JP3000739B2 - 縦型mos電界効果トランジスタおよびその製造方法 - Google Patents

縦型mos電界効果トランジスタおよびその製造方法

Info

Publication number
JP3000739B2
JP3000739B2 JP3209700A JP20970091A JP3000739B2 JP 3000739 B2 JP3000739 B2 JP 3000739B2 JP 3209700 A JP3209700 A JP 3209700A JP 20970091 A JP20970091 A JP 20970091A JP 3000739 B2 JP3000739 B2 JP 3000739B2
Authority
JP
Japan
Prior art keywords
oxide film
film
conductivity type
forming
gate oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3209700A
Other languages
English (en)
Other versions
JPH0555262A (ja
Inventor
正徳 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3209700A priority Critical patent/JP3000739B2/ja
Publication of JPH0555262A publication Critical patent/JPH0555262A/ja
Priority to US08/409,614 priority patent/US5559045A/en
Application granted granted Critical
Publication of JP3000739B2 publication Critical patent/JP3000739B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/981Utilizing varying dielectric thickness

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は縦型MOS電界効果トラ
ンジスタ(FET)およびその製造方法に関する。
【0002】
【従来の技術】従来、縦型MOSFETは、図3(a)
に示すように、N+ 型シリコン基板1表面にN- 型エピ
タキシャル層2を形成し、N- 型エピタキシャル層2の
表面に熱酸化により約600〜1000nmの膜厚のシ
リコン酸化膜17を形成し、フォトリソグラフィ技術に
より素子部Aを形成しない領域を開口し、イオン注入,
熱処理によりP型ウェル5を形成し、P型ウェル5の表
面に熱酸化により約400〜600nmの膜厚のシリコ
ン酸化膜18を形成する。その後、図3(b)に示すよ
うに、フォトリソグラフィ技術により、シリコン酸化膜
18の一部,およびシリコン酸化膜17を除去し、熱酸
化により周辺部Bの周辺,および素子部A表面にゲート
酸化膜7aを形成する。このときシリコン酸化膜18も
膜厚が増加し、フィールド酸化膜6aとなる。次に、図
3(c)に示すように、全面に約600nmの多結晶シ
リコン膜8を堆積し、これをパターニングし、パターニ
ングされた多結晶シリコン膜8をマスクにした6〜14
×1013cm-2のボロンのイオン注入,熱処理により、
P型ベース領域9を形成する。続いて、図3(d)に示
すように、多結晶シリコン膜8をマスクにしたイオン注
入,フォトレジスト膜をマスクにしたイオン注入,およ
び熱処理により、N+ 型ソース領域10,P+ 型バック
ゲート領域11を形成する。その後、層間絶縁膜12の
堆積,開口を行ない、ソース電極13,ゲート電極1
4,ドレイン電極15を形成する。
【0003】
【発明が解決しようとする課題】従来の縦型MOSFE
Tは上述のような製造方法を採用していたため、それに
より得られた従来の縦型MOSFETは図4,もしくは
図5に示したような構造になっていた。これらの構造を
採用する理由は、ゲート酸化膜がP型ウェル5の端部に
まで延在させることにより、2つのベース領域9の間を
同電位にするためである。
【0004】図4,図5のどちらの構造となるかは、P
型ウェル5のイオン注入に用いるフォトレジスト膜とゲ
ート酸化膜形成領域を開口するためのエッチングに用い
るフォトレジスト膜との位置関係により決定される。
【0005】図4に示した構造は、P型ウェル用の開口
部(P型ウェル用のフォトレジスト膜における開口部)
とゲート酸化膜用の開口部(ゲート酸化膜用のフォトレ
ジスト膜における開口部)との間に重複が無い場合に形
成される。この構造では、フィールド酸化膜6aと、フ
ィールド酸化膜6bと、ゲート酸化膜7b(ゲート酸化
膜7aに内包された位置に形成さる)と、を有してい
る。ゲート酸化膜用の開口エッチングの際に、マスクと
して用いるフォトレジスト膜がシリコン酸化膜17上の
一部を覆っている。ゲート酸化膜7bの形成のための熱
酸化において、シリコン酸化膜17が再酸化されてフィ
ールド酸化膜6bとなる。フィールド酸化膜6bが存在
すると、ゲート酸化膜7bとの段差が大きくなり、多結
晶シリコン膜8のカバレッジ形状が悪くなり、ゲート電
極14の抵抗値が高い値にばらつくことになる。
【0006】図5に示した構造(図3(b)に示した構
造と同じ)は、P型ウェル用の開口部(P型ウェル用の
フォトレジスト膜における開口部)とゲート酸化膜用の
開口部(ゲート酸化膜用のフォトレジスト膜における開
口部)との間に重複が有る場合に形成される。この場合
には、ゲート酸化膜用の開口エッチングの際に、マスク
として用いるフォトレジスト膜がシリコン酸化膜17上
に存在しない。このため、フィールド酸化膜6bの形成
は無く、多結晶シリコン膜8のカバレッジ形状に係わる
問題は生じない。しかしながらこの場合には、結晶欠陥
多発領域Cが形成される。領域Cでは、P型ウェル5の
形成の際のイオン注入,熱処理により結晶欠陥が多数発
生する。このような領域にゲート酸化膜7aが形成さる
と、ゲート酸化膜7a自体の欠陥密度が高くなり、ゲー
ト・ショートの起りやすいゲート酸化膜になる。
【0007】
【課題を解決するための手段】本発明の縦型MOSFE
Tは、一導電型シリコン層の表面に形成されたゲート酸
化膜を含む素子部を有し、一導電型シリコン層の表面に
形成された逆導電型ウェルを含む周辺部を有する縦型2
重拡散型MOS電界効果トランジスタにおいて、素子部
表面に自己整合的に設けられたゲート酸化膜と、逆導電
型ウェル表面に自己整合的に設けられたフィールド酸化
膜と、を有している。
【0008】また、本発明の縦型MOSFETの製造方
法は、一導電型シリコン層の表面に形成されたゲート酸
化膜を含む素子部を有し、一導電型シリコン層の表面に
形成された逆導電型ウェルを含む周辺部を有する縦型2
重拡散型MOS電界効果トランジスタの製造方法におい
て、一導電型シリコン層表面に熱酸化によりシリコン酸
化膜を形成し、全面にシリコン窒化膜を形成し、素子部
形成領域を覆うフォトレジスト膜を形成し、フォトレジ
スト膜をマスクにしてシリコン窒化膜をエッチングする
工程と、イオン注入により逆導電型の不純物を導入し、
フォトレジスト膜を除去し、熱処理により逆導電型ウェ
ルを形成する工程と、シリコン窒化膜をマスクにした選
択酸化法によりウェルの表面にフィールド酸化膜を形成
する工程と、シリコン窒化膜,およびシリコン酸化膜を
除去し、素子部形成領域の表面に熱酸化によるゲート酸
化膜を形成する工程と、を有している。
【0009】
【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の第1の実施例を製造方法に沿って説
明するための工程順の縦断面図である。
【0010】まず、N+ 型シリコン基板1表面にN-
エピタキシャル層2を形成し、N- 型エピタキシャル層
2の表面に熱酸化により約20〜100nmの膜厚のシ
リコン酸化膜3(パッド酸化膜)を形成する。次に、全
面にLPCVD法により膜厚約50〜200nmのシリ
コン窒化膜4を形成する。続いて、素子部A,および素
子部Aに隣接した周辺部B周辺領域を覆うフォトレジス
ト膜(図示せず)を形成し、このフォトレジスト膜をマ
スクにしてシリコン窒化膜4をエッチングする。このフ
ォトレジスト膜をマスクにして4〜12×1013cm-2
のボロンのイオン注入を行ない、フォトレジスト膜を除
去した後、1200℃で1〜3時間,もしくは1140
℃で2〜6時間程度の熱処理を行ない、P型ウェル5を
形成する〔図1(a)〕。
【0011】次に、シリコン窒化膜4をマスクにした選
択酸化により、膜厚約400〜1000nmのフィール
ド酸化膜6をP型ウェル5表面にこれに自己整合的に形
成する〔図1(b)〕。このため、従来のようにフィー
ルド酸化膜の形状(図4参照)に起因する多結晶シリコ
ン膜の形状不良,ゲート電極の抵抗値の高い値でのばら
つき等は生じないことになる。
【0012】次に、シリコン窒化膜4,シリコン酸化膜
3を順次エッチング除去し、熱酸化によりゲート酸化膜
7を形成する。ゲート酸化膜7とP型ウェル5との重複
部は形成されず、したがって結晶欠陥多発領域C(図5
参照)直上にはゲート酸化膜7が形成されないことにな
る。
【0013】続いて、全面に約600nmの多結晶シリ
コン膜8を堆積し、これをパターニングし、パターニン
グされた多結晶シリコン膜8をマスクにした6〜14×
1013cm-2のボロンのイオン注入を行ない、1200
℃で1〜3時間,もしくは1140℃で2〜6時間程度
の熱処理により、P型ベース領域9を形成する〔図1
(c)〕。P型ベース領域9の形成に際しても、P型ウ
ェル5の形成時と同様に、結晶欠陥が発生する。しかし
ながら従来の製造方法と異なり、ゲート酸化膜7は既に
形成されており、領域Cにゲート酸化膜を形成すること
にはならない。また、チャネル領域となる部分のP型ベ
ース領域9は、直接イオン注入されず(イオン注入の際
には多結晶シリコン膜8でマスクされている)、熱処理
による拡散により形成されるため、直接イオン注入に晒
される部分のP型ベース領域9に比較して、結晶欠陥の
発生量は微少となる。
【0014】次に、多結晶シリコン膜8をマスクにした
イオン注入,フォトレジスト膜をマスクにしたイオン注
入,および熱処理により、N+ 型ソース領域10,P+
型バックゲート領域11を形成する。その後、表面に膜
厚500〜1000nmの層間絶縁膜12の堆積,開口
を行ない、表面に膜厚1〜3μmのアルミ膜を堆積して
これをパターニングし、ソース電極13,ゲート電極1
4を形成する。ソース電極13はN+ 型ソース領域1
0,P+ 型バックゲート領域11に接続し、ゲート電極
14は多結晶シリコン膜8に接続する。同様に、裏面に
ドレイン電極15を形成する〔図1(d)〕。
【0015】図2は本発明の第2の実施例を説明するた
めの主要部分の縦断面図である。本実施例では、第1の
実施例と同様に、N+ 型シリコン基板1表面にN- 型エ
ピタキシャル層2を形成し、N- 型エピタキシャル層2
の表面にシリコン酸化膜3,シリコン窒化膜4を形成す
る。次に、素子部A,および素子部Aに隣接した周辺部
B周辺領域を覆う膜厚約1〜3μmのフォトレジスト膜
16を形成する。続いて、フォトレジスト膜16をマス
クにして、約2MeVの高エネルギーでボロンのイオン
注入を行ない、フォトレジスト膜16を除去した後熱処
理を行ない、P型ウェル5aを形成する。以後の工程は
第1の実施例と同様である。
【0016】本実施例は第1の実施例に比べて高エネル
ギーでのイオン注入を採用しているため、P型ウェル形
成のための熱処理時間が短かくなり、結晶欠陥の発生が
少なくなる。
【0017】以上の説明はNチャネルMOSFETに関
して行なったが、本発明はPチャネルMOSFETにも
適用することができる。
【0018】
【発明の効果】以上説明したように本発明の縦型MOS
電界効果トランジスタは、P型ウェル表面に自己整合的
に形成されたフィールド酸化膜を有し、ゲート酸化膜と
P型ウェルとの重複がないため、ゲート・ショートの発
生は低減される。また、選択酸化法によりフィールド酸
化膜を形成するため、フィールド酸化膜の形状の異常に
起因する多結晶シリコン膜の形状異常,ゲート電極の抵
抗値のばらつきを防ぐことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を説明するための工程順
の縦断面図である。
【図2】本発明の第2の実施例を説明するための主要工
程の縦断面図である。
【図3】従来の縦型MOSFETの構造および製造方法
を説明するための工程順の縦断面図である。
【図4】従来の縦型MOSFETの問題点を説明するた
めの縦断面図である。
【図5】従来の縦型MOSFETの問題点を説明するた
めの縦断面図である。
【符号の説明】
1 N+ 型シリコン基板 2 N- 型エピタキシャル層 3,17,18 シリコン酸化膜 4 シリコン窒化膜 5,5a P型ウェル 6,6a,6b フィールド酸化膜 7,7a,7b ゲート酸化膜 8 多結晶シリコン膜 9 P型ベース領域 10 N+ 型ソース領域 11 P+ 型バックゲート領域 12 層間絶縁膜 13 ソース電極 14 ゲート電極 15 ドレイン電極 16 フォトレジスト膜

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 一導電型シリコン層の表面に形成された
    ゲート酸化膜を含む素子部を有し、前記一導電型シリコ
    ン層の表面に形成された逆導電型ウェルを含む周辺部を
    有する縦型2重拡散型MOS電界効果トランジスタにお
    いて、 前記素子部表面に自己整合的に設けられた前記ゲート酸
    化膜と、 前記逆導電型ウェル表面に自己整合的に設けられたフィ
    ールド酸化膜と、 を有することを特徴とする縦型MOS電界効果トランジ
    スタ。
  2. 【請求項2】 一導電型シリコン層の表面に形成された
    ゲート酸化膜を含む素子部を有し、前記一導電型シリコ
    ン層の表面に形成された逆導電型ウェルを含む周辺部を
    有する縦型2重拡散型MOS電界効果トランジスタの製
    造方法において、 前記一導電型シリコン層表面に熱酸化によりシリコン酸
    化膜を形成し、全面にシリコン窒化膜を形成し、前記素
    子部形成領域を覆うフォトレジスト膜を形成し、前記フ
    ォトレジスト膜をマスクにして前記シリコン窒化膜をエ
    ッチングする工程と、 イオン注入により逆導電型の不純物を導入し、前記フォ
    トレジスト膜を除去し、熱処理により前記逆導電型ウェ
    ルを形成する工程と、 前記シリコン窒化膜をマスクにした選択酸化法により前
    記ウェルの表面にフィールド酸化膜を形成する工程と、 前記シリコン窒化膜,および前記シリコン酸化膜を除去
    し、前記素子部形成領域の表面に熱酸化によるゲート酸
    化膜を形成する工程と、 を有することを特徴とする縦型MOS電界効果トランジ
    スタの製造方法。
JP3209700A 1991-08-22 1991-08-22 縦型mos電界効果トランジスタおよびその製造方法 Expired - Fee Related JP3000739B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3209700A JP3000739B2 (ja) 1991-08-22 1991-08-22 縦型mos電界効果トランジスタおよびその製造方法
US08/409,614 US5559045A (en) 1991-08-22 1995-02-13 Method of fabricating vertical-type double diffused mosfet having a self-aligned field oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3209700A JP3000739B2 (ja) 1991-08-22 1991-08-22 縦型mos電界効果トランジスタおよびその製造方法

Publications (2)

Publication Number Publication Date
JPH0555262A JPH0555262A (ja) 1993-03-05
JP3000739B2 true JP3000739B2 (ja) 2000-01-17

Family

ID=16577190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3209700A Expired - Fee Related JP3000739B2 (ja) 1991-08-22 1991-08-22 縦型mos電界効果トランジスタおよびその製造方法

Country Status (2)

Country Link
US (1) US5559045A (ja)
JP (1) JP3000739B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3399119B2 (ja) * 1994-11-10 2003-04-21 富士電機株式会社 半導体装置およびその製造方法
KR0146080B1 (ko) * 1995-07-26 1998-08-01 문정환 반도체 소자의 트윈 웰 형성방법
US6080614A (en) * 1997-06-30 2000-06-27 Intersil Corp Method of making a MOS-gated semiconductor device with a single diffusion
FR2826507B1 (fr) * 2001-06-21 2004-07-02 St Microelectronics Sa Procede de traitement de zones complementaires de la surface d'un substrat et produit semi-conducteur obtenu par ce procede
JP4611270B2 (ja) * 2006-09-27 2011-01-12 Okiセミコンダクタ株式会社 半導体装置の製造方法
US20090072409A1 (en) * 2007-09-14 2009-03-19 International Business Machines Corporation Interconnect Structures Incorporating Air-Gap Spacers
US20090075470A1 (en) * 2007-09-14 2009-03-19 International Business Machines Corporation Method for Manufacturing Interconnect Structures Incorporating Air-Gap Spacers
KR102177431B1 (ko) 2014-12-23 2020-11-11 주식회사 키 파운드리 반도체 소자
JP6613610B2 (ja) 2015-05-14 2019-12-04 富士電機株式会社 半導体装置および半導体装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3149185A1 (de) * 1981-12-11 1983-06-23 Siemens AG, 1000 Berlin und 8000 München Verfahren zur herstellung benachbarter mit dotierstoffionen implantierter wannen bei der herstellung von hochintegrierten komplementaeren mos-feldeffekttransistorschaltungen
US4558508A (en) * 1984-10-15 1985-12-17 International Business Machines Corporation Process of making dual well CMOS semiconductor structure with aligned field-dopings using single masking step
JPS6246552A (ja) * 1985-08-23 1987-02-28 Toshiba Corp 半導体装置の製造方法
US4829019A (en) * 1987-05-12 1989-05-09 Texas Instruments Incorporated Method for increasing source/drain to channel stop breakdown and decrease P+/N+ encroachment
US5141882A (en) * 1989-04-05 1992-08-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor field effect device having channel stop and channel region formed in a well and manufacturing method therefor
US5072267A (en) * 1989-06-28 1991-12-10 Nec Corporation Complementary field effect transistor
US5032530A (en) * 1989-10-27 1991-07-16 Micron Technology, Inc. Split-polysilicon CMOS process incorporating unmasked punchthrough and source/drain implants
US5024961A (en) * 1990-07-09 1991-06-18 Micron Technology, Inc. Blanket punchthrough and field-isolation implant for sub-micron N-channel CMOS devices
US5118641A (en) * 1990-09-13 1992-06-02 Micron Technology, Inc. Methods for reducing encroachment of the field oxide into the active area on a silicon integrated circuit
US5132241A (en) * 1991-04-15 1992-07-21 Industrial Technology Research Institute Method of manufacturing minimum counterdoping in twin well process

Also Published As

Publication number Publication date
JPH0555262A (ja) 1993-03-05
US5559045A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
JPH0212836A (ja) 半導体装置の製造方法
JP3000739B2 (ja) 縦型mos電界効果トランジスタおよびその製造方法
JP3448546B2 (ja) 半導体装置とその製造方法
JPH0824144B2 (ja) 半導体装置の製造方法
JPH05251694A (ja) Mos型半導体装置及びその製造方法
JP2002057330A (ja) 絶縁ゲート型半導体装置及びその製造方法
JPH05283687A (ja) 半導体素子の製造方法
JPS6197967A (ja) 半導体装置およびその製造方法
JP2996694B2 (ja) 半導体スタックトcmos装置の製造方法
JP3071615B2 (ja) 半導体装置及びその製造方法
JP3038740B2 (ja) 半導体装置の製造方法
JP2001036071A (ja) 半導体装置の製造方法
JP3526090B2 (ja) 半導体装置の製造方法
JP3439415B2 (ja) 半導体装置の製造方法
JPS63227059A (ja) 半導体装置およびその製造方法
JP4439678B2 (ja) 半導体装置の製造方法
JP3260200B2 (ja) 半導体装置の製造方法
JPS63144574A (ja) Mos型半導体装置
JP2594121B2 (ja) 半導体装置の製造方法
JP3521921B2 (ja) 半導体装置の製造方法
JP2701828B2 (ja) 半導体装置及びその製造方法
JP3279827B2 (ja) Mos型半導体装置の製造方法
JPH0113230B2 (ja)
JPH05251712A (ja) 不揮発性半導体記憶装置の製造方法
JPH0547982B2 (ja)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees