JP4231612B2 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
JP4231612B2
JP4231612B2 JP2000131509A JP2000131509A JP4231612B2 JP 4231612 B2 JP4231612 B2 JP 4231612B2 JP 2000131509 A JP2000131509 A JP 2000131509A JP 2000131509 A JP2000131509 A JP 2000131509A JP 4231612 B2 JP4231612 B2 JP 4231612B2
Authority
JP
Japan
Prior art keywords
type
contact
effect transistor
field effect
mos field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000131509A
Other languages
English (en)
Other versions
JP2001308338A (ja
Inventor
孝純 大柳
篤雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2000131509A priority Critical patent/JP4231612B2/ja
Priority to US09/829,582 priority patent/US6657257B2/en
Publication of JP2001308338A publication Critical patent/JP2001308338A/ja
Application granted granted Critical
Publication of JP4231612B2 publication Critical patent/JP4231612B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7817Lateral DMOS transistors, i.e. LDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁ゲート電界効果トランジスタとそれを備える半導体集積回路に関する。
【0002】
【従来の技術】
一般にゲート電極に電圧を印加しないときの素子耐圧(アバランシェ耐圧)が30V程度を越えるものからは、絶縁ゲート電界効果トランジスタ例えばN型チャネルの横型MOS電界効果トランジスタは、N型基板では図2に示すようにN型またはP型のSi基板13上にシリコン酸化膜12を介して形成されたN型のSi基板11中に、ソース電極15に接触する高濃度N型層61及び高濃度P型層71、及び高濃度N型層61に接触するゲート酸化膜32/ゲート電極31,ゲート酸化膜32及び高濃度N型層61と高濃度P型層71に接触するP型層 (p−body層)41を有し、ゲート酸化膜32/ゲート電極31に接触するフィールド酸化膜21を介して横方向に配置されたドレイン電極16に接触する高濃度N型層62を有する。また、P型基板上では図3に示したようにN型またはP型のSi基板13上にシリコン酸化膜12を介して形成されたP型のSi基板19中に、ソース電極15に接触する高濃度N型層61及び高濃度P型層71、及び高濃度N型層61に接触するゲート酸化膜32/ゲート電極31,ゲート酸化膜32及び高濃度N型層61と高濃度P型層71に接触するP型層(p−body層)41を有し、ゲート酸化膜32/ゲート電極31に接触するフィールド酸化膜21を介して横方向に配置されたドレイン電極16に接触する高濃度N型層62を有し、ゲート酸化膜32に接触し、ドレイン電極16に接触する高濃度N型層62にわたってN型層101を有する。しかし、ゲートにしきい値電圧以上の電圧を印加したいわゆるMOS電界効果トランジスタがオン状態にある場合にも、定格以上の耐圧を保証しなければならない場合が多い。(以後、MOS電界効果トランジスタがオン状態にある場合の耐圧をオン耐圧と表現する。)ところが、通常のN型基板を用いた図2のようなN型チャネルの横型MOS電界効果トランジスタの場合、ソース−ドレイン間距離を大きく広げなければオン耐圧を定格以上保証することができない。しかし、デバイスの横寸法サイズが大きくなると、ドレイン抵抗が大きくなるため、MOS電界効果トランジスタのオン抵抗は劣化する。
【0003】
一方、P型基板を用いたN型チャネルの横型MOS電界効果トランジスタでは、N型基板のようにソース−ドレイン間距離を大きく広げることなくオン耐圧を定格以上にすることができるが、P型基板を用いたN型チャネルの横型MOS電界効果トランジスタを実現するには、P型基板とN型チャネルの横型MOS電界効果トランジスタのN型層101の間に必ずPN接合を形成しなければならず、SOI基板のデバイス形成領域であるSi層の薄膜化がはかれない。SOI基板のデバイス形成領域であるSi層の厚さは、素子分離領域であるトレンチ溝形成の時間に関わる問題であり、厚さが厚いほどそれだけ溝形成の時間がかかることになり、スループットが落ち、コスト的に不利になる。また、SOI基板のデバイス形成領域であるSi層の薄膜化が実現できれば、高耐圧のデバイスとともにSi基板上に形成される5Vや3.3V,2.5V等の電源で駆動するいわゆる低圧CMOSのソース領域及びドレイン領域を埋め込み酸化膜に接触させることができるようになり、ソース領域,ドレイン領域の寄生容量が除去できるため、低圧CMOSの高性能化を実現できるのに対し、P型基板を用いた場合には低圧CMOSの高性能化を実現するのは困難である。
【0004】
また、SOI基板でなくSi基板を用いたN型チャネルのMOS電界効果トランジスタも広く用いられているが、高耐圧デバイスが搭載されるパワーICでは、寄生トランジスタの動作が起きないようにするため、各デバイス間の距離を広くとらなければならない。また、高温動作時のリーク電流がSOI基板に比べて大きい等欠点がある。
【0005】
【発明が解決しようとする課題】
そこで、本発明は、上記問題点を考慮してなされたものであり、SOI基板を用いた絶縁ゲート電界効果トランジスタで、デバイスサイズの増加をもたらすことなくオン耐圧を向上する素子構造を提供する。
【0006】
【課題を解決するための手段】
本発明によるデバイス形成領域のSi層がN型であるSOI基板を用いたN型の絶縁ゲート電界効果トランジスタは、ゲート酸化膜の一部及びソース電極とドレイン電極間に構成されたフィールドシリコン酸化膜に接触し、ドレイン電極に接するN型拡散層に接触するまで、SOI基板のデバイス形成領域であるN型のSi層の不純物濃度よりも高くなるように構成された不純物濃度を有するN型の領域を形成したものである。これによりオン耐圧が大幅に向上する。
【0007】
まず、正のゲート電圧が印加されN型のチャネルが形成されたMOS電界効果トランジスタのオン状態のとき、ドレイン電圧−ドレイン電流特性の飽和領域から急激に電流が流れ始める現象、すなわちオン耐圧が決まる原因について下記に述べる。チャンネルが形成されている時、ソース領域からチャンネル領域を通ってドレイン領域に電子が流れ込むが、ドレイン領域に流れ込む際、電子を中和するように正孔も生成する。この正孔は、電子の流れに伴って、ドレイン領域に拡散していく。また、ドレイン電流が大きくなるとともに、流れる電子も多くなるので、同時に生成する正孔も多くなる。この正孔が、ドレイン電極に接触する高濃度N型層まで到達すると、そこで正孔が局在する。その時、高濃度N型層端での電界強度が急激に上昇するため、電界によりさらに電子−正孔対の生成が促進され、あるドレイン電圧を越えたところで急激に電流が流れ始める。
【0008】
本発明によるN型の絶縁ゲート電界効果トランジスタでは、チャネル領域からドレイン領域に電子が入っていく領域に基板濃度よりも高い濃度で構成されたN型層がある。その結果、ドレイン抵抗が低くなっている。その結果、電圧降下が小さい。その結果、ドレイン領域での電界強度は強くなっている。従って、電子の移動により生成する正孔のドレイン電極への拡散を抑制している。そのため、従来構造よりも高い電圧をかけなければ、正孔をドレイン電極側へと拡散させることができず、オン状態での耐圧が向上する。
【0009】
なお、本発明はP型の絶縁ゲート電界効果トランジスタにも適用できる。この場合は、各半導体層の導電型がN型の絶縁ゲート電界効果トランジスタとは反対になる。また、ゲート酸化膜及びフィールド酸化膜及びSOI基板中の酸化膜の替わりに、窒化膜などの他の絶縁膜を用いてもよい。
【0010】
【発明の実施の形態】
(実施例1)
図1は、本発明の第一実施例であるN型チャネルの横型MOS電界効果トランジスタの断面構造である。例えばリンでドープされたN型または例えばボロンでドープされたP型のSi基板13上にシリコン酸化膜12を介して形成された例えばリンでドープされたN型のSi基板11上に、フィールドシリコン酸化膜21,層間絶縁膜22をもち、例えばヒ素やリンがドープされたN型の高濃度拡散層61,62と例えばボロンがドープされたP型の高濃度拡散層71を持ち、N型の拡散層61とP型の拡散層71に接触する例えばアルミニウムやタングステンなどを主成分とする金属膜で形成されたソース電極15と、N型の拡散層61とP型の拡散層71に接触する例えばボロンがドープされたP型領域41と、ソース電極に接触するN型の拡散層61とP型領域41に接触するゲートシリコン酸化膜32と例えばポリシリコンや金属等で形成されたゲート電極32と、N型の拡散層62に接触する例えばアルミニウムやタングステンなどを主成分とする金属膜で形成されたドレイン電極16を持ち、ゲートシリコン酸化膜32に接触し、ソース電極15とドレイン電極16間のフィールドシリコン酸化膜に接触し、ドレイン電極に接触するN型の拡散層62に接触するまで広がる例えばリンでドープされたN型の拡散層101を有するN型の横型MOS電界効果トランジスタである。N型の高濃度層62は部分的にN型の拡散層101と接触するとともに、N型Si基板11にも接触する。N型の拡散層101により、横型MOS電界効果トランジスタのドレイン領域の抵抗が下がるため、ドレイン領域での電圧降下が小さく、ゲート酸化膜に接触するドレイン領域入り口近傍での電界強度は強くなっている。このため、P型領域41が反転しチャンネルが形成され、電子がドレイン領域に流れ込む際に生成した正孔がドレイン電極に接触する高濃度N型層まで到達する電圧は高くなるため、オン耐圧が高くなる。
【0011】
本実施例では、ゲート酸化膜に接触するP型領域41とN型層101が離れており、ゲート酸化膜下に基板濃度と等しい濃度の領域が存在するが、ゲート酸化膜下でP型領域41とN型層101が接触すれば、オン耐圧が30Vから50V程度の耐圧の比較的低いN型の横型MOSトランジスタを形成することができ、オン耐圧がそれ以上のものの場合には、本実施例のようにゲート酸化膜下に基板濃度と同じ濃度の領域を確保する必要がある。
【0012】
(実施例2)
図4は、本発明の第二実施例であるN型チャネルの横型MOS電界効果トランジスタの断面構造である。本実施例は、(実施例1)に対してP型領域41が、埋め込み酸化膜12に接触する。
【0013】
SOI基板上に形成されたデバイスは、その周りを全て絶縁膜で囲われている。しかし、この絶縁膜はコンデンサ(容量)としても働き、絶縁膜の外側から外部ノイズが加わった場合、このコンデンサによりノイズがデバイス内部に伝搬される。すなわち、埋め込み酸化膜容量をCとすると、ノイズによりある点の電位が時間dtの間にdv変化したとすると、C(dv/dt)の電流がデバイスに流れ込み、ソース及びドレインの持つ容量比に従って、ソース電極及びドレイン電極に流れ込む。このような変位電流は特に誘導負荷を有するスイッチング回路等においては避けられないもので、ドレイン電極と次段のMOS電界効果トランジスタのゲート電極との間に、コンデンサを入れることでノイズ成分を抑えることにより、次段のMOS電界効果トランジスタの誤動作をなくすことができる。ここで、ドレインに流れる電流成分を小さくできれば、ドレイン電極と次段のMOS電界効果トランジスタのゲート電極の間に入れるコンデンサのサイズを小さくすることができ、チップサイズの縮小につながる。図5に示したのは、(実施例1)の構造と(実施例2)の構造で、SOI基板の支持基板側の裏面に20kV/μsec の電圧をかけたときに、ソース及びドレインに流れる電流をコンピュータシミュレーションにより算出したもの((a)が(実施例1)の構造に対してのシミュレーション結果であり、(b)が(実施例2)の構造に対してのシミュレーション結果である)であるが、(実施例1)の構造よりも(実施例2)の構造の方が、ドレインに流れ込む電流が少なくなっていることがわかる。ソース電極の下にあるP型領域41を埋め込み酸化膜に接触させることにより、ソース領域と埋め込み酸化膜による容量Cが直接カップリングされることで、ソース領域に流れ込む電流が増え、相対的にドレイン領域に流れ込む電流が減ったためである。通常、ソース電位は、接地されているため、流れ込む電流が増えても影響を受けない。
【0014】
(実施例3)
図6(a)は、本発明の第三実施例であるN型チャネルの横型MOS電界効果トランジスタの断面構造である。(実施例1)に対して異なる点は、ゲート酸化膜32に接触し、ソース電極15とドレイン電極16間に構成されたフィールドシリコン酸化膜下にあるN型層101中に、ドレイン電極に接触する高濃度N型拡散層62が在ることである。すなわち平面的に見ると、高濃度N型拡散層62は、N型層101に周囲を囲まれている。N型層101中に高濃度N型拡散層62を配置することにより、ドレイン抵抗はさらに下がるので、オン耐圧は向上し、オン抵抗も向上する効果がある。
【0015】
また、誘導負荷を有するスイッチング回路等を構成するのに図6(b)に示すようにP型領域41を埋め込み酸化膜に接触するように構成すれば、(実施例2)のところで説明したように、外部ノイズの影響により埋め込み酸化膜を介して伝わる変位電流が、ドレイン電流として現れる量を少なくできる。
【0016】
また、N型層101は、単一層である必要はなく、図6(c)に示すように、フィールドシリコン酸化膜下のN型層101と、高濃度N型層62の下のN型層102の2層構造でも、ドレイン抵抗は下がるので、オン耐圧は向上し、オン抵抗も向上する。
【0017】
(実施例4)
図7は、本発明の第四実施例である半導体集積回路中に用いられる、N型チャネルの高耐圧横型MOS電界効果トランジスタ(N1)とP型チャネルの高耐圧横型MOS電界効果トランジスタ(P1)を示している。(実施例1)に示したN型チャネルの横型MOS電界効果トランジスタと、P型チャネルの高耐圧横型MOS電界効果トランジスタのソース電極105に接触する高濃度P型層72と高濃度N型層63に接触するN型領域51をもち、高濃度P型層72とN型領域51に接触するゲート酸化膜34に接触し、ソース電極とドレイン電極に挟まれて構成されるフィールドシリコン酸化膜下に、ドレイン電極106に接触する高濃度P型層73に接触するまで広がる基板とPN接合を形成できる深さのP型層81をもつ。P型の横型MOSトランジスタは、いわゆるリサーフ構造をとり、P型層81とN型基板11との間のPN接合が印加されるドレイン電圧による空乏層が広がることで、電界を緩和し耐圧を得る。
【0018】
本実施例においては、N型基板11を有するSOI基板に、高耐圧のCMOSを形成できる。
【0019】
(実施例5)
図8は、本発明の第五実施例である半導体集積回路中に用いられる、N型チャネルの高耐圧横型MOS電界効果トランジスタ(N2)とP型チャネルの横型MOS電界効果トランジスタ(P2)を示している。(実施例4)と異なり、N型チャネルの横型MOS電界効果トランジスタのP型領域41とN型層101,P型チャネルの横型MOS電界効果トランジスタのN型領域51とP型層81が埋め込み酸化膜に接触する。(実施例2)で述べたように、誘導負荷を有するスイッチング回路等を構成する場合には、変位電流による誤動作を防ぐため、P型領域41を埋め込み酸化膜と接触させることは効果があることと同様、P型チャネルのMOS電界効果トランジスタにおいてもN型領域51が埋め込み酸化膜に接触することにより、外部ノイズによる変位電流のソース電極に流れ込む量は増大する。従って、P型チャネルの横型MOS電界効果トランジスタP2の耐ノイズ性能が向上する。その結果、ノイズに強いCMOSをSOI基板に形成できる。
【0020】
なお、本実施例において、P型チャネルの横型MOS電界効果トランジスタP2を図8のP1としてもよい。この場合、P型層81とN型基板との間にPN接合による容量が生じ、この容量はドレイン電極に結合されている。その結果、埋め込み酸化膜との合成容量は小さくなり、ドレイン電極に流れ込む変位電流は、ソース電極に流れ込む変位電流より小さい。その結果、図8のP1によっても耐ノイズ性は向上する。
【0021】
(実施例6)
図9(a)は、本発明の第六実施例であるN型チャネルの横型MOS電界効果トランジスタの断面構造図である。通常、高耐圧MOS電界効果トランジスタは、高い電流駆動能力が要求されるため、図8の断面構造図のような横方向に対して、奥行き方向の長さを長くとることによって、電流駆動能力を上げる。ところが、奥行きをどこまでも長くすると、チップの形状が長方形になるため、1枚のウエハーから取得できるチップ数が少なくなる。そこで、高耐圧MOSトランジスタの形状を、奥行き方向に広げることはもちろんのこと、横方向にも広げるような形で、ソース,ドレイン,ソース,ドレイン,……と必要な電流駆動能力が得られるまでソース電極,ドレイン電極の数をとる。本実施例は、絶縁膜14で充填されたトレンチ溝の近傍には、ソース電極がくるようにする。N型チャネルの横型MOS電界効果トランジスタでは、ゲート電極に電圧を印加した状態で、ドレイン電極に電圧を印加するのに対し、ソース電極は接地しておく。SOI基板を用いたデバイスにおいて、トレンチ溝内にあるデバイス形成領域の外側は、接地した状態にある。もし、トレンチ溝近傍にドレイン電極があると、ドレイン電極に印加された電圧のポテンシャル曲線がトレンチ溝にかかることになる。例えば、トレンチ溝がシリコン酸化膜とポリシリコンで埋め込まれた場合、その後のプロセスの過程で酸化されたときの酸化の程度がポリシリコンの方が大きいため、トレンチ溝の上部でストレスが大きくなる現象がある。その結果、例えば500Vクラスの高耐圧がドレイン電極に印加されるような場合、トレンチ溝の近傍にドレイン電極があるとトレンチ溝は印加された電圧の一部のポテンシャルを受けるため、破壊してしまう可能性がある。本実施例によれば、トレンチ溝近傍はソース電極を設けるので、トレンチ溝内の絶縁膜の破壊が防止される。
【0022】
また、誘導負荷を有するスイッチング回路等を構成する場合に問題になる変位電流の発生源となるノイズが絶縁膜で充填されたトレンチ溝によって構成される容量を介してデバイス形成領域に伝搬する場合においても、トレンチ溝近傍にソース電極が設置されていれば、ソース領域で変位電流を受け取ることができるため、変位電流による誤動作が防止される。
【0023】
また、図9(b)に示したように、N型層101中にドレイン電極に接触する高濃度N型層62を構成すれば、ドレイン抵抗が下がるので、オン抵抗はその分向上する。さらに、(実施例2)などで示したように、P型領域41,42が埋め込み酸化膜に接触するように構成すれば、変位電流による誤動作防止に有効である。
【0024】
(実施例7)
図10は、本発明の第七実施例である半導体集積回路に用いられる高耐圧N型チャネルの横型MOS電界効果トランジスタ(N3)と高耐圧P型チャネルの横型MOS電界効果トランジスタ(P3)を示している。高耐圧N型チャネルの横型MOS電界効果トランジスタは、(実施例6)で示したN型チャネルの横型MOSトランジスタのドレイン電極16に接触する高濃度N型層62にP型チャネルの横型MOS電界トランジスタのN型領域52,53と同一工程で形成されたN型層51を持つ。また、P型チャネルの横型MOS電界効果トランジスタは、リサーフ構造型であるが、トレンチ溝近傍にソース電極107がある。ソース電極をトレンチ溝近傍に構成することにより、誘導負荷を有するスイッチング回路等を構成する場合に問題になる変位電流の発生源となるノイズが絶縁膜で充填されたトレンチ溝によって構成される容量を介してデバイス形成領域に伝搬する場合においても、ソース領域で変位電流を受け取ることができるため、変位電流による誤動作が防止される。
【0025】
また、N型チャネルの横型MOS電界効果トランジスタかつ/またはP型チャネルの横型MOS電界効果トランジスタのソース領域であるP型領域41,42及びN型領域52,53が埋め込み酸化膜に接触するように構成されていれば変位電流の影響は小さくできる。また、N型層101,102やP型層81,82も埋め込み酸化膜に接触しても、問題にならない。
【0026】
(実施例8)
図11は、本発明の第八実施例である半導体集積回路に用いられる高耐圧N型チャネルの横型MOS電界効果トランジスタ(N3)と高耐圧P型チャネルの横型MOS電界効果トランジスタ(P4)を示している。高耐圧N型チャネルの横型MOS電界効果トランジスタは、(実施例7)で示したものと同じである。また、P型チャネルの横型MOS電界効果トランジスタは、リサーフ構造型であるが、トレンチ溝近傍にドレイン電極が設けられている。P型チャネルのMOS電界効果トランジスタでは、一般的にソース電極、及びゲート電極に電圧を印加して、ソース電位は高電位にしてドレイン電極は接地電位から高電位の任意の電位をとる。このため、高耐圧がソース電極及びドレイン電極に印加されても、トレンチ溝近傍にはドレイン電極が構成されていることにより、ドレインが接地電位のときトレンチ溝には電圧がかからないため、例えば500Vという高耐圧がかかり、外部ノイズによる変位電流が問題にならない場合には、本実施例のように、P型の横型MOS電界効果トランジスタは、トレンチ溝近傍にドレイン電極を構成した方が良い場合もある。
【0027】
また、実施例7と同様にP型領域41,42及びN型領域52,53が埋め込み酸化膜に接触してもよいし、N型層101,102やP型層81,82も埋め込み酸化膜に接触してもよい。
【0028】
(実施例9)
図12(a)〜(d),図13(e)〜(h),図14(a−1)(b−1)(e−1)は、本発明の第一実施例であるN型チャネルの横型MOS電界効果トランジスタの製造方法を示した断面構造図である。まず、(a)に示すように、N型またはP型のSi基板13上にシリコン酸化膜12を介して積層されたN型のSi基板11上に例えば熱酸化法などによりシリコン酸化膜91を例えば数十から数百nm成長させ、シリコン窒化膜92を例えばCVD法などにより数十から数百nm堆積する。次に(b)のようにシリコン窒化膜92を加工する。シリコン窒化膜92が残った場所が、デバイス形成領域であるいわゆるアクティブ領域となる。ここで、レジストなどをマスクとして、例えばリンイオンなどのN型不純物イオンを例えば数十keV程度のエネルギーで、1×1012/cm2〜1×1013/cm2 程度のドーズ量をイオン注入して、N型の不純物層111を形成する。ここで、(c)に示すように例えば900℃〜1100℃程度の温度で酸化を行い、フィールド酸化膜21を数千Å〜2万Å形成したのち、シリコン窒化膜92を除去する。このとき、(b)で形成したN型不純物層は拡散し、フィールド酸化膜下にN型層101が形成される。次に(d)に示すようにゲート酸化膜を数十オングストローム〜千Å程度の厚さに形成後、ポリシリコンなどを数千Å堆積し、加工することにより、ゲート酸化膜32とゲート電極31を形成する。(e)に示すように、例えばボロンイオンなどのP型の不純物イオン49を例えば数十keV程度のエネルギーで、1×1013/cm2〜1×1014/cm2程度のドーズ量イオン注入してP型層40を形成する。ここで、(f)に示すように例えば900℃〜1100℃程度の温度で、数十分から数百分程度の拡散を施すことにより、P型領域41を形成する。N型の拡散層101もそれとともに拡散する。ここで、(g)に示すように、例えばヒ素イオンなどのN型不純物イオンを例えば数十keVのエネルギーで、例えば1×1015/cm2〜1×1016/cm2のドーズ量で、また例えばボロンイオンやBF2イオンなどのP型不純物イオンを数十keVのエネルギーで例えば1×1015/cm2〜1×1016/cm2のドーズ量でイオン注入をし、高濃度N型層61,62と高濃度P型層71を形成し、例えば800℃〜1000℃の温度で、数分から数十分程度の拡散を施したのち、Si基板中にトレンチ溝18を形成する。ここで、(h)に示すようにトレンチ溝を例えばシリコン酸化膜等の絶縁膜で埋め込むとともに、例えばシリコン酸化膜等による層間絶縁膜22を形成し、ソース電極及びドレイン電極形成位置、及びゲート電極形成位置にコンタクト穴を形成し、あとは公知の工程により配線を形成することにより、N型の横型MOS電界効果トランジスタを得る。
【0029】
本実施例において、(f)で行った900℃〜1100℃程度の温度で、数十分から数百分程度の拡散の温度と時間を調節することにより、(実施例2)で述べた構造にすることができる。
【0030】
また、(a−1)に示すように、Si基板上11にシリコン酸化膜91を形成後、フォトレジスト93によりN型層を形成したくない場所を保護後、例えば数十keV程度のエネルギーで、1×1012/cm2〜1×1013/cm2程度のドーズ量のイオン注入110を行うことにより、N型の不純物層111を形成する。ここで、(b−1)に示すように、シリコン窒化膜92を堆積後、(c)以降の工程を進めば、図6(a)に示した構造を得る。ここで、上の説明と同様(f)で行った900℃〜1100℃程度の温度で、数十分から数百分程度の拡散の温度と時間を調節することにより、図6(b)で述べた構造にすることができる。
【0031】
さらに、(a)〜(d)までは上で述べたように形成し、(e)で(e−1)に示すように、P型不純物イオン49をイオン注入して、P型層40を形成するとともに、例えばリンイオンなどのN型不純物イオン59をイオン注入して、N型層50を同時に形成したのち、(f)以降の工程を進めば、図6(c)で述べた構造を得ることができる。
【0032】
(実施例10)
図15(a)〜(d),図16(e)〜(h)に示したのは、本発明の第四実施例である半導体集積回路中に用いられる高耐圧N型の横型MOS電界効果トランジスタ(N1)と高耐圧P型の横型MOS電界効果トランジスタ(P1)をSOI基板上に実現するための、製造方法を工程順に示した断面構造図である。(a)に示すように、N型またはP型のSi基板13上にシリコン酸化膜12を介して、N型のSi基板11があり、この上に例えばドライエッチング法などにより、Si基板中にトレンチ溝を形成後、例えばCVD法などによりシリコン酸化膜やポリシリコン膜などの絶縁膜を堆積することにより、絶縁膜で充填されたトレンチ溝14及びシリコン酸化膜91を形成する。次に(b)に示すようにシリコン窒化膜92を例えばCVD法などにより数十から数百nm堆積後加工をする。ここで、例えばリンイオンなどのN型不純物イオン110を数十keVで1×1012/cm2〜1×1013/cm2程度のドーズ量と、例えばボロンイオンなどのP型不純物イオン210を数十keVで1×1012/cm2〜1×1013/cm2程度のドーズ量のイオン注入法により基板中に注入して、N型領域111とP型領域211を形成する。ここで(c)に示すように、900℃〜1100℃の温度で酸化を行い、フィールド酸化膜21を形成後、シリコン窒化膜を除去する。このとき(b)で形成したN型領域111とP型領域211は拡散して、(c)のN型層101,P型層81となる。次に(d)に示すようにゲート酸化膜と例えばポリシリコン膜を堆積後、加工を行いゲート酸化膜32,34とゲート電極31,33を形成する。ここで(e)に示すように、例えばボロンイオンなどのP型不純物イオン49を数十keVで1×1013/cm2〜1×1014/cm2程度のドーズ量と例えばリンイオンなどのN型不純物イオン59を数十keVで1×1013/cm2 〜1×1014/cm2 程度のドーズ量のイオン注入をして、P型領域40とN型領域50を形成する。ここで、900℃〜1100℃程度の温度で、数十から数百分程度の拡散を施し、(f)に示すようにP型領域41とN型領域51を形成する。次に、(g)に示すように例えばヒ素イオンなどのN型不純物イオンを数十keVで1×1015/cm2〜1×1016/cm2程度のドーズ量イオン注入して、高濃度N型層61,62,63を、また例えばボロンイオンなどのP型不純物イオンをイオン注入して数十keVで1×1015/cm2〜1×1016/cm2程度のドーズ量イオン注入して、高濃度P型層71,72,73を形成する。ここで、層間絶縁膜22を形成後、コンタクト穴を形成し、ソース電極15,105,ドレイン電極16,106を、及びゲート電極と配線との接続を行い、高耐圧N型の横型MOSトランジスタと高耐圧P型の横型MOSトランジスタを得る。
【0033】
また、(f)における拡散を、900℃〜1100℃程度の温度で、数十分から数百分程度の拡散の温度と時間を調節することにより、図12で述べた構造にすることができることは言うまでもない。
【0034】
(実施例11)
図17(a)〜(d),図18(d)〜(f),図19(g)〜(i)に示したのは、本発明の第七実施例である半導体集積回路中に用いられる高耐圧N型チャネルの横型MOS電界効果トランジスタ(N3)と高耐圧P型チャネルの横型MOS電界効果トランジスタ(P3)をSOI基板上に実現するための、製造方法を工程順に示した断面構造図である。(a)に示すようにN型またはP型のSi基板13上にシリコン酸化膜12を介して形成されたN型のSi基板11上に、例えば熱酸化法などによりシリコン酸化膜91を例えば数十から数百nm成長させた後、シリコン窒化膜92を例えばCVD法などにより数十から百数十nm堆積する。次に、(b)に示すようにシリコン窒化膜を加工後、例えばリンなどのN型不純物イオン110を例えば数十keVのエネルギーで、1×1012/cm2 〜1×1014/cm2 程度のドーズ量、またボロンイオンやBF2イオンなどのP型不純物イオン210を例えば数十keVのエネルギーで1×1012/cm2 〜1×1014/cm2 程度のドーズ量イオン注入することで、Si基板中にN型層111とP型層211を形成する。ここで、900℃〜1100℃の温度で数十分から数百分酸化をしたのち、シリコン窒化膜を除去することで、(c)に示すようにフィールド酸化膜21を得る。ここで、(b)で作成したN型層110やP型層210は、拡散してN型層101,102,P型層81,82となる。ここで、Si基板中にドライエッチング法などによりトレンチ溝を形成し、CVD法などにより溝を充填することで、(d)に示すように絶縁膜で充填されたトレンチ溝14を形成する。ここで(e)に示すように、例えば800℃から900℃の温度で、熱酸化法によりゲート酸化膜及びCVD法により例えばポリシリコン膜を堆積後加工することにより、ゲート酸化膜32,34,36,38及びゲート電極31,33,35,37を形成する。ここで図(f)に示すように、例えばリンイオンなどのN型不純物イオン59及びボロンイオンやBF2イオンなどのP型不純物イオン49を数十keVのエネルギーで1×1013/cm2〜5×1014/cm2 程度のドーズ量イオン注入することにより、N型層およびP型層を形成する。ここで図(g)に示すように例えば900℃から1100℃程度の温度で、数十から数百分拡散を施すことで、N型の高耐圧横型MOS電界効果トランジスタのP型領域41,42とP型の高耐圧横型MOS電界効果トランジスタのN型領域52,53を形成する。このときドレイン電極の下に、N型の横型MOS電界効果トランジスタには、N型領域51がP型の横型MOS電界効果トランジスタには、P型領域41が形成される。次に図(h)に示すように、MOS電界効果トランジスタのソース電極及びドレイン電極に接触する高濃度N型層61,62,63,64,65と高濃度P型層71,72,73,74,75を作成する。次に図(i)に示すように層間絶縁膜22を形成後、コンタクト穴をあけて、N型チャネルMOS電界効果トランジスタのソース電極15,17、及びドレイン電極16、P型チャネルMOS電界効果トランジスタのソース電極105,107、及びドレイン電極106を作成する。
【0035】
(実施例12)
図20(a)〜(d),図21(e)〜(h),図22(i)(j)に示したのは、高耐圧素子と低耐圧のCMOS電界効果トランジスタが混載する例えば、パワーIC等の半導体集積回路中に用いられる高耐圧N型チャネルの横型MOS電界効果トランジスタと低圧系のN型チャネルのMOS電界効果トランジスタをSOI基板中に実現するための、製造方法を工程順に示した断面構造図である。(a)に示すようにN型またはP型のSi基板13上にシリコン酸化膜12を介して形成されたN型のSi基板11中にトレンチ溝を形成し、シリコン酸化膜やポリシリコン膜等の絶縁膜で充填しCMP装置などを用いシリコンを平坦化し、絶縁膜で充填されたトレンチ溝14とする。次に、例えば熱酸化法などによりシリコン酸化膜91を例えば数十から数百nm成長させた後、シリコン窒化膜92を例えばCVD法などにより数十から百数十nm堆積する。ここで(b)に示すようにシリコン窒化膜を加工後、例えばリンなどのN型不純物イオン110を例えば数十keVのエネルギーで、1×1012/cm2〜1×1014/cm2程度のドーズ量イオン注入することで、Si基板中にN型層111を形成する。ここで900℃〜1100℃の温度で数十分から数百分酸化をしたのち、シリコン窒化膜を除去することで、(c)に示すようにフィールド酸化膜21を得る。ここで、(b)で作成したN型層110は、拡散してN型層101,102となる。次に(d)に示すように、例えば800℃から900℃の温度で、熱酸化法によりゲート酸化膜及びCVD法により例えばポリシリコン膜を堆積後、加工することにより高耐圧N型の横型MOS電界効果トランジスタのゲート酸化膜32,34及びゲート電極31,33を形成する。次に図(e)に示すように、例えばリンイオンなどのN型不純物イオン59を、また例えばボロンイオンやBF2イオンなどのP型不純物イオン49を、数十keVのエネルギーで1×1013/cm2 〜5×1014/cm2 程度のドーズ量イオン注入することにより、N型層およびP型層を形成する。ここで、例えば900℃から1100℃程度の温度で、数十から数百分拡散を施すことで、N型の高耐圧横型MOS電界効果トランジスタのP型領域41,42を形成する。このとき、ドレイン電極の下に、N型の横型MOS電界効果トランジスタには、N型領域51が形成される。ここで(f)に示すように、高耐圧N型の横型MOS電界効果トランジスタのソース領域及びドレイン領域の高濃度N型層61,62,63と高濃度P型層71,72を形成する。次に図(g)に示すように例えばボロンイオンやBF2イオンなどのP型不純物イオンを数百keVのエネルギーでイオン注入して、900℃〜1100℃程度の温度で数十から百分程度の拡散を施すことによりP型ウェル401を形成する。次に例えば800℃から900℃の温度で、熱酸化法によりゲート酸化膜及びCVD法により例えばポリシリコン膜を堆積後加工することにより、低耐圧のN型MOS電界効果トランジスタのゲート酸化膜302ゲート電極301を形成する。次に、 (i)に示すように公知な技術を用いて、N型のソース,ドレイン領域を例えばLDD構造などの形にする。次に(j)に示すように層間絶縁膜22を例えばCVD法などにより堆積したのち、コンタクト穴をあけメタル電極を形成することで、高耐圧N型の横型MOS電界効果トランジスタのドレイン電極16,ソース電極15,17、そして低耐圧N型MOS電界効果トランジスタのソース/ドレイン電極602,601を得る。
【0036】
本実施例は高耐圧N型チャネルの横型MOS電界効果トランジスタと、低圧のN型チャネルMOS電界効果トランジスタの組み合わせの実施例を述べたが、他に組み合わさることができるものとしては、高耐圧N型チャネルの横型MOS電界効果トランジスタに高耐圧P型チャネルの横型MOS電界効果トランジスタ,低圧N型チャネルMOS電界効果トランジスタ,低圧P型チャネルMOS電界効果トランジスタ,バイポーラトランジスタ等さまざまに組み合わせることができる。
【0037】
(実施例13)
図23に示したのは、本発明を実施するためのシステムの一例として、自動車のエンジン制御を行うエンジンコントロールユニットシステムのブロック図の一例を示したものである。自動車のエンジン制御では、インジェクタ,スロットルバルブ,クランク等からの信号(空気流量,空燃比,水温,排気温度,触媒温度,吸気圧,クランク角,エアコンスイッチ,スロットル開度等)を各種センサで検知して自動車コントロールユニットに送る。コントロールユニットでは、エンジンに最適な空燃比となるように制御し、コントロールユニットより高耐圧MOS電界効果トランジスタやIGBT等を介して、インジェクタ,スロットルバルブ,クランク等に送られる。
【0038】
エンジンコントロールユニットは、図中の3種類のブロックから成るがこれらが1チップで形成されることも、複数チップから構成されることもある。どの場合においても各種ドライバに関しては、高耐圧素子が用いられ、ここに本発明による高耐圧N型の横型MOS電界効果トランジスタ,高耐圧P型の横型MOS電界効果トランジスタを含むパワーIC回路により実現することにより、そのチップサイズを大幅に縮小できる効果をもたらす。また、本発明はSOI基板のデバイス形成領域であるSi層の薄膜化にも充分対応できるものであり、マイコン等も1チップに取り込む場合には、そのマイコンの性能もソース領域,ドレイン領域を埋め込み酸化膜に接触させることで寄生容量を除去でき高速化できる。
【0039】
(実施例14)
図24に示したのは、本発明を実施するためのシステムの他の例としてブレーキ制御システムやサスペンション制御システム,トランスミッション制御システム等に用いられるエンジンコントロールユニットシステムのブロック図の一例を示したものである。自動車の車輪やブレーキ,スロットルからの信号(ブレーキ踏力,車輪速度,加速度等)を各種センサで検知して、自動車コントロールユニットに送る。コントロールユニットでは、車速,路面,ドライバーからのペダル操作に応じた制御をする信号をアクチュエーターに送る。アクチュエーターからは、高耐圧MOS電界効果トランジスタやIGBT等を介して、ブレーキ,スロットルバルブに伝えられる。
【0040】
前実施例13と同様に、各種ドライバに関しては、高耐圧素子が用いられここによる本発明の高耐圧N型の横型MOS電界効果トランジスタ,高耐圧P型の横型MOS電界効果トランジスタを含むパワーIC回路により実現することにより、そのチップサイズを大幅に縮小できる。また、マイコン等も1チップに取り込む場合には、そのマイコンの性能もソース領域,ドレイン領域を埋め込み酸化膜に接触させることで高速化できる。
【0041】
【発明の効果】
本発明により、デバイス形成領域がN型であるSOI基板上に作成する高耐圧N型の横型MOS電界効果トランジスタに対して、デバイスサイズを大きく広げることなくオン状態での耐圧を定格以上確保することができる。
【図面の簡単な説明】
【図1】本発明の第一実施例における高耐圧N型チャネルの横型MOS電界効果トランジスタの断面構造図。
【図2】従来技術としてあるデバイス形成領域がN型であるSOI基板上に形成された高耐圧N型チャネルの横型MOS電界効果トランジスタの断面構造図。
【図3】従来技術としてあるデバイス形成領域がP型であるSOI基板上に形成された高耐圧N型チャネルの横型MOS電界効果トランジスタの断面構造図。
【図4】本発明の第二実施例における高耐圧N型チャネルの横型MOS電界効果トランジスタの断面構造図。
【図5】本発明の第二実施例である高耐圧N型チャネルの横型MOS電界効果トランジスタのノイズに対する効果を現した図。
【図6】本発明の第三実施例における高耐圧N型チャネルの横型MOS電界効果トランジスタの断面構造図。
【図7】本発明の第四実施例における高耐圧N型チャネルの横型MOS電界効果トランジスタと高耐圧P型チャネルの横型MOS電界効果トランジスタを混載させた場合の断面構造図。
【図8】本発明の第五実施例における高耐圧N型チャネルの横型MOS電界効果トランジスタと高耐圧P型チャネルの横型MOS電界効果トランジスタを混載させた場合の断面構造図。
【図9】本発明の第六実施例における高耐圧N型チャネルの横型MOS電界効果トランジスタの断面構造図。
【図10】本発明の第七実施例における高耐圧N型チャネルの横型MOS電界効果トランジスタと高耐圧P型チャネルの横型MOS電界効果トランジスタを混載させた場合の断面構造図。
【図11】本発明の第八実施例における高耐圧N型チャネルの横型MOS電界効果トランジスタと高耐圧P型チャネルの横型MOS電界効果トランジスタを混載させた場合の断面構造図。
【図12】本発明の第一実施例の高耐圧N型チャネルの横型MOS電界効果トランジスタを実現するための製造方法を工程順に示した断面構造図。
【図13】本発明の第一実施例の高耐圧N型チャネルの横型MOS電界効果トランジスタを実現するための製造方法を工程順に示した断面構造図。
【図14】本発明の第一実施例の高耐圧N型チャネルの横型MOS電界効果トランジスタを実現するための製造方法を工程順に示した断面構造図。
【図15】本発明の第四実施例である半導体集積回路中に用いられる高耐圧N型チャネルの横型MOS電界効果トランジスタと高耐圧P型チャネルの横型MOS電界効果トランジスタを実現するための製造工程順に示した断面構造図。
【図16】本発明の第四実施例である半導体集積回路中に用いられる高耐圧N型チャネルの横型MOS電界効果トランジスタと高耐圧P型チャネルの横型MOS電界効果トランジスタを実現するための製造工程順に示した断面構造図。
【図17】本発明の第七実施例である半導体集積回路中に用いられる高耐圧N型チャネルの横型MOS電界効果トランジスタと高耐圧P型チャネルの横型MOS電界効果トランジスタをSOI基板上に実現するための、製造方法を工程順に示した断面構造図。
【図18】本発明の第七実施例である半導体集積回路中に用いられる高耐圧N型チャネルの横型MOS電界効果トランジスタと高耐圧P型チャネルの横型MOS電界効果トランジスタをSOI基板上に実現するための、製造方法を工程順に示した断面構造図。
【図19】本発明の第七実施例である半導体集積回路中に用いられる高耐圧N型チャネルの横型MOS電界効果トランジスタと高耐圧P型チャネルの横型MOS電界効果トランジスタをSOI基板上に実現するための、製造方法を工程順に示した断面構造図。
【図20】高耐圧N型チャネルの横型MOS電界効果トランジスタと低圧系のN型チャネルのMOS電界効果トランジスタをSOI基板上に実現するための、製造方法を工程順に示した断面構造図。
【図21】高耐圧N型チャネルの横型MOS電界効果トランジスタと低圧系のN型チャネルのMOS電界効果トランジスタをSOI基板上に実現するための、製造方法を工程順に示した断面構造図。
【図22】高耐圧N型チャネルの横型MOS電界効果トランジスタと低圧系のN型チャネルのMOS電界効果トランジスタをSOI基板上に実現するための、製造方法を工程順に示した断面構造図。
【図23】本発明の高耐圧N型チャネルの横型MOS電界効果トランジスタを実現するエンジンコントロールユニットのブロック図。
【図24】本発明の高耐圧N型チャネルの横型MOS電界効果トランジスタを実現するエンジンコントロールユニットのブロック図。
【符号の説明】
11…N型のSi基板、12…埋め込みシリコン酸化膜、13…Si基板、14…絶縁膜で充填されたトレンチ溝、15…高耐圧N型チャネルの横型MOS電界効果トランジスタのドレイン電極、16…高耐圧N型チャネルの横型MOS電界効果トランジスタのソース電極、105…高耐圧P型チャネルの横型MOS電界効果トランジスタのソース電極、106…高耐圧P型チャネルの横型MOS電界効果トランジスタのドレイン電極、18…トレンチ溝、19…P型Si基板21…フィールド酸化膜、22…層間絶縁膜、31,33,35,37…ゲート酸化膜、32,34,36,38…ゲート電極、41,42…高耐圧N型チャネルの横型MOS電界効果トランジスタのP型領域(p−body層)、49…P型不純物イオン、51,52,53…高耐圧P型チャネルの横型MOS電界効果トランジスタのN型領域(n−body層)、59…N型不純物イオン、61,62,63,64…高濃度N型層、71,72,73,74…高濃度P型層、81,82…P型のドリフト層、101,102…N型のドリフト層、110…N型不純物イオン、111…N型層、301…低耐圧CMOS電界効果トランジスタのゲート電極、302…低耐圧CMOS電界効果トランジスタのゲート酸化膜、401…P型のウェル領域、501…低耐圧CMOS電界効果トランジスタのソース/ドレイン電極、601,602…低耐圧CMOS電界効果トランジスタのソース/ドレイン領域。

Claims (3)

  1. デバイス形成領域が第1導電型であるSOI(Silicon On Insulator)基板中に、ソース電極に接する第1導電型及び第2導電型の半導体層と、
    前記ソース電極に接する第2導電型の半導体層に接触するゲート絶縁膜/ゲート電極と、
    前記ゲート電極に接触するフィールド絶縁膜を介して、横方向に配置されたドレイン電極に接する第2導電型の半導体層と、
    前記ソース電極に接する第1導電型及び第2導電型の半導体層かつ前記ゲート絶縁膜に接触する第1導電型層からなるbody層を有する絶縁ゲート電界効果トランジスタにおいて、
    前記ゲート絶縁膜の一部及び前記フィールド絶縁膜に接触し、かつ、前記ドレイン電極に接する第2導電型の半導体層に接触する第2導電型の半導体層が前記SOI基板の埋め込み絶縁膜に接触しない深さで、かつ、前記デバイス形成領域とPN接合を形成できる深さを有する前記絶縁ゲート電界効果トランジスタと、
    前記絶縁ゲート電界効果トランジスタと異なる他の絶縁ゲート電界効果トランジスタとを有し、
    前記他の絶縁ゲート電界効果トランジスタは、
    前記SOI基板中に、他のソース電極に接する第1導電型及び第2導電型の半導体層と、
    前記他のソース電極に接する第1導電型の半導体層に接触する他のゲート絶縁膜/ゲート電極と、
    前記他のゲート電極に接触する他のフィールド絶縁膜を介して、横方向に配置された他のドレイン電極に接する第1導電型の半導体層と、
    前記他のソース電極に接する第1導電型及び第2導電型の半導体層かつ前記他のゲート絶縁膜に接触している第2導電型層からなる body 層と、
    前記他のゲート絶縁膜の一部及び前記他のフィールド絶縁膜に接触し、前記ドレイン電極に接する第1導電型の半導体層に接触するまで、前記デバイス形成領域の不純物濃度よりも高い不純物濃度の第1導電型の領域を有する半導体集積回路。
  2. 請求項において、前記他のソース電極に接する第1導電型及び第2導電型の半導体層に接触する前記第2導電型層が、前記SOI基板の埋め込み絶縁膜と接触する半導体集積回路。
  3. 請求項またはにおいて、前記他のドレイン電極に接する第1導電型の半導体層が、前記第1導電型の領域中に在る半導体集積回路。
JP2000131509A 2000-04-26 2000-04-26 半導体集積回路 Expired - Fee Related JP4231612B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000131509A JP4231612B2 (ja) 2000-04-26 2000-04-26 半導体集積回路
US09/829,582 US6657257B2 (en) 2000-04-26 2001-04-09 Insulated gate field effect transistor and semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000131509A JP4231612B2 (ja) 2000-04-26 2000-04-26 半導体集積回路

Publications (2)

Publication Number Publication Date
JP2001308338A JP2001308338A (ja) 2001-11-02
JP4231612B2 true JP4231612B2 (ja) 2009-03-04

Family

ID=18640393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000131509A Expired - Fee Related JP4231612B2 (ja) 2000-04-26 2000-04-26 半導体集積回路

Country Status (2)

Country Link
US (1) US6657257B2 (ja)
JP (1) JP4231612B2 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4447768B2 (ja) * 2000-12-01 2010-04-07 三菱電機株式会社 フィールドmosトランジスタおよびそれを含む半導体集積回路
EP1291924A1 (en) * 2001-09-10 2003-03-12 STMicroelectronics S.r.l. MOS semiconductor device having a body region
JP3783156B2 (ja) * 2001-10-17 2006-06-07 株式会社日立製作所 半導体装置
ITMI20021098A1 (it) * 2002-05-22 2003-11-24 St Microelectronics Srl Struttura integrata atta a realizzare all'interno di una sacca dielettricamente isolata un componente mos
GB2395059B (en) * 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
KR100489802B1 (ko) * 2002-12-18 2005-05-16 한국전자통신연구원 고전압 및 저전압 소자의 구조와 그 제조 방법
DE10343132B4 (de) * 2003-09-18 2009-07-09 X-Fab Semiconductor Foundries Ag Isolierte MOS-Transistoren mit ausgedehntem Drain-Gebiet für erhöhte Spannungen
US20050072975A1 (en) * 2003-10-02 2005-04-07 Shiao-Shien Chen Partially depleted soi mosfet device
DE10361696B4 (de) * 2003-12-30 2016-03-10 Infineon Technologies Ag Verfahren zum Herstellen einer integrierten Halbleiterschaltungsanordnung
JP4864344B2 (ja) * 2005-05-16 2012-02-01 パナソニック株式会社 半導体装置
JP4793078B2 (ja) * 2006-04-25 2011-10-12 株式会社デンソー 半導体装置
JP5186729B2 (ja) * 2006-05-11 2013-04-24 株式会社デンソー 半導体装置
DE102006027504A1 (de) * 2006-06-14 2007-12-27 X-Fab Semiconductor Foundries Ag Randabschlussstruktur von MOS-Leistungstransistoren hoher Spannungen
JP4616856B2 (ja) * 2007-03-27 2011-01-19 株式会社日立製作所 半導体装置、及び半導体装置の製造方法
JP5479671B2 (ja) * 2007-09-10 2014-04-23 ローム株式会社 半導体装置
EP2417788A4 (en) * 2009-04-09 2015-08-05 Aegis Mobility Inc CONTEXT-BASED DATA TRANSMISSION
US7915129B2 (en) * 2009-04-22 2011-03-29 Polar Semiconductor, Inc. Method of fabricating high-voltage metal oxide semiconductor transistor devices
JP5452195B2 (ja) 2009-12-03 2014-03-26 株式会社 日立パワーデバイス 半導体装置及びそれを用いた電力変換装置
US9136158B2 (en) * 2012-03-09 2015-09-15 Taiwan Semiconductor Manufacturing Company, Ltd. Lateral MOSFET with dielectric isolation trench
US8853780B2 (en) * 2012-05-07 2014-10-07 Freescale Semiconductor, Inc. Semiconductor device with drain-end drift diminution
CN103545346B (zh) * 2012-07-09 2016-11-16 上海华虹宏力半导体制造有限公司 隔离型n型ldmos器件及其制造方法
CN103545363B (zh) * 2012-07-09 2016-04-13 上海华虹宏力半导体制造有限公司 P型ldmos器件及其制造方法
US9490322B2 (en) 2013-01-23 2016-11-08 Freescale Semiconductor, Inc. Semiconductor device with enhanced 3D resurf
EP2951865B1 (en) * 2013-01-30 2020-03-25 Microchip Technology Incorporated Semiconductor device with esd self-protection and lin bus driver comprising the same
US9543379B2 (en) * 2014-03-18 2017-01-10 Nxp Usa, Inc. Semiconductor device with peripheral breakdown protection
CN104392924B (zh) * 2014-10-08 2017-07-25 中国电子科技集团公司第五十八研究所 Soi ldmos器件制备的工艺方法
US9871135B2 (en) 2016-06-02 2018-01-16 Nxp Usa, Inc. Semiconductor device and method of making
JP6740831B2 (ja) * 2016-09-14 2020-08-19 富士電機株式会社 半導体装置
US9905687B1 (en) 2017-02-17 2018-02-27 Nxp Usa, Inc. Semiconductor device and method of making
DE102017130213B4 (de) * 2017-12-15 2021-10-21 Infineon Technologies Ag Planarer feldeffekttransistor
CN108091702B (zh) * 2018-01-11 2020-11-20 上海华虹宏力半导体制造有限公司 Tmbs器件及其制造方法
CN113451216B (zh) * 2021-06-28 2022-03-25 中国电子科技集团公司第二十四研究所 成套硅基抗辐射高压cmos器件集成结构及其制造方法
CN114121679B (zh) * 2022-01-28 2022-05-17 微龛(广州)半导体有限公司 基于背偏调制的半导体器件、制备方法及***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156989A (en) * 1988-11-08 1992-10-20 Siliconix, Incorporated Complementary, isolated DMOS IC technology
IT1254799B (it) * 1992-02-18 1995-10-11 St Microelectronics Srl Transistore vdmos con migliorate caratteristiche di tenuta di tensione.
US5283454A (en) * 1992-09-11 1994-02-01 Motorola, Inc. Semiconductor device including very low sheet resistivity buried layer
JP3033412B2 (ja) * 1993-11-26 2000-04-17 株式会社デンソー 半導体装置の製造方法
US5859457A (en) * 1997-04-24 1999-01-12 Texas Instruments Incorporated High-voltage isolated high output impedance NMOS
JP3315356B2 (ja) * 1997-10-15 2002-08-19 株式会社東芝 高耐圧半導体装置
US6310378B1 (en) * 1997-12-24 2001-10-30 Philips Electronics North American Corporation High voltage thin film transistor with improved on-state characteristics and method for making same
US6150697A (en) * 1998-04-30 2000-11-21 Denso Corporation Semiconductor apparatus having high withstand voltage

Also Published As

Publication number Publication date
US6657257B2 (en) 2003-12-02
US20010038125A1 (en) 2001-11-08
JP2001308338A (ja) 2001-11-02

Similar Documents

Publication Publication Date Title
JP4231612B2 (ja) 半導体集積回路
JP2932429B2 (ja) Mos電界効果トランジスタ及びその製造方法
US8004038B2 (en) Suppression of hot-carrier effects using double well for thin gate oxide LDMOS embedded in HV process
US10032766B2 (en) VDMOS transistors, BCD devices including VDMOS transistors, and methods for fabricating integrated circuits with such devices
US8502344B2 (en) Semiconductor device
US20100213517A1 (en) High voltage semiconductor device
EP0596468A2 (en) MOSFET of LDD type and a method for fabricating the same
EP1239522A2 (en) Semiconductor device having insulated gate bipolar transistor with dielectric isolation structure and method of manufacturing the same
TWI409946B (zh) 半導體裝置及其形成方法
US20060001122A1 (en) Semiconductor device and method for manufacturing the same
JPH077153A (ja) 高電圧トランジスタ
US5627394A (en) LD-MOS transistor
US8513736B2 (en) Semiconductor device
JP2870635B2 (ja) 半導体装置
JP3103159B2 (ja) 半導体装置
JPH0529620A (ja) 高電圧用misfetを備える半導体装置
JP3783156B2 (ja) 半導体装置
JP4713415B2 (ja) 半導体素子
JP4804666B2 (ja) 半導体装置の製造方法
JP3906032B2 (ja) 半導体装置
US7859063B2 (en) Semiconductor device using SOI-substrate
US6359298B1 (en) Capacitively coupled DTMOS on SOI for multiple devices
JP3708370B2 (ja) 半導体装置及びその製造方法
JP3300238B2 (ja) 半導体装置及びその製造方法
TW202322400A (zh) 半導體裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees