JP2021015880A - 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置および炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
JP2021015880A
JP2021015880A JP2019129407A JP2019129407A JP2021015880A JP 2021015880 A JP2021015880 A JP 2021015880A JP 2019129407 A JP2019129407 A JP 2019129407A JP 2019129407 A JP2019129407 A JP 2019129407A JP 2021015880 A JP2021015880 A JP 2021015880A
Authority
JP
Japan
Prior art keywords
region
silicon carbide
semiconductor
type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019129407A
Other languages
English (en)
Other versions
JP7410478B2 (ja
Inventor
中山 浩二
Koji Nakayama
浩二 中山
満 染谷
Mitsuru Sometani
満 染谷
皓洋 小山
Akihiro Koyama
皓洋 小山
祐治 木内
Yuji Kiuchi
祐治 木内
俵 武志
Takeshi Tawara
武志 俵
智教 水島
Tomokazu Mizushima
智教 水島
慎一郎 松永
Shinichiro Matsunaga
慎一郎 松永
研介 竹中
Kensuke Takenaka
研介 竹中
学 武井
Manabu Takei
学 武井
米澤 喜幸
Yoshiyuki Yonezawa
喜幸 米澤
秀一 土田
Shuichi Tsuchida
秀一 土田
晃一 村田
Koichi Murata
晃一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Fuji Electric Co Ltd
Mitsubishi Electric Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Central Research Institute of Electric Power Industry
Fuji Electric Co Ltd
Mitsubishi Electric Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Fuji Electric Co Ltd, Mitsubishi Electric Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Central Research Institute of Electric Power Industry
Priority to JP2019129407A priority Critical patent/JP7410478B2/ja
Priority to DE112020002222.6T priority patent/DE112020002222T5/de
Priority to CN202080039260.3A priority patent/CN113892189A/zh
Priority to PCT/JP2020/020808 priority patent/WO2021005903A1/ja
Publication of JP2021015880A publication Critical patent/JP2021015880A/ja
Priority to US17/538,331 priority patent/US20220123112A1/en
Application granted granted Critical
Publication of JP7410478B2 publication Critical patent/JP7410478B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/74Thyristor-type devices, e.g. having four-zone regenerative action
    • H01L29/744Gate-turn-off devices
    • H01L29/745Gate-turn-off devices with turn-off by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Thyristors (AREA)

Abstract

【課題】p型半導体基板を用いたバイポーラ型炭化珪素半導体素子において、素子端部のキャリアの再結合を減少させ、順方向電圧増大を抑制することができる炭化珪素半導体装置および炭化珪素半導体装置の製造方法を提供する。【解決手段】炭化珪素半導体装置60は、活性領域51と、前記活性領域の外側に配置された終端構造部52と、を有する。炭化珪素半導体装置60は、第2導電型の半導体基板1、第2導電型の第1半導体層2と、第1導電型の第2半導体層4と、第2導電型の第1半導体領域6と、第1導電型の第2半導体領域7と、ゲート絶縁膜9と、ゲート電極10と、第1電極11と、第2電極12と、を備える。終端構造部52における第2半導体層4の端部Tの通電時の電子密度または正孔の密度の小さい方の密度は、1×1015/cm3以下である。【選択図】図1

Description

この発明は、炭化珪素半導体装置および炭化珪素半導体装置の製造方法に関する。
高耐圧、大電流を制御するパワー半導体素子の材料としては、従来シリコン(Si)単結晶が用いられている。シリコンパワー半導体素子にはいくつかの種類があり、用途に合わせてそれらが使い分けられているのが現状である。例えば、PiNダイオード(P−intrinsic−N diode)やバイポーラトランジスタ、さらに、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)は、いわゆるバイポーラ型デバイスである。これらの素子は、電流密度は多く取れるものの高速でのスイッチングができず、バイポーラトランジスタは数kHzが、IGBTでは20kHz程度の周波数がその使用限界である。一方、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)は、大電流は取れないものの、数MHzまでの高速で使用できる。しかしながら、市場では大電流と高速性を兼ね備えたパワーデバイスへの要求は強く、シリコンIGBTやパワーMOSFETなどの改良に力が注がれ、現在ではほぼシリコン材料物性限界に近いところまで開発が進んできた。
また、パワー半導体素子の観点からの材料検討も行われ、炭化珪素(SiC)が次世代のパワー半導体素子として、低オン電圧、高速・高温特性に優れた素子であることから、最近特に注目を集めている。というのも、SiCは化学的に非常に安定な材料であり、バンドギャップが3eVと広く、高温でも半導体として極めて安定的に使用できるためである。また、最大電界強度もシリコンより1桁以上大きいからである。SiCはシリコンにおける材料限界を超える可能性大であることから、パワー半導体用途で今後の伸長が大きく期待される。特に、耐圧10kVを超えるような電力ならびにパルスパワーなどの超高耐圧用途では、バイポーラデバイスであるPiNダイオードへの期待も集まっている。
図20は、n型半導体基板を有する従来のバイポーラ型半導体装置の構造を示す断面図である。図20は、nチャネル型のPiNダイオード161を示す。図20に示すPiNダイオード161は、n型炭化珪素基板101のおもて面上にエピタキシャル成長により、n型バッファ層102、n型ドリフト層103、p型アノード層104を順に積層してなる炭化珪素基体を用いて構成される。p型アノード層104上にアノード電極105が設けられ、裏面にカソード電極106が設けられている。
p型アノード層104は、オン時に電流の流れる活性領域151のみに設けられ、エッジ終端領域152に設けられていない。エッジ終端領域152は、活性領域151の周囲を囲み、活性領域151の端部での電界集中を緩和して所定の耐圧(耐電圧)を保持する機能を有する。耐圧とは、素子が誤動作や破壊を起こさない限界の電圧である。エッジ終端領域152には、例えば、外側(半導体基板の側面側)に配置されるほど不純物濃度を低くしたp型終端領域107からなる耐圧構造が配置される。
上述のように、通常、炭化珪素半導体を用いたバイポーラ型パワー半導体素子では、n型炭化珪素基板上に、n型もしくはp型半導体層をふたつ以上積層した構造を持っている。これは、p型炭化珪素基板の高品質化と低抵抗化が難しく、n型炭化珪素基板の方が容易に作製(製造)できるためである。また、PiNダイオードや、pチャネルIGBT、n−GTO(Gate Turn−Off thyristor)の電極構造やMOS構造、メサ構造、終端構造などのパターンについては、基板側の半導体層が厚く、基板のパターニングが難しいことから、基板側とは反対側(こちらをおもて面とする)に形成されている。
図21は、n型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示すグラフである。図21において、横軸はp型アノード層104の表面からの深さを示し、単位はμmである。縦軸は電子または正孔の密度を示し、単位は、cm-3である。図21の細線が電子の密度を示し、太線が正孔の密度を示す。深さ0μm〜100μmでは、電子と正孔の密度が同程度であるため、太線のみが描かれている。ここで、電子の密度とは、各半導体層の中の自由電子の密度である。
図21に示すように、n型半導体基板を用いたPiNダイオードなどのバイポーラ型炭化珪素半導体素子において、n型バッファ層102、n型ドリフト層103およびp型アノード層104からなるドリフト層の表面のp型アノード層104では、正孔の密度が高く、後述する図22の矢印Bの方向に正孔電流が支配的に流れ、n型バッファ層102では、電子の密度が高く、後述する図22の矢印Aの方向に電子電流が支配的に流れる。
図22は、n型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示す断面図である。キャリア分布として正孔密度(hDensity)を示している。炭化珪素の正孔移動度は、電子移動度の1/10であるため、ドリフト層中のキャリア(電子と正孔)密度は、表面のp型アノード層104の方が、基板側のn型バッファ層102付近より、大きくなる。その結果、表面のp型アノード層104の下で伝導度変調が起こり、活性領域151のp型アノード層104の下に電流が集中する。
また、メサ壁部またはメサ壁部およびメサ周辺部に、その表面とpn接合界面とを空間的に分離する通電劣化防止層を形成することで、積層欠陥の発生およびその面積拡大を抑制し、順方向電圧の増加を抑制することが知られている(下記、特許文献1参照)。また、n型SiC基板とn型のドリフト層との間に形成したバッファ層が、p型のアノード層からの正孔のトラップとして働いて、基板へ少数キャリアが到達するのを防いで、順方向電圧の増大を防ぐことが知られている(下記、特許文献2参照)。
特開2007−165604号公報 特開2012−4318号公報
ここで、チャネル領域において、n型半導体とゲート絶縁膜とが接する方が、p型半導体とゲート絶縁膜とが接する方より移動度が大きく、低抵抗なIGBTの作製が期待できる。このため、p型半導体基板を有するnチャネルIGBTの開発が進められている。
図23は、p型半導体基板を有する従来のバイポーラ型半導体装置の構造を示す断面図である。図23は、nチャネル型のPiNダイオード161を示す。図23に示すPiNダイオード161は、p型炭化珪素基板111のおもて面上にエピタキシャル成長により、p型バッファ層112、p型ドリフト層113、n型カソード層114を順に積層してなる炭化珪素基体を用いて構成される。n型カソード層114は、オン時に電流の流れる活性領域151のみに設けられ、エッジ終端領域152に設けられていない。
図24は、p型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示す断面図である。キャリア分布として正孔密度(hDensity)を示している。p型半導体基板を用いたpチャネルIGBTなどのバイポーラ型炭化珪素半導体素子のドリフト層において、基板側のp型バッファ層112付近では図24の矢印Cの方向に電子電流が、表面のn型カソード層114では図24の矢印Dの方向に正孔電流が、それぞれ支配的に流れる。
炭化珪素の正孔移動度は、電子移動度の1/10であるため、ドリフト層中のキャリア(電子と正孔)密度は、基板側のp型バッファ層112付近の方が、表面のn型カソード層114付近の方より、大きくなる。その結果、表面のn型カソード層114から素子のエッジ終端領域152の端部の間にも伝導度変調が起こり、電流の一部(図24の矢印D’)がエッジ終端領域152から活性領域151に流れる。
炭化珪素半導体を用いたバイポーラ半導体素子には、オン状態の通電で、オン電圧が増加する順方向電圧増大現象が存在する。これは、炭化珪素半導体中の基底面転位という線欠陥が、電子と正孔の再結合エネルギーにより、積層欠陥という面欠陥に拡張し、高抵抗層となることにより起こる。
近年の結晶成長技術向上により、伝導度変調が起こり、電子と正孔の再結合が発生するドリフト層中の基底面転位は、ほとんど見られなくなった。しかし、基板中や素子表面、素子端部には、加工などにより、基底面転位が発生する場合がある。この場合、p型半導体基板を用いたバイポーラ型炭化珪素半導体素子では、表面の素子活性領域と素子端部の間にもキャリアが存在し、素子端部においても、キャリアの再結合が発生し、順方向電圧増大現象が発生し、半導体素子の信頼性が低下するという課題がある。
この発明は、上述した従来技術による問題点を解消するため、p型半導体基板を用いたバイポーラ型炭化珪素半導体素子において、素子端部のキャリアの再結合を減少させ、順方向電圧増大を抑制することができる炭化珪素半導体装置および炭化珪素半導体装置の製造方法を提供することを目的とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。炭化珪素半導体装置は、電流が流れる活性領域と、前記活性領域の外側に配置され、前記活性領域の周囲を囲む耐圧構造が形成された終端構造部と、を有する。第2導電型の半導体基板の一方の主面側に第2導電型の第1半導体層が設けられる。前記第1半導体層の、前記半導体基板に対して反対側の表面に第1導電型の第2半導体層が設けられる。前記第2半導体層の、前記半導体基板に対して反対側の表面層に第2導電型の第1半導体領域が設けられる。前記第1半導体領域の、前記半導体基板に対して反対側の表面層に前記第2半導体層より不純物濃度が高い第1導電型の第2半導体領域が設けられる。前記第1半導体領域の、前記第2半導体層と前記第2半導体領域とに挟まれた領域の表面上にゲート絶縁膜が設けられる。前記ゲート絶縁膜上にゲート電極が設けられる。前記第1半導体領域および前記第2半導体領域に接する第1電極が設けられる。前記第1半導体層の他方の主面側に第2電極が設けられる。前記終端構造部における前記第2半導体層の端部の通電時の電子密度または正孔の密度の小さい方の密度は、1×1015/cm3以下である。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記終端構造部における前記第2半導体層の端部の通電時の正孔の密度は、1×1015/cm3以下であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記活性領域から前記終端構造部の端部までの間の距離は、1.2mm以上であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記半導体基板のオフ角と垂直な方向で、前記活性領域から前記終端構造部の端部までの間の距離は、1.2mm以上であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記活性領域から前記終端構造部の端部までの間に、低ライフタイム領域が設けられていることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記半導体基板のオフ角と垂直な方向で、前記活性領域から前記終端構造部の端部までの間に、低ライフタイム領域が設けられていることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1半導体層と前記第2半導体層との間に、前記第2半導体層よりも不純物濃度の高い第1導電型の第3半導体層を備え、前記終端構造部における前記第3半導体層に、バナジウム、チタン、ホウ素または窒素が添加されていることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記窒素の密度は1×1018/cm3以上であり、前記ホウ素の密度は1×1017/cm3以上であり、前記バナジウムまたは前記チタンの密度は1×1014/cm3以上であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第3半導体層の厚さは、0.1μm以上2μm以下であることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1半導体層と前記第2半導体層との間に、前記第2半導体層よりも不純物濃度の高い第1導電型の第3半導体層を備え、前記終端構造部における前記第3半導体層は、結晶構造にダメージが設けられていることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記終端構造部における前記第1半導体層に、バナジウム、チタン、ホウ素または窒素が添加されていることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記終端構造部における前記第1半導体層は、結晶構造にダメージが設けられていることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記半導体基板および前記第2電極は、前記活性領域のみに設けられていることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2電極は、前記活性領域のみに設けられていることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記終端構造部に、前記第2半導体層の、前記半導体基板に対して反対側の表面から、前記第1半導体層に達する溝が設けられていることを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記終端構造部の端部から前記活性領域までの所定の領域に基底面転位を有していないことを特徴とする。
また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記終端構造部の端部から前記活性領域までの所定の領域は、結晶構造にダメージが設けられていることを特徴とする。
上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置の製造方法は、次の特徴を有する。電流が流れる活性領域と、前記活性領域の外側に配置され、前記活性領域の周囲を囲む耐圧構造が形成された終端構造部と、を有する炭化珪素半導体装置の製造方法である。まず、第2導電型の半導体基板の一方の主面側に第2導電型の第1半導体層を形成する第1工程を行う。次に、前記第1半導体層の、前記半導体基板に対して反対側の表面に第1導電型の第2半導体層を形成する第2工程を行う。次に、前記第2半導体層の、前記半導体基板に対して反対側の表面層に第2導電型の第1半導体領域を形成する第3工程を行う。次に、前記第1半導体領域の、前記半導体基板に対して反対側の表面層に前記第2半導体層より不純物濃度が高い第1導電型の第2半導体領域を形成する第4工程を行う。次に、前記第1半導体領域の、前記第2半導体層と前記第2半導体領域とに挟まれた領域の表面にゲート絶縁膜を形成する第5工程を行う。次に、前記ゲート絶縁膜上にゲート電極を形成する第6工程を行う。次に、前記第1半導体領域および前記第2半導体領域に接する第1電極を形成する第7工程を行う。次に、前記第1半導体層の他方の主面側に第2電極を形成する第8工程を行う。前記終端構造部における前記第2半導体層の端部の正孔の密度を、1×1015/cm3以下に形成する。
また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第8工程より後に、前記終端構造部の端部から前記活性領域までの所定の領域をドライエッチングにより除去する第9工程をさらに含むことを特徴とする。
上述した発明によれば、チップの端部でのキャリア密度は、積層欠陥(SF)が拡大する閾値1×1015/cm3以下となっている。これにより、半導体チップの通電時に、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
本発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法によれば、p型半導体基板を用いたバイポーラ型炭化珪素半導体素子において、素子端部のキャリアの再結合を減少させ、順方向電圧増大を抑制することができるという効果を奏する。
実施の形態1にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態1にかかる炭化珪素半導体装置の構造を示す上面図である。 キャリア密度の活性領域からの距離依存性を示すグラフである。 従来の炭化珪素半導体装置の通電前および通電後の特性を示すグラフである。 実施の形態1にかかる炭化珪素半導体装置の通電前および通電後の特性を示すグラフである。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その1)。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その2)。 実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その3)。 実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態3にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態4にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態5にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態6にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態7にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態8にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態9にかかる炭化珪素半導体装置の構造を示す断面図である。 実施の形態1〜9にかかる炭化珪素半導体装置の他の構造を示す断面図である(その1)。 実施の形態1〜9にかかる炭化珪素半導体装置の他の構造を示す断面図である(その2)。 実施の形態1〜9にかかる炭化珪素半導体装置の他の構造を示す断面図である(その3)。 n型半導体基板を有する従来のバイポーラ型半導体装置の構造を示す断面図である。 n型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示すグラフである。 n型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示す断面図である。 p型半導体基板を有する従来のバイポーラ型半導体装置の構造を示す断面図である。 p型半導体基板を有する従来のバイポーラ型半導体装置のドリフト層中のキャリア分布を示す断面図である。
以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。+および−を含めたnやpの表記が同じ場合は近い濃度であることを示し濃度が同等とは限らない。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、“−”はその直後の指数につくバーを意味しており、指数の前に“−”を付けることで負の指数をあらわしている。
(実施の形態1)
本発明にかかる炭化珪素半導体装置として、nチャネル炭化珪素IGBT60を例に説明する。図1は、実施の形態1にかかる炭化珪素半導体装置の構造を示す断面図である。
図1に示すように、nチャネル炭化珪素IGBT60は、p型炭化珪素基板(第2導電型の半導体基板)1のおもて面に、p型コレクタ層(第2導電型の第1半導体層)2と、n型フィールドストップ層(第1導電型の第3半導体層)3と、n型ドリフト層(第1導電型の第2半導体層)4と、n型キャリア蓄積層5と、を順に積層してなる炭化珪素基体を用いて構成される。n型フィールドストップ層3とn型キャリア蓄積層5は設けないことも可能である。n型キャリア蓄積層5(n型キャリア蓄積層5を設けない場合は、n型ドリフト層4、以下(4)と略する)の表面にp型ベース領域(第2導電型の第1半導体領域)6が選択的に設けられる。
p型炭化珪素基板1は、例えばアルミニウム(Al)がドーピングされた炭化珪素単結晶基板である。p型コレクタ層2は、p型炭化珪素基板1より低い不純物濃度で設けられた層である。n型フィールドストップ層3は、n型ドリフト層4よりも高い不純物濃度で設けられた層である。n型フィールドストップ層3により、オフ時に高抵抗のn型ドリフト層4からn型フィールドストップ層3中に伸びる空乏層が抑えられるため、n型ドリフト層4を薄くしてもp型コレクタ層2に空乏層が到達するパンチスルーを防ぐことができる。n型フィールドストップ層3は単層でも良いし多層でも良く、多層の場合は同じ設定膜厚と設定キャリア濃度で多層としても良いし、異なる設定膜厚と設定キャリア濃度で積層しても良い。
ここで、IGBTは、伝導度変調効果によりオン抵抗が低いという利点を有する。従来、伝導度変調効果による低オン抵抗化を効率よく図るために、上述のようにn型ドリフト層4の内部の基体おもて面側に、n型ドリフト層4と同導電型で、かつn型ドリフト層4よりも不純物濃度の高いn型キャリア蓄積層5を設けている。n型キャリア蓄積層5が少数キャリアの障壁となり、少数キャリアの蓄積効果が高くなるため、コレクタ−エミッタ間の電流密度が増大され、伝導度変調効果が高くなる。
炭化珪素基体のおもて面側(後述するp型ベース領域6側)には、MOSゲート(金属−酸化膜−半導体からなる絶縁ゲート)構造(素子構造)が設けられている。MOSゲートは、p型ベース領域6、n+型エミッタ領域(第1導電型の第2半導体領域)7、p+型コンタクト領域8、ゲート絶縁膜9およびゲート電極10からなる。具体的には、p型ベース領域6は、n型キャリア蓄積層5(4)上に設けられ、イオン注入により形成される。p型ベース領域6の内部には、p型ベース領域6を深さ方向に貫通してn型キャリア蓄積層5(4)に達するn型のJFET領域(Junction Field Effect Transistor)18が設けられている。JFET領域18の不純物濃度は、n型ドリフト層4の不純物濃度よりも高い。JFET領域18は、JFET抵抗を低減させ、オン抵抗を低下させる機能を有する。p型ベース領域6の、JFET領域18以外の部分に、ゲート電極9に沿ってチャネルが形成される。
また、p型ベース領域6の内部には、n+型エミッタ領域7が選択的に設けられている。p型ベース領域6の内部に、p+型コンタクト領域8を選択的に設けてもよい。この場合、n+型エミッタ領域7は、p型ベース領域6よりも深く設けられてもよい。n+型エミッタ領域7およびp+型コンタクト領域8は、JFET領域18と離して配置されている。p+型コンタクト領域8は、n+型エミッタ領域7よりもJFET領域18から離れた位置に配置され、かつn+型エミッタ領域7に接する。p型ベース領域6の、JFET領域18とn+型エミッタ領域7とに挟まれた部分の表面上には、JFET領域18の表面からn+型エミッタ領域7の表面にわたってゲート絶縁膜9が設けられている。ゲート絶縁膜9の表面上には、ゲート電極10が設けられている。ゲート電極10を覆うように層間絶縁膜(不図示)が設けられている。
層間絶縁膜は、炭化珪素基体のおもて面上に設けられている。層間絶縁膜を深さ方向に貫通するコンタクトホールには、n+型エミッタ領域7およびp+型コンタクト領域8が露出されている。エミッタ電極11は、層間絶縁膜を深さ方向に貫通するコンタクトホールを介してn+型エミッタ領域7およびp+型コンタクト領域8に接するとともに、ゲート絶縁膜9および層間絶縁膜によってゲート電極10と電気的に絶縁されている。p+型コンタクト領域8が設けられていない場合、エミッタ電極11は、n+型エミッタ領域7およびp型ベース領域6に接する。炭化珪素基体の裏面(すなわちp型炭化珪素基板1の裏面)には、コレクタ電極12が設けられている。
このような炭化珪素IGBTでは、ゲート電極10に正の電圧を印加した場合には、ゲート絶縁膜9と接するp型ベース領域6(p型炭化珪素チャネル層)の界面近傍付近に反転層が形成され、IGBTがオン状態になる。チャネルから流れ出た電子はp型ベース領域6間のn型キャリア蓄積層5から、n型ドリフト層4に到達すると、p型ベース領域6とn型ドリフト層4とp型コレクタ層2とで形成されるPNPトランジスタがオンされp型コレクタ層2からホール(空孔)がn型ドリフト層4に注入されて伝導変調により低抵抗化する。
一方、逆方向印加時には、p型ベース領域6からn型キャリア蓄積層5を経由してn型ドリフト層4に空乏層が広がる。このとき、p型ベース領域6の角部あるいは側部に電界が集中するとアバランシェが発生し耐圧が下がる。
図2は、実施の形態1にかかる炭化珪素半導体装置の構造を示す上面図である。図2に示すように、エッジ終端領域52は活性領域51を囲むように配置されている。また、図1に示すように、p型ベース領域6およびJFET領域18は、オン時に電流の流れる活性領域51のみに設けられ、エッジ終端領域52に設けられていない。終端構造部53は、活性領域51を囲み、活性領域51からp型炭化珪素基板(半導体チップ)1の端部Tまでの領域である。
図3は、キャリア密度の活性領域からの距離依存性を示すグラフである。図3において、横軸は、活性領域51からの位置を示し、単位はmmである。縦軸は、キャリア密度として正孔密度を示し、単位はcm-3である。また、図3は、正孔のキャリア寿命を10μsとした場合の電流100A/cm2、室温(25℃程度)でのシミュレーション結果である。
ここで、キャリア密度が閾値1×1015/cm3を上回ると、n型ドリフト層4の端部Tからの積層欠陥(SF)が拡大してしまう。図3に示すように、チップの端部Tからの位置が1.2mm以下の領域は、通電時キャリア密度が1×1015/cm3以上となっている。これは、キャリア密度が電子密度である場合も同様の結果となる。このため、実施の形態1の炭化珪素半導体装置では、活性領域51からチップの端部Tまでの間を1.2mm以上とすることにより、チップの端部Tでの通電時の電子密度または正孔密度の小さい方の密度を、積層欠陥(SF)が拡大する閾値1×1015/cm3以下にしている。このため、半導体チップの通電時に、チップの端部Tからの積層欠陥(SF)の拡大を抑制することができる。また、高温、大電流に対応するため、活性領域51からチップの端部Tまでの間を1.5mm以上にすることが好ましく、2.0mm以上とすることがより好ましい。
炭化珪素基板は、基板上に半導体層をエピタキシャル成長させるため、4度のオフ角が設けられている。オフ角が設けられている方向(オフ方向)は、<11−20>方向である。ここで、積層欠陥の拡張方向は、オフ方向と垂直な<1−100>方向であるため、少なくとも<1−100>方向で、活性領域51からチップの端部Tまでの間が1.2mm以上であることが必要である。
図4は、従来の炭化珪素半導体装置の通電前および通電後の特性を示すグラフである。図5は、実施の形態1にかかる炭化珪素半導体装置の通電前および通電後の特性を示すグラフである。図4および図5では通電前の特性は実線で示し、通電後の特性は点線で示す。図4および図5において、横軸は順方向電圧を示し、単位はVであり、縦軸は順方向電流密度を示し、単位はA/cm2である。ここで、従来の炭化珪素半導体装置では、活性領域151からチップの端部Tまでの間が0.5mmであり、実施の形態1にかかる炭化珪素半導体装置では、活性領域51からチップの端部Tまでの間(活性領域51から終端構造部53の端部までの間)は1.2mm以上である。
図4に示すように、従来の炭化珪素半導体装置では、素子端部において、キャリアの再結合が発生することにより、順方向電圧増大現象が発生している。図4では、通電前と通電後では、順方向電流密度100A/cm2で順方向電圧の増加ΔVfは5V以上となり、順方向電圧は大幅に増えている。一方、実施の形態1にかかる炭化珪素半導体装置では、素子端部において、キャリアの密度が1×1015/cm3以下であるため、キャリアの再結合が発生することがない。このため、順方向電流密度100A/cm2で順方向電圧の増加ΔVfは0.01V以下となり、順方向電圧にほとんど変化がなく、順方向電圧増大を抑制できている。
(実施の形態1にかかる炭化珪素半導体装置の製造方法)
実施の形態1にかかる炭化珪素半導体装置の製造方法について、半導体材料として炭化珪素を用い、nチャネル型IGBTを作製(製造)する場合を例に説明する。図6〜図8は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である。
まず、p型の炭化珪素でできた、p型炭化珪素基板1を用意する。次に、p型炭化珪素基板1の第1主面(おもて面)の上に、エピタキシャル成長により、p型コレクタ層2、n型フィールドストップ層3およびn型ドリフト層4を堆積させる。ここまでの状態が図6に記載される。
次に、n型ドリフト層4の表面に、エピタキシャル成長により、n型キャリア蓄積層5を堆積させる。次に、n型キャリア蓄積層5の表面にp型ベース領域6の形成領域に対応する部分を開口したイオン注入用マスクを形成する。次に、このイオン注入用マスクをマスクとしてp型不純物イオン注入により、p型ベース領域6を形成する。n型キャリア蓄積層5のp型ベース領域6に挟まれた領域がJFET領域18となる。次に、イオン注入用マスクを除去する。
次に、フォトリソグラフィおよびp型不純物のイオン注入によりp型ベース領域6の表面層に、p+型コンタクト領域8を選択的に形成する。次に、フォトリソグラフィおよびn型不純物のイオン注入により、p型ベース領域6の表面層に、n+型エミッタ領域7を選択的に形成する。次に、フォトリソグラフィおよびp型不純物のイオン注入により、エッジ終端領域52のp型ベース領域6の表面層に、p型終端領域13を選択的に形成する。
上述したn+型エミッタ領域7およびp+型コンタクト領域8を形成するための各イオン注入の順序は種々変更可能である。次に、各イオン注入によってそれぞれ形成された拡散領域を活性化させるための活性化アニール(熱処理)を行う。ここまでの状態が図7に記載される。
次に、炭化珪素基体のおもて面(p+型ベース領域6側の面)を熱酸化して、ゲート絶縁膜9を形成する。次に、ゲート絶縁膜9上にゲート電極10として、例えば多結晶シリコン(poly−Si)層を形成し、パターニングする。
次に、ゲート電極10を覆うように層間絶縁膜(不図示)を形成し、パターニングしてから熱処理(リフロー)する。層間絶縁膜のパターニング時、コンタクトホールを形成するとともに、コンタクトホールに露出されたゲート絶縁膜9も除去して、n+型エミッタ領域7およびp+型コンタクト領域8を露出させる。ここまでの状態が図8に記載される。
次に、例えばスパッタ法により、コンタクトホールを埋め込むようにエミッタ電極11を形成する。次に、p型炭化珪素基板1の裏面にコレクタ電極12を形成する。次に、エミッタ電極11上に、エミッタ配線(不図示)を形成する。次に、炭化珪素基体のおもて面に保護膜(不図示)を形成する。その後、炭化珪素基体をチップ状に切断(ダイシング)することで、図1に示したIGBTが完成する。
以上、説明したように、実施の形態1によれば、チップの端部でのキャリア密度は、積層欠陥(SF)が拡大する閾値1×1015/cm3以下となっている、これにより、半導体チップの通電時に、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態2)
図9は、実施の形態2にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態2では、活性領域51から端部Tまでの領域(活性領域51から終端構造部53の端部までの間)に低ライフタイム領域14をp型炭化珪素基板(半導体チップ)1の高さ(厚さ)方向全体に設けたものである。低ライフタイム領域14は、電子線やプロトン(H+)を照射することにより、結晶構造にダメージが設けられている。低ライフタイム領域14を設けることにより、チップの端部Tでのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。また、積層欠陥の拡張方向は、オフ方向と垂直な<1−100>方向であるため、少なくとも<1−100>方向で、活性領域51からチップの端部Tまでの領域に低ライフタイム領域14が設けられていることが必要である。
また、実施の形態2にかかる炭化珪素半導体装置は、例えば、素子構造を形成した後、p型炭化珪素基板1をダイシングする前に、p型炭化珪素基板1の活性領域51から端部Tまでの領域に電子線やプロトン(H+)を照射することで、低ライフタイム領域14を形成することができる。
以上、説明したように、実施の形態2によれば、活性領域から端部までに低ライフタイム領域が設けられている。これにより、チップの端部でのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態3)
図10は、実施の形態3にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態3では、活性領域51から終端構造部53の端部までの間のp型炭化珪素基板1側のp型領域(p型炭化珪素基板1およびp型コレクタ層2)に接するn型領域(n型フィールドストップ層3またはn型ドリフト層4)に不純物添加領域15を設けたものである。図10は、n型フィールドストップ層3に不純物添加領域15を設けた例を示している。不純物添加領域15は、バナジウム(V)、チタン(Ti)、ホウ素(B)、窒素(N)などを添加することにより形成される。不純物添加領域15を設けることにより、チップの端部Tでのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。また、窒素の密度は1×1018/cm3以上であり、ホウ素の密度は1×1017/cm3以上であり、バナジウムまたはチタンの密度は1×1014/cm3以上であることが好ましい。
また、実施の形態3にかかる炭化珪素半導体装置は、例えば、p型炭化珪素基板1側のp型領域に接するn型領域を形成した後に、n型領域にバナジウム(V)、チタン(Ti)、ホウ素(B)、窒素(N)などをイオン注入により添加することにより形成される。このn型領域の厚さは、0.1μm以上2μm以下であることが好ましい。
以上、説明したように、実施の形態3によれば、活性領域から端部までのp型炭化珪素基板側のp型領域に接するn型領域に不純物添加領域が設けられている。これにより、チップの端部でのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態4)
図11は、実施の形態4にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態4では、活性領域51から終端構造部53の端部までの間のp型炭化珪素基板1側のn型領域(n型フィールドストップ層3またはn型ドリフト層4)に接するp型領域(p型炭化珪素基板1およびp型コレクタ層2)にカウンタードープ領域16を設けたものである。図11は、p型コレクタ層2にカウンタードープ領域16を設けた形態を示している。カウンタードープ領域16は、p型領域のドナーとなる不純物をカウンタードープすることにより形成され、結晶構造にダメージが設けられている領域である。カウンタードープ領域16を設けることにより、チップの端部Tでのキャリアのライフタイムを短くすることができ、チップの端部Tにキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。
また、実施の形態4にかかる炭化珪素半導体装置は、例えば、p型炭化珪素基板1側のn型領域に接するp型領域を形成した後に、p型領域のドナーとなる不純物、例えばアルミニウム(Al)などをイオン注入により添加することにより形成される。
以上、説明したように、実施の形態4によれば、活性領域から端部までのp型炭化珪素基板側のn型領域に接するp型領域にカウンタードープ領域が設けられている。これにより、チップの端部でのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態5)
図12は、実施の形態5にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態5は、活性領域51から終端構造部53の端部までの間の領域Sにおいて、p型炭化珪素基板1およびコレクタ電極12が除去されたものである。これにより、除去された領域Sはオン時に電流が流れなくなるため、p型炭化珪素基板1からチップの端部Tにキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。
また、実施の形態5にかかる炭化珪素半導体装置は、例えば、素子構造を形成した後のp型炭化珪素基板1をダイシングする前に、活性領域51から端部Tまでの領域Sのp型炭化珪素基板1およびコレクタ電極12を除去することにより形成することができる。
以上、説明したように、実施の形態5によれば、活性領域から端部までの領域において、p型炭化珪素基板およびコレクタ電極が除去される。これにより、当該領域では、p型炭化珪素基板からチップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態6)
図13は、実施の形態6にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態6では、活性領域51から終端構造部53の端部までの間の領域S’において、コレクタ電極12が除去されたものである。これにより、当該領域S’はオン時に電流が流れなくなるため、p型炭化珪素基板1からチップの端部Tにキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。
また、実施の形態6にかかる炭化珪素半導体装置は、例えば、p型炭化珪素基板1の裏面にコレクタ電極12を形成する際、活性領域51のみにコレクタ電極12を形成することで形成できる。また、素子構造を形成した後の半導体基板(半導体チップ)1をダイシングする前に、活性領域51から端部Tまでの領域S’のコレクタ電極12を除去することにより、形成することもできる。
また、p型炭化珪素基板1をp型領域としてエピタキシャル成長で形成する場合、コレクタ電極12を形成する箇所に、オーミックコンタクトを形成するため、イオン注入を行っている。このイオン注入を活性領域51のみに行うことで、コレクタ電極12を全面に形成しても、活性領域51から端部Tまでの領域S’のコレクタ電極12を除去した形態と同様の効果が得られる。
以上、説明したように、実施の形態6によれば、活性領域から端部までの領域において、コレクタ電極が除去される。これにより、当該領域では、p型炭化珪素基板からチップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
(実施の形態7)
図14は、実施の形態7にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態7では、活性領域51から終端構造部53の端部までの間に、n型キャリア蓄積層5(4)を貫通して、p型コレクタ層2に達するベベルメサ17が設けられている。これにより、炭化珪素半導体装置の端部Tから、基底面転位という線欠陥が積層欠陥という面欠陥に拡張し、活性領域51に達することを防ぐことができる。
また、実施の形態7にかかる炭化珪素半導体装置は、例えば、n型キャリア蓄積層5(4)を形成後に、ドライエッチングにより、ベベルメサ17を形成することにより、形成することもできる。
以上、説明したように、実施の形態7によれば、活性領域から端部までの間に、ベベルメサが設けられている。これにより、炭化珪素半導体装置の端部から、基底面転位という線欠陥が積層欠陥という面欠陥に拡張し、活性領域に達することを防ぐことができる。このため、順方向電圧増大を抑制することができる。
(実施の形態8)
図15は、実施の形態8にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態8では、活性領域51から終端構造部53の端部までの間の所定の領域S”が、p型炭化珪素基板1の高さ(厚さ)方向全体に、例えば10〜30μm除去されている。これにより、端部Tに存在していた基底面転位が除去され、基底面転位という線欠陥が積層欠陥という面欠陥に拡張し、活性領域51に達することを防ぐことができる。
また、実施の形態8にかかる炭化珪素半導体装置は、例えば、素子構造を形成した後の半導体基板(半導体チップ)1をダイシングした後に、p型炭化珪素基板1の活性領域51から終端構造部53の端部までの間の所定の領域S”をドライエッチングにより除去することで形成することができる。
以上、説明したように、実施の形態8によれば、端部から活性領域までの所定の領域が、p型炭化珪素基板の高さ(厚さ)方向全体に除去されている。これにより、端部に存在していた基底面転位が除去され、基底面転位という線欠陥が積層欠陥という面欠陥に拡張し、活性領域に達することを防ぐことができる。このため、順方向電圧増大を抑制することができる。
(実施の形態9)
図16は、実施の形態9にかかる炭化珪素半導体装置の構造を示す断面図である。実施の形態9では、活性領域51から終端構造部53の端部までの間のp型炭化珪素基板1の高さ(厚さ)方向全体に低ライフタイム領域14が設けられている。低ライフタイム領域14は、電子線やプロトン(H+)を照射することにより、結晶構造にダメージが設けられている。低ライフタイム領域14を設けることにより、チップの端部Tでのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。
また、実施の形態9にかかる炭化珪素半導体装置は、例えば、素子構造を形成した後のp型炭化珪素基板1をダイシングした後に、p型炭化珪素基板1の活性領域51から端部Tまでの領域に側面側(図16の矢印V’側)から電子線やプロトン(H+)を照射することで、低ライフタイム領域14を形成することができる。
以上、説明したように、実施の形態9によれば、活性領域から端部までに低ライフタイム領域が設けられている。これにより、チップの端部でのキャリアのライフタイムを短くすることができ、チップの端部にキャリア(正孔)が注入されることを抑制でき、チップの端部からの積層欠陥(SF)の拡大を抑制することができる。このため、順方向電圧増大を抑制することができる。
以上、実施の形態1〜9では、nチャネル炭化珪素IGBT60を例に説明したが、実施の形態1〜9は他の構造の炭化珪素半導体装置にも適用可能である。図17〜19は、実施の形態1〜9にかかる炭化珪素半導体装置の他の構造を示す断面図である。
図17は、Pinダイオード61の例を示す。Pinダイオード61は、図17に示すように、p型炭化珪素基板1のおもて面上にエピタキシャル成長により、p型バッファ層20、p型ドリフト層21、n型カソード層22を順に積層してなる炭化珪素基体を用いて構成される。n型カソード層22上にカソード電極23が設けられ、裏面にアノード24が設けられている。
n型カソード層22は、オン時に電流の流れる活性領域のみに設けられ、終端構造部53に設けられていない。終端構造部53には、例えば、外側(半導体基板の側面側)に配置されるほど不純物濃度を低くしたn型終端領域25からなる耐圧構造が配置される。
図18は、MOSFET62の例を示す。図18に示すように、MOSFET62は、p型半導体基板1のおもて面上にエピタキシャル成長により、p型フィールドストップ層26、p型ドリフト層21、p型キャリア蓄積層27を順に積層してなる炭化珪素基体を用いて構成される。n型キャリア蓄積層27の内部にn型ベース領域28が設けられる。また、n型ベース領域28の内部に、p+型ソース領域29およびn+型コンタクト領域30が設けられている。n型ベース領域28の内部には、n型ベース領域28を深さ方向に貫通してp型キャリア蓄積層27に達するp型のJFET領域18が設けられている。
また、n型ベース領域28およびp+型ソース領域29の表面にわたってゲート絶縁膜9が設けられている。ゲート絶縁膜9の表面上には、ゲート電極10が設けられており、ゲート電極10を覆うように層間絶縁膜(不図示)が設けられている。炭化珪素基体のおもて面側に、p+型ソース領域29およびn+型コンタクト領域30に接するソース電極31が設けられ、ソース電極31上にソース配線(不図示)が設けられ、ソース配線上に保護膜(不図示)が設けられている。また、裏面にドレイン電極32が設けられている。
n型ベース領域28およびJFET領域18は、オン時に電流の流れる活性領域のみに設けられ、終端構造部53に設けられていない。終端構造部53には、例えば、外側(半導体基板の側面側)に配置されるほど不純物濃度を低くしたn型終端領域25からなる耐圧構造が配置される。
図19は、サイリスタ63の例を示す。また、GTOやGCT(Gate Commutated Turn−off thyristor)でも同様である。図19に示すように、サイリスタ63は、p型半導体基板1のおもて面上にエピタキシャル成長により、p型バッファ層20、n型バッファ層34、n型ドリフト層4、p型ゲート層35、n型カソード層22を順に積層してなる炭化珪素基体を用いて構成される。p型ゲート層35の内部にp+型コンタクト領域8が設けられ、n型カソード層22を深さ方向に貫通するコンタクトホールには、p+型コンタクト領域8が露出されている。
また、p+型コンタクト領域8の表面上には、ゲート電極10が設けられており、ゲート電極10を覆うように層間絶縁膜(不図示)が設けられている。炭化珪素基体のおもて面側に、n型カソード層に接するカソード電極23が設けられている。また、裏面にアノード電極24が設けられている。
p型ゲート層35は、オン時に電流の流れる活性領域のみに設けられ、終端構造部53に設けられていない。終端構造部53には、例えば、外側(半導体基板の側面側)に配置されるほど不純物濃度を低くしたp型終端領域13からなる耐圧構造が配置される。
以上において本発明は本発明の趣旨を逸脱しない範囲で種々変更可能であり、上述した各実施の形態において、例えば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。
以上のように、本発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法は、インバータなどの電力変換装置や種々の産業用機械などの電源装置や自動車のイグナイタなどに使用されるパワー半導体装置に有用である。
1 p型炭化珪素基板
2 p型コレクタ層
3 n型フィールドストップ層
4 n型ドリフト層
5 n型キャリア蓄積層
6 p型ベース領域
7 n+型エミッタ領域
8 p+型コンタクト領域
9 ゲート絶縁膜
10 ゲート電極
11 エミッタ電極
12 コレクタ電極
13 p型終端領域
14 低ライフタイム領域
15 不純物添加領域
16 カウンタードープ領域
17 ベベルメサ
18 JFET領域
20 p型バッファ層
21 p型ドリフト層
22 n型カソード層
23 カソード電極
24 アノード電極
25 n型終端領域
26 p型フィールドストップ層
27 p型キャリア蓄積層
28 n型ベース領域
29 p+型ソース領域
30 n+型コンタクト領域
31 ソース電極
32 ドレイン電極
34、134 n型バッファ層
35 p型ゲート層
51、151 活性領域
52、152 エッジ終端領域
53 終端構造部
60 nチャネル型IGBT
61、161 PiNダイオード
62 MOSFET
63 サイリスタ
101 n型炭化珪素基板
102 n型バッファ層
103 n型ドリフト層
104 p型アノード層
105 アノード電極
106 カソード電極
107 p型終端領域
111 p型炭化珪素基板
112 p型バッファ層
113 p型ドリフト層
114 n型カソード層
115 カソード電極
116 アノード電極
117 n型終端領域

Claims (19)

  1. 電流が流れる活性領域と、前記活性領域の外側に配置され、前記活性領域の周囲を囲む耐圧構造が形成された終端構造部と、を有する炭化珪素半導体装置であって、
    第2導電型の半導体基板と、
    前記半導体基板の一方の主面側に設けられた第2導電型の第1半導体層と、
    前記第1半導体層の、前記半導体基板に対して反対側の表面に設けられた第1導電型の第2半導体層と、
    前記第2半導体層の、前記半導体基板に対して反対側の表面層に設けられた第2導電型の第1半導体領域と、
    前記第1半導体領域の、前記半導体基板に対して反対側の表面層に設けられた前記第2半導体層より不純物濃度が高い第1導電型の第2半導体領域と、
    前記第1半導体領域の、前記第2半導体層と前記第2半導体領域とに挟まれた領域の表面上に設けられたゲート絶縁膜と、
    前記ゲート絶縁膜上に設けられたゲート電極と、
    前記第1半導体領域および前記第2半導体領域に接する第1電極と、
    前記第1半導体層の他方の主面側に設けられた第2電極と、
    を備え、
    前記終端構造部における前記第2半導体層の端部の通電時の電子密度または正孔の密度の小さい方の密度は、1×1015/cm3以下であることを特徴とする炭化珪素半導体装置。
  2. 前記終端構造部における前記第2半導体層の端部の通電時の正孔の密度は、1×1015/cm3以下であることを特徴とする請求項1に記載の炭化珪素半導体装置。
  3. 前記活性領域から前記終端構造部の端部までの間の距離は、1.2mm以上であることを特徴とする請求項1または2に記載の炭化珪素半導体装置。
  4. 前記半導体基板のオフ角と垂直な方向で、前記活性領域から前記終端構造部の端部までの間の距離は、1.2mm以上であることを特徴とする請求項1または2に記載の炭化珪素半導体装置。
  5. 前記活性領域から前記終端構造部の端部までの間に、低ライフタイム領域が設けられていることを特徴とする請求項1〜4のいずれか一つに記載の炭化珪素半導体装置。
  6. 前記半導体基板のオフ角と垂直な方向で、前記活性領域から前記終端構造部の端部までの間に、低ライフタイム領域が設けられていることを特徴とする請求項1〜4のいずれか一つに記載の炭化珪素半導体装置。
  7. 前記第1半導体層と前記第2半導体層との間に、前記第2半導体層よりも不純物濃度の高い第1導電型の第3半導体層を備え、
    前記終端構造部における前記第3半導体層に、バナジウム、チタン、ホウ素または窒素が添加されていることを特徴とする請求項1〜6のいずれか一つに記載の炭化珪素半導体装置。
  8. 前記窒素の密度は1×1018/cm3以上であり、前記ホウ素の密度は1×1017/cm3以上であり、前記バナジウムまたは前記チタンの密度は1×1014/cm3以上であることを特徴とする請求項7に記載の炭化珪素半導体装置。
  9. 前記第3半導体層の厚さは、0.1μm以上2μm以下であることを特徴とする請求項8に記載の炭化珪素半導体装置。
  10. 前記第1半導体層と前記第2半導体層との間に、前記第2半導体層よりも不純物濃度の高い第1導電型の第3半導体層を備え、
    前記終端構造部における前記第3半導体層は、結晶構造にダメージが設けられていることを特徴とする請求項1〜6のいずれか一つに記載の炭化珪素半導体装置。
  11. 前記終端構造部における前記第1半導体層に、バナジウム、チタン、ホウ素または窒素が添加されていることを特徴とする請求項1〜10のいずれか一つに記載の炭化珪素半導体装置。
  12. 前記終端構造部における前記第1半導体層は、結晶構造にダメージが設けられていることを特徴とする請求項1〜10のいずれか一つに記載の炭化珪素半導体装置。
  13. 前記半導体基板および前記第2電極は、前記活性領域のみに設けられていることを特徴とする請求項1〜12のいずれか一つに記載の炭化珪素半導体装置。
  14. 前記第2電極は、前記活性領域のみに設けられていることを特徴とする請求項1〜12のいずれか一つに記載の炭化珪素半導体装置。
  15. 前記終端構造部に、前記第2半導体層の、前記半導体基板に対して反対側の表面から、前記第1半導体層に達する溝が設けられていることを特徴とする請求項1〜14のいずれか一つに記載の炭化珪素半導体装置。
  16. 前記終端構造部の端部から前記活性領域までの所定の領域に基底面転位を有していないことを特徴とする請求項1〜15のいずれか一つに記載の炭化珪素半導体装置。
  17. 前記終端構造部の端部から前記活性領域までの所定の領域は、結晶構造にダメージが設けられていることを特徴とする請求項1〜15のいずれか一つに記載の炭化珪素半導体装置。
  18. 電流が流れる活性領域と、前記活性領域の外側に配置され、前記活性領域の周囲を囲む耐圧構造が形成された終端構造部と、を有する炭化珪素半導体装置の製造方法であって、
    第2導電型の半導体基板の一方の主面側に第2導電型の第1半導体層を形成する第1工程と、
    前記第1半導体層の、前記半導体基板に対して反対側の表面に第1導電型の第2半導体層を形成する第2工程と、
    前記第2半導体層の、前記半導体基板に対して反対側の表面層に第2導電型の第1半導体領域を形成する第3工程と、
    前記第1半導体領域の、前記半導体基板に対して反対側の表面層に前記第2半導体層より不純物濃度が高い第1導電型の第2半導体領域を形成する第4工程と、
    前記第1半導体領域の、前記第2半導体層と前記第2半導体領域とに挟まれた領域の表面にゲート絶縁膜を形成する第5工程と、
    前記ゲート絶縁膜上にゲート電極を形成する第6工程と、
    前記第1半導体領域および前記第2半導体領域に接する第1電極を形成する第7工程と、
    前記第1半導体層の他方の主面側に第2電極を形成する第8工程と、
    を含み、
    前記終端構造部における前記第2半導体層の端部の正孔の密度を、1×1015/cm3以下に形成することを特徴とする炭化珪素半導体装置の製造方法。
  19. 前記第8工程より後に、前記終端構造部の端部から前記活性領域までの所定の領域をドライエッチングにより除去する第9工程をさらに含むことを特徴とする請求項18に記載の炭化珪素半導体装置の製造方法。
JP2019129407A 2019-07-11 2019-07-11 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 Active JP7410478B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019129407A JP7410478B2 (ja) 2019-07-11 2019-07-11 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
DE112020002222.6T DE112020002222T5 (de) 2019-07-11 2020-05-26 Siliziumkarbid-halbleitervorrichtung und verfahren zum herstellen einer siliziumkarbid-halbleitervorrichtung
CN202080039260.3A CN113892189A (zh) 2019-07-11 2020-05-26 碳化硅半导体装置及碳化硅半导体装置的制造方法
PCT/JP2020/020808 WO2021005903A1 (ja) 2019-07-11 2020-05-26 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US17/538,331 US20220123112A1 (en) 2019-07-11 2021-11-30 Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019129407A JP7410478B2 (ja) 2019-07-11 2019-07-11 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2021015880A true JP2021015880A (ja) 2021-02-12
JP7410478B2 JP7410478B2 (ja) 2024-01-10

Family

ID=74113999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019129407A Active JP7410478B2 (ja) 2019-07-11 2019-07-11 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Country Status (5)

Country Link
US (1) US20220123112A1 (ja)
JP (1) JP7410478B2 (ja)
CN (1) CN113892189A (ja)
DE (1) DE112020002222T5 (ja)
WO (1) WO2021005903A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11973116B2 (en) 2021-05-10 2024-04-30 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114783873B (zh) * 2022-06-22 2022-10-14 泰科天润半导体科技(北京)有限公司 具有两层外延的碳化硅凹槽mos栅控晶闸管的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004547A (ja) * 2007-06-21 2009-01-08 Toshiba Corp 半導体装置
WO2010131573A1 (ja) * 2009-05-11 2010-11-18 住友電気工業株式会社 絶縁ゲート型バイポーラトランジスタ
WO2014030457A1 (ja) * 2012-08-22 2014-02-27 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2014229794A (ja) * 2013-05-23 2014-12-08 トヨタ自動車株式会社 Igbt
JP2018125490A (ja) * 2017-02-03 2018-08-09 株式会社デンソー 半導体装置
JP2018137483A (ja) * 2018-05-23 2018-08-30 Sppテクノロジーズ株式会社 プラズマ加工方法及びこの方法を用いて製造された基板
JP2018190772A (ja) * 2017-04-28 2018-11-29 富士電機株式会社 炭化珪素エピタキシャルウェハ、炭化珪素絶縁ゲート型バイポーラトランジスタ及びこれらの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044117B2 (ja) 2005-12-14 2012-10-10 関西電力株式会社 炭化珪素バイポーラ型半導体装置
JP5147244B2 (ja) * 2007-01-17 2013-02-20 関西電力株式会社 バイポーラ型半導体素子
JP2012004318A (ja) 2010-06-16 2012-01-05 Kansai Electric Power Co Inc:The バイポーラ半導体素子
JP6932998B2 (ja) * 2017-05-25 2021-09-08 富士電機株式会社 炭化ケイ素mosfet及びその製造方法
JP6874158B2 (ja) * 2017-12-19 2021-05-19 三菱電機株式会社 炭化珪素半導体装置および電力変換装置
WO2021152651A1 (ja) * 2020-01-27 2021-08-05 三菱電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP7258239B2 (ja) * 2020-05-29 2023-04-14 三菱電機株式会社 炭化珪素半導体装置、および、電力変換装置
JP2022120263A (ja) * 2021-02-05 2022-08-18 富士電機株式会社 炭化珪素半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004547A (ja) * 2007-06-21 2009-01-08 Toshiba Corp 半導体装置
WO2010131573A1 (ja) * 2009-05-11 2010-11-18 住友電気工業株式会社 絶縁ゲート型バイポーラトランジスタ
WO2014030457A1 (ja) * 2012-08-22 2014-02-27 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2014229794A (ja) * 2013-05-23 2014-12-08 トヨタ自動車株式会社 Igbt
JP2018125490A (ja) * 2017-02-03 2018-08-09 株式会社デンソー 半導体装置
JP2018190772A (ja) * 2017-04-28 2018-11-29 富士電機株式会社 炭化珪素エピタキシャルウェハ、炭化珪素絶縁ゲート型バイポーラトランジスタ及びこれらの製造方法
JP2018137483A (ja) * 2018-05-23 2018-08-30 Sppテクノロジーズ株式会社 プラズマ加工方法及びこの方法を用いて製造された基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11973116B2 (en) 2021-05-10 2024-04-30 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
US20220123112A1 (en) 2022-04-21
CN113892189A (zh) 2022-01-04
JP7410478B2 (ja) 2024-01-10
DE112020002222T5 (de) 2022-02-17
WO2021005903A1 (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
JP4967200B2 (ja) 逆阻止型igbtを逆並列に接続した双方向igbt
JP5606529B2 (ja) 電力用半導体装置
JP5613995B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6844163B2 (ja) 炭化珪素半導体装置
JP6988175B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2015109341A (ja) 半導体装置
JPWO2014122919A1 (ja) 絶縁ゲート型炭化珪素半導体装置及びその製造方法
JP6621925B2 (ja) 半導体装置及びその製造方法
JPWO2014054121A1 (ja) 半導体装置
JP2019102493A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP5735077B2 (ja) 半導体装置の製造方法
JP2011061064A (ja) 電力用半導体装置
JPWO2018037701A1 (ja) 半導体装置
JP2020077720A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US20220123112A1 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2015233146A (ja) 半導体装置、半導体装置の製造方法
CN112951905B (zh) 一种SiC逆导型绝缘栅双极型晶体管器件及其制造方法
JP2004247593A (ja) 半導体装置及びその製造方法
JP5028749B2 (ja) 半導体装置の製造方法
JP3885616B2 (ja) 半導体装置
JPWO2019049251A1 (ja) 半導体装置
CN112216601A (zh) 半导体器件的制造方法以及半导体器件
JP2003218354A (ja) 半導体装置およびその製造方法
JP2017092364A (ja) 半導体装置および半導体装置の製造方法
JP7333509B2 (ja) 炭化珪素半導体装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20231012

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231212

R150 Certificate of patent or registration of utility model

Ref document number: 7410478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150