et al. Methods for carbon nanotubes synthesis
US10336611B2 (en) Single wall carbon nanotube purification process and improved single wall carbon nanotubes
JP4931168B2 (en) Method for producing high purity 2 to 5 carbon nanotubes
CN101164874B (en) Method for purifying multi-wall carbon nano pipe
US20060083674A1 (en) Method for forming catalyst metal particles for production of single-walled carbon nanotube
JP4849437B2 (en) Method for producing three-walled carbon nanotube and composition containing three-walled carbon nanotube
WO2007055707A2 (en) Multi-step purification of single-wall carbon nanotubes
CN109650379A (en) A kind of single-walled carbon nanotube graded oxidation purification process
JP2007176767A (en) Purifying method for composition containing carbon nanotube
JP2007254271A (en) Method for producing carbon material, carbon material, and method for producing electron device
CN102020267B (en) Purification method of single-wall carbon nano tube
JP2007197306A (en) Manufacturing method of single-wall carbon nanotube, single-wall carbon nanotube, and manufacturing method of electronic element
JP4426244B2 (en) Carbon nanotube production method and purification method
US20080279752A1 (en) Method for producing a single-wall carbon nanotube
JP4696598B2 (en) carbon nanotube
JP2007070224A (en) Composition containing single-walled carbon nanotube
JP2008031024A (en) Process for producing carbon nanotube
JP2007197304A (en) Method for manufacturing carbon nanotube and carbon nanotube-containing composition
JP2005097024A (en) Method for refining composition containing carbon nanotube
JP6772661B2 (en) Manufacturing method of carbon nanotubes
Prasek et al. Chemical vapor depositions for carbon nanotubes synthesis
JP2006187724A (en) Gas-phase reaction method
JP3952476B2 (en) Single-walled carbon nanotube and method for producing the same
US8808635B2 (en) Reactor and method for obtaining carbon material by short circuit electric current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees