JP4782504B2 - Fine carbon fiber production apparatus and production method thereof - Google Patents

Fine carbon fiber production apparatus and production method thereof Download PDF

Info

Publication number
JP4782504B2
JP4782504B2 JP2005225764A JP2005225764A JP4782504B2 JP 4782504 B2 JP4782504 B2 JP 4782504B2 JP 2005225764 A JP2005225764 A JP 2005225764A JP 2005225764 A JP2005225764 A JP 2005225764A JP 4782504 B2 JP4782504 B2 JP 4782504B2
Authority
JP
Japan
Prior art keywords
raw material
fine carbon
reaction furnace
material mixed
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005225764A
Other languages
Japanese (ja)
Other versions
JP2007039838A (en
Inventor
史典 宗兼
佳義 単
宏輔 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2005225764A priority Critical patent/JP4782504B2/en
Publication of JP2007039838A publication Critical patent/JP2007039838A/en
Application granted granted Critical
Publication of JP4782504B2 publication Critical patent/JP4782504B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、気相成長法によって微細炭素繊維を製造する製造装置及びその製造方法に関する。   The present invention relates to a production apparatus for producing fine carbon fibers by a vapor deposition method and a production method thereof.

微細炭素繊維は、繊維自体の導電性が優れていること、又、アスペクト比が大きく、樹脂等の母材中で導電パスを形成しやすいことから、少量添加で高い導電性を発揮するための充填剤としての用途が期待されている。   Fine carbon fiber is excellent in electrical conductivity of the fiber itself, and has a large aspect ratio, and it is easy to form a conductive path in a base material such as resin. Use as a filler is expected.

微細炭素繊維を製造する方法として気相中で金属微粒子を触媒とし、ベンゼン、トルエン又はキシレン等の炭素源となる炭化水素を熱分解して微細炭素繊維を成長させる気相成長法が知られている。この気相成長法で得られる微細炭素繊維は、有機材料、無機材料及び金属材料等の母材の性能向上及び新規機能を発現させる充填剤として期待されている。   As a method for producing fine carbon fibers, there is known a vapor phase growth method in which fine carbon fibers are grown by thermally decomposing hydrocarbons that are carbon sources such as benzene, toluene or xylene using metal fine particles as a catalyst in the gas phase. Yes. The fine carbon fiber obtained by this vapor phase growth method is expected as a filler that improves the performance of a base material such as an organic material, an inorganic material, and a metal material and develops a new function.

気相成長法には、基板上に存在する金属微粒子を触媒として微細炭素繊維を成長させる固定床方式と、浮遊する金属微粒子を触媒として微細炭素繊維を製造させる流動方式等が知られている。一般的に固定床方式は、連続生産が困難であり生産性が低いため、流動方式による製造方法が微細炭素繊維の連続生産の主流となっている。   As the vapor phase growth method, a fixed bed method in which fine carbon fibers are grown using metal fine particles present on a substrate as a catalyst, and a flow method in which fine carbon fibers are produced using floating metal fine particles as a catalyst are known. In general, since the fixed bed method is difficult to produce continuously and has low productivity, the production method using the fluidized method has become the mainstream of continuous production of fine carbon fibers.

流動方式による微細炭素繊維の製造装置として、従来から、筒状の反応炉と、筒状の反応炉の一端に設けられ反応炉の内部に炭化水素等を導入させるノズルと、反応炉の外周部に配置され、反応炉内を加熱する加熱手段を備えた製造装置が用いられている。かかる構成を備えた製造装置は、例えば、特許文献1に示すように、炭化水素のガス及び金属化合物のガスと水素キャリアガスとを予め混合し、この原料混合ガスをノズルで反応炉内に導入させることにより、反応炉内で水素気流中、金属化合物の分解により生成させた金属微粒子を触媒とし、炭化水素を熱分解させ炭素源として使用して、微細炭素繊維を製造している。   Conventionally, as a production apparatus for fine carbon fibers by a flow method, a cylindrical reaction furnace, a nozzle that is provided at one end of the cylindrical reaction furnace and introduces hydrocarbons or the like into the inside of the reaction furnace, and an outer peripheral portion of the reaction furnace The manufacturing apparatus provided with the heating means which is arrange | positioned and heats the inside of a reaction furnace is used. A manufacturing apparatus having such a configuration, for example, as shown in Patent Document 1, previously mixes a hydrocarbon gas and a metal compound gas with a hydrogen carrier gas, and introduces this raw material mixed gas into the reaction furnace with a nozzle. Thus, fine carbon fibers are produced by using metal fine particles generated by decomposition of a metal compound in a hydrogen stream in a reaction furnace as a catalyst, and thermally decomposing hydrocarbons as a carbon source.

特開2002−88591号公報JP 2002-88591 A

微細炭素繊維は、気相中で流動している短時間に金属化合物の分解により得られるFe等の金属微粒子を触媒として反応炉内で製造させる。繊維径等のバラツキのない微細炭素繊維を効率良く製造するには、反応炉内の金属触媒微粒子生成帯域と微細炭素繊維製造帯域の濃度、温度等の条件を均一にすることが重要である。   Fine carbon fibers are produced in a reaction furnace using metal fine particles such as Fe obtained by decomposition of a metal compound in a short time flowing in a gas phase as a catalyst. In order to efficiently produce fine carbon fibers having no variation in fiber diameter and the like, it is important to make the conditions such as the concentration and temperature of the metal catalyst fine particle production zone and the fine carbon fiber production zone in the reaction furnace uniform.

一般的に、単管ノズルが、筒状の縦型反応炉の中心軸に一致するように反応炉の上段に配置された場合、ノズルから導入された原料混合ガスの流れは反応炉の中心を軸とする半径方向に関し、反応炉の中心部分の流速が速く、反応炉内壁に向かうにつれ流速が漸次遅くなるといった速度分布が形成される。この時の流れは、若干の乱れはあるが層流に近い流れとなり全体的に反応炉の上段から下段へと向かってピストン流に近い流れとなっている。この結果、ノズルから導入される原料混合ガスの濃度は、反応炉の中心を軸とする半径方向に関し、反応炉の中心部分の濃度が高く、反応炉内壁に向かうにつれ濃度が漸次低くなるといった濃度分布が形成される。   In general, when a single tube nozzle is arranged at the upper stage of the reactor so as to coincide with the central axis of the cylindrical vertical reactor, the flow of the raw material mixed gas introduced from the nozzle is centered on the reactor. Regarding the radial direction as the axis, a velocity distribution is formed in which the flow velocity at the center of the reaction furnace is high and the flow velocity gradually decreases toward the inner wall of the reaction furnace. The flow at this time is a flow close to a laminar flow with a slight disturbance, but is generally a flow close to a piston flow from the upper stage to the lower stage of the reactor. As a result, the concentration of the raw material mixed gas introduced from the nozzle is such that the concentration in the central portion of the reaction furnace is high and the concentration gradually decreases toward the inner wall of the reaction furnace with respect to the radial direction about the center of the reaction furnace. A distribution is formed.

一方、加熱手段が反応炉の外周部に設けられた筒状反応炉内は、反応炉内壁から反応炉の中心軸に向かうにつれ温度が漸次低くなるといった温度分布が形成される。このため、大量生産用の大型筒状反応炉内では、大きな温度勾配が生じることとなる。この反応炉内に単管ノズルを使用して原料混合ガスを導入すると、反応炉上段から下段へと真っ直ぐに流れ、対流による伝熱の効果は期待できない。又、キャリアガスとして好適な水素ガスは、二酸化炭素ガスや水蒸気ガスと比べて比熱が小さいため、熱の吸収、又は輻射による伝熱の効果も期待できず、反応炉内の大きな温度勾配は解消出来ない。   On the other hand, in the cylindrical reaction furnace in which the heating means is provided on the outer periphery of the reaction furnace, a temperature distribution is formed such that the temperature gradually decreases from the reaction furnace inner wall toward the central axis of the reaction furnace. For this reason, a large temperature gradient is generated in a large cylindrical reactor for mass production. If the raw material mixed gas is introduced into the reactor using a single tube nozzle, it flows straight from the upper stage to the lower stage of the reactor, and the effect of heat transfer by convection cannot be expected. In addition, hydrogen gas, which is suitable as a carrier gas, has a lower specific heat than carbon dioxide gas or water vapor gas, so heat absorption or radiation heat transfer effects cannot be expected, eliminating a large temperature gradient in the reactor. I can't.

微細炭素繊維は反応炉内の上段側から下段側へと流動する短時間で製造される。加熱手段が反応炉の外部に設けられた筒状の縦型反応炉において、反応炉の中心軸に一致するように反応炉の上段に単管ノズルが配置された場合、反応炉内の中心軸付近を単管ノズルから導入された原料混合ガス等が、最も速い速度で真っ直ぐ流通する。この結果、反応炉内の中心軸付近では、反応炉内の上段側で金属化合物の熱分解により生成されるべき金属触媒微粒子が、より下段側の領域で生成されることとなり、微細炭素繊維自体の長さ方向及び太さ方向の成長時間が不足する問題が生じ、成長不十分な微細炭素繊維が得られることとなる。   The fine carbon fiber is produced in a short time that flows from the upper side to the lower side in the reactor. In a cylindrical vertical reactor in which the heating means is provided outside the reactor, when a single tube nozzle is arranged at the upper stage of the reactor so as to coincide with the central axis of the reactor, the central axis in the reactor In the vicinity, the raw material mixed gas introduced from the single tube nozzle circulates straight at the fastest speed. As a result, in the vicinity of the central axis in the reaction furnace, metal catalyst fine particles to be generated by thermal decomposition of the metal compound on the upper stage side in the reaction furnace are generated in the lower area, and the fine carbon fiber itself This causes a problem that the growth time in the length direction and the thickness direction is insufficient, and fine carbon fibers with insufficient growth are obtained.

反応炉内は、反応炉内壁から反応炉の中心軸に向かうにつれ温度が漸次低くなっている。この結果、反応炉内の中心軸付近では、金属化合物の熱分解が十分に促進されず金属触媒微粒子の生成量が減少し、この金属触媒微粒子を核として製造される微細炭素繊維自体の収率低下をもたらす。又、炭化水素ガスの分解もこの低温域では促進されず十分な炭素源が得られない。このため、製造反応に関与しなかった未反応の原料混合ガスが大量に回収されることとなる。   In the reactor, the temperature gradually decreases from the inner wall of the reactor toward the central axis of the reactor. As a result, in the vicinity of the central axis in the reaction furnace, the thermal decomposition of the metal compound is not sufficiently promoted to reduce the amount of metal catalyst fine particles produced, and the yield of the fine carbon fiber itself produced using the metal catalyst fine particles as a core is reduced. Bring about a decline. Also, the decomposition of hydrocarbon gas is not accelerated in this low temperature range, and a sufficient carbon source cannot be obtained. For this reason, a large amount of unreacted raw material mixed gas that has not been involved in the production reaction is recovered.

更に、原料混合ガスが反応炉内の中心軸付近の低温域を高速で真っ直ぐ流通して製造された微細炭素繊維と、原料混合ガスが反応炉内壁付近の高温域をより低速で真っ直ぐ流通して製造された微細炭素繊維との間で成長のバラツキが生じてしまう。   In addition, the raw material mixed gas is flown straight through the low temperature region near the central axis in the reactor at high speed and the raw material mixed gas flows through the high temperature region near the reactor inner wall at a lower speed. Variation in growth occurs between the manufactured fine carbon fibers.

また、反応炉内壁付近と反応炉の中心軸付近で、原料混合ガス濃度も均一でなく、低温域でかつ流速の速い中心軸付近の原料混合ガス濃度が最も高い。この点においても微細炭素繊維の製造効率が非常に悪いという問題がある。   Further, the concentration of the raw material mixed gas is not uniform near the inner wall of the reaction furnace and the central axis of the reaction furnace, and the concentration of the raw material mixed gas in the vicinity of the central axis in the low temperature region and the high flow velocity is the highest. Also in this point, there is a problem that the production efficiency of the fine carbon fiber is very poor.

本発明は、かかる問題点に鑑みなされたものであり、微細炭素繊維の製造効率が高く、微細炭素繊維の成長に差の生じない、微細炭素繊維の製造装置及びその製造方法を提供する。   The present invention has been made in view of such problems, and provides a fine carbon fiber production apparatus and a production method therefor, in which the production efficiency of fine carbon fibers is high and there is no difference in the growth of fine carbon fibers.

本発明では、第1に、上述の課題を解決するために、炭化水素ガス、金属化合物ガス及びキャリアガスを含む原料混合ガスを導入させて、前記炭化水素ガスを加熱分解反応させ微細炭素繊維を製造する筒状の反応炉と、前記筒状反応炉内を加熱する加熱手段と、前記筒状反応炉の軸心方向の一端側から筒状反応炉内に前記原料混合ガスを導入させる導入ノズルとを具備し、前記筒状反応炉は、該筒状反応炉内における濃度分布と温度分布とを軸直交方向に対して均一化させる均一化手段を備えた微細炭素繊維の製造装置を採用することとした。   In the present invention, first, in order to solve the above-described problems, a raw material mixed gas containing a hydrocarbon gas, a metal compound gas, and a carrier gas is introduced, and the hydrocarbon gas is subjected to a thermal decomposition reaction to obtain fine carbon fibers. A cylindrical reaction furnace to be manufactured, heating means for heating the inside of the cylindrical reaction furnace, and an introduction nozzle for introducing the raw material mixed gas into the cylindrical reaction furnace from one end side in the axial direction of the cylindrical reaction furnace The cylindrical reaction furnace employs a fine carbon fiber manufacturing apparatus provided with a uniformizing means for making the concentration distribution and temperature distribution in the cylindrical reaction furnace uniform in the direction perpendicular to the axis. It was decided.

そして、本発明では、前記均一化手段が、前記導入ノズルの原料混合ガス導入口近傍に配設され、前記導入ノズルから導入された原料混合ガスを衝突させる衝突部を備え、前記均一化手段は、前記導入ノズルから導入される前記原料混合ガス流に乱流を生ぜしめる均一化手段であることを特徴としている。   And in this invention, the said homogenization means is arrange | positioned in the raw material mixed gas inlet vicinity of the said introduction nozzle, It comprises the collision part which collides the raw material mixed gas introduced from the said introduction nozzle, The said homogenization means comprises The homogenizing means generates a turbulent flow in the raw material mixed gas flow introduced from the introduction nozzle.

また、上記の微細炭素繊維の製造方法に関し、前記衝突部は、前記導入口の周方向において、前記導入ノズルを囲繞することを特徴としている。   Moreover, regarding the method for producing the fine carbon fiber, the collision portion surrounds the introduction nozzle in a circumferential direction of the introduction port.

また、本発明では、第2に、上述の課題を解決するために、炭化水素ガス、金属化合物ガス及びキャリアガスを含む原料混合ガスを筒状反応炉内に導入ノズルで導入せしめ、前記筒状反応炉内で前記炭化水素ガスを加熱分解反応させて微細炭素繊維を製造する微細炭素繊維の製造方法であって、前記筒状反応炉内における濃度分布と温度分布とを軸直交方向に対して均一化させた状態にて微細炭素繊維を製造させる微細炭素繊維の製造方法を採用した。   In the present invention, secondly, in order to solve the above-mentioned problem, a raw material mixed gas containing hydrocarbon gas, metal compound gas and carrier gas is introduced into a cylindrical reaction furnace with an introduction nozzle, and the cylindrical A method for producing fine carbon fiber, in which a hydrocarbon gas is thermally decomposed in a reaction furnace to produce fine carbon fiber, wherein the concentration distribution and temperature distribution in the cylindrical reaction furnace with respect to the direction perpendicular to the axis. A method for producing fine carbon fibers in which fine carbon fibers are produced in a uniform state was adopted.

そして、本発明では当該微細炭素繊維の製造方法に関し、前記導入ノズルで導入させた前記原料混合ガスに乱流を形成させて前記濃度分布と温度分布とを軸直交方向に対して均一化させることとした。   And in this invention, it is related with the manufacturing method of the said fine carbon fiber, The turbulent flow is formed in the said raw material mixed gas introduced with the said introduction nozzle, and the said density | concentration distribution and temperature distribution are made uniform with respect to an axis orthogonal direction. It was.

本発明によれば、筒状反応炉の内部において、濃度分布と温度分布とが軸直交方向に対して均一化されるため、繊維径等の均一性に優れた微細炭素繊維を高収率で製造することができる。また、発生した渦流により金属触媒微粒子の集合体が形成され、各々の金属触媒微粒子を核として放射状に微細炭素繊維が成長し、核を中継点とし、この中継点によって繊維同士が結ばれた構造を持つ導電パスが形成された微細炭素繊維が高収率で得られる。   According to the present invention, since the concentration distribution and the temperature distribution are made uniform with respect to the direction perpendicular to the axis inside the cylindrical reactor, fine carbon fibers excellent in uniformity such as fiber diameter can be obtained in a high yield. Can be manufactured. In addition, an aggregate of metal catalyst fine particles is formed by the generated vortex, and fine carbon fibers grow radially with each metal catalyst fine particle as a nucleus, and the core is a relay point, and the fibers are connected by this relay point. A fine carbon fiber having a conductive path having a high yield can be obtained in a high yield.

以下、この発明の実施形態にかかる微細炭素繊維の製造装置1及びその製造方法について図面を参照しながら詳細に説明する。   Hereinafter, the manufacturing apparatus 1 and the manufacturing method of the fine carbon fiber concerning embodiment of this invention are demonstrated in detail, referring drawings.

図1は、本発明の一実施形態にかかる微細炭素繊維の製造装置1の概略を示している。   FIG. 1 shows an outline of a fine carbon fiber production apparatus 1 according to an embodiment of the present invention.

この製造装置1は、原料を蒸発せしめ、蒸発した原料をキャリアガスと混合し、この原料混合ガスを反応炉8の内部に導入し、反応炉8内で微細炭素繊維を製造するものである。製造装置1は、原料の充填された原料タンク2と、原料の搬送及び反応炉8への導入を行うキャリアガスの充填されたガスタンク4とを備え、これら原料タンク2及びガスタンク4は、原料導入管3及びガス導入管5を介して蒸発器6にそれぞれ接続されている。さらに、蒸発器6は、原料混合ガス導入管7を介して反応炉8に接続されている。   The production apparatus 1 evaporates a raw material, mixes the evaporated raw material with a carrier gas, introduces the raw material mixed gas into the reaction furnace 8, and produces fine carbon fibers in the reaction furnace 8. The manufacturing apparatus 1 includes a raw material tank 2 filled with raw materials, and a gas tank 4 filled with a carrier gas for carrying the raw materials and introducing them into the reaction furnace 8. The raw material tank 2 and the gas tank 4 are introduced with raw materials. Each is connected to an evaporator 6 via a pipe 3 and a gas introduction pipe 5. Further, the evaporator 6 is connected to a reaction furnace 8 through a raw material mixed gas introduction pipe 7.

そして、内部で微細炭素繊維を製造する反応炉8は、円筒状に形成されており、その軸心方向の一端をなす上端には、搬送されてきた原料混合ガスを反応炉8の内部に導入させる導入ノズル9を備えている。また、反応炉8の外周部には、加熱手段11としてヒーターが設けられ、反応炉8の外周部から反応炉8の内部を加熱している。そして、反応炉8の軸心方向の他端をなす下端側には、製造された微細炭素繊維を備蓄して回収する微細炭素繊維回収器12が接続されている。この微細炭素繊維回収器12には、ガスを排出するガス排出管13が接続されている。   The reaction furnace 8 for producing fine carbon fibers is formed in a cylindrical shape, and the conveyed raw material mixed gas is introduced into the reaction furnace 8 at the upper end forming one end in the axial direction. An introduction nozzle 9 is provided. Further, a heater is provided as a heating means 11 on the outer periphery of the reaction furnace 8, and the inside of the reaction furnace 8 is heated from the outer periphery of the reaction furnace 8. And the fine carbon fiber collection | recovery device 12 which stocks and collects the manufactured fine carbon fiber is connected to the lower end side which makes the other end of the axial center direction of the reaction furnace 8. FIG. A gas discharge pipe 13 for discharging gas is connected to the fine carbon fiber recovery unit 12.

この微細炭素繊維の製造装置1では、微細炭素繊維の原料として、炭化水素化合物や金属化合物等が用いられる。炭化水素化合物としては、芳香族炭化水素、鎖状飽和炭化水素、脂環式炭化水素、不飽和炭化水素等を使用することができる。これらの炭化水素化合物のうち、ベンゼンやトルエン等の芳香族炭化水素が望ましい。又、異なる種類の炭化水素化合物を複数同時に原料として用いることも可能である。金属化合物は特に限定されるものではなく、加熱により気化するものが好ましい。金属化合物に含まれる金属種としては、適宜選択して用いることができ、特に制限されない。例えば、Fe、Co、Ni、Cu、Mo等が挙げられる。又、必要に応じて助触媒として硫黄化合物も一緒に使用することができる。   In the fine carbon fiber manufacturing apparatus 1, a hydrocarbon compound, a metal compound, or the like is used as a raw material for the fine carbon fiber. As the hydrocarbon compound, aromatic hydrocarbons, chain saturated hydrocarbons, alicyclic hydrocarbons, unsaturated hydrocarbons and the like can be used. Of these hydrocarbon compounds, aromatic hydrocarbons such as benzene and toluene are desirable. It is also possible to use a plurality of different types of hydrocarbon compounds simultaneously as a raw material. The metal compound is not particularly limited, and those that are vaporized by heating are preferred. The metal species contained in the metal compound can be appropriately selected and used, and is not particularly limited. For example, Fe, Co, Ni, Cu, Mo etc. are mentioned. Moreover, a sulfur compound can also be used together as a promoter if necessary.

一方、微細炭素繊維の製造時に使用されるキャリアガスとしては、アルゴン、ヘリウム等の希ガス、水素、窒素等を用いることができる。これらのキャリアガスのうち、水素ガスが繊維の収量を増す上で好ましい。   On the other hand, as the carrier gas used in the production of the fine carbon fiber, a rare gas such as argon or helium, hydrogen, nitrogen or the like can be used. Of these carrier gases, hydrogen gas is preferred for increasing the fiber yield.

これらの原料及びキャリアガスが導入される蒸発器6は、原料を反応炉8に導入する前に原料を気化させ、原料のガス濃度比(炭化水素と金属化合物との比率)が一定の原料混合ガスとして調整している。このため、原料タンク2から連続的に送り出された原料と、ガスタンク4から連続的に送り出されたキャリアガスとが蒸発器6で混合され、ガス濃度比一定の原料混合ガスとして形成される。この原料混合ガスが、連続的に蒸発器6から反応炉8へと搬送され、反応炉8の内部へ導入される。この際、蒸発器6が、原料混合ガスの濃度比を常に一定とすることで、反応炉8内への導入時における原料等の不均一な濃度が要因となる微細炭素繊維の収率低下を防ぐことが可能となる。このように、原料混合ガス濃度は、常に適切な濃度比で反応炉内へ導入される。   The evaporator 6 into which the raw material and the carrier gas are introduced vaporizes the raw material before introducing the raw material into the reaction furnace 8 and mixes the raw material with a constant gas concentration ratio (ratio of hydrocarbon to metal compound). It is adjusted as gas. For this reason, the raw material continuously sent out from the raw material tank 2 and the carrier gas continuously sent out from the gas tank 4 are mixed by the evaporator 6 to form a raw material mixed gas having a constant gas concentration ratio. This raw material mixed gas is continuously conveyed from the evaporator 6 to the reaction furnace 8 and introduced into the reaction furnace 8. At this time, the evaporator 6 always keeps the concentration ratio of the raw material mixed gas constant, thereby reducing the yield of fine carbon fibers due to the non-uniform concentration of the raw material when introduced into the reaction furnace 8. It becomes possible to prevent. Thus, the raw material mixed gas concentration is always introduced into the reaction furnace at an appropriate concentration ratio.

この蒸発器6により混合された原料混合ガスは、この導入ノズル9から、1000〜2000NL/minの導入速度で、その圧力が1.0〜1.1atmで反応炉8の内部に導入される。   The raw material mixed gas mixed by the evaporator 6 is introduced into the reaction furnace 8 from the introduction nozzle 9 at an introduction speed of 1000 to 2000 NL / min and a pressure of 1.0 to 1.1 atm.

原料混合ガスの導入される反応炉8の内部は、その軸心方向が二つの帯域を構成している。軸心方向に関し、原料混合ガスが導入される原料混合ガス導入口14近傍の上端側の領域が金属触媒粒子生成帯域20であり、この金属触媒粒子生成帯域20より下端側の領域が微細炭素繊維の製造される微細炭素繊維製造帯域30である。   The inside of the reaction furnace 8 into which the raw material mixed gas is introduced has two axial zones. With respect to the axial direction, a region on the upper end side in the vicinity of the raw material mixed gas introduction port 14 into which the raw material mixed gas is introduced is a metal catalyst particle generation zone 20, and a lower end region from the metal catalyst particle generation zone 20 is a fine carbon fiber. This is a fine carbon fiber production zone 30 produced.

そして、原料混合ガスの導入される反応炉8の内部は、加熱手段11により加熱される。加熱温度は、微細炭素繊維製造用の金属触媒微粒子の好適な生成温度、又は、生成された金属触媒微粒子を用いた炭化水素ガスの熱分解による微細炭素繊維の好適な製造温度等に応じて適宜温度設定される。具体的には、約800℃〜1300℃に加熱される。なお、反応炉8内の温度は、約800℃〜1300℃の温度範囲内で一律に同じ温度に設定しても良いが、原料混合ガスが導入される導入ノズル9側から微細炭素繊維回収側の間で温度勾配をもたせてもよい。また、反応炉8内の温度領域を二つに分け、例えば、反応炉8内で上端側の温度と下端側の温度を二段階に分けて異なる温度設定をすることも可能である。   The inside of the reaction furnace 8 into which the raw material mixed gas is introduced is heated by the heating means 11. The heating temperature is appropriately determined according to a suitable production temperature of metal catalyst fine particles for producing fine carbon fibers or a suitable production temperature of fine carbon fibers by pyrolysis of hydrocarbon gas using the produced metal catalyst fine particles. The temperature is set. Specifically, it is heated to about 800 ° C to 1300 ° C. The temperature in the reaction furnace 8 may be uniformly set within the temperature range of about 800 ° C. to 1300 ° C., but from the introduction nozzle 9 side where the raw material mixed gas is introduced to the fine carbon fiber recovery side A temperature gradient may be provided between the two. Further, the temperature region in the reaction furnace 8 can be divided into two, for example, the upper end side temperature and the lower end side temperature can be divided into two stages in the reaction furnace 8 to set different temperatures.

反応炉8は、このように高温に加熱されるため、微細炭素繊維の製造温度に耐えうる金属やセラミックス等の耐熱性材料で構成されている。なかでも、気孔率の低い熱伝導率に優れた炭化珪素焼結体等のセラミックス材料がより好ましい。   Since the reaction furnace 8 is heated to such a high temperature, it is made of a heat-resistant material such as a metal or ceramic that can withstand the production temperature of the fine carbon fiber. Among these, a ceramic material such as a silicon carbide sintered body having a low porosity and excellent thermal conductivity is more preferable.

そして、この製造装置1では、反応炉8に設けられた導入ノズル9の原料混合ガス導入口14近傍に、衝突部を設ける。この衝突部は、導入ノズル9から反応炉8の内部に導入された層流状態の原料混合ガスを乱流状態に形成する手段である。ここでいう乱流とは、激しく乱れた流れであり、渦巻いて流れるような流れをいう。   In the manufacturing apparatus 1, a collision portion is provided in the vicinity of the raw material mixed gas inlet 14 of the introduction nozzle 9 provided in the reaction furnace 8. This collision part is a means for forming a raw material mixed gas in a laminar flow state introduced from the introduction nozzle 9 into the reaction furnace 8 into a turbulent state. The turbulent flow here is a flow that is turbulent and turbulent and flows in a spiral.

衝突部は、導入ノズル9近傍において配置された原料混合ガスの流通の妨げとなる衝突の起点として作用する障害物であり、この障害物と原料混合ガスが衝突することで渦流が発生し温度分布と濃度分布とを均一化することが可能となる。衝突部の形状は、何ら限定されることはなく、衝突部を起点として発生した渦流が消滅することなく反応炉8の下端側まで逐次形成される形状であれば良い。   The collision part is an obstacle that acts as a starting point of a collision that hinders the flow of the raw material mixed gas arranged in the vicinity of the introduction nozzle 9, and a vortex is generated by the collision of the obstacle and the raw material mixed gas, thereby generating a temperature distribution. And the concentration distribution can be made uniform. The shape of the collision part is not limited at all, and any shape may be used as long as the vortex generated from the collision part is sequentially formed up to the lower end side of the reaction furnace 8 without disappearing.

衝突部の形状としては、例えば衝突部10のような形状が挙げられる。衝突部10は、原料混合ガス導入口14の周方向において、導入ノズル9を囲繞するよう筒状に形成されている。ここでいう導入ノズル9の囲繞とは、導入ノズル9から衝突部10にかけて急激に拡径する形状で囲繞されていればよく、導入ノズル9の端部に衝突部10が連続もしくは一体的に形成されて急激に拡径する形状であっても良い。   Examples of the shape of the collision part include a shape like the collision part 10. The collision unit 10 is formed in a cylindrical shape so as to surround the introduction nozzle 9 in the circumferential direction of the raw material mixed gas introduction port 14. The surrounding of the introduction nozzle 9 here may be surrounded by a shape that rapidly increases in diameter from the introduction nozzle 9 to the collision portion 10, and the collision portion 10 is formed continuously or integrally at the end of the introduction nozzle 9. It may be a shape that is expanded rapidly.

衝突部10は、導入ノズル9よりもその内径は大きく、原料混合ガスの流路が急に拡がるように設計されており、径が急に拡がることによって大きな流速の変化や圧力差が生じ、又、衝突部10は、導入ノズル9から導入された半径方向外側に広がる原料混合ガスが衝突することで逐次渦流が形成される。   The impingement portion 10 has an inner diameter larger than that of the introduction nozzle 9 and is designed so that the flow path of the raw material mixed gas suddenly expands. As the diameter suddenly expands, a large flow rate change or pressure difference occurs. In the collision unit 10, a vortex is sequentially formed by the collision of the raw material mixed gas introduced from the introduction nozzle 9 and spreading outward in the radial direction.

さらに原料混合ガスの流路が衝突部10の内径から反応炉8の内径まで拡がり、ここでも流速変化や圧力差が生じ、又、反応炉の内壁は衝突壁として作用するため、渦流は消滅することなく反応炉8の下端側まで逐次形成されることとなる。   Furthermore, the flow path of the raw material mixed gas expands from the inner diameter of the collision part 10 to the inner diameter of the reaction furnace 8, and again, a flow rate change and a pressure difference occur, and the inner wall of the reaction furnace acts as a collision wall, so the vortex flow disappears. It forms sequentially to the lower end side of the reaction furnace 8 without.

このような衝突部10をもつ導入ノズル9として例えば、図2に示すノズルを使用することができる。この図2は、反応炉8、導入ノズル9、及び衝突部10の半径方向及び軸心方向に関する相互の位置関係を示している。   For example, the nozzle shown in FIG. 2 can be used as the introduction nozzle 9 having such a collision portion 10. FIG. 2 shows the positional relationship between the reaction furnace 8, the introduction nozzle 9, and the collision portion 10 in the radial direction and the axial direction.

図2に示すように、導入ノズル9の内径a、反応炉8の内径b、筒状の衝突部10の内径c、反応炉8の上端から原料混合ガス導入口14までの距離d、原料混合ガス導入口14から衝突部10の下端までの距離e、原料混合ガス導入口14から反応炉8の下端までの距離をfとする。   As shown in FIG. 2, the inner diameter a of the introduction nozzle 9, the inner diameter b of the reaction furnace 8, the inner diameter c of the cylindrical collision part 10, the distance d from the upper end of the reaction furnace 8 to the raw material mixture gas inlet 14, the raw material mixing The distance e from the gas inlet 14 to the lower end of the collision unit 10 and the distance from the raw material mixed gas inlet 14 to the lower end of the reactor 8 are assumed to be f.

内径aと内径bの寸法は、a:bが1:2〜1:5の寸法比となるように形成した場合、内径aと内径cの寸法比は、a:cが1:1.1〜1:3となるように形成すれば良い。   When the inner diameter a and the inner diameter b are formed such that a: b is a dimensional ratio of 1: 2 to 1: 5, the dimensional ratio of the inner diameter a and the inner diameter c is 1: 1.1 for a: c. What is necessary is just to form so that it may become -1: 3.

また、距離dと距離fとの関係は、1:4〜1:9の寸法比となるように形成した場合、距離eと距離dの寸法比は、1:1.1〜1:3となるように形成すれば良い。   Further, when the relationship between the distance d and the distance f is formed so as to have a dimensional ratio of 1: 4 to 1: 9, the dimensional ratio of the distance e and the distance d is 1: 1.1 to 1: 3. What is necessary is just to form so that it may become.

例えば、内径aを70mm、内径bを250mm、距離dを230mm及び距離fを1500mmに各々設計した場合、衝突部10の内径cは77mm〜210mm、又、原料混合ガス導入口14から衝突部10の下端までの距離eは、77mm〜210mとすれば良い。   For example, when the inner diameter a is set to 70 mm, the inner diameter b is set to 250 mm, the distance d is set to 230 mm, and the distance f is set to 1500 mm, the inner diameter c of the collision portion 10 is 77 mm to 210 mm. The distance e to the lower end of the plate may be 77 mm to 210 m.

原料混合ガスを1000〜2000NL/minの導入速度で、その圧力が1.0〜1.1atmでの範囲で反応炉8の内部に導入した場合、反応炉8、導入ノズル9及び衝突部10の寸法関係をこのように形成すれば、導入ノズル9から導入された原料混合ガスは、衝突部10によって、反応炉下端まで逐次渦流を形成した状態で微細炭素繊維の製造反応を伴いながら流動する。   When the raw material mixed gas is introduced into the reaction furnace 8 at an introduction speed of 1000 to 2000 NL / min and a pressure of 1.0 to 1.1 atm, the reaction furnace 8, the introduction nozzle 9 and the collision unit 10 If the dimensional relationship is formed in this way, the raw material mixed gas introduced from the introduction nozzle 9 flows with the production reaction of the fine carbon fiber in a state where a vortex is sequentially formed to the lower end of the reaction furnace by the collision unit 10.

図3は、反応炉8の内部における原料混合ガスの流体挙動をシミュレーションにより求めた結果から、流体の軌跡を模型的に図示したものである。反応炉8の上部に設けられた導入ノズル9より衝突部10の内径が大きくなるよう形成されている。   FIG. 3 schematically shows the trajectory of the fluid from the result of obtaining the fluid behavior of the raw material mixed gas in the reactor 8 by simulation. The inner diameter of the collision part 10 is formed to be larger than the introduction nozzle 9 provided in the upper part of the reaction furnace 8.

このため、導入ノズル9から反応炉8に導入された直後の原料混合ガスは、流速や圧力等の差が生じ半径方向外側に広がる。更に、原料混合ガスは衝突部10に衝突して、激しい渦流を形成し、微細炭素繊維回収側へと逐次渦流を形成しながら流通することとなる。この衝突部10の存在が原料混合ガス導入時における乱流形成の起点として働き、形成された渦流は、反応炉8内の伝熱や物質移動の促進に効果を発揮する。   For this reason, the raw material mixed gas immediately after being introduced into the reaction furnace 8 from the introduction nozzle 9 causes a difference in flow velocity, pressure, etc., and spreads outward in the radial direction. Furthermore, the raw material mixed gas collides with the collision part 10 to form a violent vortex, and then circulates while forming a vortex sequentially to the fine carbon fiber recovery side. The presence of the collision portion 10 serves as a starting point for turbulent flow formation when the raw material mixed gas is introduced, and the formed vortex flows effectively in the heat transfer and mass transfer in the reaction furnace 8.

即ち、この激しい渦流は、反応炉8の内壁まで流路が更に拡がることによって、流速や圧力等の差が生じ大きな渦流を形成し、流れが整うことなく渦流のまま流れていくことが可能になる。この流れにのって、反応炉8内では、渦流により旋回しながら原料混合ガスから微細炭素繊維が製造され反応炉8内を流通していく。   In other words, this intense vortex flow can be further expanded to the inner wall of the reactor 8 to create a large vortex flow with a difference in flow velocity, pressure, etc., and the vortex flow can be continued without any flow. Become. In accordance with this flow, in the reaction furnace 8, fine carbon fibers are produced from the raw material mixed gas while being swirled by a vortex, and are circulated in the reaction furnace 8.

この結果、金属触媒微粒子を生成する過程と微細炭素繊維の製造する過程で反応炉8内における製造条件を均一化することができる。具体的には、反応炉8内では、導入された原料混合ガスの濃度分布と温度分布とが軸直交方向に対して均一化される。このように、製造条件が均一化されることで、微細炭素繊維が均等に成長する。   As a result, the production conditions in the reaction furnace 8 can be made uniform in the process of producing metal catalyst fine particles and the process of producing fine carbon fibers. Specifically, in the reaction furnace 8, the concentration distribution and temperature distribution of the introduced raw material mixed gas are made uniform with respect to the direction perpendicular to the axis. Thus, the fine carbon fiber grows uniformly by making the manufacturing conditions uniform.

シミュレーションは、Computational Fluid Dynamics(CFD)モデルにより微細炭素繊維を生成する筒状反応炉を対象として、温度、原料混合ガスの導入速度、および原料混合ガスを衝突させる衝突部の条件を種々変化させた場合の反応炉内部の流れ、物質移動、伝熱および化学反応などの現象変化を計算した。計算モデルには、周囲にヒーターを設置した縦型の筒状反応炉の上端に設置した導入ノズルより原料のトルエンとキャリアガスの水素を導入させ、排ガスは反応炉の下端に設置したガス排出管から排出するモデルを使用した。化学反応モデルとして、トルエンと水素との反応によるベンゼンの生成、ベンゼンから微細炭素繊維への生成反応およびフェロセンの熱分解反応によるFe触媒の生成反応をも考慮して計算を行った。   In the simulation, the temperature, the introduction speed of the raw material mixed gas, and the condition of the collision part where the raw material mixed gas collide were variously changed for a cylindrical reactor that generates fine carbon fibers by the Computational Fluid Dynamics (CFD) model. The changes in phenomena such as flow inside the reactor, mass transfer, heat transfer and chemical reaction were calculated. In the calculation model, the raw material toluene and carrier gas hydrogen were introduced from the introduction nozzle installed at the top of a vertical cylindrical reactor with a heater installed around it, and the exhaust gas was a gas discharge pipe installed at the bottom of the reactor The model that discharges from was used. As a chemical reaction model, calculation was performed in consideration of the formation reaction of benzene by the reaction of toluene and hydrogen, the formation reaction of benzene to fine carbon fibers, and the formation reaction of Fe catalyst by the thermal decomposition reaction of ferrocene.

かかるシミュレーションによって、図2に示す微細炭素繊維の製造装置に設けられた衝突部をもつ導入ノズルは、筒状反応炉に導入された原料混合ガスの濃度分布と温度分布とを軸直交方向に対して均一化することが確認された。   By this simulation, the introduction nozzle having a collision portion provided in the fine carbon fiber production apparatus shown in FIG. 2 is able to change the concentration distribution and temperature distribution of the raw material mixed gas introduced into the cylindrical reactor with respect to the direction perpendicular to the axis. To be uniform.

以上の微細炭素繊維の製造装置1によれば、微細炭素繊維は次のようにして製造される。   According to the fine carbon fiber production apparatus 1 described above, the fine carbon fiber is produced as follows.

原料タンク2から一定量の原料が蒸発器6に送り込まれると共に、ガスタンク4からキャリアガスが一定の流量ずつ蒸発器6に送り込まれる。送り込まれた原料は、蒸発器6により気化され、キャリアガスと混合される。この際、原料のガス濃度比は一定に調整される。   A constant amount of raw material is sent from the raw material tank 2 to the evaporator 6 and a carrier gas is sent from the gas tank 4 to the evaporator 6 at a constant flow rate. The fed raw material is vaporized by the evaporator 6 and mixed with the carrier gas. At this time, the gas concentration ratio of the raw material is adjusted to be constant.

蒸発器6でキャリアガスと原料とが混合されると、この原料混合ガスは、原料混合ガス導入管7を通されて反応炉8の上端側に導かれる。そして、反応炉8の上端に設けられた導入ノズル9から反応炉8内部に導入される。   When the carrier gas and the raw material are mixed in the evaporator 6, the raw material mixed gas is guided to the upper end side of the reaction furnace 8 through the raw material mixed gas introduction pipe 7. And it introduce | transduces into the inside of the reaction furnace 8 from the introduction nozzle 9 provided in the upper end of the reaction furnace 8. FIG.

導入された原料混合ガスは、導入直後に径が変わることによって、流速変化や圧力変化が生じ原料混合ガスの流れは乱れて半径方向外側に向けて広がるようにして流通し、導入ノズル9の外側に設けられた衝突部10と衝突して原料混合ガスの渦流が形成され乱流状態となる。   The introduced raw material mixed gas changes its diameter immediately after the introduction, thereby causing a flow rate change and a pressure change, and the flow of the raw material mixed gas is disturbed and circulates so as to spread outward in the radial direction. The vortex flow of the raw material mixed gas is formed by colliding with the collision portion 10 provided in the turbulent flow state.

反応炉8内部に導入した直後に生じる原料混合ガス中の金属化合物の分解により金属触媒微粒子が形成される過程で、まず、遷移金属化合物が分解され金属原子となり、次いで約100原子程度の金属原子の衝突によりクラスター生成が起こる。この生成したクラスターの段階では、結晶性がなく微細炭素繊維の触媒として作用せず、生成したクラスター同士の衝突により更に集合した約5nm〜10nm程度の金属の結晶性粒子が微細炭素繊維の製造用の金属触媒微粒子として利用されることとなる。この触媒形成過程において、激しい乱流による渦流が存在することにより、ブラウン運動のみの金属原子又はクラスター同士の衝突と比してより激しい衝突が可能となり、単位時間あたりの衝突回数の増加によって金属触媒微粒子が短時間に高収率で得られ、又、渦流によって濃度、温度等が均一化されることにより粒子のサイズの揃った金属触媒微粒子を得ることができる。   In the process of forming metal catalyst fine particles by decomposition of the metal compound in the raw material mixed gas generated immediately after introduction into the reaction furnace 8, the transition metal compound is first decomposed into metal atoms, and then about 100 atom metal atoms Cluster generation occurs due to collisions. At the stage of this generated cluster, there is no crystallinity and it does not act as a catalyst for fine carbon fibers, and about 5 nm to 10 nm of metal crystalline particles further aggregated by collision of the generated clusters are used for producing fine carbon fibers. It will be used as metal catalyst fine particles. In this catalyst formation process, the presence of vortex due to intense turbulence enables more intense collisions than the collision of metal atoms or clusters with only Brownian motion, and the number of collisions per unit time increases the metal catalyst. Fine particles can be obtained in a high yield in a short time, and metal catalyst fine particles having a uniform particle size can be obtained by equalizing the concentration, temperature, etc. by the vortex.

そして、金属触媒微粒子が高収率で得られることで、金属触媒微粒子を核として製造される微細炭素繊維も高収率で得られ、微細炭素繊維の製造反応に関与しなかった未反応の原料混合ガスの回収量は減少する。この他、金属触媒微粒子が速やかに生成されるため、微細炭素繊維自体の長さ方向及び太さ方向の成長に要する時間不足は解消し、炭化水素ガスの分解も促進され十分な炭素源が供給されることになり、微細炭素繊維の成長不足は解消され所望の繊維径と繊維長を有する微細炭素繊維がバラツキなく得られることとなる。   And since the metal catalyst fine particles are obtained in a high yield, the fine carbon fibers produced using the metal catalyst fine particles as a core are also obtained in a high yield, and the unreacted raw material that was not involved in the production reaction of the fine carbon fibers The amount of mixed gas recovered decreases. In addition, since the metal catalyst fine particles are generated quickly, the shortage of time required for the growth of the fine carbon fiber itself in the length direction and thickness direction is eliminated, and the decomposition of the hydrocarbon gas is promoted to supply a sufficient carbon source. As a result, the shortage of growth of the fine carbon fibers is resolved, and fine carbon fibers having a desired fiber diameter and fiber length can be obtained without variation.

さらに、この実施形態にかかる微細炭素繊維の製造装置1及びその製造方法を用いると、金属触媒微粒子が形成される過程で、渦流による激しい衝突により金属の結晶性粒子が多数集合した金属触媒微粒子の集合体を形成する。そこから各々の金属触媒微粒子を核として放射状に微細炭素繊維が成長することにより、核を中継点としこの中継点によって繊維同士が結ばれた構造を有することとなり、導電パスが形成された微細炭素繊維が高収率で得られることが判明した。   Further, when the fine carbon fiber production apparatus 1 and the production method thereof according to this embodiment are used, the metal catalyst fine particles in which a large number of metal crystalline particles are gathered by vigorous collision due to vortex in the process of forming the metal catalyst fine particles. Form an aggregate. From there, the fine carbon fiber grows radially with each metal catalyst fine particle as a nucleus, so that it has a structure in which the nucleus is a relay point and the fibers are connected by this relay point, and the fine carbon in which the conductive path is formed It was found that the fiber was obtained in high yield.

このことについて、以下の実施例に基づいて具体的に説明する。   This will be specifically described based on the following examples.

図1に示す装置を用いて微細炭素繊維を製造した。反応炉8は、炭化珪素焼結体で形成されたものを用いた。そして、図2に示す、外側方に衝突部10を備えた導入ノズル9を用いて原料混合ガスを導入した。なお、この実施例では、導入ノズル9の内径a、反応炉8の内径b、筒状の衝突部10の内径c、反応炉8の上端から原料混合ガス導入口14までの距離d、原料混合ガス導入口14から衝突部10の下端までの距離e、原料混合ガス導入口14から反応炉8の下端までの距離をfとすると、各々の寸法比は、おおよそa:b:c:d:e:f=1.0:3.6:1.8:3.2:2.0:21.0に形成されたものを採用した。かかる製造装置1を使用し、水素ガス雰囲気の下、反応炉8内部を加熱手段11により反応炉8温度を1200℃に加温し、触媒としてフェロセン及びチオフェンを使用し、トルエン、水素ガスとともに蒸発器6により375℃に加熱気化させて反応炉8の内部へ導入して微細炭素繊維を製造した。この時の原料混合ガス導入速度は、1050〜1850NL/min、圧力は1.03atmであった。そして、得られた微細炭素繊維の走査型電子顕微鏡で観察した結果、繊維同士が中継点によって結ばれた構造を有する微細炭素繊維が多数存在することが確認出来た。このときの微細炭素繊維の収率は、60%であった。   Fine carbon fibers were produced using the apparatus shown in FIG. The reaction furnace 8 used was a silicon carbide sintered body. And raw material mixed gas was introduce | transduced using the introduction nozzle 9 provided with the collision part 10 in the outer side shown in FIG. In this embodiment, the inner diameter a of the introduction nozzle 9, the inner diameter b of the reaction furnace 8, the inner diameter c of the cylindrical collision portion 10, the distance d from the upper end of the reaction furnace 8 to the raw material mixed gas inlet 14, the raw material mixing When the distance e from the gas inlet 14 to the lower end of the collision part 10 and the distance from the raw material mixed gas inlet 14 to the lower end of the reaction furnace 8 are f, the respective dimensional ratios are approximately a: b: c: d: e: f = 1.0: 3.6: 1.8: 3.2: 2.0: 21.0 was used. Using this production apparatus 1, the inside of the reaction furnace 8 is heated to 1200 ° C. by the heating means 11 in a hydrogen gas atmosphere, and ferrocene and thiophene are used as catalysts and evaporated together with toluene and hydrogen gas. A fine carbon fiber was produced by heating and evaporating to 375 ° C. with the vessel 6 and introducing it into the reactor 8. At this time, the raw material mixed gas introduction speed was 1050 to 1850 NL / min, and the pressure was 1.03 atm. And as a result of observing the obtained fine carbon fiber with the scanning electron microscope, it has confirmed that many fine carbon fibers which have the structure where fibers were connected by the relay point existed. The yield of fine carbon fiber at this time was 60%.

(比較例1)
この実施例1と同条件で、原料導入ノズルのみ図4に示す衝突部10を有しない構造の単管ノズル(ノズルの径a:反応炉8の径b:ノズルの長さd=1:4:3)を用いて微細炭素繊維を製造した。得られた微細炭素繊維を走査型電子顕微鏡で観察した結果、径にバラツキがあることが確認できた。繊維同士が中継点によって結ばれた構造を有する微細炭素繊維は、僅かにしか得られていないことも確認できた。このときの微細炭素繊維の収率は、40%であった。
(Comparative Example 1)
A single tube nozzle having a structure in which only the raw material introduction nozzle does not have the collision portion 10 shown in FIG. 4 under the same conditions as in Example 1 (nozzle diameter a: reaction furnace diameter b: nozzle length d = 1: 4). : 3) was used to produce fine carbon fibers. As a result of observing the obtained fine carbon fiber with a scanning electron microscope, it was confirmed that there was variation in diameter. It was also confirmed that only a small amount of fine carbon fibers having a structure in which the fibers were connected by a relay point was obtained. The yield of fine carbon fiber at this time was 40%.

本実施形態における微細炭素繊維製造装置の構造を模式的に示した構造図である。It is the structure figure which showed typically the structure of the fine carbon fiber manufacturing apparatus in this embodiment. 図1に示す微細炭素繊維の製造装置に設けられた、衝突部をもつ導入ノズルの模式的な図面である。2 is a schematic drawing of an introduction nozzle having a collision portion provided in the fine carbon fiber manufacturing apparatus shown in FIG. 1. 反応炉の内部で発生している原料混合ガスの乱流状態を模式的に示した図面である。It is drawing which showed typically the turbulent state of the raw material mixed gas generated inside the reaction furnace. 単管ノズルの模式的な図面である。It is a schematic drawing of a single tube nozzle.

符号の説明Explanation of symbols

1・・・・・微細炭素繊維の製造装置
2・・・・・原料タンク
3・・・・・原料導入管
4・・・・・ガスタンク
5・・・・・ガス導入管
6・・・・・蒸発器
7・・・・・原料混合ガス導入管
8・・・・・反応炉
9・・・・・導入ノズル
10・・・・衝突部(均一化手段)
11・・・・加熱手段
12・・・・微細炭素繊維回収器
13・・・・ガス排出管
14・・・・原料混合ガス導入口
20・・・・金属触媒粒子生成帯域
30・・・・微細炭素繊維製造帯域
DESCRIPTION OF SYMBOLS 1 ... Fine carbon fiber manufacturing apparatus 2 ... Raw material tank 3 ... Raw material introduction pipe 4 ... Gas tank 5 ... Gas introduction pipe 6 ...・ Evaporator 7 ... Raw material mixed gas introduction pipe 8 ... Reactor 9 ... Introduction nozzle 10 ... Collision (homogenization means)
DESCRIPTION OF SYMBOLS 11 ... Heating means 12 ... Fine carbon fiber recovery device 13 ... Gas exhaust pipe 14 ... Raw material mixed gas inlet 20 ... Metal catalyst particle generation zone 30 ... Fine carbon fiber production zone

Claims (2)

炭化水素ガス、金属化合物ガス及びキャリアガスを含む原料混合ガスを導入させて、前記炭化水素ガスを加熱分解反応させ微細炭素繊維を製造する筒状反応炉と、前記筒状反応炉内を加熱する加熱手段と、前記筒状反応炉の軸心方向の一端側から筒状反応炉内に前記原料混合ガスを導入させる導入ノズルとを具備し、
前記筒状反応炉は、該筒状反応炉内における濃度分布と温度分布とを軸直交方向に対して均一化させる均一化手段を備えてなり、
前記均一化手段は、前記導入ノズルの原料混合ガス導入口近傍に配設され、前記導入口の周方向において前記導入ノズルを囲繞する衝突部を備え、
前記導入ノズルから当該衝突部にかけて拡径する形状を有することにより、当該前記導入ノズルから導入され炉半径方向外側に広がる原料混合ガスを当該衝突部に衝突させ、前記導入ノズルから導入される原料混合ガス流に乱流を生ぜしめることを特徴とする
微細炭素繊維の製造装置。
A raw material mixed gas containing a hydrocarbon gas, a metal compound gas and a carrier gas is introduced, and a cylindrical reaction furnace for producing a fine carbon fiber by thermally decomposing the hydrocarbon gas and heating the inside of the cylindrical reaction furnace A heating means, and an introduction nozzle for introducing the raw material mixed gas into the cylindrical reaction furnace from one end side in the axial direction of the cylindrical reaction furnace,
The cylindrical reactor comprises a uniformizing means for homogenizing the concentration distribution and temperature distribution in the cylindrical reactor with respect to the direction perpendicular to the axis ,
The homogenizing means is provided in the vicinity of the raw material mixed gas introduction port of the introduction nozzle, and includes a collision portion surrounding the introduction nozzle in the circumferential direction of the introduction port,
By having a shape that expands from the introduction nozzle to the collision portion, the raw material mixed gas introduced from the introduction nozzle is caused to collide with the collision portion with the raw material mixed gas introduced from the introduction nozzle and spreading outward in the furnace radial direction. An apparatus for producing fine carbon fiber, characterized by causing turbulent flow in a gas flow .
炭化水素ガス、金属化合物ガス及びキャリアガスを含む原料混合ガスを筒状反応炉内に導入ノズルで導入せしめ、前記筒状反応炉内で前記炭化水素ガスを加熱分解反応させて微細炭素繊維を製造する微細炭素繊維の製造方法であって、
前記筒状反応炉内における濃度分布と温度分布とを軸直交方向に対して均一化させた状態にて微細炭素繊維を製造させることを特徴とし、
前記均一化は、前記導入ノズルの原料混合ガス導入口近傍に配設され、前記導入口の周方向において前記導入ノズルを囲繞する衝突部を備え、
前記導入ノズルから当該衝突部にかけて拡径する形状を有することにより、当該前記導入ノズルから導入され炉半径方向外側に広がる原料混合ガスを当該衝突部に衝突させ、前記導入ノズルから導入される原料混合ガス流に乱流を生ぜしめることによりなされることを特徴とする微細炭素繊維の製造方法。
A raw material mixed gas containing hydrocarbon gas, metal compound gas and carrier gas is introduced into a cylindrical reaction furnace with an introduction nozzle, and the hydrocarbon gas is thermally decomposed in the cylindrical reaction furnace to produce fine carbon fibers. A method for producing fine carbon fiber,
Characterized in that fine carbon fibers are produced in a state in which the concentration distribution and temperature distribution in the cylindrical reactor are made uniform with respect to the direction perpendicular to the axis ,
The homogenization is provided in the vicinity of the raw material mixed gas introduction port of the introduction nozzle, and includes a collision portion that surrounds the introduction nozzle in the circumferential direction of the introduction port,
By having a shape that expands from the introduction nozzle to the collision portion, the raw material mixed gas introduced from the introduction nozzle is caused to collide with the collision portion with the raw material mixed gas introduced from the introduction nozzle and spreading outward in the furnace radial direction. A method for producing fine carbon fibers, characterized in that the method is performed by generating turbulent flow in a gas flow .
JP2005225764A 2005-08-03 2005-08-03 Fine carbon fiber production apparatus and production method thereof Expired - Fee Related JP4782504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225764A JP4782504B2 (en) 2005-08-03 2005-08-03 Fine carbon fiber production apparatus and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225764A JP4782504B2 (en) 2005-08-03 2005-08-03 Fine carbon fiber production apparatus and production method thereof

Publications (2)

Publication Number Publication Date
JP2007039838A JP2007039838A (en) 2007-02-15
JP4782504B2 true JP4782504B2 (en) 2011-09-28

Family

ID=37798090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225764A Expired - Fee Related JP4782504B2 (en) 2005-08-03 2005-08-03 Fine carbon fiber production apparatus and production method thereof

Country Status (1)

Country Link
JP (1) JP4782504B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603620B2 (en) * 2008-07-04 2013-12-10 Hodogaya Chemical Co., Ltd. Carbon fiber and composite material
KR101252182B1 (en) * 2008-07-16 2013-04-05 호도가야 케미칼 컴파니 리미티드 Mass of carbon fibers, process for producing same, and composite material containing these
EA029229B1 (en) * 2013-07-23 2018-02-28 Эксет Лабс Б.В. Carbon nanomaterials producing plant

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024818A (en) * 1990-10-09 1991-06-18 General Motors Corporation Apparatus for forming carbon fibers
JP3751906B2 (en) * 2001-06-28 2006-03-08 昭和電工株式会社 Method and apparatus for producing vapor grown carbon fiber
JP3927455B2 (en) * 2002-06-28 2007-06-06 昭和電工株式会社 Method and apparatus for producing vapor grown carbon fiber
US20040253374A1 (en) * 2003-04-23 2004-12-16 Kyeong Taek Jung Treatment of carbon nano-structure using fluidization

Also Published As

Publication number Publication date
JP2007039838A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
KR101257279B1 (en) Method and reactor for producing carbon nanotubes
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
US20210257189A1 (en) Apparatus and method for plasma synthesis of carbon nanotubes
US20050118090A1 (en) Plasma synthesis of hollow nanostructures
CN104995134B (en) Produce carbon nano-structured method and device
US20110217230A1 (en) Method for producing nanoparticulate solid materials
JP4782504B2 (en) Fine carbon fiber production apparatus and production method thereof
JP2010126405A (en) Device for synthesizing carbon nanotube
US20230150821A1 (en) CNT Filament Formation By Buoyancy Induced Extensional Flow
CN111094178B (en) Method for producing carbon nanotubes attached to substrate
JP2006290698A (en) Method of manufacturing carbon nanofiber
WO2013132871A1 (en) Method for manufacturing carbon fiber, and carbon fiber
JP3927455B2 (en) Method and apparatus for producing vapor grown carbon fiber
Ibrahim et al. Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone
JPH0978360A (en) Production of gas phase-grown carbon fiber
JP2007126318A (en) Method for producing carbon nanotube
KR20090011785A (en) Method and apparatus of collecting carbon nano tube
KR20030052941A (en) Method for Manufacturing Carbon Nanotube
Ibrahim et al. The Control on Morphology and Crystallinity of CNT in Flame Synthesis with One-Dimensional Reaction Zone
JP2023514739A (en) Removal of iron from carbon nanotubes and recycling of metal catalysts
JP2003160317A (en) Method and apparatus for producing fullerenes
JP2003232505A (en) Burner and production equipment of fullerene with usage of it
JP2011162421A (en) Method for producing carbon nanostructure and carbon nanostructure production apparatus
JP2004051441A (en) Burner for manufacture of fullerenes and method for manufacturing fullerenes by using the same
JP2004018355A (en) Burner for preparing fullerenes and process for preparing fullerenes using this

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees