JP3557928B2 - リーンNOx触媒を有する内燃機関 - Google Patents

リーンNOx触媒を有する内燃機関 Download PDF

Info

Publication number
JP3557928B2
JP3557928B2 JP36576598A JP36576598A JP3557928B2 JP 3557928 B2 JP3557928 B2 JP 3557928B2 JP 36576598 A JP36576598 A JP 36576598A JP 36576598 A JP36576598 A JP 36576598A JP 3557928 B2 JP3557928 B2 JP 3557928B2
Authority
JP
Japan
Prior art keywords
lean nox
nox catalyst
engine
combustion
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36576598A
Other languages
English (en)
Other versions
JP2000186531A (ja
Inventor
鈴木  誠
孝太郎 林
日出夫 小林
信也 広田
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP36576598A priority Critical patent/JP3557928B2/ja
Priority to EP99124301A priority patent/EP1013904B1/en
Priority to DE69924459T priority patent/DE69924459T2/de
Priority to US09/464,740 priority patent/US6370871B2/en
Publication of JP2000186531A publication Critical patent/JP2000186531A/ja
Application granted granted Critical
Publication of JP3557928B2 publication Critical patent/JP3557928B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • F02B33/443Heating of charging air, e.g. for facilitating the starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1487Correcting the instantaneous control value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リーンNOx触媒を有する内燃機関、詳しくは、排気系における雰囲気が特に酸素過剰状態になる内燃機関の排気系に備えられ、この排気系の排気ガス中に含まれる窒素酸化物を還元剤を用いて浄化するリーンNOx触媒を有する内燃機関に関する。
【0002】
【従来の技術】
ガソリン直噴リーンバーンエンジンやディーゼルエンジン等、熱効率が良く、排気系における雰囲気が酸素過剰でかつ炭化水素や一酸化炭素が少ない内燃機関の排気浄化手段として排気系に用いる触媒には、例えば吸蔵還元型リーンNOx触媒がある。吸蔵還元型リーンNOx触媒は、リーン雰囲気で窒素酸化物を触媒に一旦吸蔵し、後で還元雰囲気中で還元剤を適量に触媒に供給することで、吸蔵した窒素酸化物を一気に還元浄化する間欠処理型のリーンNOx触媒である。なお、吸蔵還元型リーンNOx触媒以外に選択還元型リーンNOx触媒がある。この選択還元型リーンNOx触媒は、還元剤をこれに供給することで窒素酸化物を連続的に選択還元浄化する連続処理型のリーンNOx触媒である。また、還元剤としては、例えば特開平6−117225号公報にあるように炭化水素を挙げられる。なお、炭化水素以外にも一酸化炭素等が還元剤として知られている。
【0003】
炭化水素を還元剤として用いると、炭化水素の一部は部分酸化して活性種を生成する。そして、この活性種が窒素酸化物と反応してこれを還元し、人体に無害な窒素,水素,酸素および二酸化炭素を生成する。
【0004】
そして、前記公報では、この還元剤の供給を、内燃機関で通常行われるインジェクタ等の機関燃料噴射装置による圧縮行程での噴射による供給とは別に、同じ機関燃料噴射装置の噴射により、膨張行程〜排気行程で行っている。これらの噴射のうち、前者の機関駆動用の噴射を主噴射といい、後者の別な噴射を副噴射という。
【0005】
また、リーンNOx触媒を有効に機能させるには、リーンNOx触媒の活性化が必要であり、そのためにはリーンNOx触媒をこれが有効に機能する温度である活性温度以上にまで高めなくてはならない。そして、これまでの技術では、内燃機関の出す排気ガス熱を利用して触媒温度を高めていた。
【0006】
【発明が解決しようとする課題】
副噴射は前記のように膨張行程〜排気行程で行われるので、ピストンが上死点よりも下方に移行した時点で燃料を噴射する。ところでピストンが上死点近傍にあるときに燃料を噴くのが燃焼を行う上で好適であり、これを実現するため燃料噴射装置は一定の噴射角をもって設置してある。このため、ピストンがそのストロークにおける上死点よりも下方にあるときに燃料を噴くようになっている副噴射では、燃料が気化しにくく、よって還元剤として液化状態のままリーンNOx触媒に供給されてしまうことが考えられる。燃料を還元剤として有効利用するには、気化状態にした方が好ましい。しかし、本来の役割が機関駆動用に燃焼用燃料を噴くインジェクタ等の燃料噴射装置では燃料が気化するように副噴射の実行タイミングをうまく捉えるのが難しい。このため、気化状態の還元剤を副噴射を行わずにリーンNOx触媒に供給できる技術が望まれていた。
【0007】
また、これまではリーンNOx触媒が有効に機能するのはリーンNOx触媒が活性温度以上になることができる機関始動後であり、機関始動前の停止状態からはリーンNOx触媒を活性温度にまで高めることができなかった。また、機関始動後であってもリーンNOx触媒が活性化するまではしばらく時間がかかるので、その間はリーンNOx触媒が有効に機能しない。しかも、直噴エンジンやディーゼルエンジンのように、熱効率が良い内燃機関にあっては、内燃機関が例えば軽負荷域等の運転状態にあると、その時の排気温度が低いため、排気系にリーンNOx触媒を活性化するに十分な熱が行き亘らず、加速後の減速時等では却って内燃機関の低温排気でリーンNOx触媒が冷えてしまうことさえある。
【0008】
すると、リーンNOx触媒のいわゆるSOx被毒からの回復やSOF被毒からの回復を行うのが難しくなるばかりか、パティキュレートマターの除去もしにくくなる。なお、SOx被毒に限らず、イオウによる被毒のことを総称してS被毒ということにする。また、周知の如くSOF被毒はイオウによる被毒ではないので、S被毒には含まれない。
【0009】
一方、排気温度を高め排気系の雰囲気をリッチにすべく内燃機関に吸、排気絞り等を行って外部負荷をかけると、今度は燃費悪化の要因になるばかりかパティキュレートマターが発生する虞がある。
【0010】
また、前記公報に記載はないが、内燃機関は車室暖房性能および機関暖機性能の向上を図るために大気中から吸気するタイプの燃焼式ヒータを備える場合があり、この燃焼式ヒータから出る燃焼ガスを排気通路に排出することで、触媒の活性化を図ることが考えられる。しかし、その場合、内燃機関が駆動している状態では、内燃機関の排気圧と燃焼式ヒータのそれとでは内燃機関の方が高いため、両者の圧力差によって燃焼式ヒータの燃焼ガスを排気通路に排出できない。よって、燃焼式ヒータの燃焼熱をリーンNOx触媒の暖機用に有効利用できない。さらに、前記圧力差によって、燃焼式ヒータがその燃焼ガスを外部に排出するための燃焼ガス排出通路を通じて、機関排気ガスが燃焼式ヒータに逆流してしまう虞がある。なお、燃焼式ヒータの燃焼ガスおよび内燃機関の出す排気ガスを以下特に断らない限りそれぞれ単に燃焼ガスおよび排気ガスということにする。
【0011】
本発明は、上記実情に鑑みて発明したものであって、次の効果を奏する、リーンNOx触媒を有する内燃機関を提供することを技術的課題とする。
▲1▼副噴射を不用にしてもリーンNOx触媒への炭化水素等の還元剤の供給を十分行える。
【0012】
▲2▼内燃機関の排気系に設けるリーンNOx触媒が内燃機関の始動とともに有効に機能するように機関始動前から排気系温度を十分高められる。
▲3▼排気浄化、リーンNOx触媒のS被毒やSOF被毒からの回復およびパティキュレートマターの除去を良好にできる。
【0013】
▲4▼パティキュレートマターの発生を抑えられる。
▲5▼機関始動後であっても燃焼式ヒータへの逆流を防いで燃焼ガスを排気通路に必要に応じて送り込めるようにすることで、リーンNOx触媒の活性化を促進する。
【0014】
【課題を解決するための手段】
前記課題を解決するために、本発明のリーンNOx触媒を有する内燃機関は次の手段を採用した。
【0015】
(1)機関関連要素を昇温するための燃焼式ヒータと、機関排気通路に備えられ機関排気ガスを浄化するリーンNOx触媒と、このリーンNOx触媒の再生処理要求時に、前記機関排気通路におけるリーンNOx触媒上流側に向けて前記燃焼式ヒータの出す燃焼ガスを導く燃焼ガス導入路と、を有するリーンNOx触媒を有し、前記リーンNOx触媒の再生処理要求時とは、リーンNOx触媒のNOx還元を要する時,リーンNOx触媒のS被毒からの回復およびSOF被毒からの回復を要する時,ならびにリーンNOx触媒からパティキュレートマターの除去を要する時であり、更に、前記リーンNOx触媒のNOx還元を要する時およびリーンNOx触媒のS被毒からの回復を要する時は、リーンNOx触媒を還元雰囲気におけるように前記燃焼ガスの空燃比をリッチにする。
または、機関関連要素を昇温するための燃焼式ヒータと、機関排気通路に備えられ機関排気ガスを浄化するリーンNOx触媒と、このリーンNOx触媒の再生処理要求時に、前記機関排気通路におけるリーンNOx触媒上流側に向けて前記燃焼式ヒータの出す燃焼ガスを導く燃焼ガス導入路と、を有するリーンNOx触媒を有し、前記リーンNOx触媒の再生処理要求時である前記リーンNOx触媒のNOx還元を要する時およびリーンNOx触媒のS被毒からの回復を要する時は、リーンNOx触媒を還元雰囲気におけるように前記燃焼ガスの空燃比をリッチにする。
または、機関関連要素を昇温するための燃焼式ヒータと、機関排気通路に備えられ機関排気ガスを浄化するリーンNOx触媒と、このリーンNOx触媒の再生処理要求時に、前記機関排気通路におけるリーンNOx触媒上流側に向けて前記燃焼式ヒータの出す燃焼ガスを導く燃焼ガス導入路と、を有するリーンNOx触媒を有し、前記リーンNOx触媒の再生処理要求時である前記リーンNOx触媒のNOx還元を要する時は、リーンNOx触媒を還元雰囲気におけるように前記燃焼ガスの空燃比をリッチにする。
または、機関関連要素を昇温するための燃焼式ヒータと、機関排気通路に備えられ機関排気ガスを浄化するリーンNOx触媒と、このリーンNOx触媒の再生処理要求時に、前記機関排気通路におけるリーンNOx触媒上流側に向けて前記燃焼式ヒータの出す燃焼ガスを導く燃焼ガス導入路と、を有するリーンNOx触媒を有し、前記リーンNOx触媒の再生処理要求時であるリーンNOx触媒のS被毒からの回復を要する時は、リーンNOx触媒を還元雰囲気におけるように前記燃焼ガスの空燃比をリッチにする。
【0016】
ここで、
▲1▼「機関関連要素」とは、機関冷却水やシリンダブロック、シリンダヘッド等内燃機関自体のことである。
【0017】
▲2▼「機関」とは、通常のポート噴射ガソリンエンジンだけでなく、ガソリン直噴リーンバーンエンジンやディーゼルエンジンあるいはCNG(commpressed natural gas;圧縮天然ガス)エンジン等の内燃機関も含む。
【0018】
▲3▼「燃焼式ヒータ」は、内燃機関本体とは別物として内燃機関に付属するものが好ましい。内燃機関本体のシリンダ内での燃焼に何等影響されることなく独自の燃焼を行って燃焼ガスを排出することができれば、機関始動前であっても機関排気系の温度を高めたり、触媒処理を行ったりするのに使えるからである。
【0019】
▲4▼「リーンNOx触媒」は、吸蔵還元型リーンNOx触媒であっても選択還元型リーンNOx触媒であってもよい。
▲5▼「燃焼ガス」は、その成分に必要に応じて炭化水素や一酸化炭素等を含むものがよく、そのために燃焼式ヒータの燃焼用燃料にはガソリンや軽油等の内燃機関用燃料を用いるのが好ましい。ガソリン等はこれが完全燃焼しなければ未燃ガスを発生し、未燃ガスには還元剤となる炭化水素や一酸化炭素が含まれるからである。
【0020】
▲6▼「燃焼ガス導入路」は、これを燃焼ガスが通過する間にその熱が他に逃げることなくリーンNOx触媒を暖めることのみに供される通路であって、内燃機関の気筒を避けて排気系に燃焼ガスを導く通路であると好適である。なお、燃焼ガスの熱のことを以下特に断らない限り燃焼ガス熱という。
【0021】
本項記載のリーンNOx触媒を有する内燃機関では、リーンNOx触媒の再生処理要求時に燃焼ガスが燃焼ガス導入路を経由してリーンNOx触媒の上流側に向けて流れる。したがって、このときの燃焼ガスの熱が高ければ、内燃機関の停止の有無に拘わらず、リーンNOx触媒は、そこに到達した高熱な燃焼ガスによって温度が高まり活性化する。
【0022】
しかも、燃焼ガスに適量の炭化水素や一酸化炭素が含まれるように燃焼式ヒータの燃焼具合を調整すれば、従来用いていた副噴射を必要としなくても排気浄化とリーンNOx触媒のNOx触媒の還元やS被毒からの回復を行うに十分な、還元剤としての炭化水素や一酸化炭素を確保できる。したがって、機関停止状態にあるときから燃焼式ヒータを作動しておけば、内燃機関の始動後はその直後から効果的に排気浄化ができるのはもちろん、リーンNOx触媒のNOx触媒の還元やS被毒からの回復も十分期待できる。
【0023】
また、触媒の活性化を図るべく排気系温度を高めるのに、燃焼式ヒータを使えば、従来のように内燃機関に外部負荷をかけなくともよいので未燃ガスの発生が少ない。このため、パティキュレートマターの発生を抑制できる。そして、リーンNOx触媒にSOF被毒が生じたり、あるいはパティキュレートマターが付着しても燃焼ガス熱を高めることによってそれらを燃焼できるため、リーンNOx触媒のSOF被毒からの回復やパティキュレートマターの除去ができる。
【0024】
ここで、前記リーンNOx触媒の再生処理要求時とは、リーンNOx触媒のNOx還元を要する時,リーンNOx触媒のS被毒からの回復およびSOF被毒からの回復を要する時、ならびにリーンNOx触媒からパティキュレートマターの除去を要する時であることが望ましい。
そして、前記リーンNOx触媒のNOx還元を要する時およびリーンNOx触媒のS被毒からの回復を要する時、または前記リーンNOx触媒のNOx還元を要する時、またはリーンNOx触媒のS被毒からの回復を要する時は、リーンNOx触媒を還元雰囲気におけるように前記燃焼ガスの空燃比をリッチにすると好適である。ここで、還元雰囲気とはリーンNOx触媒の還元剤となる炭化水素や一酸化炭素の多い雰囲気をいう。
本項記載のリーンNOx触媒を有する内燃機関では、燃焼式ヒータへの燃料供給量を増やして燃焼ガスの空燃比をリッチにすると燃焼熱が高まる上に、炭化水素や一酸化炭素の還元ガス成分が排気ガス中に多くなる。よって、リーンNOx触媒のNOx還元やS被毒からの回復ができる。
【0025】
(2)前記(1)の項において、前記燃焼ガス導入路は、EGR通路であってもよい。なお、EGR通路は、NOxの発生軽減のため、本来は排気ガスの一部を吸気系に戻すべく、排気通路から吸気通路に内燃機関の排気ガスを再循環するための通路である。
【0026】
本項記載のリーンNOx触媒を有する内燃機関では、このEGR通路をエンジン停止時の燃焼ガス導入路に適用すれば、EGR通路は内燃機関に既存の構造物であって燃焼ガス導入路として新たに設ける必要がない。このため、装置全体が複雑化せずしかもコストを下げられる。
【0027】
(3)前記(1)項において、前記燃焼ガス導入路は、前記機関排気通路のうち前記リーンNOx触媒の手前箇所にまで至り、前記機関本体に対してバイパスするバイパス通路であることが望ましい。
【0028】
本項記載のリーンNOx触媒を有する内燃機関では、バイパス通路を経由して燃焼式ヒータから出る燃焼ガスをリーンNOx触媒の手前にまで、つまりリーンNOx触媒の直ぐ近くにまで直接的に送り込める。このため、リーンNOx触媒を活性化するのに燃焼ガス熱を無駄なく有効利用できる。また、燃焼ガス導入路を断熱化すれば、燃焼ガスが燃焼ガス導入路を通過する間に燃焼ガスの持つ熱を他に逃がすことなく触媒を暖めることのみに利用できるため、リーンNOx触媒を一層有効に暖められる。したがって、それだけ早くに排気浄化が可能であり、またリーンNOx触媒の還元,リーンNOx触媒のS被毒からの回復,SOF被毒からの回復およびパティキュレートマターの除去ができる。つまり、各被毒の回復やパティキュレートマター除去に適した温度になるようにリーンNOx触媒の温度を設定することで、好適なリーンNOx触媒の再生ができるのである。
【0031】
(4)前記(1)から(3)いずれかの項において、機関吸気系の圧力と機関排気系の圧力との差圧が所定値以上ある時に前記燃焼式ヒータから出る燃焼ガスを前記燃焼ガス導入路に流すようにしてもよい。なお、「所定値」とは、前記差圧が当該所定値以上になって、燃焼式ヒータを作動させたときに、機関吸気系の圧力が機関排気系の圧力よりも高くなり、燃焼式ヒータの燃焼ガスが機関排気系の方へ流れることができ、逆流の生じない値とする。
【0032】
(5)前記(1)から(3)のいずれかの項において、前記内燃機関に過給機を設けこの過給機による過給によって機関吸気系の圧力が所定値以上になったときに、前記燃焼式ヒータから出る燃焼ガスを前記燃焼ガス導入路に流すようにしてもよい。この場合の「所定値」は、(6)項の所定値と実質同じであり、機関吸気系の圧力が当該所定値以上になって、燃焼式ヒータを作動させたときに、機関吸気系の圧力が機関排気系の圧力よりも高くなり、燃焼式ヒータの燃焼ガスが機関排気系の方へ流れることができ、逆流の生じない値をいう。
【0033】
本項記載のリーンNOx触媒を有する内燃機関では、内燃機関に過給機である例えばターボチャージャを備えて置き、そのコンプレッサの作動によって吸気系の圧力を、排気通路のうちリーンNOx触媒の手前位置であって燃焼ガス導入位置の排気圧よりも高めれば、燃焼ガス導入路を経由して、高熱な燃焼ガスをリーンNOx触媒までバイパス供給できる。よって、ターボチャージャが付いていない内燃機関の場合であれば内燃機関を作動することで排気系圧力の方が吸気系圧力よりも高くなる機関運転であっても、本発明のような過給機、なかでもターボチャージャを有する内燃機関であればコンプレッサの作動により吸気系圧力が排気系圧力よりも高まる。このため、燃焼ガス導入路を経由して高熱な燃焼ガスをリーンNOx触媒の手前にまで供給できる。したがって、機関始動後であっても燃焼ガスを排気通路に必要に応じて送り込めるので、リーンNOx触媒の活性化を促進する。また、ターボチャージャを有する内燃機関の場合、前記吸気系圧力は、ターボチャージャのコンプレッサ設置場所よりも下流部分での圧力とする。また、前記排気系圧力は、ターボチャージャのタービン設置場所よりも下流部分でリーンNOx触媒の手前部分の圧力とする。なお、内燃機関が作動しているときは、EGR通路はこれを燃焼ガス導入路としては使わないのは勿論である。これはEGR通路がその本来の用途である排気再循環装置として機能するからである。また、「機関吸気系の圧力が所定値以上になったとき」は、「機関吸気系の圧力と機関排気系の圧力との差圧が所定値以上になったとき」と言い換えられる。
【0034】
(6)前記(1)から(5)いずれかの項において、前記リーンNOx触媒の再生処理要求時には、前記燃焼式ヒータから出る燃焼ガスの熱が高まるように、前記燃焼式ヒータの出力をリーンNOx触媒の再生処理要求前の出力よりも大きくするとよい。なお、熱エネルギーが増えるように燃焼式ヒータの出力を大きくするには、燃焼式ヒータに送り込まれる燃料の量や燃料と空気の量を増やして燃焼式ヒータで生じる火炎を大きくする。
【0035】
(7)前記(1)から(6)いずれかの項において、前記排気通路は、前記リーンNOx触媒に対してバイパスする触媒用バイパス管と、この触媒用バイパス管と前記リーンNOx触媒とに前記排気ガスを流し分ける排気ガス流し分け装置と、を有し、前記排気ガス流し分け装置は、前記リーンNOx触媒の再生処理要求時であって排気ガスの温度が前記リーンNOx触媒の活性温度よりも低い場合に前記触媒用バイパス管に前記排気ガスを通すと好適である。
【0036】
なお、リーンNOx触媒に対して排気通路に触媒用バイパス管をバイパスすることによってできる、排気通路と触媒用バイパス管との2つある接合点のうち、上流側に位置する接合点に排気ガス流し分け装置を配置するのが良い。 また、排気ガス流し分け装置としては、触媒用バイパス管の開口を開閉自在にする開閉弁が好ましい。そして、この開閉弁の作動制御は、エンジン制御装置であるECUの中央処理制御装置であるCPUが行う。
【0037】
さらに、排気ガス流し分け装置の取り付け位置となる前記上流の接合点は、排気通路の燃焼ガス導入路との接合点よりも上流にあることが望ましい。燃焼ガス導入路を伝って排気通路に流れて来る燃焼ガス熱を無駄なく触媒に送り込むためである。
【0038】
本項記載のリーンNOx触媒を有する内燃機関では、排気通路にリーンNOx触媒に対してバイパスする触媒用バイパス管を有し、この触媒用バイパス管と排気通路のうちリーンNOx触媒のある側とへ、排気ガス流し分け装置を用いて排気ガスの流し分けを行う。この流し分けのうち、触媒用バイパス管に排気ガスが通されるのは、リーンNOx触媒の再生処理要求時であって排気ガスの温度がリーンNOx触媒の活性温度よりも低い場合である。つまり、排気ガスの温度が低い場合は、排気ガス流し分け装置によって排気ガスはリーンNOx触媒に向けては流されずに触媒用バイパス管に向けて流される。このため、リーンNOx触媒には、燃焼ガス導入路を経由して高熱な燃焼ガスだけを流すことができる。このようにすることで、排気ガスが低温な場合であってもこの低温な排気ガスをリーンNOx触媒に通さないようにできるので、リーンNOx触媒の温度が低温排気によって低下してしまうことがない。したがって、リーンNOx触媒を容易に活性化できる。また、SOFやパティキュレートマターを効率よく燃焼できる温度にまで触媒温度を十分高めることもでき、リーンNOx触媒のNOx還元,S被毒からの回復,SOF被毒からの回復およびパティキュレートマターの除去も良好にすることができる。
【0039】
(8)前記(1)から(6)いずれかの項において、前記排気通路は、前記排気通路の長手方向に並列し前記排気ガスの流し分けが交互になされる少なくとも2以上のリーンNOx触媒と、これらのリーンNOx触媒に前記排気ガスの流し分けを行う排気ガス流し分け装置と、を有し、前記排気ガス流し分け装置は、前記リーンNOx触媒のうち再生処理が必要な状態のリーンNOx触媒には前記排気ガスを流さないことが好ましい。なお、燃焼ガス導入路の先端を枝別れ状にして各先端にそれぞれ開閉弁を設け、この開閉弁を介して前記各リーンNOx触媒ごとに燃焼ガス導入路の先端を接続するとよい。
【0040】
また、複数あるリーンNOx触媒のいずれもが再生処理を要しない場合において、これら複数のリーンNOx触媒に同時に排気ガスを流すのではなく、例えばリーンNOx触媒が双数の場合は、排気ガス流し分け装置を作動して一方のリーンNOx触媒にのみ排気ガスを流すようにし、他方のリーンNOx触媒には前記一方のリーンNOx触媒が再生処理要求をする状態になるまで排気ガスを流さない。そして、一方のリーンNOx触媒が再生処理を要求をする状態になったら、今度は排気ガス流し分け装置を先程とは反対に作動して他方のリーンNOx触媒にのみ排気ガスを流すようにする。そして、このとき一方のリーンNOx触媒にあっては、前記燃焼ガス導入路の一方のリーンNOx触媒に係る開閉弁を開いて燃焼ガス熱を送り、この一方のリーンNOx触媒の再生処理を行う。このとき他方のリーンNOx触媒に係る開閉弁は閉じておく。
【0041】
次に他方のリーンNOx触媒において再生処理を要求をする状態となったら、排気ガス流し分け装置を作動して他方のリーンNOx触媒に排気ガスを流さないようにする。同時に再生処理が済んだ前記一方のリーンNOx触媒にのみ排気ガスを流し、前記他方のリーンNOx触媒に係る開閉弁を開いて燃焼ガス熱を他方のリーンNOx触媒に送り込み、当該他方のリーンNOx触媒の再生処理を行う。
【0042】
このように複数あるリーンNOx触媒のうち、再生処理要求の状態になったリーンNOx触媒を休ませて、つまり排気ガスがそのリーンNOx触媒には流れないようにし、別のリーンNOx触媒で排気浄化を行うようになっているので、排気浄化処理が滞ることなくできる。よって、排気および排気浄化を効率良く行える。
【0043】
(9)前記(1)項において、前記燃焼式ヒータは機関吸気通路に燃焼ガスを流せるようにする。
【0044】
【発明の実施の形態】
以下、本発明の実施の形態に係るリーンNOx触媒を有する内燃機関を添付した図面に基づいて説明する。
〈第1の実施の形態〉
図1〜図4に基づいて本発明の第1の実施の形態を示す。
(ディーゼルエンジンI)
内燃機関としてのディーゼルエンジンIは、機関冷却水を含むウォータジャケットを有する機関本体としてのエンジン本体3と、エンジン本体3の図示しない複数のエンジンシリンダ内に燃焼に必要な空気を送り込む吸気装置5と、混合気が燃焼した後の排気ガスを大気中に放出する排気装置7と、エンジン搭載車輌の室内を暖める車室用ヒータ9とを有する。なお、ディーゼルエンジンのことを特に断らない限り、以下単に「エンジン」という。
(吸気装置5)
吸気装置5は、エンジンシリンダ内に新鮮な空気を取り入れるエアクリーナ13を始端とし、エンジン本体3内の図示しない吸気ポートを終端とする。そして、その間に、過給機であるターボチャージャ15のコンプレッサ15a,インタークーラ19およびインタークーラ19を経由して来た混合気を前記各エンジンシリンダに振り分けるインテークマニホールド21等を配備してある。そして、吸気装置5の構成部材同士の間は、吸気通路としての吸気管23に属する複数の連結管で連結してある。
(吸気管23)
吸気管23は、コンプレッサ15aを境に、エアクリーナ13から吸気装置5に入って来る吸気が強制的に押し込まれることで加圧状態になる下流側連結管27とそうでない上流側連結管25とに大別できる。
(上流側連結管25)
上流側連結管25は、エアクリーナ13とコンプレッサ15aとの間で、図1において左右方向にまっすぐ延びる連結管である。
(下流側連結管27)
下流側連結管27は、コンプレッサ15aとインテークマニホールド21とを結ぶ図1において上下方向に延びるL字形をした本流管29と、本流管29にバイパス状に接続してある支流管としてのヒータ用枝管31とからなる。
(ヒータ用枝管31)
ヒータ用枝管31は、その途中に燃焼式ヒータ17を含み、この燃焼式ヒータ17の上流側端と本流管29とを結びかつ燃焼式ヒータ17に空気を供給する空気供給通路33と、燃焼式ヒータ17の下流側端と本流管29とを結びかつ燃焼式ヒータ17の燃焼ガスを本流管29に排出する燃焼ガス排出通路35とからなる。また、空気供給通路33および燃焼ガス排出通路35の本流管29との各接続箇所C1,C2は、接続箇所C1の方が接続箇所C2よりも上流側に位置する。そして、燃焼ガス排出通路35のうち燃焼式ヒータ17寄り箇所には三方弁97を設けてあり、この三方弁97からは燃焼ガス導入路99が排気装置7の後述する触媒コンバータ39の手前にまで延びている。燃焼ガス導入路99については排気装置7の説明をした後でさらに述べる。
(接続箇所C1およびC2周りの部品)
また、接続箇所C1とコンプレッサ15aとの間にはインタークーラ19を設置してあり、本流管29のうち接続箇所C1と接続箇所C2との間には、吸気絞り弁70を設けてある。また、吸気絞り弁70の下流、つまり本流管29のうちコンプレッサ15aの下流には、吸気圧センサ29aを取り付けてあり、この吸気圧センサ29aにより本流管29のうちコンプレッサ15a下流部分での吸気圧を測定する。吸気圧センサ29aで検出した吸気圧は、電気信号となってECU46に送られる。
(インタークーラ19)
インタークーラ19は、コンプレッサ15aによって受熱した、コンプレッサ15aの設置個所よりも下流側に位置する空気を冷却する。
(吸気絞り弁70)
吸気絞り弁70は、その作動をECU46の図示しないCPUによって制御する。また、吸気絞り弁70は、エンジンIが停止状態にあり、かつ燃焼式ヒータ17を作動する必要のあるときは本流管29を絞る。ただし、三方弁97と燃焼ガス導入路99がある場合は、吸気絞り弁70はなくてもエンジン停止時に燃焼式ヒータ17を作動できる。また、ディーゼルエンジンであるエンジンIは、吸気絞り弁70を絞ることでその作動を積極的に停止する。なお、エンジンIの始動時及び始動後には吸気絞り弁70を開く。
【0045】
本流管29を通る吸気は、接続箇所C1でヒータ用枝管31に分岐する吸気と、分岐せずに本流管29をそのまま下流に向かう吸気とに分かれる。そして、ヒータ用枝管31に入る前記分岐した吸気は、空気供給通路33→燃焼式ヒータ17→燃焼ガス排出通路35を経由する間に燃焼式ヒータ17から受熱して高熱となる。この高熱となった吸気が接続箇所C2で本流管29に戻り、そこで前記C1で分岐しなかった吸気と合流することでエンジン本体3に入る吸気の温度を高めるように作用する。
(排気装置7)
排気装置7は、エンジン本体3内の図示しない排気ポートを始端とし、そこから終端のマフラ41までの間に、エキゾーストマニホールド37,ターボチャージャ15のタービン15bおよびエンジンIの排気ガスを浄化する吸蔵還元型リーンNOx触媒を含む触媒コンバータ39を排気通路としての排気管42上に備えている。なお、吸蔵還元型リーンNOx触媒のことを以後特に断らない限り、単に「リーンNOx触媒」という。また、触媒コンバータ39はリーンNOx触媒を適宜のケース体に充填したものであるので、触媒コンバータ39をリーンNOx触媒の意味で使えるものとする。また、排気管42における触媒コンバータ39の入り口および出口の両端部近傍には、それぞれ入り口NOxセンサ39aおよび出口NOxセンサ39cを取り付けてある。これらセンサ39aおよび39cは、ECU46と電気的に接続してある。入り口NOxセンサ39aと出口NOxセンサ39cが検出した値との差から触媒コンバータ39に含まれているリーンNOx触媒が還元時期にあるかどうかがわかる。
(燃焼ガス導入路99)
燃焼ガス導入路99は、燃焼式ヒータ17から出て三方弁97を経由した後の燃焼ガスをエンジン本体3を通すことなく排気管42に向けて送るものである。つまり、燃焼ガス導入路99は、吸気通路である吸気管23と排気通路である排気管42とを結びエンジン本体3に対してバイパスするバイパス通路である。そして、この燃焼ガス導入路99の排気管42との接合点C5は触媒コンバータ39の手前箇所となる 。
【0046】
よって、エンジンIの駆動の有無に拘わらず、燃焼式ヒータ17が作動すれば燃焼ガス導入路99を経由して接合点C5に至った燃焼ガスにより、触媒コンバータ39を直接的に暖めることができる。また、燃焼ガス導入路99は、ここを燃焼ガスが通過する間にその燃焼熱を他に逃がすことなく触媒コンバータ39を暖めることにのみ利用できるものである。なお、三方弁97については燃焼式ヒータ17の説明をしてから述べる。また、燃焼ガス導入路99の出口99aの近傍には排気圧センサ29bを設置してあり、この排気圧センサ29bもECU46と電気的に接続してある。排気圧センサ29bにより燃焼ガス導入路99の出口99a部分の排気圧を測定する。排気圧センサ29bで検出した排気圧は、電気信号となってECU46に送られる。
(EGR88)
エンジン本体3には、排気ガスの一部を吸気系に戻す排気ガス再循環装置としてのEGR88を設けてある。EGR88は、排気管42のエキゾーストマニホールド37と吸気管23のインテークマニホールド21とをエンジン本体3の図示しないシリンダに対してバイパス状に接続するEGR通路90を備えている。
【0047】
EGR通路90は、ここを通る流通ガス量を制御するEGR弁92を有する。EGR弁92は、ECU46のCPUと電気的に接続してあり、電気モータ92aにより駆動する。EGR弁92は、元来、エンジンIが作動状態にあるときにCPUの制御下で必要に応じて開く弁ではあるが、エンジンIが停止状態でかつ燃焼式ヒータ17を作動する必要があるときにも開く可変制御可能な弁である。また、EGR弁92は、燃焼式ヒータ17の出す燃焼ガスをEGR通路90を介して触媒コンバータ39に導く導入機構ともいえる。なお、燃焼式ヒータ17の出す燃焼ガスを特に断らない限り以下燃焼ガスという。
【0048】
前記のようにエンジンIが停止状態にあって燃焼式ヒータ17を作動する必要のあるときにEGR弁92が開くと、EGR通路90を介して、燃焼ガスを吸気管23から排気管42に送る。よってEGR通路90は、触媒コンバータ39に向けて燃焼ガスを導く燃焼ガス導入路ということもできる。
【0049】
なお、EGR通路90は、吸気管23の本流管29のうち燃焼式ヒータ17の設置箇所よりも下流箇所を、および排気管42のうち触媒コンバータ39の設置個所よりも上流箇所を前記エンジンシリンダに対してバイパス状に接続する通路でもある。
(燃焼式ヒータ17)
燃焼式ヒータ17は、エンジン本体3とは別物としてエンジンIに付属する燃焼用装置であって、エンジン本体3の図示しないシリンダ内での燃焼に何等影響されることなく独自に燃焼して燃焼ガスを出す。
【0050】
また、燃焼式ヒータ17はエンジンIが停止状態にあるときだけでなく、エンジンIが所定の運転状態にあるときにおいても作動し、燃焼式ヒータ17の作動はCPUが制御する。
【0051】
「エンジンIが所定の運転状態あるとき」とは、車室暖房が必要で機関冷却水温度が低いとき,触媒温度が低い時,リーンNOx触媒の再生処理要求条件が成立したとき(リーンNOx触媒の再生処理要求時)等であり、このような条件下にエンジンIがあるときは、エンジンIの作動の有無に拘わらず、燃焼式ヒータ17を作動する必要のあるとき、言い換えれば「燃焼式ヒータ17の作動実行条件が成立したとき」でもある。なお、リーンNOx触媒の再生処理要求条件が成立したとき(リーンNOx触媒の再生処理要求時)とは、リーンNOx触媒のNOx還元を要する時,リーンNOx触媒のS被毒からの回復およびSOF被毒からの回復を要する時,ならびにリーンNOx触媒からパティキュレートマターの除去を要する時のことである。燃焼式ヒータ17を作動する必要のあるときと判断するのは、CPUである。CPUは、エンジンIに設けた図示しない各種センサがエンジンIの運転状態ごとに検出しかつECU46に送る各種電気信号に基づいて、燃焼式ヒータ17を作動する必要のあるときを判断する。CPUが燃焼式ヒータ17を作動する必要のあるときと判断すると、燃焼式ヒータ17が作動してそこから高熱な燃焼ガスが出る。この燃焼ガスが車室暖房や機関暖機のための熱源として供される。
【0052】
また、燃焼式ヒータ17は、元々が車室暖房及び機関暖機を図るべく機関冷却水等の機関関連要素を昇温することでそれらの温度を上げる装置であるが、本発明では触媒コンバータ39に含まれるリーンNOx触媒の活性による排気浄化や再生処理を図る装置としても機能する。このことについては後で順を追って説明する。
(燃焼式ヒータ17の概略構造)
次に燃焼式ヒータ17の概略構造を図2を参照して示す。
【0053】
燃焼式ヒータ17は、機関冷却水の入っている前記ウォータジャケットとつながっている。それ故、燃焼式ヒータ17は、その内部に機関冷却水が通る冷却水通路17aを備えている。この冷却水通路17aは、熱源である燃焼室17dを流通する燃焼ガスによって暖められる。燃焼室17dは、そこに燃焼筒17bを配置し、この燃焼筒17bを円筒状の隔壁17cで覆うことでなる。
(燃焼室本体43)
隔壁17cで燃焼筒17bを覆うことで、燃焼室17dを隔壁17c内に画する。またこの隔壁17cもケース体43aによって覆われており、これによりケース体43aの内面と隔壁17cの外面との間に前記冷却水通路17aを形成する。ケース体43aと、このケース体43が包蔵する冷却水通路17a等を含むものを燃焼室本体とし、これを符号43で示す。
(燃焼式ヒータ17の空気流通路)
また、前記した空気供給通路33および燃焼ガス排出通路35は、吸気管23に属する本流管29の支流管であるヒータ用枝管31に属する通路である。そして、燃焼式ヒータ17にのみ適用され、燃焼室本体43に対して、燃焼用空気を供給しかつ燃焼ガスを排出する空気流通路として機能するものであることから、これらの通路33,35を燃焼室本体43とともに燃焼式ヒータ17の構成要素としてもよい。
(燃焼室17d)
燃焼室17dが燃焼式ヒータ17内の空気流通路として機能していることより燃焼室17dは燃焼室17dに対して空気が出入りする空気供給口17d1および排気排出口17d2を有している。空気供給口17d1および排気排出口17d2はそれぞれ空気供給通路33および燃焼ガス排出通路35とつながっている。そして、既述のように吸気が本流管29から分岐してヒータ用枝管31を通ると、図2に実線矢印で示すように、空気供給通路33→空気供給口17d1→燃焼室17d→排気排出口17d2→燃焼ガス排出通路35を経由して、燃焼ガスを含んだ状態の吸気が本流管29に戻る。そして、この吸気は燃焼ガスの燃焼熱によって暖められているので、この暖められた吸気が前記実線矢印で示す経路を経て燃焼室本体43から排出されるまでの間に、前記暖められた吸気を熱媒体として前記冷却水通路17aを流れる破線矢印で図2に示す冷却水を暖める。よって、燃焼室17dは熱交換通路ともいえる。
(燃焼筒17b)
燃焼筒17bには、燃料供給路としての燃料供給管17eによって燃焼燃料を供給するようになっており、ここから燃焼室17dに燃焼燃料を供給すると、この燃料は燃焼室本体43内で気化する。そして、この気化燃料に図示しない点火装置で点火し、気化燃料を燃焼する。
(冷却水通路17a)
一方、冷却水通路17aは、冷却水導入口17a1と冷却水排出口17a2とを有し、冷却水導入口17a1は、図1からわかるように、エンジン本体3の図示しないウォータジャケットの冷却水排出口と水管路W1を介して連結している。
【0054】
また、冷却水排出口17a2は、車室用ヒータ9と水管路W2を介して連結している。そして、車室用ヒータ9は、水管路W3を介してウォータジャケットの図示しない冷却水導入口と連結している。
【0055】
したがって、ウォータジャケットの冷却水は、水管路W1を介して燃焼式ヒータ17に至るとそこで暖められ、その後、燃焼式ヒータ17から水管路W2を介して車室用ヒータ9に至り、車室用ヒータ9の熱媒体として熱交換されて車室内に温風を出す。熱交換によって温度が下がった冷却水は水管路W3を介してウォータジャケットに戻る。このように、水管路W1〜水管路W3を介して冷却水がエンジン本体3と、燃焼式ヒータ17と、車室用ヒータ9との間を循環する。なお、冷却水の循環は、エンジン駆動時は図示しないエンジン用ウォータポンプによって行うが、エンジン非駆動時には、水管路W1に設けた、エンジン用ウォータポンプとは別の電動ウォータポンプW1aによっても行う。よって、エンジンIが動いていない場合でも車室用ヒータ9は効く。
(燃焼式ヒータ17の他の構成部品)
なお、燃焼室本体43は、この他に送風ファン45や燃焼式ヒータ17専用の図示しないCPU等を備え、これらによって燃焼式ヒータ17を好適に作動し、燃焼室17dに火炎Fができる。
(三方弁97)
次に前記した三方弁97について図3を参照して述べる。
【0056】
三方弁97は、その一つの口である第1の口97aを燃焼式ヒータ17の排気出口17d2と接続し、残りの二口のうちの一方の第2の口97bを燃焼ガス排出通路35と、また他方の第3の口97cを燃焼ガス導入路99と接続する。すなわち三方弁97は、燃焼式ヒータ17と、燃焼ガス排出通路35と、燃焼ガス導入路99との間に位置する。三方弁97のケース体97dの中にはケース体97dの長手方向に、図示しないダイアフラムの作動によって移動する弁体98がある。
【0057】
弁体98は、ケース体97d内における弁体98の移動場所に応じて、前記3口のうちの2口を、すなわち第1の口97aと第2の口97bとを、または第1の口97aと第3の口97cとを連通する(図3の二点鎖線矢印および実線矢印参照)。そして、前記第1の口97aと第2の口97bとが連通しているときは、第3の口97cは閉じ、第1の口97aと第3の口97cとが連通しているときは、第2の口97bが閉じる。
【0058】
詳しくは、エンジンIが作動状態や停止状態にあって燃焼式ヒータ17を作動する必要のあるときには、第1の口97aと第2の口97bとが連通するように弁体98が二点鎖線表示のように動く。この場合、エンジン停止時に燃焼式ヒータ17が燃焼すると、その時に出る燃焼ガスは、第1の口97aと第2の口97bを経由した後、本流管29とEGR通路90とを経由して、やがて排気管42の触媒コンバータ39に至る。よって、触媒コンバータ39は、これをエンジンIの始動前から活性温度になるまで高めることができるので、エンジンIの始動後、触媒コンバータ39は即時有効に機能する。
【0059】
また、エンジンIの停止状態や作動状態で燃焼式ヒータ17を作動する必要のあるときには、第1の口97aと第3の口97cとを連通するように弁体98が実線表示のように動く。この場合、燃焼式ヒータ17が燃焼すると、その時に出る燃焼ガスは、第1の口97aと第3の口97cを経由した後、燃焼ガス導入路99を経由して、やがて排気管42の触媒コンバータ39の手前箇所である接合点C5に至る。よって、触媒コンバータ39に含まれるリーンNOx触媒は、これがエンジンIの始動後にまだ活性していない場合でも、これを一気に活性温度にまで高めることができるため、エンジンIの出力がまだ軽負荷状態であっても、即時有効にリーンNOx触媒が機能するようにできる。
【0060】
このように三方弁97は、燃焼式ヒータ17から出る燃焼ガスを吸気本流管29やEGR通路90や燃焼ガス導入路99に導入したり、あるいはそれらへの燃焼ガスの進行を阻止したりすることで、燃焼ガスの流れの向きを切り替える切り替え弁といえる。また、燃焼ガスは燃焼式ヒータの排気であるので、三方弁のことを排気切り替え弁ともいう。
(燃焼ガス導入路99とEGR通路90との違い)
燃焼ガス導入路99とEGR通路90との違いは、触媒に熱を与える燃焼ガスがこれらを通過する間に熱が逃げにくくなっているかどうかにある。
【0061】
両者はともに燃焼ガスをエンジン本体3を通すことなく触媒コンバータ39に向けて送るという点では同じであるが、燃焼ガス導入路99は燃焼ガスを触媒コンバータ39の手前に向けて直接送る通路であるため、触媒コンバータ39に含まれるリーンNOx触媒を直接的に暖めることができる。
【0062】
これに対し、EGR通路90は触媒コンバータ39に含まれるリーンNOx触媒を間接的に暖める。つまり、EGR通路90を通る燃焼ガスが触媒コンバータ39に至るまでの間に燃焼ガスはエキゾーストマニホールド37やタービン15bを通過しなければならず、よって、当該通過中にエキゾーストマニホールド37等に燃焼ガスの持つ熱が奪われてしまう。このため、EGR通路90を通る燃焼ガスではリーンNOx触媒を十分暖められない場合が考えられる。
【0063】
EGR通路90の場合は、吸気絞り弁70が必要で、吸・排気口の間に吸気絞り弁70がある必要があるが、エンジンIが作動していない場合にしか利用できない。これに対し、燃焼ガス導入路99の場合は、吸気絞り弁70はなくてもよく、また、吸気絞り弁70は吸・排気口の下流にあってもよい。エンジンIの駆動前であろうとなかろうと、時期的に何等制限を受けることなく利用できる。
【0064】
また、三方弁97と燃焼ガス導入路99を持っている場合は、エンジン作動前は、EGR88も燃焼ガス導入路99も両方利用できるので、その場合、どちらを利用するかは、触媒コンバータ39に含まれるリーンNOx触媒の温度がどれ位有るかによって異なる。すなわち、触媒温度があまり低くない場合は、EGR88によって緩やかに活性温度になるように調整すればよいし、触媒温度がかなり低い場合は、燃焼ガス導入路99によって一気に活性温度にまで高めてもよい。エンジン作動前にどちらの通路を利用して触媒温度を高めるかについては、CPUがエンジンIに備えられている各センサの出す検出値に基づいて決定する。(燃焼式ヒータ17を用いたリーンNOx触媒の再生処理実行ルーチン)
次に図4を用いて燃焼式ヒータ17を用いたリーンNOx触媒の再生処理を実行するためのルーチンについて述べる。このルーチンはステップ:S100〜S106からなる。
【0065】
また、このルーチン以外の後述する他のルーチンを含めて、ルーチン実行用のフローチャートの各々は、ECU46のROMに記憶してある。また、フローチャートの各ステップにおける処理は、すべてECU46のCPUによる。
【0066】
まず、S100でリーンNOx触媒の再生処理要求条件が成立したかどうかを判定する。リーンNOx触媒の再生処理要求条件が成立したかどうかの判定を行うには、例えば▲1▼エンジンIの作動時間が所定時間を経過したかどうかで判別する方法,▲2▼触媒コンバータ39の後方に設けた出口NOxセンサ39cの出力が所定値以上になるかどうかで判別する方法,▲3▼エンジンIへ供給する燃料の量の積算値が所定値以上になったかどうかで判別する方法が考えられる。前記所定時間等の値は、エンジンIの作動時間等がこれら所定時間等の値を過ぎるとリーンNOx触媒の再生処理要求条件が成立したことを示す指標となる値であって、エンジンの種類や車種によって異なる。
【0067】
S100で肯定判定すればS101に進み、否定判定すればS102に進む。S101ではエンジン作動中かどうかを判定する。S101で肯定判定すればS103に進み、否定判定すればS104に進む。
【0068】
S103で吸気系の圧力と排気系の圧力との差圧が所定値以上あるかどうかを吸気圧センサ29aと排気圧センサ29bとが検出した値から判定する。なお、「所定値」とは、前記差圧が当該所定値以上になって、燃焼式ヒータ17を作動させたときに、吸気系の圧力が排気系の圧力よりも高くなり、燃焼式ヒータ17の燃焼ガスが排気系の方へ流れることができ、逆流の生じない値である。逆流が生じない場合とは、例えばターボチャージャ15が作動している場合が考えられる。S103で肯定判定した場合はS105に進み、否定判定した場合はS102に進む。
【0069】
S105では、排気切り替え弁である三方弁97をエンジン排気系の触媒コンバータ39の上流側に切り替える。このときエンジンIは作動しているのでEGR通路90を燃焼ガス導入路として利用できない。よって、燃焼ガス導入路99を開くように三方弁97を切り替える。
【0070】
次のS106では、リーンNOx触媒の再生処理用に燃焼式ヒータ17の作動制御を行う。つまり、燃焼ガスが高熱になるように燃料供給量や燃料と空気の供給量を共に増やし、燃焼式ヒータ17の出力をリーンNOx触媒の再生処理要求前よりも大きくする。また、燃焼式ヒータ17の燃焼ガスの空燃比(A/F)を変えて再生処理を実行する。その後、このルーチンを終了する。
【0071】
話をS100とS103で否定判定する場合のS102に進める。
S102では、排気切り替え弁である三方弁97をエンジン吸気系側に切り替える。つまり、燃焼ガス排出通路35を開く。その後、このルーチンを終了する。
【0072】
ところで、S104では、リーンNOx触媒の再生処理要求条件が成立し、かつエンジンIが作動していないことを前提とした処理である。よって、リーンNOx触媒の再生にあたり触媒コンバータ39に燃焼ガス熱を供給するのにEGR通路90を用いても燃焼ガス導入路99を用いてもよい。言い換えると、排気切り換え弁である三方弁97をエンジン排気系触媒上流に切り換えるか、吸気系に切り換え、EGR弁92を開いて吸気絞り弁を閉じる。但し、EGR通路90を利用する場合は、吸気絞り弁70を閉じて燃焼ガスが本流管29を逆流しないようにする。
【0073】
S104の後は前記S106に進む。
以上に述べたものが、第1の実施の形態に係るリーンNOx触媒を有する内燃機関、すなわちエンジンIである。
【0074】
なお、前記S103での判定事項である「機関吸気系の圧力と機関排気系の圧力との差圧が所定値以上あるかどうか」を「機関吸気系の圧力が所定値以上あるかどうか」と置き換えてもよい。機関吸気系の圧力だけから機関排気系の圧力をある程度予測できるからである。なお、この場合の「所定値」は、前述した所定値と実質同じである。つまり、機関吸気系の圧力が当該所定値以上になって、燃焼式ヒータを作動させたときに、機関吸気系の圧力が機関排気系の圧力よりも高くなり、燃焼式ヒータの燃焼ガスが機関排気系の方へ流れることができ、逆流の生じない値をいう。
【0075】
次にエンジンIが停止状態にあるときと作動状態にあるときの空気の流れる経路を述べる。
(エンジンIが停止状態にあるときの空気の流れ経路)
リーンNOx触媒の再生処理要求条件が成立し燃焼式ヒータ17の出力が高まると、送風ファン45に吸引されて、エアクリーナ13から吸気装置5に入った空気は次の経路をたどって触媒コンバータ39に至る。
【0076】
▲1▼エアクリーナ13から吸気管23の上流側連結管25に入った空気は、ターボチャージャ15のコンプレッサ15aおよびインタークーラ19を経由して本流管29の接続箇所C1から空気供給通路33に空気が流れる。
【0077】
▲2▼空気供給通路33に入った空気は、燃焼式ヒータ17の燃焼室本体43に送り込まれる。
▲3▼燃焼室本体43に入った空気は、燃焼室本体43の燃焼室17dにおいて燃料供給管17eから送られる燃焼燃料の燃焼用空気として供され、燃焼後、燃焼ガスとなって燃焼ガス排出通路35に出る。このとき三方弁97が燃焼式ヒータ17の燃焼ガスを燃焼ガス導入路99に向けるように弁体98を設定してあれば、燃焼ガスは燃焼ガス導入路99を経由して触媒コンバータ39に向けて流れ、その後、触媒コンバータ39のリーンNOx触媒を暖める。
【0078】
▲4▼また、燃焼式ヒータ17の燃焼ガスをこれが燃焼ガス排出通路35を通過して接続箇所C2に向かうように三方弁97の弁体98を設定してあれば、燃焼ガス排出通路35に出た燃焼ガスは、その後本流管29の接続箇所C2から本流管29に入る。このとき吸気絞り弁70は閉じてあるので、燃焼ガスはエンジン本体3側の前記図示しないとした吸気ポートの側に向かう。
【0079】
▲5▼▲4▼の場合、燃焼ガスが吸気ポートに向かってもエンジンIは停止しているので、吸気ポートまたは/および排気ポートは閉じている。よって、前記燃焼ガスはエンジン本体3のシリンダには入らずまたは入ってもその外には出ず、インテークマニホールド21とエキゾーストマニホールド37を結ぶEGR通路90に入る。このときEGR弁92は開いているので、燃焼ガスはEGR弁92を経由して、エキゾーストマニホールド37に至る。そして、排気管42のタービン15bを経由して触媒コンバータ39に至る。
(エンジンIが作動状態にあるときの空気の流れ経路)
次にエンジンIが作動状態にあるときにリーンNOx触媒の再生処理要求条件が成立し、燃焼式ヒータ17が作動すると、エアクリーナ13から吸気装置5に入った空気は次の経路をたどって排気装置7に至る。
【0080】
▲1▼エアクリーナ13から吸気管23の上流側連結管25に入った空気は、ターボチャージャ15のコンプレッサ15aおよびインタークーラ19を経由して本流管29に向かう。このときエンジンIが動いているので、吸気絞り弁70は開いており、前記空気の大半はエンジン本体3の吸気ポートに向かう。
【0081】
▲2▼同時に接続箇所C1から送風ファン45に吸引されて空気供給通路33に空気が分流し、この分流した分の空気が燃焼式ヒータ17で燃焼に供された後、燃焼ガスとなって熱を持つ。そして、燃焼ガス排出通路35の三方弁97の弁体98が、燃焼ガスをこれが燃焼ガス排出通路35を通過して接続箇所C2に向かうように設定してあれば、燃焼ガス排出通路35に出た前記熱を持った燃焼ガスは、その後本流管29の接続箇所C2から本流管29に入り、機関暖機に供する。本流管29に入った燃焼ガスは、エンジンIが作動しているので、その吸気ポートからシリンダ内に入りその後排気ポートを経てエキゾーストマニホールド37およびタービン15bを経て触媒コンバータ39に流れる。
【0082】
▲3▼一方、エンジン1の作動中において触媒コンバータ39のリーンNOx触媒の活性化や再生処理を優先すべきとECUが判断した場合は、弁体98の設定を燃焼ガスが燃焼ガス導入路99に導かれて触媒コンバータ39の手前に向けて流れるようになっており、その場合、燃焼ガスは燃焼ガス導入路99を経由して排気管42の触媒コンバータ39の手前箇所である接合点C5に至る。
【0083】
弁体98の設定を燃焼ガスが燃焼ガス排出通路35を通過して接続箇所C2に向かうようにする場合の条件としては、リーンNOx触媒の活性化よりもエンジン本体3の暖機性を優先すべきとECU46が判断した場合である。したがって、反対にエンジン1の作動中において触媒コンバータ39のリーンNOx触媒の活性化や再生処理を優先すべきとECUが判断した場合は、弁体98の設定を燃焼ガスが燃焼ガス導入路99に導かれて触媒コンバータ39の手前に向けて流れるようにする。
【0084】
なお、エンジン1の始動に合わせてコンプレッサ15aが作動するので、コンプレッサ15aが作動すると下流側連結管27のうちコンプレッサ15aよりも下流側における吸気圧が高まる。そして、前記のようにエンジン1の作動時にも燃焼式ヒータ17は作動する。
【0085】
エンジンIが作動しているときは、EGR通路90はこれを燃焼ガス導入路としては使わないのは勿論である。これはEGR通路90がその本来の用途である排気再循環装置として機能するからである。
〈第1の実施の形態の作用効果〉
次に、第1の実施の形態の作用効果について説明する。
【0086】
(1)エンジンIでは、リーンNOx触媒の再生処理要求時に燃焼ガスが燃焼ガス導入路99やEGR通路90を経由して、リーンNOx触媒を含む触媒コンバータ39の上流側に向けて流れる。したがって、このときに燃焼式ヒータ17の出力をリーンNOx触媒の再生処理要求前よりも大きくして、燃焼ガス熱を高めれば、エンジンIの停止の有無に拘わらず、リーンNOx触媒は、そこに到達した高熱な燃焼ガスによって温度が高まり活性化する。
【0087】
(2)しかも、燃焼ガスに適量の炭化水素や一酸化炭素が含まれるように燃焼式ヒータ17の燃焼具合を調整すれば、従来用いていた副噴射を必要としなくても排気浄化とリーンNOx触媒の還元,リーンNOx触媒のS被毒からの回復を行うに十分な、還元剤としての炭化水素や一酸化炭素を確保できる。したがって、エンジンIが停止状態にあるときから燃焼式ヒータ17を作動しておけば、エンジンIの始動後はその直後から効果的に排気浄化ができるのはもちろん、リーンNOx触媒の還元やリーンNOx触媒のS被毒からの回復も十分期待できる。
【0088】
(3)触媒の活性化を図るべく排気系温度を高めるのに燃焼式ヒータ17を使っているとともに従来のようにエンジンに外部負荷をかけなくともよいので、未燃ガスの発生が少ない。このため、パティキュレートマターの発生を抑制できる。そして、リーンNOx触媒にSOF被毒が生じたり、あるいはパティキュレートマターが付着しても燃焼ガス熱を高めることによってそれらを燃焼できる。このため、リーンNOx触媒のSOF被毒からの回復やパティキュレートマターの除去ができる。
【0089】
(4)EGR通路90をエンジン停止時の燃焼ガス導入路として適用すれば、これはエンジンIに既存の構造物であるから燃焼ガス導入路として新たに設ける必要がない。このため、装置全体が複雑化せずしかもコストを下げられる。
【0090】
(5)バイパス通路として機能する燃焼ガス導入路99を経由して燃焼ガスを触媒コンバータ39の手前にまで、つまりリーンNOx触媒の直ぐ近くにまで直接的に送り込める。このため、リーンNOx触媒を活性化するのに燃焼ガス熱を無駄なく有効利用できる。また、燃焼ガス導入路99を断熱化すれば、燃焼ガスが燃焼ガス導入路99を通過する間に燃焼ガスの持つ熱を他に逃がすことなく触媒を暖めることのみに利用できる。このため、リーンNOx触媒を一層有効に暖められる。したがって、それだけ早くに排気浄化が可能であり、またリーンNOx触媒の還元,リーンNOx触媒のS被毒からの回復,SOF被毒からの回復およびパティキュレートマターの除去ができる。つまり、各被毒の回復やパティキュレートマター除去に適した温度になるようにリーンNOx触媒の温度を設定することで、好適なリーンNOx触媒の再生ができるのである。
【0091】
(6)一旦エンジンが始動した後あまり時間の経っていない段階でエンジンIを停止した場合、つまり、現在はエンジンIが停止しているが、その少し前にエンジンIが所定の回転数以上で動いていたり、あるいは所定以上の負荷を受けていたりしたために、リーンNOx触媒の温度がまだある程度高い域にある場合には、燃焼式ヒータ17の出力を大きくしなくてもすぐにリーンNOx触媒床温を活性温度以上に高められる。
【0092】
(7)エンジンIの停止中であっても、EGR通路90および燃焼ガス導入路99のいずれかを通って触媒コンバータ39に至った燃焼ガスにより、触媒コンバータ39のリーンNOx触媒を再生処理できる。
【0093】
(8)エンジン停止中においてリーンNOx触媒の再生処理が必要でないときであってもリーンNOx触媒を予熱しておける。よって、エンジンIの始動とともにリーンNOx触媒を有効に機能させられる。
【0094】
(9)機関吸気系の圧力と機関排気系の圧力との差圧または機関吸気系の圧力が所定値以上になる時に燃焼式ヒータ17を作動すれば、エンジンIが作動中であっても燃焼式ヒータ17から出る燃焼ガスを燃焼ガス導入路99を経由して排気管42に流せる。換言すればコンプレッサ15aの作動で吸気系の圧力を排気系の圧力よりも高めれば、機関始動後であっても燃焼ガス導入路99を経由して、高熱な燃焼ガスを排気管42に設置の触媒コンバータ39の手前にまでバイパス供給できる。しかもその供給は高圧下において直接的である。よって、燃焼式ヒータ17の燃焼熱は、燃焼ガス導入路99内をスムーズに流れて触媒コンバータ39に到るため、エンジン1が作動していてもリーンNOx触媒を活性化できる。また、燃焼ガス導入路99内が高圧であるので、燃焼式ヒータ17に向けて、エンジン排ガスが燃焼ガス導入路99を介して逆流することもない。
【0095】
(10)エンジン作動状態で吸気絞り弁70を開くとともにコンプレッサ15aを作動し、その状態で、燃焼式ヒータ17の送風ファン45の回転数を大きくすることで、燃焼ガスを触媒コンバータ39の手前に燃焼ガス導入路99を経由して導入しやすくなる。
〈第2の実施の形態〉
図5および図6を用いて第2の実施の形態に係るエンジンIIを説明する。
【0096】
この第2の実施の形態に係るエンジンIIが第1の実施の形態に係るエンジンIと異なるのは次の事項である。よって、第2の実施の形態に係るエンジンIIが第1の実施の形態のエンジンIと同一な部分には同一符号を付して図示するだけとし、説明は省略する。
【0097】
▲1▼ヒータ用枝管31を上流側連結管25でつなぐ。よって、上流側連結管25におけるヒータ用枝管31の位置はコンプレッサ15aよりも上流にあること。
▲2▼燃焼ガス排出通路35の途中に吸気絞り弁70の下流側に向けて延びる分岐管95を備えたこと。
【0098】
▲3▼燃焼ガス排出通路35のうち分岐管95との交差点に三方弁97を設けたこと。
▲4▼分岐管95の途中に三方弁97と構造的に同一な三方弁97’を設けたこと。
【0099】
▲5▼コンプレッサ15bよりも下流側に位置する排気管42にはその長手方向に並列し、排気ガスの流し分けがかわりがわりになされる少なくとも2以上(本実施の形態では2つ)の触媒コンバータ39A,39Bを設けたこと。
【0100】
▲6▼触媒コンバータが2つある関係で、第1の実施の形態で述べた燃焼ガス導入路99に相当する別の燃焼ガス導入路99’があり、その先端は二股状であること。また、排気管42の一部を複線部42aとし、そこに触媒コンバータをそれぞれ配置し、それらに対応するように複線部42aにおける各触媒コンバータの上流側に燃焼ガス導入路99’の二股状の先端を配置したこと。
【0101】
▲7▼燃焼ガス導入路99’の各先端に、触媒コンバータ39A,39Bに向けて排気ガスを流し込んだり止めたりする開閉弁100,100を設けたこと。
▲8▼触媒コンバータ39A,39Bへの排気ガスの流し分けを行う排気ガス流し分け装置102を複線部42aの上流側境界部に設けたこと。
【0102】
▲9▼複線部42aのうち触媒コンバータ39Aおよび39Bの入り口側にそれぞれ温度センサ104および104を設けたこと。
なお、マフラ41は図示を省略した。また、触媒コンバータ39A,39Bに係る各種センサおよび排気ガス流し分け装置102は、ECU46と電気的に接続してある。
【0103】
図5に示すように、上流側連結管25でヒータ用枝管31をつなぐことで、燃焼式ヒータ17と空気供給通路33と燃焼ガス排出通路35とからなるヒータ用枝管31は、コンプレッサ15aよりも上流に位置するU字形をしたバイパス通路となる。そして、第1の実施の形態で述べた下流側連結管27に相当する管は、第2の実施の形態では第1の実施の形態で述べた本流管29に相当するコンプレッサー15aとインテークマニホールド21とを結ぶL字形をした下流側連結管27’のみになる。また、ヒータ用枝管31の空気供給通路33と燃焼ガス排出通路35とが、上流側連結管25と接続する接続箇所をそれぞれ符号C1’およびC2’で示す。
(三方弁97’)
三方弁97’が三方弁97と異なる点は、その取り付け位置の違いでしかなく、両者の構成は同じである。よって、三方弁97’の構成上の説明は省略する。但し、取り付け位置の違いにより、第1の口97a,第2の口97bおよび第3の口97cの各接続先が異なるが、この三方弁97’は、三方弁97から流れて来た燃焼式ヒータ17の燃焼ガスを燃焼ガス導入路99’に流すか、エンジン本体3側に向けて流すかを振り分けるものであるので、この振り分けの違いについての説明に留め、前記第1の口97a〜第3の口97cの各接続先については説明を省略する。
【0104】
三方弁97’が燃焼式ヒータ17の燃焼ガスを燃焼ガス導入路99’に向ける場合は、エンジンIが動いていようとなかろうと、リーンNOx触媒がまだ活性温度に達していない場合か再生処理必要時である。また、三方弁97’が燃焼式ヒータ17の燃焼ガスをエンジン本体3側に向ける場合は、エンジン低温始動時かエンジンIが停止しておりかつリーンNOx触媒がまだ活性温度に達していない場合か再生処理必要時であり、この場合、EGR通路90を利用して燃焼ガスを触媒コンバータ39に導く。但し、エンジン作動前に燃焼ガスを触媒コンバータ39に導くのに、EGR通路90を利用するか燃焼ガス導入路99’を利用するかは、第1の実施の形態で述べたと同じであり、エンジンIIに備えられている各種センサの検出値に基づいて、CPUが決定する。
(排気ガス流し分け装置102)
排気ガス流し分け装置102は、エンジン排ガスを触媒コンバータ39Aか39Bに振り分けるための装置である。排気ガス流し分け装置102は、弁体102aとその駆動機構102bとからなり、駆動機構102bはECU46と電気的に接続してある(接続状態は図示せず)。そして、ECU46のCPUの制御下で触媒コンバータ39Aか触媒コンバータ39Bのいずれかにエンジン排ガスを振り分ける。また、排気ガス流し分け装置102は、触媒コンバータ39Aおよび39Bのうち、再生処理が必要な触媒コンバータには排気ガスを流さないように、弁体102aによって当該再生処理が必要な触媒コンバータへの排気ガスの流れを阻止する。
(リーンNOx触媒のS被毒からの回復処理およびNOx還元処理実行ルーチン)
第1の実施の形態ではリーンNOx触媒の再生処理を述べたが、この第2の実施の形態では、リーンNOx触媒のS被毒からの回復およびNOx還元の各処理を行う場合について図6を参照して述べる。また、このルーチンはS201〜S206の各ステップからなる。
【0105】
処理がこのルーチンに移行すると、S201では車輌走行距離の積算またはエンジンIIの燃料消費量の積算を行い、これらの積算値のいずれかに基づいてS被毒量を算出する。S被毒量は走行距離等に比例して増えるからである。
【0106】
よって、走行距離等の積算値がある特定値となったならば、それに応じてS被毒を回復すべき時期にあるとしてS被毒の回復を行う。この判断をS202で行う。
【0107】
走行距離等の積算値は、ECU46のRAM(ランダム・アクセス・メモリ)に一時記憶しておく。そして必要に応じてECU46のCPUに呼び出す。なお、S被毒量の算出は、当該積算値だけによるのではなく排気温度に基づいてもできるし、またはそれらの全部に基づいてもできる。
【0108】
S202で肯定判定すれば、S203に進み、否定判定すればS204に進む。 S203では燃焼式ヒータ17を作動するとともに排気切り替え弁である三方弁97,97’の操作により燃焼ガスを燃焼ガス導入路99’に流す。このとき、リーンNOx触媒を還元雰囲気、つまり、リーンNOx触媒の還元剤となる炭化水素や一酸化炭素の多い雰囲気におけるように、燃焼式ヒータ17の燃焼ガスの空燃比(A/F)をリッチでしかも触媒温度が600℃以上になるように燃焼式ヒータ17の出力制御を行う。600℃は、リーンNOx触媒のS被毒からの回復を行う適切な温度である。燃焼式ヒータ17の出力制御を行って触媒温度を600℃以上にしたときにリーンNOx触媒の温度を検出するのが、温度センサ104である。
【0109】
その後所定時間が経過してから燃焼式ヒータ17を停止する。なお、ここでいう「所定時間」とはリーンNOx触媒のS被毒を回復することができるに十分な時間である。
【0110】
S204では、入り口NOxセンサ39aが検出した値と出口NOxセンサ39cが検出した値との差を、信号差として検出する。
S205ではS204で求めた検出結果に基づいて触媒コンバータ39に含まれているリーンNOx触媒が還元時期にあるかどうかを判定する。この判定には、図示しない周知のNOx排出量マップから推定してもよい。S205で肯定判定すれば次のS206に進み、否定判定すればこのルーチンを終了し、必要に応じて繰り返す。
【0111】
S206では燃焼式ヒータ17を作動するとともに排気切り替え弁である三方弁97,97’の操作により燃焼ガスを燃焼ガス導入路99’に流す。このとき、燃焼式ヒータ17の空燃比がリッチでしかもリーンNOx触媒の温度が300℃以上になるように燃焼式ヒータ17の出力制御を行う。300℃は、NOx還元を行う適切な温度である。燃焼式ヒータ17の出力制御を行ってリーンNOx触媒の温度を300℃以上にしたときもリーンNOx触媒の温度を温度センサ104で検出する。
【0112】
その後所定時間が経過してから燃焼式ヒータ17を停止するとともに必要に応じてこのルーチンを繰り返す。なお、ここでいう「所定時間」とはリーンNOx触媒の還元処理をすることができるに十分な時間である。
〈第2の実施の形態の作用効果〉
次に第2の実施の形態の作用効果について説明する。
【0113】
本実施の形態では、双数のリーンNOx触媒のいずれにも同時に排気ガスを流すのではなく、排気ガス流し分け装置102を作動して一方の触媒コンバータ39A(39B)にのみ排気ガスを流すようにし、他方の触媒コンバータ39B(39A)には前記一方の触媒コンバータ39A(39B)がS被毒からの回復を要する時であったり、NOx還元を要する時であったり等の処理要求(以下単に「処理要求」という。)をする状態になるまで排気ガスを流さない。なお、前記S203やS206のように処理する対象によって燃焼式ヒータの出力制御を変える。
【0114】
そして、一方の触媒コンバータ39A(39B)が処理要求をする状態になったら今度は排気ガス流し分け装置102を先程とは反対に作動して他方の触媒コンバータ39B(39A)にのみ排気ガスを流す。そして、このとき一方の触媒コンバータ39A(39B)にあってはその触媒コンバータに係る開閉弁100を開いて燃焼ガス導入路99’から燃焼ガス熱を送り、この一方の触媒コンバータ39A(39B)の処理を行う。このとき他方の触媒コンバータ39B(39A)に係る開閉弁100は閉じておく。
【0115】
次に他方の触媒コンバータ39B(39A)が処理要求をする状態となったら、排気ガス流し分け装置102を作動して他方の触媒コンバータ39B(39A)に排気ガスを流さないようにする。同時に処理が済んだ一方の触媒コンバータ39A(39B)にのみ排気ガスを流し、前記他方の触媒コンバータ39B(39A)に係る開閉弁100を開いて燃焼ガス熱を他方の触媒コンバータ39B(39A)に送り込み、この他方の触媒コンバータ39B(39A)の処理を行う。
【0116】
このように双数の触媒コンバータ39A,39Bのうち、処理要求の状態になった触媒コンバータ39A(39B)を休ませて、つまり排気ガスがその触媒コンバータ39A(39B)には流れないようにし、別の触媒コンバータ39B(39A)で排気浄化を行うようになっているので、排気浄化処理が滞ることなく排気できる。よって、排気および排気浄化を効率良く行える。
【0117】
また、このエンジンIIにあっては、リーンNOx触媒17のNOx還元を要する時およびリーンNOx触媒17のS被毒からの回復を要する時は、リーンNOx触媒17を還元雰囲気におけるように燃焼ガスの空燃比をリッチにするので、燃焼熱が高まる上に、炭化水素や一酸化炭素の還元ガス成分が排気ガス中に多くなる。よって、リーンNOx触媒17のNOx還元やリーンNOx触媒17のS被毒からの回復ができる。
〈第3の実施の形態〉
次に第3の実施の形態に係るエンジンIIIを図7および図8を用いて説明する。
【0118】
前記した第2の実施の形態に係るエンジンIIでは触媒コンバータは双数あったが、第3の実施の形態に係るエンジンIIIにあっては、図7に示すように単数である。よって、燃焼ガス導入路も二股でなくなる。つまりこの第3の実施の形態で示す触媒コンバータおよび燃焼ガス導入路は、第1の実施の形態のものと同じタイプのものである。よって、それぞれを第1の実施の形態と同じ符号39および99で示す。また、触媒コンバータ39の前後部に温度センサ104を配置してある。他の構成部分については、第2の実施の形態と同じであるので、同一の符号を付してそれらの説明を省略する。
【0119】
この第3の実施の形態に係るエンジンIIIでも燃焼式ヒータ17の空燃比をリッチにすることで、還元剤としての炭化水素等の供給がリーンNOx触媒に必要であるときに対応できる。その場合の燃焼式ヒータ17の作動制御実行ルーチンを図8に示す。
(燃焼式ヒータ17の作動制御ルーチン)
図8に示す燃焼式ヒータ17の作動制御ルーチンは、S301〜S306の各ステップからなる。
【0120】
処理がこのルーチンに移行すると、S301では触媒コンバータ39の入り口温度と出口温度とを温度センサ104,104で検出し、それらの温度差から触媒温度を算出する。なお、触媒温度とは、触媒コンバータ39を通過するガス温度ではなく触媒コンバータ39においてリーンNOx触媒の置かれている触媒床の温度のことである。
【0121】
S302では、リーンNOx触媒の温度がリーンNOx触媒の再生を行うに有効な温度範囲にあるかどうかを判定する。S302で肯定判定すればS303に進み、否定判定すればこのルーチンを終了する。
【0122】
S303では触媒コンバータ39内における空気量Gaを適宜の空気量検出手段により検出するとともに、その空気量に応じた還元剤としての炭化水素量の算出を行う。
【0123】
次のS304ではリーンNOx触媒39が、その機能を発揮するための最適な温度よりも低いかどうかを判定する。S304で肯定判定すればS305に進み、否定判定すれば、つまりS306に進む。
【0124】
S305は、リーンNOx触媒の温度がその機能を発揮するための最適な温度よりも低い温度であることを前提とした処理であるので、燃焼式ヒータ17の排気熱量や空燃比がリッチになるようにリッチ制御を行うことにより、燃焼ガスの温度を上昇してリーンNOx触媒の温度が、その機能を発揮するための最適な温度以上にするとともに、炭化水素を供給する。
【0125】
S306では、リーンNOx触媒の温度が、その機能を発揮するための最適な温度以上であることを前提としたステップであるので、燃焼式ヒータ17の排気熱量が最低になるような状態で作動したり、あるいは空燃比制御を行ったりすることにより、燃焼ガスの温度上昇をせずに炭化水素の供給を行って、リーンNOx触媒が、再生温度範囲内にあるようにする。そして、その後は必要に応じてこのルーチンを繰り返す。
〈第3の実施の形態の作用効果〉
この第3の実施の形態にあっても、エンジン1の作動の有無に拘わらず、リーンNOx触媒の触媒再生を行うことができる。
〈第4の実施の形態〉
第4の実施の形態に係るエンジンIVを図9を用いて説明する。
【0126】
エンジン停止中のみに限定して触媒再生を行う場合には、図9のような構造になる。図9に示すエンジンIVの構造が図7に示す第3の実施の形態に係るエンジンIIIと相違するところは、燃焼ガス導入路99がないことと、それに関連して吸気圧センサ29aと排気圧センサ29bがないこと、三方弁97’が分岐管95にないことである。
〈第4の実施の形態の作用効果〉
この第4の実施の形態に係るエンジンIVにあっては、エンジン停止中において、EGR通路90を利用したリーンNOx触媒39の再生を行える。
〈第5の実施の形態〉
次に図10〜図13を用いて第5の実施の形態に係るエンジンVを説明する。
【0127】
この第5の実施の形態に係るエンジンVが図5に示す第2の実施の形態に係るエンジンIIと異なる点は、触媒コンバータが一つであることと、排気管42に触媒コンバータに対してバイパスする触媒用バイパス管を備えたこと、およびそれら相違点に関連する箇所だけである。よって、第2の実施の形態に係るエンジンIIと同一部分については第2の実施の形態で示したと同一の符号を付して説明を省略する。なお、図10は本実施形態の概略構成図であるが、第2の実施の形態と比べて異なる部分以外は最大限簡略化してある。また、話を簡単にするためにリーンNOx触媒の活性化にEGR通路90は用いず、燃焼ガス導入路99のみを用いることとするがエンジン始動前であればEGRでリーンNOx触媒を活性化してもよいのはもちろんである。
【0128】
図10において、この第5の実施の形態に係るエンジンVは、排気管42がその触媒コンバータ39に対してバイパスする触媒用バイパス管110と、この触媒用バイパス管110および触媒コンバータ39に排気ガスを流し分ける排気ガス流し分け装置112とを有している。
【0129】
触媒用バイパス管110は、排気管42上にある触媒コンバータ39の上流側と下流側とを結んでバイパスする排気通路である。
排気ガス流し分け装置112は、排気管42と触媒用バイパス管110との2つある接合点C3,C4のうち、上流側に位置する接合点C3に設けてある。また、排気ガス流し分け装置112は、触媒用バイパス管110の一方の開口110aを開閉自在にする開閉弁112aとこの開閉弁112aを駆動する駆動装置112bとを有する。そして、この排気ガス流し分け装置112の駆動制御はECU46のCPUが行う。
【0130】
また、排気ガス流し分け装置112の取り付け位置となる前記接合点C3の排気管42における位置は、排気管42の燃焼ガス導入路99との接合点C5よりも上流にある。これは燃焼ガス導入路99を伝って排気管42に流れて来る燃焼ガス熱を無駄なく触媒コンバータ39に送り込むためである。
【0131】
次にこのような構成のエンジンVの触媒コンバータ39に導入する燃焼ガスの空燃比調整の好適例を▲1▼エンジン始動前,▲2▼始動直後,▲3▼エンジン作動中とに分けて具体的に説明する。
【0132】
以下に述べる燃焼ガスの空燃比調整によりリーンNOx触媒に堆積した被毒物質を除去し、リーンNOx触媒の再生を効率良く行う。
▲1▼エンジン始動前にリーンNOx触媒のS被毒からの回復等再生するための空燃比制御
図11を参照して説明する。図11は、縦軸に燃焼ガスの空燃比A/Fを示し、横軸に時間経過を示すA/F−時間線図である。この線図における符号a,b,cは、次の説明項a〜cに対応する領域であることを意味する。また、図中1点鎖線で示す線は、燃焼ガスの空燃比A/Fがストイキ(理論空燃比)の場合を示し、これをストイキ線ということにする。なお、これらの符号およびストイキ線は、図12および図13で示す他のA/F−時間線図にあっても同様の取扱いをするものとする。
【0133】
a:燃焼式ヒータ17の作動直後は燃焼ガス中に還元剤としての炭化水素や一酸化炭素等ができるだけ含まれないように燃焼制御を行う。領域aにあっては、空燃比A/Fは20程度のリーンであり、このような排気が触媒コンバータ39に入ることで触媒コンバータ39の入り口部での温度が高まり、リーンNOx触媒が活性化する。このときの燃焼ガスは、前記のようにその空燃比がリーンであって燃焼ガス中に含まれる炭化水素等のほとんどないクリーンな排気である。
【0134】
b:触媒コンバータ39の入り口部での温度が触媒活性温度(例えば200℃)以上になった時、燃焼ガスの空燃比A/Fはストイキとする。このとき燃焼ガスには、2〜3パーセントの一酸化炭素と、それを燃焼するに十分な量の酸素とが存在する。このためそれら一酸化炭素や酸素がリーンNOx触媒に供給されるので、一酸化炭素が燃焼によって酸化し、リーンNOx触媒の温度がさらに上昇する。
【0135】
c:リーンNOx触媒の温度が上昇することにより、リーンNOx触媒のSOFの酸化やS離脱が可能な温度、言い換えればリーンNOx触媒の再生可能な温度(500℃以上)になると、前記空燃比A/Fをリーンまたはリッチに繰り返し変更してSOF被毒からの回復またはS被毒からの回復等の再生を図る。
【0136】
▲2▼エンジン始動直後にリーンNOx触媒のS被毒からの回復等再生するための空燃比制御
図12に示すA/F−時間線図において、矢印iは、エンジンVの始動時期を示す。図12のグラフ線において矢印iの指す位置よりも時間軸で左側の部分ではまだエンジンVが停止状態にあり、右側の部分ではエンジンVが作動状態にあることを意味する。また、同じく図12のグラフ線における矢印領域iiの範囲では、触媒用バイパス管110の開口110aを排気ガス流し分け装置112の開閉弁112aを駆動装置112bによって作動することで開き、それ故、触媒用バイパス管110をエンジンVの排気ガスが流通する期間を示す。矢印領域iiにあっては図13で示すA/F−時間線図にあっても同様の取り扱いをするものとする。
【0137】
a:グラフ線における矢印iの左側であるエンジン始動前にあっては、触媒暖機のために燃焼ガスを触媒コンバータ39に導入する。同じく矢印iの右側であるエンジン始動後のしかも直後にあっては排気ガスの方が燃焼ガスよりも低温である場合があり得る。よって、触媒暖機が未だ不十分で触媒が活性温度以下の場合は、燃焼ガスよりも低温な排気ガスを触媒コンバータ39には流さずに触媒用バイパス管110に流すべく、排気ガス流し分け装置112の開閉弁112aを開く。リーンNOx触媒が燃焼ガスによって暖まるまでの間は燃焼ガス中に還元剤としての炭化水素や一酸化炭素等ができるだけ含まれないように燃焼制御を行う。領域aにあっては、燃焼ガスの空燃比A/Fは20程度のリーンであり、このような空燃比の排気ガスが触媒コンバータ39に入ることで、触媒コンバータ39の入り口部での温度が高まりリーンNOx触媒が活性化する。
【0138】
b:触媒コンバータ39の入り口部での温度が高まりリーンNOx触媒が活性温度(例えば200℃)以上になったときに、燃焼ガスの空燃比A/Fをリッチとする。このとき燃焼ガスには多量の一酸化炭素が含まれており、触媒により一酸化炭素が酸化し、また触媒温度がさらに上昇する。このとき、排気ガス流し分け装置112の開閉弁112aにより触媒用バイパス管110の開口110aは閉じる。そして、エンジン排ガスと燃焼ガスとからなる混合ガスの空燃比は、リーンからストイキの間に制御する。
【0139】
c:リーンNOx触媒の温度が上昇することにより、リーンNOx触媒のSOFの酸化やS離脱が可能な温度、言い換えればリーンNOxの再生可能な温度(500℃以上)になると、前記空燃比A/Fがリッチ域で変動するように制御する。このとき、エンジン排ガスと燃焼ガスとの混合ガスの空燃比はリーンとリッチとを繰り返す。
【0140】
▲3▼エンジン作動中にリーンNOx触媒のS被毒からの回復等再生するための空燃比制御
図13を参照して説明する。
【0141】
a:エンジン作動中にリーンNOx触媒のS被毒からの回復等再生の必要が生じた場合であって、エンジンVの排気ガスが低い場合は、この低温な排気ガスが触媒コンバータ39をバイパスするように、排気ガス流し分け装置112の開閉弁112aにより触媒用バイパス管110の開口110aを開く。このとき燃焼ガスを燃焼ガス導入路99を経由して触媒コンバータ39に流す。
【0142】
触媒コンバータ39を流れる燃焼ガスの空燃比A/Fはリッチ域にある。そして、開閉弁112aを経由してそれよりも下流側の触媒コンバータ39に向かうエンジンVの排気ガスと燃焼ガスとからなる混合ガスがストイキになるように制御する。
【0143】
b:リーンNOx触媒の温度が上昇することにより、リーンNOx触媒のSOFの酸化やS離脱が可能な温度、言い換えればリーンNOxの再生可能な温度(500℃以上)になると、燃焼式ヒータ17の排気空燃比A/Fがストイキを境にリーン域とリッチ域との間で変動するように制御する。このとき、エンジン排ガスと燃焼ガスとの混合ガスの空燃比はリーンとリッチとを繰り返すようになる。
〈第5の実施の形態の作用効果〉
この第5の実施の形態に係るエンジンVでは、排気管42にリーンNOx触媒を含む触媒コンバータ39に対してバイパスする触媒用バイパス管110を有し、この触媒用バイパス管110の側と、排気管42のうち触媒コンバータ39のある側とのいずれかへ、排気ガス流し分け装置112を用いて排気ガスの流し分けを行う。この流し分けのうち、触媒用バイパス管110に排気ガスが通されるのは、リーンNOx触媒の再生処理要求時で排気ガスの温度がリーンNOx触媒の活性温度よりも低い場合のみである。それ以外の場合は排気ガスは触媒コンバータ39によって排気浄化される。つまり、リーンNOx触媒の再生処理要求時であって排気ガスの温度が低い場合は、排気ガス流し分け装置112の開閉弁112aを操作して触媒用バイパス管110を開き、これにより排気ガスを触媒コンバータ39には流さずに触媒用バイパス管110に向けて流す。このため、触媒コンバータ39には、排気管42のうち排気ガス流し分け装置112の設置場所C3よりも下流側の箇所であって触媒コンバータ39の手前の箇所である接合点C5に向けて延びている燃焼ガス導入路99を経由する、燃焼式ヒータ17からの高熱な燃焼ガスだけを通すことができる。したがって、排気ガスが低温な場合であってもこの低温な排気ガスがリーンNOx触媒を通らないようにできるので、リーンNOx触媒の温度が低温排気によって低下してしまうことがない。したがって、リーンNOx触媒を容易に活性化できる。また、SOFやパティキュレートマターを効率よく燃焼できる温度にまで触媒温度を十分高められるので、リーンNOx触媒のNOx還元,S被毒からの回復SOF被毒からの回復およびパティキュレートマターの除去も良好にすることができる。
【0144】
【発明の効果】
本発明によれば、機関関連要素を昇温するため吸気通路に燃焼ガスを流す燃焼式ヒータと、排気通路に備えられ排気ガスを浄化するリーンNOx触媒と、このリーンNOx触媒の再生処理要求時に、前記吸気通路側から前記排気通路におけるリーンNOx触媒上流側に向けて前記燃焼式ヒータの出す燃焼ガスを導く燃焼ガス導入路と有するので、次の効果を奏する。
【0145】
▲1▼副噴射を不用にしてもリーンNOx触媒への炭化水素等の還元剤の供給を十分行える。
▲2▼内燃機関の排気系に設けるリーンNOx触媒が内燃機関の始動とともに有効に機能するように機関始動前から排気系温度を十分高められる。
【0146】
▲3▼排気浄化、リーンNOx触媒のS被毒等からの回復およびパティキュレートマターの除去を良好にできる。
▲4▼パティキュレートマターの発生を抑えられる。
【0147】
▲5▼機関始動後であっても燃焼ガスを排気通路に必要に応じて送り込めるようにすることで、燃焼式ヒータへの逆流を防ぐとともにリーンNOx触媒の活性化を促進する。
【0148】
【図面の簡単な説明】
【図1】本発明に係る燃焼式ヒータを有する内燃機関の第1の実施の形態の概略構成図
【図2】燃焼式ヒータの概略断面図
【図3】三方弁の概略説明図
【図4】第1の実施の形態に係るリーンNOx触媒の再生処理実行ルーチンを説明するための図
【図5】本発明に係る燃焼式ヒータを有する内燃機関の第2の実施の形態の概略構成図
【図6】リーンNOx触媒のS被毒等からの回復処理およびNOx還元処理実行ルーチンを説明するための図
【図7】本発明に係る燃焼式ヒータを有する内燃機関の第3の実施の形態の概略構成図
【図8】第3の実施の形態に係る燃焼式ヒータの作動制御実行ルーチンを説明するための図
【図9】本発明に係る燃焼式ヒータを有する内燃機関の第4の実施の形態の概略構成図
【図10】本発明に係る燃焼式ヒータを有する内燃機関の第5の実施の形態の概略構成図
【図11】第5の実施の形態に係るエンジン始動前にリーンNOx触媒のS被毒等からの回復をするための燃焼ガス空燃比制御A/F−時間線図
【図12】第5の実施の形態に係るエンジン始動直後にリーンNOx触媒のS被毒等からの回復をするための燃焼ガス空燃比制御A/F−時間線図
【図13】第5の実施の形態に係るエンジン作動中にリーンNOx触媒のS被毒等からの回復をするための燃焼ガス空燃比制御A/F−時間線図
【符号の説明】
I〜V…エンジン(内燃機関)
3…エンジン本体(機関本体,機関関連要素)
5…吸気装置
7…排気装置
9…車室用ヒータ
13…エアクリーナ
15…ターボチャージャ(過給機)
15a…コンプレッサ
15b…ターボチャージャのタービン
17…燃焼式ヒータ
17a…燃焼式ヒータの冷却水通路
17a1…冷却水導入口
17a2…冷却水排出口
17b…燃焼筒
17c…円筒状隔壁
17d…燃焼室
17d1…空気供給口
17d2…排気排出口
17e…燃料供給管
19…インタークーラ
21…インテークマニホールド
23…吸気管(吸気通路)
25…上流側連結管
27…下流側連結管
27’…下流側連結管
29…本流管
29a…吸気圧センサ
31…ヒータ用枝管
33…空気供給通路
35…燃焼ガス排出通路
37…エキゾーストマニホールド
39…触媒コンバータ(リーンNOx触媒)
39a…入り口NOxセンサ
39c…出口NOxセンサ
39A…触媒コンバータ(リーンNOx触媒)
39B…触媒コンバータ(リーンNOx触媒)
41…マフラ
42…排気管(排気通路)
43…燃焼室本体
43a…ケース体
45…送風ファン
46…ECU
70…吸気絞り弁
88…EGR
90…EGR通路(燃焼ガス導入路)
92…EGR弁
95…分岐管
97…三方弁
97’…三方弁
97a…第1の口
97b…第2の口
97c…第3の口
97d…三方弁のケース体
98…弁体
99…燃焼ガス導入路,バイパス通路
99a…燃焼ガス導入路の出口
99’…燃焼ガス導入路
100…燃焼ガス導入路に係る開閉弁
102…排気ガス流し分け装置
102a…弁体
102b…駆動機構
104…温度センサ
110…触媒用バイパス管
110a…触媒用バイパス管110の開口
112…排気ガス流し分け装置
112a…開閉弁
112b…駆動装置
C1…空気供給通路33と本流管29との接続箇所
C2…燃焼ガス排出通路35と本流管29との接続箇所
C1’…空気供給通路33と上流側連結管25との接続箇所
C2’…燃焼ガス排出通路35と上流側連結管25との接続箇所
C3…排気管42と触媒用バイパス管110との接合点であって上流側に位置する接合点
C4…排気管42と触媒用バイパス管110との接合点であって下流側に位置する接合点
C5…排気管42における燃焼ガス導入路99との接合点(リーンNOx触媒の手前箇所)
F…火炎
W1〜W3…水管路

Claims (12)

  1. 機関関連要素を昇温するための燃焼式ヒータと、機関排気通路に備えられ機関排気ガスを浄化するリーンNOx触媒と、このリーンNOx触媒の再生処理要求時に、前記機関排気通路におけるリーンNOx触媒上流側に向けて前記燃焼式ヒータの出す燃焼ガスを導く燃焼ガス導入路と、を有するリーンNOx触媒を有する内燃機関であって、
    前記リーンNOx触媒の再生処理要求時とは、リーンNOx触媒のNOx還元を要する時,リーンNOx触媒のS被毒からの回復およびSOF被毒からの回復を要する時,ならびにリーンNOx触媒からパティキュレートマターの除去を要する時であり、
    更に、前記リーンNOx触媒のNOx還元を要する時およびリーンNOx触媒のS被毒からの回復を要する時は、リーンNOx触媒を還元雰囲気におけるように前記燃焼ガスの空燃比をリッチにすることを特徴とするリーンNOx触媒を有する内燃機関。
  2. 機関関連要素を昇温するための燃焼式ヒータと、機関排気通路に備えられ機関排気ガスを浄化するリーンNOx触媒と、このリーンNOx触媒の再生処理要求時に、前記機関排気通路におけるリーンNOx触媒上流側に向けて前記燃焼式ヒータの出す燃焼ガスを導く燃焼ガス導入路と、を有するリーンNOx触媒を有する内燃機関であって、
    前記リーンNOx触媒の再生処理要求時である前記リーンNOx触媒のNOx還元を要する時およびリーンNOx触媒のS被毒からの回復を要する時は、リーンNOx触媒を還元雰囲気におけるように前記燃焼ガスの空燃比をリッチにすることを特徴とするリーンNOx触媒を有する内燃機関。
  3. 機関関連要素を昇温するための燃焼式ヒータと、機関排気通路に備えられ機関排気ガスを浄化するリーンNOx触媒と、このリーンNOx触媒の再生処理要求時に、前記機関排気通路におけるリーンNOx触媒上流側に向けて前記燃焼式ヒータの出す燃焼ガスを導く燃焼ガス導入路と、を有するリーンNOx触媒を有する内燃機関であって、
    前記リーンNOx触媒の再生処理要求時である前記リーンNOx触媒のNOx還元を要する時は、リーンNOx触媒を還元雰囲気におけるように前記燃焼ガスの空燃比をリッチにすることを特徴とするリーンNOx触媒を有する内燃機関。
  4. 機関関連要素を昇温するための燃焼式ヒータと、機関排気通路に備えられ機関排気ガスを浄化するリーンNOx触媒と、このリーンNOx触媒の再生処理要求時に、前記機関排気通路におけるリーンNOx触媒上流側に向けて前記燃焼式ヒータの出す燃焼ガスを導く燃焼ガス導入路と、を有するリーンNOx触媒を有する内燃機関であって、
    前記リーンNOx触媒の再生処理要求時であるリーンNOx触媒のS被毒からの回復を要する時は、リーンNOx触媒を還元雰囲気におけるように前記燃焼ガスの空燃比をリッチにすることを特徴とするリーンNOx触媒を有する内燃機関。
  5. 前記燃焼ガス導入路は、EGR通路であることを特徴とする請求項1から請求項4のいずれか記載のリーンNOx触媒を有する内燃機関。
  6. 前記燃焼ガス導入路は、前記機関排気通路のうち前記リーンNOx触媒の手前箇所にまで至り、前記機関本体に対してバイパスするバイパス通路であることを特徴とする請求項1から請求項4のいずれか記載のリーンNOx触媒を有する内燃機関。
  7. 機関吸気系の圧力と機関排気系の圧力との差圧が所定値以上ある時に前記燃焼式ヒータから出る燃焼ガスを前記燃焼ガス導入路に流すことを特徴とする請求項1から請求項6のいずれか記載のリーンNOx触媒を有する内燃機関。
  8. 前記内燃機関に過給機を設けこの過給機による過給によって機関吸気系の圧力が所定値以上になったときに、前記燃焼式ヒータから出る燃焼ガスを前記燃焼ガス導入路に流すことを特徴とする請求項1から請求項6のいずれか記載のリーンNOx触媒を有する内燃機関。
  9. 前記リーンNOx触媒の再生処理要求時には、前記燃焼式ヒータから出る燃焼ガスの熱が高まるように、前記燃焼式ヒータの出力をリーンNOx触媒の再生処理要求前の出力よりも大きくすることを特徴とする請求項1から請求項8のいずれか記載のリーンNOx触媒を有する内燃機関。
  10. 前記排気通路は、前記リーンNOx触媒に対してバイパスする触媒用バイパス管と、この触媒用バイパス管と前記リーンNOx触媒とに前記排気ガスを流し分ける排気ガス流し分け装置と、を有し、前記排気ガス流し分け装置は、前記リーンNOx触媒の再生処理要求時であって排気ガスの温度が前記リーンNOx触媒の活性温度よりも低い場合に前記触媒用バイパス管に前記排気ガスを通すことを特徴とする請求項1から請求項9のいずれか記載のリーンNOx触媒を有する内燃機関。
  11. 前記排気通路は、排気通路の長手方向に並列し前記排気ガスの流し分けが交互になされる少なくとも2以上のリーンNOx触媒と、これらのリーンNOx触媒に前記排気ガスの流し分けを行う排気ガス流し分け装置と、を有し、前記排気ガス流し分け装置は、前記リーンNOx触媒のうち再生処理が必要な状態のリーンNOx触媒には前記排気ガスを流さないことを特徴とする請求項1から請求項9のいずれか記載のリーンNOx触媒を有する内燃機関。
  12. 前記燃焼式ヒータは、機関吸気通路に燃焼ガスを流すことを特徴とする請求項1から請求項4のいずれか記載のリーンNOx触媒を有する内燃機関。
JP36576598A 1998-12-22 1998-12-22 リーンNOx触媒を有する内燃機関 Expired - Lifetime JP3557928B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP36576598A JP3557928B2 (ja) 1998-12-22 1998-12-22 リーンNOx触媒を有する内燃機関
EP99124301A EP1013904B1 (en) 1998-12-22 1999-12-06 Internal combustion engine having lean NOx catalyst
DE69924459T DE69924459T2 (de) 1998-12-22 1999-12-06 Brennkraftmaschine mit NOx-Katalysator für Magergemischverbrennung
US09/464,740 US6370871B2 (en) 1998-12-22 1999-12-16 Internal combustion engine having lean NOx catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36576598A JP3557928B2 (ja) 1998-12-22 1998-12-22 リーンNOx触媒を有する内燃機関

Publications (2)

Publication Number Publication Date
JP2000186531A JP2000186531A (ja) 2000-07-04
JP3557928B2 true JP3557928B2 (ja) 2004-08-25

Family

ID=18485058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36576598A Expired - Lifetime JP3557928B2 (ja) 1998-12-22 1998-12-22 リーンNOx触媒を有する内燃機関

Country Status (4)

Country Link
US (1) US6370871B2 (ja)
EP (1) EP1013904B1 (ja)
JP (1) JP3557928B2 (ja)
DE (1) DE69924459T2 (ja)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269407B2 (ja) * 1998-12-24 2009-05-27 トヨタ自動車株式会社 燃焼式ヒータ付内燃機関
JP3555559B2 (ja) * 2000-06-19 2004-08-18 トヨタ自動車株式会社 内燃機関
JP3992933B2 (ja) * 2001-01-16 2007-10-17 トヨタ自動車株式会社 車輌のエンジン排気浄化運転方法
DE10103771A1 (de) * 2001-01-27 2002-08-14 Omg Ag & Co Kg Verfahren zur Wiederherstellung der katalytischen Aktivität eines Katalysators, welcher im Abgastrakt eines Dieselmotors angeordnet ist und wenigstens eine Oxidationsfunktion aufweist
JP2003090271A (ja) 2001-07-11 2003-03-28 Toyota Motor Corp 内燃機関
DE20119513U1 (de) * 2001-12-03 2002-02-28 Purem Abgassysteme Gmbh & Co Reduktionsmitteldosiereinrichtung
US6679051B1 (en) * 2002-07-31 2004-01-20 Ford Global Technologies, Llc Diesel engine system for use with emission control device
EP1570168B2 (de) * 2002-12-03 2020-01-29 MAHLE Behr GmbH & Co. KG Vorrichtung zur kühlung
US7040088B2 (en) * 2002-12-20 2006-05-09 Raymond Paul Covit Diesel engine exhaust purification system
JP2005048752A (ja) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd エンジンの制御装置
US6938412B2 (en) * 2003-08-07 2005-09-06 General Motors Corporation Removing nitrogen oxides during a lean-burn engine cold start
DE102005014872A1 (de) * 2004-03-31 2005-11-17 Mitsubishi Fuso Truck And Bus Corp. Abgasreinigungsvorrichtung
US7028463B2 (en) * 2004-09-14 2006-04-18 General Motors Corporation Engine valve assembly
US7263824B2 (en) * 2004-12-03 2007-09-04 Cummins, Inc. Exhaust gas aftertreatment device for an internal combustion engine
JP2006258058A (ja) * 2005-03-18 2006-09-28 Hino Motors Ltd 排気浄化装置
DE112008000132T5 (de) * 2007-01-27 2009-11-26 Borgwarner Inc., Auburn Hills Sekundärluftsystem für ein Entlüftungssystem eines Verbrennungsmotors
US8434433B2 (en) * 2007-02-20 2013-05-07 Modine Manufacturing Company Heat exchanger system and method of operating the same
US8161732B2 (en) * 2008-03-05 2012-04-24 Ford Global Technologies, Llc System and method to improve engine emissions for a dual fuel engine
JP5344831B2 (ja) * 2008-03-18 2013-11-20 三菱重工業株式会社 低温作動脱硝装置、船舶、低温作動脱硝装置の運用方法
US8136357B2 (en) * 2008-08-27 2012-03-20 Honda Motor Co., Ltd. Turbocharged engine using an air bypass valve
JP5308179B2 (ja) * 2009-02-12 2013-10-09 ヤンマー株式会社 排気ガス浄化システム
US8312708B2 (en) * 2010-03-30 2012-11-20 GM Global Technology Operations LLC Closely coupled exhaust aftertreatment system for a turbocharged engine
US8276366B2 (en) * 2010-03-30 2012-10-02 GM Global Technology Operations LLC Closely coupled exhaust aftertreatment system for an internal combustion engine having twin turbochargers
US9359918B2 (en) * 2010-10-29 2016-06-07 General Electric Company Apparatus for reducing emissions and method of assembly
US9062569B2 (en) * 2010-10-29 2015-06-23 General Electric Company Systems, methods, and apparatus for regenerating a catalytic material
DE102010050413A1 (de) * 2010-11-04 2012-05-10 Daimler Ag Kraftfahrzeug-Brennkraftmaschine mit Abgasrückführung
US9027326B2 (en) 2011-04-13 2015-05-12 Ford Global Technologies, Llc Vehicle exhaust heat recovery system
JP6062385B2 (ja) * 2014-02-27 2017-01-18 三菱重工業株式会社 混焼エンジン用排熱回収装置および混焼エンジン用排熱回収装置の制御方法
ITUB20155060A1 (it) * 2015-10-15 2016-01-16 Domenico Tanfoglio Sistema catalizzatore a ioni di platino/titanio
CN105944567B (zh) * 2016-06-24 2018-08-21 青岛双瑞海洋环境工程股份有限公司 船舶废气脱硝***
US10598109B2 (en) 2017-05-26 2020-03-24 Garrett Transportation I Inc. Methods and systems for aftertreatment preheating
JP6979478B2 (ja) * 2020-03-18 2021-12-15 本田技研工業株式会社 排気浄化システム
CN111997719B (zh) * 2020-09-07 2022-03-01 潍柴动力股份有限公司 一种三元催化器热管理***
US11698014B1 (en) 2022-07-20 2023-07-11 Garrett Transportation I Inc. Flow estimation for secondary air system

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1497428A (fr) * 1966-10-25 1967-10-06 Daimler Benz Ag Procédé et équipement pour le fonctionnement d'un moteur diesel avec turbo-compresseur à gaz d'échappement
SE352136B (ja) * 1971-04-05 1972-12-18 Saab Scania Ab
DE2410644A1 (de) * 1974-03-06 1975-09-18 Reinhold Dipl Ing Schmidt Anordnungen an brennkraftmaschinen und/oder feuerungsanlagen bei methanol-betrieb
DE2706696C2 (de) 1977-02-17 1982-04-29 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 7990 Friedrichshafen Verfahren zum Anlassen der Brennkammer einer Brennkraftmaschine
GB1595060A (en) 1977-11-30 1981-08-05 Lucas Industries Ltd Air heater system
GB2041081B (en) 1979-02-03 1983-03-09 Lucas Industries Ltd Heater for gaseous fluid
JPS55160158A (en) 1979-05-31 1980-12-12 Nissan Motor Co Ltd Diesel engine
CA1216200A (en) * 1983-02-03 1987-01-06 Vemulapalli D.N. Rao Method for operating a regenerative diesel engine particulate trap
JPS6078819A (ja) 1983-10-04 1985-05-04 Nippon Denso Co Ltd 燃焼式ヒ−タを備えた車両の暖房装置
JPS6246708A (ja) 1985-08-23 1987-02-28 Isuzu Motors Ltd 急速暖房器の制御装置
US4677823A (en) * 1985-11-01 1987-07-07 The Garrett Corporation Diesel engine particulate trap regeneration system
JPS6371409A (ja) * 1986-09-12 1988-03-31 Isuzu Motors Ltd 車両用暖房装置
JPH07115582B2 (ja) 1986-11-13 1995-12-13 いすゞ自動車株式会社 車両用暖房装置
EP0283240B1 (en) * 1987-03-20 1992-09-30 Matsushita Electric Industrial Co., Ltd. Diesel engine exhaust gas particle filter
JPS6424118A (en) * 1987-07-15 1989-01-26 Yanmar Diesel Engine Co Internal-combustion engine with exhaust turbo charger
US5052178A (en) * 1989-08-08 1991-10-01 Cummins Engine Company, Inc. Unitary hybrid exhaust system and method for reducing particulate emmissions from internal combustion engines
JPH088975B2 (ja) * 1989-10-20 1996-01-31 松下電器産業株式会社 No▲下×▼除去装置
US5379592A (en) * 1991-10-23 1995-01-10 Waschkuttis; Gerhard Catalytic converter with ignition burner
JP2807150B2 (ja) 1992-08-31 1998-10-08 松下電器産業株式会社 環境制御装置
JPH06222867A (ja) 1993-01-26 1994-08-12 Sharp Corp 電子機器
US5381659A (en) * 1993-04-06 1995-01-17 Hughes Aircraft Company Engine exhaust reburner system and method
DE4404617C2 (de) * 1994-02-14 1998-11-05 Daimler Benz Ag Vorrichtung zur selektiven katalysierten NO¶x¶-Reduktion in sauerstoffhaltigen Abgasen von Brennkraftmaschinen
DE4411959A1 (de) 1994-04-07 1995-10-12 Pierburg Gmbh Vorrichtung und Verfahren zur Vorwärmung der Ansaugluft einer Diesel-Brennkraftmaschine
JP3336750B2 (ja) * 1994-08-08 2002-10-21 トヨタ自動車株式会社 パティキュレート捕集用フィルタの再生方法及びパティキュレート捕集用フィルタを具備する排気浄化装置
US5802844A (en) * 1995-06-30 1998-09-08 Chrysler Corporation After-burner heated catalyst system and associated control circuit and method
DE19626837A1 (de) * 1995-07-08 1997-01-09 Volkswagen Ag Dieselbrennkraftmaschine mit NOx-Speicher
DE19604318A1 (de) * 1996-02-07 1997-08-14 Man Nutzfahrzeuge Ag Verfahren zur Regenerierung eines NO¶x¶-Speicherkatalysators
JP3483394B2 (ja) * 1996-04-25 2004-01-06 株式会社日立ユニシアオートモティブ 内燃機関の空燃比制御装置
DE19628796C1 (de) * 1996-07-17 1997-10-23 Daimler Benz Ag Abgasreinigungsanlage mit Stickoxid-Adsorbern für eine Brennkraftmaschine
EP0826868A1 (de) * 1996-08-24 1998-03-04 Volkswagen Aktiengesellschaft Verfahren zur Abgasreinigung einer Brennkraftmaschine
JP3645704B2 (ja) * 1997-03-04 2005-05-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5823170A (en) * 1997-08-22 1998-10-20 Navistar International Transportation Corp. Method and apparatus for reducing engine NOx emissions
DE19747670C1 (de) * 1997-10-29 1998-12-10 Daimler Benz Ag Abgasreinigungsanlage für eine Brennkraftmaschine
DE69816579T2 (de) * 1997-12-19 2004-06-03 Toyota Jidosha K.K., Toyota Brennkraftmaschine mit NOx-Katalysator für Magergemischverbrennung
JP3509563B2 (ja) * 1998-03-10 2004-03-22 トヨタ自動車株式会社 燃焼式ヒータを有する内燃機関
JP3454174B2 (ja) * 1998-12-22 2003-10-06 トヨタ自動車株式会社 ハイブリッド車輌の排気浄化装置

Also Published As

Publication number Publication date
DE69924459T2 (de) 2006-01-19
EP1013904B1 (en) 2005-03-30
US6370871B2 (en) 2002-04-16
US20010032458A1 (en) 2001-10-25
DE69924459D1 (de) 2005-05-04
EP1013904A3 (en) 2001-12-12
EP1013904A2 (en) 2000-06-28
JP2000186531A (ja) 2000-07-04

Similar Documents

Publication Publication Date Title
JP3557928B2 (ja) リーンNOx触媒を有する内燃機関
US6266956B1 (en) Exhaust emission control system of hybrid car
US7640731B2 (en) Method for controlling exhaust gas flow and temperature through regenerable exhaust gas treatment devices
JP4325704B2 (ja) 内燃機関の排気浄化システム
JP3617450B2 (ja) 内燃機関の排気浄化装置
JP3757860B2 (ja) 内燃機関の排気浄化装置
JP3557932B2 (ja) リーンNOx触媒を有する内燃機関
US20180266344A1 (en) Internal combustion engine
JP3897621B2 (ja) 内燃機関の排気浄化装置
JP4001019B2 (ja) ディーゼル機関の排気浄化装置および排気浄化方法
JP2003293749A (ja) 多気筒ディーゼルエンジンの排気浄化装置
JP3557931B2 (ja) 燃焼式ヒータを有する内燃機関
JP3799849B2 (ja) Egr装置を有する内燃機関
JP3508594B2 (ja) リーンNOx触媒を有する内燃機関
JP3557927B2 (ja) リーンNOx触媒を有する内燃機関
JP3557929B2 (ja) 燃焼式ヒータを有する内燃機関
JP3620446B2 (ja) 内燃機関の排気浄化装置
JP3551779B2 (ja) リーンNOx触媒を有する内燃機関
EP3521596B1 (en) Exhaust gas control device for engine and method of controlling an exhaust gas control device
JP3525779B2 (ja) 燃焼式ヒータを有する内燃機関
JP4345377B2 (ja) 内燃機関の排気浄化装置
JP3508532B2 (ja) リーンNOx触媒を有する内燃機関
JP3552561B2 (ja) 排気浄化装置を備えた内燃機関
JP2002047922A (ja) ハイブリッド車の制御装置
JP2000186630A (ja) 燃焼式ヒータを有する内燃機関

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

EXPY Cancellation because of completion of term