WO2012081600A1 - Device and process for production of carbon nanotubes - Google Patents

Device and process for production of carbon nanotubes Download PDF

Info

Publication number
WO2012081600A1
WO2012081600A1 PCT/JP2011/078868 JP2011078868W WO2012081600A1 WO 2012081600 A1 WO2012081600 A1 WO 2012081600A1 JP 2011078868 W JP2011078868 W JP 2011078868W WO 2012081600 A1 WO2012081600 A1 WO 2012081600A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
catalyst
gas flow
flow path
catalyst layer
Prior art date
Application number
PCT/JP2011/078868
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 畠
ドン エヌ. フタバ
湯村 守雄
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2012548801A priority Critical patent/JP5791157B2/en
Publication of WO2012081600A1 publication Critical patent/WO2012081600A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation

Definitions

  • the present invention relates to an apparatus and a method for producing a carbon nanotube aggregate having a high purity and a high specific surface area with high efficiency in an environment containing a catalyst activator.
  • CNT carbon nanotubes
  • a chemical vapor deposition method (hereinafter also referred to as a synthesis method) is known as one of CNT production methods (see Non-Patent Document 1, Patent Documents 1 and 2).
  • This method is characterized in that a raw material gas such as a carbon compound is brought into contact with catalyst fine particles in a high temperature atmosphere of about 500 ° C. to 1000 ° C., and the type and arrangement of the catalyst, the type of the raw material gas, and the reducing gas It is possible to produce CNTs in various modes such as carrier gas, synthesis furnace, and reaction conditions, and it is attracting attention as being suitable for mass production of CNTs.
  • this synthesis method can produce both single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT), and also uses a substrate carrying a catalyst, so that many CNTs can be produced.
  • SWCNT single-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • single-walled CNTs have electrical properties (very high current density), thermal properties (thermal conductivity comparable to diamond), optical properties (light emission in the optical communication band wavelength region), hydrogen storage capacity, and In addition to being excellent in various properties such as the ability to support metal catalysts, and having both semiconductor and metal properties, it is attracting attention as a material such as electrodes for electronic devices and power storage devices, MEMS members, and functional material fillers. ing.
  • the catalyst activator added in the synthesis atmosphere of CNT removes the carbon-based impurities covering the catalyst fine particles and cleans the background of the catalyst layer.
  • the activity of the catalyst is remarkably improved and the life is extended.
  • the catalytic activity is remarkably improved, so that CNT can be grown for a long time and the growth rate is remarkably improved.
  • Patent Document 4 a raw material gas is sprayed from a plurality of raw material gas outlets onto the surface of a catalyst layer on a substrate from the horizontal direction, the raw material gas is brought into contact with the surface of the catalyst layer, and carbon nanotubes are produced in a large area.
  • a CNT manufacturing apparatus and a manufacturing method that can be used are disclosed. As shown in FIG. 8, the CNT manufacturing apparatus 500 described in Patent Document 4 surrounds the catalyst layer 3, which is an area where catalyst particles are arranged on the surface of a substrate, so as to surround a U-shaped source gas supply pipe.
  • Patent Document 4 further discloses a manufacturing apparatus in which a portion of the source gas supply pipe disposed in the reaction furnace has a length sufficient to heat the source gas discharged from the source gas discharge port close to a predetermined temperature. Is disclosed.
  • Patent Document 5 a plurality of hollow members are provided in the first portion in the heating region to which the source gas is supplied, thereby increasing the contact area between the source gas and the heating body, thereby promoting the decomposition of the source gas.
  • a manufacturing apparatus for manufacturing CNTs at a low temperature is disclosed.
  • a CNT when a CNT is synthesized by supplying a catalyst activation material and a raw material gas to a synthesis furnace from a single gas supply pipe as in the prior art, the mixed catalyst activation material and the raw material gas reach the vicinity of the catalyst. It has previously reacted in the synthesis furnace, making it difficult to stably supply a predetermined amount of the catalyst activator to the catalyst.
  • ethylene which is a typical raw material gas
  • water which is a typical catalyst activator
  • the catalyst activation rate is high because the growth rate and the growth efficiency such as the yield are important factors for producing a large amount of inexpensive CNT. It is important to develop a synthesis method that improves the growth efficiency in a substance-containing environment.
  • the main object of the present invention is to suppress the reaction of the catalyst activator with the raw material gas before reaching the vicinity of the catalyst in the synthesis of CNT
  • An object of the present invention is to provide a method and apparatus for stably supplying a catalyst activator and producing a highly efficient, high purity, high specific surface area CNT aggregate.
  • an object of the present invention is to provide an optimum production method for synthesizing CNT having a significantly improved growth rate and an extended catalyst life in a CNT growth process containing a catalyst activator, and an apparatus for carrying out the same.
  • CNT aggregate refers to an aggregate of a plurality of CNTs grown in a certain direction from a growth substrate, and is obtained by peeling the CNT aggregates together from the substrate. It may be an object. In that case, the CNT aggregate may be in a powder form.
  • the growth rate is defined as the height ( ⁇ m / min) of CNT grown in one minute from the CNT growth start time.
  • the growth rate may be obtained from the height at a growth time of 1 minute using the telecentric measurement system described in Patent Document 3.
  • a CNT aggregate may be manufactured more simply by setting the growth time of the growth process to 1 minute, and the height may be measured after manufacturing.
  • An apparatus for producing carbon nanotubes includes a synthesis furnace, heating means for heating the interior of the synthesis furnace to a predetermined temperature, a first gas supply pipe for supplying a first gas, A second gas supply pipe for supplying a second gas; and a gas exhaust pipe.
  • a carbon nanotube is produced from a catalyst layer provided on a substrate, and the first gas and the gas are produced from the gas exhaust pipe.
  • the first gas flow path for flowing the first gas and the second gas flow path for flowing the second gas disposed in the heating region heated by the heating means are provided.
  • a first gas channel and a second gas channel are provided independently in at least a part of the first gas channel and the second gas channel, and the first gas and the second gas are mixed.
  • a gas mixing region is provided.
  • At least one of the first gas flow path and the second gas flow path distributes the first gas and / or the second gas in a plurality of directions. Is provided.
  • the carbon nanotube manufacturing apparatus includes a first carbon weight flux adjusting unit that adjusts the carbon weight flux of the first gas and a second carbon weight flux adjustment that adjusts the carbon weight flux of the second gas individually and independently of each other. Means.
  • the gas flow forming means forms a raw material gas flow in a direction substantially parallel to the surface of the catalyst layer of the substrate.
  • the first gas flow path and the second gas flow path are formed by piping connected to the gas flow forming means, and the piping forms a material gas flow in a direction substantially perpendicular to the surface of the catalyst layer of the substrate. To do.
  • the piping includes turbulent flow suppression means.
  • the first gas includes a raw material gas
  • the second gas includes a catalyst activation material
  • a method for producing carbon nanotubes includes a formation step in which a reducing gas is supplied and brought into contact with a catalyst layer on a substrate disposed in a synthesis furnace, and a raw material gas and a catalyst activation material. Each is supplied to a gas mixing region in the vicinity of the catalyst layer from different pipes arranged in the synthesis furnace, and the raw material gas and the catalyst activator are mixed and reacted in the gas mixing region. And a carbon nanotube growth step for growing the carbon nanotubes.
  • the method of the present invention in the synthesis of CNT, by suppressing the reaction between the catalyst activator and the raw material gas before reaching the vicinity of the catalyst layer, a predetermined amount of the catalyst activator can be stably stabilized in the catalyst layer.
  • An apparatus and a method for manufacturing carbon nanotubes to be supplied are provided. According to the method of the present invention, it is possible to produce a CNT aggregate having a high specific surface area and a high purity with a high yield and a high-speed growth as compared with the conventional method. Therefore, it is easy to stably produce a large amount of CNT aggregates with high purity and high surface area continuously. For this reason, it can be fully expected to be used in industry.
  • FIG. 1 is the figure which showed conceptually the CNT manufacturing apparatus 100 which concerns on one Embodiment of this invention
  • (b) is sectional drawing of the piping 55 and the piping 57 in the AA 'cross section shown to (a). It is.
  • (A) is the figure which showed notionally the manufacturing apparatus 200 of CNT which concerns on one Example of this invention
  • (b) is the cross section of the piping 55 and the piping 57 in the AA 'cross section shown to (a).
  • FIG. 5B is a cross-sectional view of the pipe 55 and the pipe 57 in the AA ′ cross section shown in FIG.
  • FIG. 5B is a cross-sectional view of the pipe 55 and the pipe 57 in the AA ′ cross section shown in FIG. It is the figure which showed notionally the CNT manufacturing apparatus which concerns on one Example of this invention. It is the figure which showed notionally the CNT manufacturing apparatus which concerns on one Example of this invention. It is the figure which showed the conventional CNT manufacturing apparatus 500 notionally.
  • FIG. 1B is a cross-sectional view of the pipe 55 and the pipe 57 in the A-A ′ cross section shown in FIG.
  • a carbon nanotube (CNT) manufacturing apparatus 100 includes a synthesis furnace 10 made of, for example, quartz glass or a heat-resistant alloy that receives a base material 1 provided with a catalyst layer 3, and an upper wall of the synthesis furnace 10 and / or A first gas supply pipe 41 for supplying a first gas that communicates with the synthesis furnace 10 and a second gas supply pipe 43 for supplying a second gas, and a lower wall or a side wall on the downstream side.
  • a synthesis furnace 10 made of, for example, quartz glass or a heat-resistant alloy that receives a base material 1 provided with a catalyst layer 3, and an upper wall of the synthesis furnace 10 and / or
  • a first gas supply pipe 41 for supplying a first gas that communicates with the synthesis furnace 10 and a second gas supply pipe 43 for supplying a second gas, and a lower wall or a side wall on
  • a gas exhaust pipe 50 that communicates with the synthesis furnace 10 and exhausts the first gas and the second gas, and surrounds the synthesis furnace 10 to heat the synthesis furnace 10 to a predetermined temperature.
  • the heating means 30 composed of a resistance heating coil
  • the heating temperature adjusting means for adjusting the furnace temperature to a predetermined temperature
  • the heating means 30 and the heating temperature adjusting means Heating area Includes 1 (the case of FIG. 1, the entire synthesis furnace is heated, the space of the composite furnace is heated region), the.
  • a base material holder 5 for holding the base material 1 including the catalyst layer 3 is provided in the heating region 31 in the synthesis furnace 10.
  • the heating region 31 above the substrate holder 5 and the catalyst layer 3 is preferably connected to the first gas supply pipe 41 via the gas flow forming means 21 and arranged in the heating region heated by the heating means 30.
  • the first gas flow path 45 is configured by the provided pipe 55.
  • the first gas containing the source gas supplied from the first gas supply pipe 41 is preferably distributed and dispersed by the gas flow forming means 21 to form a source gas flow that flows in a plurality of directions.
  • the gas flow forming means 21 forms a flow of source gas in a plurality of directions substantially parallel to the surface of the catalyst layer of the substrate 1.
  • the distributed and dispersed first gas is supplied as a gas flow in a substantially vertical direction with respect to the surface of the catalyst layer of the substrate 1 through the pipe 55.
  • the second gas flow path 47 supplies the second gas containing the catalyst activation material supplied from the second gas supply pipe 43 as a gas flow substantially perpendicular to the surface of the catalyst layer of the substrate 1.
  • the first gas channel and the second gas channel are independently provided in at least a part of the first gas channel and the second gas channel, and the first gas channel and the second gas channel in the heating region before reaching the catalyst layer are provided. Mixing of 1 gas and 2nd gas is suppressed.
  • the first gas and the second gas are respectively supplied through a first gas passage 45 constituted by different pipes 55 and a second gas passage 47 constituted by pipes 57, each of which is at least partially independent. Therefore, since the first gas and the second gas are not mixed in at least a part of the first gas flow path 45 and the second gas flow path 47, the amount of reaction in the flow path is small.
  • the catalyst activation material contained in the second gas can be reduced in amount within the flow path.
  • the first gas and the second gas are mixed in the vicinity of the catalyst layer after passing through the first gas flow path 45 and the pipe 57 constituted by different pipes 55, each of which is at least partly independent. And a predetermined supply amount per unit area is brought into contact with the catalyst in a region where the catalyst layer is disposed on the substrate 1.
  • the outlet of the pipe 55 constituting the first gas flow path 45 facing the substrate holder 5 and the catalyst layer 3 is larger than the diameter of the first gas supply pipe 41, and the second gas flow path 47 is formed.
  • the CNT manufacturing apparatus 100 according to the present embodiment is not limited to this, and a sufficient amount of the first gas and the second gas supply pipe 43 have the same diameter. It is sufficient if the second gas can be supplied.
  • the outlet of the pipe 57 may be made larger than the diameter of the second gas supply pipe 43.
  • the first gas containing the source gas and the second gas containing the catalyst activator are supplied from separate gas supply pipes, at least partially, and heated.
  • the raw material gas and the catalyst activator are prevented from mixing and reacting before reaching the vicinity of the catalyst layer, and the catalyst Since the first gas and the second gas are mixed in the vicinity of the layer to form a gas mixing region, the catalyst layer can be brought into contact with, so that a CNT aggregate having a high purity and a high specific surface area can be formed in a large area. And it can manufacture efficiently.
  • the synthesis furnace refers to a furnace that receives the substrate 1 carrying a catalyst and synthesizes CNTs.
  • the material of the synthesis furnace 10 may be such that it does not inhibit the growth of CNTs, can receive the base material 1 carrying the catalyst at the growth temperature, and can maintain the heat uniformity in the furnace.
  • the synthesis furnace 10 may be equipped with a system that supplies or removes a plurality of base materials 1 or continuously.
  • the synthesis furnace 10 is preferably a vertical type rather than a horizontal type.
  • the vertical synthesis furnace refers to a synthesis furnace in which source gas is supplied from the vertical (vertical) direction. It is preferable to supply the raw material gas and the catalyst activation material from the vertical (vertical) direction because the base material 1 is disposed in the horizontal direction and the raw material gas is easily brought into contact with the catalyst from the vertical direction.
  • the first gas flow path 45 and the second gas flow path 47 disposed in the heating area heated by the heating means 30 respectively contact the first gas and the second gas with each other at least in a partial area. It is a flow path that is independently supplied as a gas flow in a substantially vertical direction with respect to the surface of the catalyst layer of the substrate 1.
  • the gas flow path according to the present invention is constituted by a gas flow forming means 21 and a pipe connected to a gas supply pipe and disposed in the heating region 31.
  • the gas flow path may comprise a honeycomb structure (FIG. 2b).
  • the source gas contained in the first gas supplied from the first gas supply pipe 41 is accelerated in decomposition while passing through the first gas flow path 45 disposed in the heating region, and is optimized for CNT growth.
  • the raw material gas can be supplied to the gas mixing region in the vicinity of the catalyst layer on the substrate 1.
  • the catalyst activation material contained in the second gas supplied from the second gas supply pipe 43 reacts with the raw material gas while passing through the second gas passage 47 disposed in the heating region. Since the amount is small, a predetermined supply amount per unit area can be brought into contact with the catalyst in the gas mixing region in the vicinity of the catalyst layer on the substrate 1.
  • the source gas and the catalyst activator are supplied into the heating zone using the same flow path, and a considerable amount of the catalyst activator reacts with the source gas to reach the vicinity of the catalyst layer. Was. For this reason, it has been difficult to control an appropriate amount of the catalyst activator to be brought into contact with the catalyst layer.
  • the first gas flow path 45 and the second gas flow path 47 are configured by pipes 55 and 57 that are at least partially disposed in the synthesis furnace 10 and are different from each other, Contact in the heating region 31 is suppressed, and the supplied first gas and second gas are discharged from the flow path and then mixed in the gas mixing region 80 near the catalyst layer.
  • the raw material gas promoted to be decomposed contained in the first gas and the catalyst activation material that is supplied in a predetermined amount without being reduced are mixed in the gas mixing region 80, whereby mixing in a state optimal for CNT growth is achieved. It becomes possible to supply as gas.
  • the gas mixing region includes the first gas and / or the second gas until the first gas and the second gas arrive at the catalyst layer of the substrate in the synthesis furnace from the outlets of the first flow path and the second gas flow path, which are independent from each other. Or it is preferable that it is the space which 2nd gas mixes and flows.
  • the gas mixing region in which the first gas and the second gas are mixed only needs to have a space volume in which CNTs can be preferably grown.
  • the distance from the outlet of the first channel and / or the outlet of the second channel to the catalyst layer is preferably 0.3 cm or more, more preferably 0.5 cm or more. In order to mix well. Further, the distance from the outlet of the first flow path and / or the outlet of the second flow path to the catalyst layer is 10 cm or less, more preferably 5 cm or less. It is preferable for suppressing the reaction.
  • the distance from the outlet of the first flow path (and / or the second flow path) to the catalyst layer is the first flow path (and / or the second flow path) with respect to all points constituting the catalyst layer. It is defined by the distance between the point existing near the outlet of the first flow path and the outlet of the first flow path (and / or the second flow path).
  • the first gas supply pipe 41 connects the first gas containing the source gas, the atmospheric gas, the reducing gas, etc. supplied from the carbon weight flux adjusting means 70 to the pipe 55 constituting the first gas flow path 45 in the synthesis furnace 10.
  • the second gas supply pipe 43 is connected to the pipe 57 constituting the second gas flow path 47 in the synthesis furnace 10 for supplying the second gas containing the catalyst activation material and the like.
  • the first gas supply pipe 41 and the second gas supply pipe 43 may supply not only gas but also liquid.
  • the first gas supply pipe 41 and the second gas supply pipe 43 can be provided in the synthesis furnace 10 from the opening provided on the upper wall and / or the side wall of the synthesis furnace 10. Is preferably supplied from the vertical (vertical) direction.
  • a part of the piping may be inserted into the synthesis furnace 10, or its end may be provided in the heating region 31.
  • the piping inserted in the synthesis furnace 10 may be any pipe that does not react with various gases and can maintain its quality and shape even under high heat, such as quartz and various metal materials.
  • the gas flow forming means 21 is preferably disposed in the plurality of first gas flow paths 45 and / or second gas flow paths 47 and supplied from the first gas supply pipe 41 and / or the second gas supply pipe 43. It is means for distributing the raw material gas and / or the catalyst activator in a plurality of directions. As long as the gas flow forming means 21 can distribute and disperse the source gas and / or the catalyst activator in a plurality of directions, the material, the shape and the like are not particularly limited, and known materials can be appropriately used.
  • a conical first gas flow path that is disposed around the second gas flow path 47 and has a cross section that extends toward the downstream side. 45 arrangements can be illustrated.
  • the gas flow forming means 21 is used in the first gas flow path 45 and / or the second gas flow path 47, the raw material gas supplied in the form of dots from the first gas supply pipe 41 and / or the second gas supply pipe 43 and
  • the catalyst activator can be distributed and dispersed in a planar shape and brought into contact with the gas mixing region in the vicinity of the catalyst layer on the substrate 1 with a predetermined supply amount per unit area. There is an excellent effect of preventing the source gas and the catalyst activation material from reacting before reaching the catalyst layer.
  • the raw material gas and / or the catalyst activation material distributed in a plurality of directions forms a raw material gas flow and / or a gas flow of the catalyst activation material flowing in a plurality of different directions.
  • the first gas supply pipe 41 and / or the maximum angle between the axes in a plurality of directions in which the raw material gas flow and / or the gas flow of the catalyst activator flows is 90 degrees or more (more preferably 180 degrees or more).
  • the gas flow forming means 21 has a symmetry axis or a symmetry point, and the first gas supply pipe 41 and / or the second gas supply pipe 43 communicate with each other on the symmetry axis or the symmetry point.
  • the raw material gas and / or the catalyst activation material supplied in a dot shape from the gas supply pipe 41 and / or the second gas supply pipe 43 is planar with respect to the first gas flow path 45 and / or the second gas flow path 47. It is preferable to distribute and disperse.
  • the gas flow forming means 21 that forms the raw material gas flow and / or the gas flow of the catalyst activation material in a plurality of directions substantially parallel to the plane of the substrate 1 is preferable in order to obtain the above effect.
  • the substantially parallel direction means that the angle formed by the axis of the flow direction of the raw material gas and / or the catalyst activation material distributed and dispersed in a plurality of directions by the gas flow forming means 21 with the normal of the substrate 1 is 45 ° or more and 135. The direction is less than °. Since the gas flow forming means 21 has an axis of symmetry or a point of symmetry, the gas can be uniformly distributed and distributed in a plurality of directions.
  • any known means may be used as long as the first gas passage 45 and / or the second gas passage 47 can be defined. If the first gas flow path 45 and the second gas flow path 47 are defined using piping, the source gas supplied into the synthesis furnace 10 from the first gas supply pipe 41 and / or the second gas supply pipe 43, It is possible to prevent atmospheric gas, reducing gas, and the like and the catalyst activation material from contacting and reacting in the synthesis furnace 10, and the effects of the present invention can be obtained.
  • the raw material supplied in the synthesis furnace 10 from the 1st gas supply pipe 41 and / or the 2nd gas supply pipe 43 Gas, atmospheric gas, reducing gas, and the like, and the heating volume of the catalyst activation material can be increased / adjusted and supplied to the vicinity of the catalyst layer surface.
  • each of the first gas and the second gas can be independently supplied as a gas flow in a direction substantially perpendicular to the surface of the catalyst layer of the substrate 1 without contacting each other. .
  • the piping may be a honeycomb structure opened in a direction substantially perpendicular to the surface of the catalyst layer downstream of the gas flow forming means 21 in the heating region 31.
  • the piping forms a raw material gas flow and / or a gas flow of the catalyst activator in a direction substantially perpendicular to the surface of the catalyst layer of the substrate 1, and the first gas flow path 45 and / or the second gas flow path 47 is formed.
  • the substantially vertical direction indicates a direction in which the angle formed by the injection axis of the pipe and the normal of the substrate 1 is 0 ° or more and less than 45 °. That is, it means that the direction of the gas flow ejected from the pipe is in contact with the catalyst layer 3 of the substrate 1 from the vertical direction.
  • the gas exhaust pipe 50 refers to means such as a pipe or a duct for exhausting the first gas containing the raw material gas, the atmospheric gas, the reducing gas, and the second gas containing the catalyst activation material from the synthesis furnace 10.
  • the gas exhaust pipe 50 may exhaust not only gas but also liquid.
  • the material of the gas exhaust pipe 50 may be any material that does not react with various gases and can maintain its quality and shape, and examples thereof include quartz and various metal materials.
  • the gas exhaust pipe 50 is inserted into the synthesis furnace 10 through an opening provided on the lower wall of the synthesis furnace 10 and / or on the side wall below the first gas supply pipe 41 and the second gas supply pipe 43. Is preferred. If the first gas supplier 41, the second gas supply pipe 43, and the gas exhaust pipe 50 are provided in this way, the raw material gas is preferably supplied to the catalyst from the vertical (vertical) direction in the synthesis furnace 10.
  • the heating means 30 refers to an apparatus for heating the synthesis furnace 10 provided so as to surround the synthesis furnace 10.
  • the existing heating means 30 such as one using a heating wire or one using infrared rays can be used.
  • region 31 said by this specification means the space inside the synthesis furnace 10 heated by the heating means 30.
  • the material of a part of the manufacturing apparatus in particular, the pipe 55 constituting the first gas flow path 45 and the pipe 57 constituting the second gas flow path 47 may be any material as long as it can exhibit its function. Can be used. Such a material is preferably a heat resistant alloy. A heat resistant alloy is preferable because it is excellent in workability and mechanical strength.
  • Mechanism of the present invention The mechanism by which the carbon nanotube production apparatus and production method of the present invention can produce high-purity, high-specific surface area CNTs at high speed, high yield and efficiency efficiently in an environment containing a catalyst activator is as follows. Is inferred.
  • the first gas supplied from the first gas supply pipe 41 passes through the first gas flow path 45 and is supplied from the outlet of the pipe 55 to the gas mixing region 80 near the catalyst layer.
  • the source gas contained in the first gas is exposed to a high temperature while passing through the first gas flow path 45. As a result, the decomposition reaction of the source gas proceeds, and when the source gas comes into contact with the catalyst, it is easy. The production of CNT is promoted.
  • the second gas supplied from the second gas supply pipe 43 passes through the second gas flow path 47 and is supplied from the outlet of the pipe 57 to the gas mixing region 80 near the catalyst. Since the amount of the catalyst activation material contained in the second gas reacts with the raw material gas while passing through the second gas flow path 47, a predetermined amount of the catalyst activation material is supplied to the gas mixing region 80.
  • the decomposition reaction of the raw material gas proceeds, and the raw material gas in a state suitable for the production of CNT and a predetermined amount of the catalyst activation material are in the gas mixing region 80. Supplied and mixed.
  • the raw material gas and a predetermined amount of catalyst activation material per unit area can be supplied to the gas mixing region in the vicinity of the catalyst layer of the substrate 1 to cause a reaction.
  • the synthesis efficiency is optimized as compared with the prior art by paying attention to the fact that the life of the catalyst is improved and the synthesis efficiency of CNT is remarkably improved.
  • a known synthesis method can be applied to the production of the CNT according to the present invention by using the above-described CNT production apparatus.
  • a catalyst layer is produced on the substrate 1, and a plurality of CNTs are chemically vapor-grown (synthesized) from the catalyst.
  • the catalyst layer 3 For example, a base material 1 (for example, a silicon wafer) on which an alumina-iron thin film is formed in a separate process is carried in and placed on the base material holder 5.
  • the atmospheric gas for example, helium
  • the base material 1 is disposed so that the surface of the catalyst layer 3 and the first gas flow path 45 and the second gas flow path 47 intersect substantially vertically so that the source gas is efficiently supplied to the catalyst. .
  • a reducing gas for example, hydrogen
  • the interior of the synthesis furnace 10 is heated to a predetermined temperature (for example, 750 ° C.)
  • a predetermined temperature for example, 750 ° C.
  • the catalyst layer 3 is finely divided and adjusted to a state suitable as a catalyst for CNTs.
  • a second gas containing a catalyst activation material may be added from the second gas supply pipe 43 through the second gas flow path 47 as necessary.
  • each of the raw material gas and the catalyst activation material is disposed in the synthesis furnace 10. It supplies to the gas mixing area
  • a raw material gas for example, ethylene
  • gases supplied from the first gas flow path 45 and / or the second gas flow path 47 are distributed and dispersed by the gas flow forming means, and after forming a raw material gas flow flowing in a plurality of directions, It mixes in the gas mixing area
  • the raw material gas contained in the first gas undergoes a decomposition reaction while passing through the first gas flow path 45, and is in a state suitable for the production of CNTs. Further, by supplying from the second gas flow path 47, a sufficient amount of the catalyst activation material is supplied to the gas mixing region 80 without reacting with the source gas.
  • the first gas and the second gas optimized in this way are mixed in the gas mixing region 80 and brought into contact with the catalyst layer 3, and the CNTs are efficiently produced at high speed and high yield from the catalyst layer deposited on the substrate 1. Grows (growth process). Further, after coming into contact with the catalyst layer 3, these gases are quickly exhausted from the gas exhaust pipe 50, and the generation of carbon impurities is minimized.
  • the raw material gas contained in the first gas, the catalyst activator contained in the second gas, the decomposition products thereof, or the carbon impurities existing in the synthesis furnace 10 remain in the synthesis furnace 10.
  • the atmospheric gas is allowed to flow from the first gas flow path 45 to suppress the contact of impurities to the CNT aggregate (carbon impurity adhesion suppression step).
  • the plurality of CNTs grown simultaneously from the catalyst layer 3 on the base material 1 grow in a direction orthogonal to the catalyst layer 3 and are oriented, and have a high specific surface area and high purity with almost the same height.
  • a CNT aggregate is formed.
  • the formation process is a process in which a reducing gas is supplied and brought into contact with the catalyst layer 3 on the substrate 1 disposed in the synthesis furnace 10, and the environment surrounding the catalyst layer supported on the substrate 1 is changed.
  • This is a step of heating at least one of the reducing gas supplied from the catalyst layer or the first gas flow path 45 while setting the reducing gas environment.
  • at least one of the effects of reducing the catalyst, promoting atomization in a state suitable for the growth of the catalyst CNT, and improving the activity of the catalyst appears.
  • the catalyst is an alumina-iron thin film
  • the iron catalyst layer is reduced to form fine particles, and a large number of nanometer-sized catalyst fine particles are formed on the alumina layer.
  • the growth process means that the surrounding environment of the catalyst suitable for the production of CNTs is a source gas environment, and at least one of the source gases supplied from the catalyst layer or the second gas supply pipe 43 is heated, so that the CNT aggregate is It means the process of growing. Performing the growth step after the formation step is suitable for the production of CNT aggregates.
  • the cooling step is a step of cooling the CNT aggregate, the catalyst, and the substrate 1 after the growth step. Since the CNT aggregate, the catalyst, and the base material 1 after the growth process are in a high temperature state, there is a possibility that they will be oxidized when placed in an oxygen-existing environment. In order to prevent this, the CNT aggregate, the catalyst, and the substrate 1 are preferably cooled to 400 ° C. or lower, more preferably 200 ° C. or lower in a cooling gas environment. As the cooling gas, an inert gas supplied from the second gas supply pipe 43 is preferable, and nitrogen is particularly preferable from the viewpoints of safety, economy, purgeability, and the like.
  • the base material 1 (substrate) is a member capable of supporting a catalyst for growing CNTs on the surface thereof, and an appropriate material can be used as long as the shape can be maintained even at a high temperature of 400 ° C. or higher. it can.
  • a flat form such as a flat plate is preferable for producing a large amount of CNTs using the effects of the present invention, and any material having a proven record in producing CNTs so far may be used.
  • it may be a base material 1 that is a powder or an aggregate of linear bodies and has a planar shape.
  • the metal is preferably cheaper than silicon or ceramic, and in particular, iron-chromium (Fe-Cr) alloy, iron-nickel (Fe-Ni) alloy, and iron-chromium-nickel (Fe-Cr-). Ni) alloys and the like are suitable for the practice of the present invention.
  • the powder or linear body include plate-like alumina, quartz flakes, quartz fibers, ceramic fibers, and fibrous titanium oxide.
  • any catalyst that is supported on the substrate 1 and forms the catalyst layer 3 can be used as long as it has a proven record in the production of CNTs so far.
  • the reducing gas used in the formation step is a gas that has at least one of the effects of reducing the catalyst, promoting the atomization suitable for the growth of the CNT of the catalyst, and improving the activity of the catalyst.
  • any suitable gas can be used as long as it has a proven reductivity in the production of conventional CNTs.
  • hydrogen, ammonia, water, and mixtures thereof Gas can be applied.
  • the atmospheric gas (carrier gas) for chemical vapor deposition may be any gas that is inert at the growth temperature of CNT and does not react with the growing CNT.
  • an inert gas is preferable, and examples thereof include helium, argon, hydrogen, nitrogen, neon, krypton, carbon dioxide, chlorine, and a mixed gas thereof. Particularly, nitrogen, helium, argon, hydrogen, and these A mixed gas is preferred.
  • the gas containing source gas is prescribed
  • the first gas preferably does not contain a catalyst activator.
  • Examples of the source gas according to the embodiment of the present invention include aromatic compounds, saturated hydrocarbons, unsaturated hydrocarbons, unsaturated chain hydrocarbons, saturated chain hydrocarbons, cyclic unsaturated hydrocarbons, and cyclic saturated hydrocarbons.
  • a gaseous carbon compound can be illustrated.
  • hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, heptane, propylene, ethylene, butadiene, polyacetylene, and acetylene are preferable.
  • the second gas preferably does not contain a raw material gas, but preferably contains a catalyst activator.
  • the catalyst activator used here may be a substance having an oxidizing power such as oxygen or sulfur, and any substance that does not cause much damage to the CNT at the growth temperature, such as water, oxygen, ozone, acid gas, And low carbon number oxygen-containing compounds such as nitrogen oxide, carbon monoxide and carbon dioxide, or alcohols such as ethanol, methanol and isopropanol, ethers such as tetrahydrofuran, ketones such as acetone, aldehydes, acids and salts -Amides, esters, and mixtures thereof are effective.
  • water, oxygen, carbon dioxide, carbon monoxide, ethers, and alcohols are preferable, but water that can be easily obtained is particularly preferable.
  • carbon in the catalyst activation material can be a raw material for CNT.
  • the raw materials contain carbon and no oxygen
  • the catalyst activators contain oxygen, which makes the CNT highly efficient. It is preferable to manufacture by.
  • the first gas containing the source gas is supplied into the synthesis furnace 10 via the first gas flow path 45
  • the second gas containing the catalyst activation material for example, water
  • the gas is supplied into the synthesis furnace 10 through the gas flow path 47.
  • the raw material gas undergoes a decomposition reaction while passing through the first gas flow path 45, and is in a state suitable for the production of CNTs.
  • the reaction with the source gas is suppressed, and a sufficient amount of the catalyst activation material is supplied to the gas mixing region 80.
  • the first gas and the second gas optimized in this way are mixed in the gas mixing region 80 and brought into contact with the catalyst layer 3, whereby CNTs can be produced with high efficiency.
  • reaction temperature The reaction temperature for growing CNTs is appropriately determined in consideration of the metal catalyst, raw material carbon source, reaction pressure, etc., but a catalyst activator is added to eliminate by-products that cause catalyst deactivation. Therefore, it is desirable to set the temperature range in which the effect is sufficiently exhibited.
  • the most desirable temperature range is the lower limit value at which the catalyst activator can remove by-products such as amorphous carbon and graphite, and the upper limit temperature at which the main product CNT is not oxidized by the catalyst activator. It is to do.
  • the catalyst activator when water is used as the catalyst activator, it is preferably 400 ° C. or higher and 1000 ° C. or lower. If it is less than 400 ° C., the effect of the catalyst activator does not appear, and if it exceeds 1000 ° C., the catalyst activator reacts with CNT.
  • a carbon dioxide as a catalyst activation material, it is more preferable to set it as 400 degreeC or more and 1100 degrees C or less. If the temperature is lower than 400 ° C., the effect of the catalyst activating material does not appear, and if it exceeds 1100 ° C., the catalyst activating material reacts with CNT.
  • CNT aggregate With the production apparatus and the manufacturing method described above, it is possible to grow CNTs with high efficiency using a raw material gas from a catalyst on a substrate in a catalyst-activating substance-containing atmosphere. Oriented in the direction to form a CNT aggregate.
  • the aligned CNT aggregate may be an object obtained by peeling from the substrate 1. In that case, the CNT aggregate may be in a powder form.
  • the single-walled CNT aggregate according to the present invention has a very large specific surface area of 800 m 2 / g or more and 2600 m 2 / g or less because generation of carbon impurities is suppressed.
  • the specific surface area of the CNT aggregate can be determined by measuring the adsorption and desorption isotherm of liquid nitrogen at 77K. Such a large specific surface area is effective as a catalyst carrier and energy / material storage material, and is suitable for applications such as supercapacitors and actuators.
  • the purity here is carbon purity.
  • the carbon purity indicates what percentage of the weight of the CNT aggregate is composed of carbon, and may be obtained from elemental analysis using fluorescent X-rays. Although there is no upper limit to the carbon purity for obtaining a large specific surface area, it is difficult to obtain a CNT aggregate having a carbon purity of 99.9999% or more for convenience of production. If the carbon purity is less than 95%, it is difficult to obtain a specific surface area exceeding 800 m 2 / g in the case of unopened CNTs.
  • Example 1 In the present embodiment, at least one of the first gas flow path 45 and the second gas flow path 47 includes the gas flow forming means 21 that distributes the first gas and / or the second gas in a plurality of directions. Will be described.
  • a CNT manufacturing apparatus 200 in which the first gas flow path 45 includes the gas flow forming means 21 will be described.
  • FIG. 2 is a schematic diagram of a CNT manufacturing apparatus 200 according to the present embodiment.
  • FIG. 2 (a) is a diagram conceptually showing a CNT manufacturing apparatus 200 according to an embodiment of the present invention
  • FIG. 2 (b) is a pipe in the section AA ′ shown in FIG. 2 (a).
  • 55 is a cross-sectional view of a pipe 55 and a pipe 57.
  • the first gas flow path 45 and the second gas flow path 47 of the CNT manufacturing apparatus 100 described above are constituted by the gas flow forming means 21, the pipe 55, and the pipe 57, respectively.
  • the first gas flow path 45 disposed in the heating region 31 distributes and disperses the first gas including the source gas supplied from the first gas supply pipe 41, and the source gas flow flowing in a plurality of directions is supplied.
  • a gas flow forming means 21 to be formed is disposed.
  • the gas flow forming means 21 forms a flow of source gas in a plurality of directions substantially parallel to the surface of the catalyst layer of the substrate 1.
  • the first gas flow path 45 is connected to the gas flow forming means 21 and is provided with a plurality of pipes 55 that form a raw material gas flow in a direction substantially perpendicular to the surface of the catalyst layer of the substrate 1.
  • the piping 55 is disposed in the same plane that is substantially parallel to the catalyst layer of the substrate 1.
  • the second gas flow path 47 distributes and disperses the second gas containing the catalyst activation material supplied from the second gas supply pipe 43 to form a raw material gas flow that flows in a plurality of directions. Means can also be arranged.
  • the first gas flow path 45 is provided with such a gas flow forming means 21 so that the first gas containing the source gas supplied from the first gas supply pipe 41 is substantially the same as the surface of the catalyst layer of the substrate 1. After spreading and dispersing in parallel planes, the catalyst can be brought into contact with the catalyst layer of the substrate 1 from a substantially vertical direction. Further, by using a gas flow forming means in the second gas flow path 47, the second gas containing the catalyst activation material supplied from the second gas supply pipe 43 is substantially parallel to the surface of the catalyst layer of the substrate 1. You may make it contact with a catalyst from the catalyst layer of the base material 1 from a substantially perpendicular direction, after expand
  • the first gas flow path 45 distributes and disperses the first gas containing the raw material gas by the gas flow forming means 21 to form a raw material gas flow that flows in a plurality of directions. .
  • the first gas flow path 45 forms a raw material gas flow in a direction substantially perpendicular to the surface of the catalyst layer of the substrate 1 by the pipe 55.
  • the flow path 43 of the first gas having the plurality of pipes 55 has a large cross-sectional area and increases / adjusts the heating volume, so that the decomposition reaction of the source gas proceeds and the source gas comes into contact with the catalyst. In this case, it easily reacts to promote the production of CNTs.
  • the second gas containing the catalyst activation material is supplied from the second gas flow path 47 to the gas mixing region 80, the source gas and the catalyst activation material are mixed and reacted before reaching the vicinity of the catalyst layer. Since the first gas and the second gas can be mixed and brought into contact with the catalyst layer before reaching the catalyst surface, a high purity, high specific surface area CNT aggregate can be formed in a large area It can be manufactured efficiently.
  • the CNT manufacturing apparatus 200 includes a source gas cylinder 61 that stores a carbon compound that is a source of CNT, an atmosphere gas cylinder 63 that stores a source gas or a carrier gas of a catalyst activation material, a reducing gas cylinder 65 for reducing the catalyst, and A catalyst activation material cylinder 67 that contains the catalyst activation material is provided.
  • the first carbon weight flux adjusting means 71 for adjusting the carbon weight flux of the first gas and the second carbon weight flux adjusting means 73 for adjusting the carbon weight flux of the second gas are provided individually and independently of each other. .
  • the first carbon weight flux adjusting means 71 adjusts the carbon weight flux of the first gas by controlling the amount of gas supplied from the source gas cylinder 61, the atmospheric gas cylinder 63, and the reducing gas cylinder 65, and the second carbon
  • the weight flux adjusting means 73 adjusts the carbon weight flux of the second gas by controlling the amount of gas supplied from the catalyst activator cylinder 67.
  • Such a configuration is suitable for bringing an optimized amount of gas into contact with the catalyst.
  • a check valve, a flow rate control valve, and a flow rate sensor are provided at appropriate positions of the first gas supply pipe 41, the second gas supply pipe 43, the gas discharge pipe 50, and each supply unit, and a control not shown in the figure.
  • the raw material gas, the atmospheric gas, the reducing gas at a predetermined flow rate, the catalyst activation material, the first gas supply pipe 41 and the second gas supply pipe 43 are provided. Are supplied into the synthesis furnace 10 continuously or intermittently depending on the reaction process.
  • FIG. 3A shows a modification of the flow channel according to the present embodiment.
  • FIG. 3B is a schematic diagram showing the first gas flow path 45 and the second gas flow path 47 formed from the gas flow forming means 21, the pipe 55, and the pipe 57
  • FIG. 3B is an AA view shown in FIG. 'It is sectional drawing of the piping 55 and the piping 57 in a cross section.
  • FIG. 3 although illustrated as the 2nd gas flow path 47 comprised by one piping 57 connected with the 2nd gas supply pipe
  • a plurality of pipes 57 may be provided to constitute a plurality of second gas flow paths 47.
  • FIG. 4A shows the first gas flow path 45 and the second gas flow formed by the gas flow forming means 21, the gas flow forming means 221, the pipe 55, and the pipe 57 according to the modification of the flow path of the present invention.
  • FIG. 4B is a schematic view showing the path 47
  • FIG. 4B is a cross-sectional view of the pipe 55 and the pipe 57 in the AA ′ section shown in FIG.
  • the diameter of the pipe 55 forming the first gas flow path 45 is reduced to increase the number of pipes to be arranged, and the second gas flow path 47.
  • An example in which a plurality of pipes 57 for forming a pipe is provided is shown.
  • a gas flow formation means 221 connected to a plurality of pipes 57 is further arranged inside the gas flow formation means 21. .
  • the first gas and the second gas are supplied to the gas mixing region 80 in the vicinity of the catalyst layer using the plurality of pipes 57 and the first gas channel 45 and the second gas channel 47 as a plurality of channels.
  • the discharge range of the first gas and the second gas supplied from the pipe 55 and the pipe 57 is finely controlled, and the first gas and the second gas mixed in the gas mixing region 80 in the vicinity of the catalyst layer. It is possible to control the gas concentration to an optimum state for CNT growth.
  • FIG. 5A shows a first gas flow path 45 formed of a gas flow forming means 21, a gas flow forming means 221, a pipe 55 and a pipe 57 according to another flow path modification of the present invention.
  • FIG. 5B is a schematic view showing the second gas flow path 47
  • FIG. 5B is a cross-sectional view of the pipe 55 and the pipe 57 in the AA ′ cross section shown in FIG. 5A.
  • a pipe 57 is provided so as to branch the second gas supply pipe 43 connected to the gas flow forming means 221 into a plurality of second gas flow paths 47.
  • a gas flow forming means 221 connected to a plurality of pipes 57 is disposed inside the gas flow forming means 21.
  • a plurality of pipes 55 are used to supply the first gas flow path 45 as a plurality of flow paths to the gas mixing region 80 near the catalyst layer, and a plurality of pipes 57 are used to supply the second gas flow path.
  • 47 is supplied to the gas mixing region 80 in the vicinity of the catalyst layer as a plurality of flow paths.
  • the supply amounts of the first gas and the second gas in the gas mixing region 80 can be individually adjusted by adjusting the cross-sectional areas and arrangements of the first gas passage 45 and the second gas passage 47 of the pipe 55 and the pipe 57. Can be controlled. Therefore, the supply amount of the first gas and the second gas can be spatially controlled to form a distribution of the concentration of the mixed gas optimal for the growth of CNTs.
  • the distance between the surface of the catalyst layer 3 provided on the substrate 1, the first flow path, and the outlet of the second flow path was set to 1 cm.
  • the space from the outlet to the surface of the catalyst layer 3 was defined as the gas mixing region.
  • the carbon weight flux adjusting means adjusts the supply amount of the source gas that becomes the carbon compound that is the raw material of CNT and the supply amount of the atmospheric gas that is the carrier gas of the raw material gas and the catalyst activator by means of a gas flow device, etc. It is means for supplying the carbon weight flux of the inside of the furnace.
  • the first carbon weight flux adjusting means 71 adjusts the supply amount of the source gas, the atmospheric gas and the reducing gas
  • the second carbon weight flux adjusting means 73 is shown as adjusting the supply amount of the catalyst activator.
  • the second gas obtained by mixing the catalyst activation material and the atmospheric gas may be supplied by connecting the atmospheric gas cylinder 63 also to the second carbon weight flux adjusting means 73.
  • a CNT aggregate and an aligned CNT aggregate were manufactured using the CNT manufacturing apparatus 200 shown in FIG. 2 by employing the method described in the embodiment of the present invention. This will be described with reference to FIGS.
  • a quartz tube (inner diameter: 80 mm) such as a cylinder was used as the vertical synthesis furnace 10.
  • region 31 was 260 mm.
  • a base material holder 5 made of quartz was provided 20 mm downstream from the horizontal position of the center. The base material holder 5 is installed in the horizontal direction, and the flat base material 1 can be placed thereon.
  • the upper wall of the synthesis furnace 10 is provided with a first gas supply pipe 41 made of a heat-resistant alloy having a diameter of 22 mm (inner diameter ( ⁇ ) 20 mm) inserted vertically in an opening provided in the center of the upper wall of the synthesis furnace 10,
  • the first gas supply pipe 41 is provided with a second gas supply pipe 43 made of a heat-resistant alloy having a diameter of 6 mm (inner diameter of 4 mm).
  • the lower wall was provided with a gas exhaust pipe 50 inserted in the vertical direction into an opening provided in the center of the lower wall of the synthesis furnace 10.
  • a heating means 30 and a heating temperature adjusting means comprising a resistance heating coil provided surrounding the synthesis furnace 10 were provided, and a heating region 31 in the synthesis furnace 10 heated to a predetermined temperature was defined.
  • a gas flow forming means 21 made of a heat-resistant alloy Inconel 600 having a cylindrical and flat hollow structure with a diameter of 78 mm was provided so as to communicate with the end of the first gas supply pipe 41 in the synthesis furnace 10.
  • the first gas supply pipe 41 communicated with and connected to the center of the gas flow forming means 21.
  • the gas flow forming means 21 is arranged in the same plane substantially parallel to the surface of the catalyst layer of the base material 1, and is arranged so that the center of the base material 1 coincides with the center of the gas flow forming means 21. It was done.
  • the gas flow forming means 21 has a cylindrical shape having a hollow structure, and the dimensions are, for example, a cylindrical shape having an upper end diameter of 22 mm and a lower end diameter of 78 mm. : Four pipes 57 of 32 mm were connected.
  • the second gas supply pipe 43 arranged so as to coincide with the center of the first gas supply pipe 41 extends so as to coincide with the center of the gas flow forming means 21 and coincides with the center thereof, Diameter: 13 mm outlet was disposed.
  • the supply holes of the pipe 55 and the pipe 57 were provided at positions facing the catalyst layer 3 of the substrate 1, and the source gas was supplied to the catalyst from a direction substantially perpendicular to the plane of the substrate 1.
  • the facing position indicates an arrangement in which the angle of the supply hole formed between the injection axis and the normal of the substrate is 0 ° or more and less than 90 °.
  • the distance between the connecting portion of the piping 55 and the piping 57 of the gas flow forming means 21 and the surface of the catalyst layer facing the connecting portion was 150 mm.
  • the source gas supplied to the synthesis furnace 10 in the form of dots from the first gas supply pipe 41 is all diffused and distributed over 360 degrees that is substantially parallel to the surface of the catalyst layer of the substrate 1. Then, the raw material gas contacts the catalyst layer 3 on the substrate 1 from a direction substantially perpendicular to the surface of the catalyst layer of the substrate 1.
  • the first gas flow path 45 is connected to the gas flow forming means 21 and includes a turbulent flow prevention means 23.
  • the first gas flow path 45 has a diameter of 32 mm arranged like a honeycomb structure made of the heat-resistant alloy Inconel 600.
  • the four gas pipes 55 are provided, and the second gas flow path 47 includes a ⁇ 57 mm pipe 57 arranged so as to coincide with the center of the four pipes 55.
  • the first carbon weight flux adjusting means 71 gasses a raw material gas cylinder 61 that is a carbon compound that is a raw material of CNT, an atmospheric gas cylinder 63 that is a carrier gas of a raw material gas or a catalyst activation material, and a reducing gas cylinder 65 for reducing the catalyst.
  • the supply amount of the raw material gas was controlled by connecting to the flow device and supplying the first gas supply pipe 41 while independently controlling the supply amount.
  • the second carbon weight flux adjusting means 73 is configured by connecting the catalyst activation material cylinder 67 to the gas flow device and supplying it to the second gas supply pipe 43 to control the supply amount of the catalyst activation material.
  • a Si base material (40 mm long ⁇ 40 mm wide) with a thermal oxide film having a thickness of 500 nm obtained by sputtering 30 nm of Al 2 O 3 as a catalyst and 1.8 nm of Fe was used.
  • the base material 1 was carried in on the substrate holder 8 installed 20 mm downstream from the horizontal position of the center of the heating region 31 of the synthesis furnace 2 (carrying-in process).
  • the substrate was placed in a horizontal direction.
  • the synthesis furnace 10 in which the internal pressure of the furnace is 1.02 ⁇ 10 5 Pa while supplying a mixed gas (total flow rate: 2000 sccm) of He: 200 sccm and H 2 : 1800 sccm as the reducing gas from the first gas flow path 45.
  • the temperature in the synthesis furnace 10 was increased from room temperature to 830 ° C. over 15 minutes using the heating means 30.
  • the substrate with catalyst was heated for 3 minutes while maintaining at 830 ° C. (formation step).
  • the iron catalyst layer was reduced to promote the formation of fine particles in a state suitable for the growth of single-walled CNTs, and a large number of nanometer-sized catalyst fine particles were formed on the alumina layer.
  • the temperature of the synthesis furnace 10 at an internal pressure of 1.02 ⁇ 10 5 Pa (atmospheric pressure) is set to 830 ° C.
  • total flow rate 4000 sccm is supplied from the first gas flow path 45 for 3 minutes to eliminate the remaining raw material gas, generated carbon impurities, and catalyst activator (carbon impurity adhesion suppression step / Flash process).
  • the yield in this production method is 4.45 mg / cm 2
  • the yield in the production apparatus and production method in which the conventional raw material gas and the catalyst activator react before reaching the vicinity of the catalyst surface is 1.5.
  • the apparatus configuration and the manufacturing method of the present invention are remarkably effective in manufacturing a CNT aggregate with high efficiency as compared to about -2.0 mg / cm 2 .
  • a CNT aggregate can be produced on the catalyst layer 3 on the substrate 1 with a uniform height on one side, and the apparatus configuration and the manufacturing method of the present invention are substantially uniform and efficient over a large area. It can be seen that there is a remarkable effect in producing
  • Specific surface area of CNT aggregate A 50 mg mass was taken out from the CNT aggregate peeled from the substrate, and an adsorption / desorption isotherm of liquid nitrogen was measured at 77 K using BELSORP-MINI (manufactured by Nippon Bell Co., Ltd.) (adsorption equilibrium time was 600 seconds). ). The specific surface area was measured from this adsorption / desorption isotherm by the method of Brunauer, Emmett, Teller (BET) and found to be 1150 m 2 / g.
  • BET Brunauer, Emmett, Teller
  • the first gas containing the source gas is supplied into the synthesis furnace via the first gas flow path, and the first gas containing the catalyst activation material is contained.
  • Two gases are supplied into the synthesis furnace via the second gas flow path.
  • the raw material gas undergoes a decomposition reaction while passing through the first gas flow path, and is in a state suitable for the production of CNTs.
  • reaction with source gas is suppressed and sufficient quantity of a catalyst activation material is supplied to a gas mixing area
  • Example 2 CNT manufacturing apparatus 300
  • FIG. 7 is a schematic diagram of a CNT manufacturing apparatus 300 according to the present embodiment.
  • the first gas flow path 45 is provided with a pipe 55 having the turbulent flow suppression means 23 will be described.
  • the first gas flow path 45 is provided with a pipe 55 having a plurality of turbulent flow suppression means 23 to suppress turbulent flow of the source gas in the pipe 55, The heating volume until contact with the catalyst is adjusted.
  • the second gas flow path 47 configured by one pipe 57 connected to the second gas supply pipe 43 is exemplified, but the second gas supply pipe 43 and the gas flow forming means 21 are connected.
  • a second gas channel 47 composed of a plurality of pipes 57 may be provided.
  • the cross-sectional area of the flow path of the 1st gas containing the source gas in the piping 55 will become large, and it will become easy to increase and adjust a heating volume. Similarly, the heating volume of the second gas can be adjusted.
  • Other configurations of the CNT manufacturing apparatus 300 are the same as those in the embodiment and Example 1, and thus the description thereof is omitted.
  • the turbulent flow suppression means suppresses that the source gas and / or the catalyst activator in the first gas flow channel 45 and / or the second gas flow channel 47 become a turbulent flow until contacting the catalyst.
  • the turbulent flow suppressing means 23 is disposed inside the pipe 55 and / or the pipe 57, and the shape, material, etc. of the turbulent flow suppressing means 23 are not particularly limited, and a known method such as a rectifying plate or a honeycomb can be appropriately used. it can. In the present embodiment, an example in which a rectifying plate is used has been shown. However, in the first embodiment, a plurality of pipes also have the function of the turbulent flow suppression means 23 by arranging a plurality of pipes.
  • the first gas containing the source gas and the second gas containing the catalyst activation material are supplied from separate gas supply pipes, and are separately provided in the heating region.
  • the raw material gas and the catalyst activator are mixed and supplied before reaching the vicinity of the catalyst layer without reacting with each other, and before reaching the vicinity of the catalyst layer, the first gas and the first gas are supplied. Since the two gases are mixed and do not come into contact with the catalyst layer, a CNT aggregate having a high purity and a high specific surface area can be efficiently produced in a large area.
  • the turbulent flow of the gas can be suppressed and the heating volume of the gas flowing in the pipe can be adjusted.
  • Example 1 As in Example 1, the synthesis furnace 10 is used, the raw material gas and the catalyst activation material are mixed before being supplied to the synthesis furnace, and the raw material gas and the catalyst activation material are mixed in the first gas supply pipe and the second gas supply pipe. CNT aggregates were produced in the same process as in Example 1 using the same base material 1 and catalyst as in Example 1.
  • the yield in the production method of Comparative Example 1 in which the CNT aggregate was produced using the same process and production method as in Example 1 was 1.72 mg / cm 2 and the height was 362 ⁇ m.

Abstract

Provided are a process and a device for producing a CNT (carbon nanotube) assembly having high purity and high specific surface area with high efficiency by bringing a raw material gas having a form suitable for the growth of carbon nanotubes (CNTs) into contact with a catalyst. A device for producing carbon nanotubes comprises a synthetic furnace, a heating means for heating the inside of the synthetic furnace to a predetermined temperature, a first gas supply tube, a second gas supply tube, and a gas discharge tube, in which carbon nanotubes are produced from a catalyst layer formed on a base and a first gas and a second gas are discharged through the gas discharge tube, wherein the device additionally comprises a first gas flow path through which the first gas flows and a second gas flow path through which the second gas flows, in which the first and second gas flow paths are provided in a heated zone that is heated by the heating means, the first gas flow path and the second gas flow path are so provided as to be separated from each other in at least a part thereof, and a gas-mixed zone in which the first and second gases are mixed with each other is provided in the device.

Description

カーボンナノチューブの製造装置および製造方法Carbon nanotube manufacturing apparatus and manufacturing method
本発明は、触媒賦活物質含有環境下で高効率に、高純度、高比表面積のカーボンナノチューブ集合体の製造装置および製造方法に関するものである。 The present invention relates to an apparatus and a method for producing a carbon nanotube aggregate having a high purity and a high specific surface area with high efficiency in an environment containing a catalyst activator.
近時、電子デバイス材料、光学素子材料、導電性材料、および生体関連材料などの機能性新素材へのカーボンナノチューブ(以下、CNTとも称する)の展開が期待されており、その用途、品質、および量産性などに対する検討が精力的に進められている。 Recently, the development of carbon nanotubes (hereinafter also referred to as CNT) to functional new materials such as electronic device materials, optical element materials, conductive materials, and biological materials is expected. Studies on mass productivity are being conducted energetically.
CNTの製造方法の一つに、化学気相成長法(以下、合成法とも称する)が知られている(非特許文献1、特許文献1、2参照)。この方法は、約500℃~1000℃の高温雰囲気下で炭素化合物などの原料ガスを触媒の触媒微粒子と接触させることを特徴としており、触媒の種類や配置、あるいは原料ガスの種類や、還元ガス、キャリアガス、合成炉や反応条件といった態様を様々に変化させた中でのCNTの製造が可能であり、CNTの大量生産に適したものとして注目されている。 A chemical vapor deposition method (hereinafter also referred to as a synthesis method) is known as one of CNT production methods (see Non-Patent Document 1, Patent Documents 1 and 2). This method is characterized in that a raw material gas such as a carbon compound is brought into contact with catalyst fine particles in a high temperature atmosphere of about 500 ° C. to 1000 ° C., and the type and arrangement of the catalyst, the type of the raw material gas, and the reducing gas It is possible to produce CNTs in various modes such as carrier gas, synthesis furnace, and reaction conditions, and it is attracting attention as being suitable for mass production of CNTs.
またこの合成法は、単層カーボンナノチューブ(SWCNT)と多層カーボンナノチューブ(MWCNT)とのいずれも製造可能である上、触媒を担持した基材を用いることで、基材面に垂直に配向した多数のCNTを製造することができる、という利点を備えている。 In addition, this synthesis method can produce both single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT), and also uses a substrate carrying a catalyst, so that many CNTs can be produced.
CNTの中でも単層CNTは、電気的特性(極めて高い電流密度)、熱的特性(ダイアモンドに匹敵する熱伝導度)、光学的特性(光通信帯波長域での発光)、水素貯蔵能、および金属触媒担持能などの各種特性に優れている上、半導体と金属との両特性を備えているため、電子デバイスや蓄電デバイスの電極、MEMS部材、及び機能性材料のフィラーなどの材料として注目されている。 Among CNTs, single-walled CNTs have electrical properties (very high current density), thermal properties (thermal conductivity comparable to diamond), optical properties (light emission in the optical communication band wavelength region), hydrogen storage capacity, and In addition to being excellent in various properties such as the ability to support metal catalysts, and having both semiconductor and metal properties, it is attracting attention as a material such as electrodes for electronic devices and power storage devices, MEMS members, and functional material fillers. ing.
しかしながら、従来の化学気相成長法では、CNTの合成過程で発生する炭素系不純物が触媒微粒子を被覆し、触媒が容易に失活し、CNTが効率良く成長できなかった。本発明者らは、反応雰囲気中に水分などの触媒賦活物質を極微量存在させることにより触媒効率が劇的に向上するのを見出し、より高効率で、高純度、高比表面積の単層CNT集合体を製造することが可能であることを非特許文献1において報告した。 However, in the conventional chemical vapor deposition method, carbon-based impurities generated in the CNT synthesis process coat the catalyst fine particles, the catalyst is easily deactivated, and CNT cannot be efficiently grown. The present inventors have found that catalyst efficiency is dramatically improved by making a trace amount of a catalyst activator such as moisture in the reaction atmosphere, and the single-walled CNT having higher efficiency, higher purity, and higher specific surface area. It was reported in Non-Patent Document 1 that an assembly can be produced.
この方法では、CNTの合成雰囲気中に添加した触媒賦活物質が、触媒微粒子を覆った炭素系不純物を取り除いて、触媒層の地肌を清浄化する結果、著しく触媒の活性が向上するとともに寿命が延びる。この触媒賦活物質の添加により、触媒活性が著しく向上するため、長時間のCNTの成長が可能となるとともに、成長速度が著しく向上する。 In this method, the catalyst activator added in the synthesis atmosphere of CNT removes the carbon-based impurities covering the catalyst fine particles and cleans the background of the catalyst layer. As a result, the activity of the catalyst is remarkably improved and the life is extended. . By adding this catalyst activator, the catalytic activity is remarkably improved, so that CNT can be grown for a long time and the growth rate is remarkably improved.
またCNTを大量に製造するために、様々な原料ガスの供給手段やそれを備える製造装置が提案されている。例えば、特許文献4には、複数の原料ガス吐出口から原料ガスを基材上の触媒層表面に水平方向から吹きかけて、触媒層表面に、原料ガスを接触させ、カーボンナノチューブを大面積に製造することが可能なCNT製造装置及び製造方法が開示されている。特許文献4に記載のCNT製造装置500は、図8に示すように、基板の表面上の触媒粒子が配置された領域である触媒層3を取り囲むようにして、U字型の原料ガス供給管501を配置し、原料ガス供給管501に設けられた複数のガス吐出口503から原料ガスを触媒に噴出する。特許文献4にはさらに、原料ガス供給管の反応炉内に配置されている部位が、原料ガス吐出口から吐出される原料ガスを所定温度近傍に加熱するために十分な長さを有する製造装置が開示されている。 In order to manufacture CNTs in large quantities, various raw material gas supply means and manufacturing apparatuses including the same have been proposed. For example, in Patent Document 4, a raw material gas is sprayed from a plurality of raw material gas outlets onto the surface of a catalyst layer on a substrate from the horizontal direction, the raw material gas is brought into contact with the surface of the catalyst layer, and carbon nanotubes are produced in a large area. A CNT manufacturing apparatus and a manufacturing method that can be used are disclosed. As shown in FIG. 8, the CNT manufacturing apparatus 500 described in Patent Document 4 surrounds the catalyst layer 3, which is an area where catalyst particles are arranged on the surface of a substrate, so as to surround a U-shaped source gas supply pipe. 501 is disposed, and a raw material gas is ejected from a plurality of gas discharge ports 503 provided in the raw material gas supply pipe 501 to the catalyst. Patent Document 4 further discloses a manufacturing apparatus in which a portion of the source gas supply pipe disposed in the reaction furnace has a length sufficient to heat the source gas discharged from the source gas discharge port close to a predetermined temperature. Is disclosed.
また、特許文献5には、原料ガスが供給される加熱領域内の第一部分に複数の中空部材を設け、原料ガスと加熱体との接触面積を増大し、原料ガスの分解を促進することで、低温でCNTを製造する製造装置が開示されている。 Further, in Patent Document 5, a plurality of hollow members are provided in the first portion in the heating region to which the source gas is supplied, thereby increasing the contact area between the source gas and the heating body, thereby promoting the decomposition of the source gas. A manufacturing apparatus for manufacturing CNTs at a low temperature is disclosed.
特開2003-171108号公報JP 2003-171108 A 特開2007-261839号公報JP 2007-261839 A 特願2008-051321号公報Japanese Patent Application No. 2008-051321 特願2006-324416号公報Japanese Patent Application No. 2006-324416 特願2007-42672号公報Japanese Patent Application No. 2007-42672
触媒賦活物質含有環境下のCNTの合成は、従来と比較して格段の、成長効率の向上をもたらした。しかしながら、本手法を用いて、CNT集合体を製造する場合には、従来の合成法にはなかった触媒賦活物質含有環境下に特有の技術課題が発生する。 The synthesis of CNTs under an environment containing a catalyst activator has led to a marked improvement in growth efficiency compared to the conventional case. However, when manufacturing a CNT aggregate using this method, a technical problem peculiar to the environment containing a catalyst activation material, which was not found in the conventional synthesis method, occurs.
すなわち、従来のように、単一のガス供給管より、触媒賦活物質及び原料ガスを合成炉に供給してCNTを合成すると、混合した触媒賦活物質と原料ガスとが、触媒の近傍に到達する前に合成炉中で反応してしまい、触媒賦活物質を触媒に所定の量を安定して供給することが困難となる。例えば、典型的な原料ガスであるエチレンと、典型的な触媒賦活物質である水分は、高温で、水蒸気改質反応により、水分が還元され、水素となることはよく知られている。 That is, when a CNT is synthesized by supplying a catalyst activation material and a raw material gas to a synthesis furnace from a single gas supply pipe as in the prior art, the mixed catalyst activation material and the raw material gas reach the vicinity of the catalyst. It has previously reacted in the synthesis furnace, making it difficult to stably supply a predetermined amount of the catalyst activator to the catalyst. For example, it is well known that ethylene, which is a typical raw material gas, and water, which is a typical catalyst activator, are reduced to water by a steam reforming reaction at a high temperature.
特許文献4に開示された製造装置を用いてCNTを合成すると、原料ガスと触媒賦活物質は混合され、単一の流路を有するガス供給管から触媒層表面に吹きかけられて、触媒に接触する。このため、原料ガスと触媒賦活物質とは加熱領域内で反応してしまい、触媒層表面に十分な量の触媒賦活物質を供給することは困難となる。また、原料ガスと加熱体との接触面積を増大した特許文献5では、触媒層表面に触媒賦活物質が到達する前に、原料ガスと触媒賦活物質との反応が進行してしまい、触媒賦活物質含有環境下ではCNTの十分な成長を達成するのは困難であった。 When CNT is synthesized using the manufacturing apparatus disclosed in Patent Document 4, the raw material gas and the catalyst activation material are mixed and sprayed from the gas supply pipe having a single flow path onto the surface of the catalyst layer to come into contact with the catalyst. . For this reason, the source gas and the catalyst activation material react in the heating region, and it becomes difficult to supply a sufficient amount of the catalyst activation material to the surface of the catalyst layer. Moreover, in patent document 5 which increased the contact area of source gas and a heating body, reaction of source gas and a catalyst activation material advances before a catalyst activation material arrives at the catalyst layer surface, and a catalyst activation material. It was difficult to achieve sufficient growth of CNTs under the contained environment.
また、連続合成装置等を用いて、CNTを大量に製造する場合には、成長速度と、収量等の成長効率は安価なCNTを大量に製造するための重量な要因であることから、触媒賦活物質含有環境下で成長効率を向上させる合成法の開発は重要である。 In addition, when a large amount of CNT is produced using a continuous synthesizer or the like, the catalyst activation rate is high because the growth rate and the growth efficiency such as the yield are important factors for producing a large amount of inexpensive CNT. It is important to develop a synthesis method that improves the growth efficiency in a substance-containing environment.
このような従来技術の問題点に鑑み、本発明の主な目的は、CNTの合成において、触媒の近傍に到達する前に触媒賦活物質を原料ガスと反応を抑制し、触媒に所定の量の触媒賦活物質を安定して供給し、高効率で、高純度、高比表面積のCNT集合体を製造する方法と装置を提供することにある。 In view of such problems of the prior art, the main object of the present invention is to suppress the reaction of the catalyst activator with the raw material gas before reaching the vicinity of the catalyst in the synthesis of CNT, An object of the present invention is to provide a method and apparatus for stably supplying a catalyst activator and producing a highly efficient, high purity, high specific surface area CNT aggregate.
特に、触媒賦活物質含有のCNT成長工程で、成長速度が著しく向上し、触媒寿命が延びたCNTの合成に最適な製造方法とそれを実施する装置を提供することを目的とする。 In particular, an object of the present invention is to provide an optimum production method for synthesizing CNT having a significantly improved growth rate and an extended catalyst life in a CNT growth process containing a catalyst activator, and an apparatus for carrying out the same.
なお、本明細書で言う「CNT集合体」とは、成長用基材から一定の方向に成長した複数のCNTの集合体を言い、このCNT集合体をまとめて基材から剥離して得られた物体でも良い。その場合、CNT集合体は粉体状であっても良い。 As used herein, “CNT aggregate” refers to an aggregate of a plurality of CNTs grown in a certain direction from a growth substrate, and is obtained by peeling the CNT aggregates together from the substrate. It may be an object. In that case, the CNT aggregate may be in a powder form.
また、明細書中において成長速度とはCNTの成長始め時刻から1分間に成長したCNTの高さ(μm/min)と定義する。成長速度は特許文献3に記載のテレセントリック測定システムを用いて成長時間1分での高さから求めてもよい。また、より簡便に成長工程の成長時間を1分としてCNT集合体を製造して、製造後に高さを計測してもよい。 In the specification, the growth rate is defined as the height (μm / min) of CNT grown in one minute from the CNT growth start time. The growth rate may be obtained from the height at a growth time of 1 minute using the telecentric measurement system described in Patent Document 3. In addition, a CNT aggregate may be manufactured more simply by setting the growth time of the growth process to 1 minute, and the height may be measured after manufacturing.
本発明の一実施形態に係るカーボンナノチューブの製造装置は、合成炉と、前記合成炉内を所定温度に加熱するための加熱手段と、第1ガスを供給するための第1ガス供給管と、第2ガスを供給するための第2ガス供給管と、ガス排気管と、を備え、基材に設けられた触媒層からカーボンナノチューブを製造し、前記ガス排気管より、前記第1ガスおよび前記第2ガスを排気するカーボンナノチューブの製造装置において、前記加熱手段によって加熱された加熱領域内に配設された第1ガスが流れる第1ガス流路および第2ガスが流れる第2ガス流路を備え、前記第1ガス流路と前記第2ガス流路との少なくとも一部において第1ガス流路と第2ガス流路とを独立して設け、第1ガスと第2ガスとが混合するガス混合領域を備える。 An apparatus for producing carbon nanotubes according to an embodiment of the present invention includes a synthesis furnace, heating means for heating the interior of the synthesis furnace to a predetermined temperature, a first gas supply pipe for supplying a first gas, A second gas supply pipe for supplying a second gas; and a gas exhaust pipe. A carbon nanotube is produced from a catalyst layer provided on a substrate, and the first gas and the gas are produced from the gas exhaust pipe. In the carbon nanotube manufacturing apparatus for exhausting the second gas, the first gas flow path for flowing the first gas and the second gas flow path for flowing the second gas disposed in the heating region heated by the heating means are provided. A first gas channel and a second gas channel are provided independently in at least a part of the first gas channel and the second gas channel, and the first gas and the second gas are mixed. A gas mixing region is provided.
前記カーボンナノチューブの製造装置は、前記第1ガス流路および前記第2ガス流路の少なくとも一方が、前記第1ガス、および/または、前記第2ガスを複数の方向に分配するガス流形成手段を備える。 In the carbon nanotube production apparatus, at least one of the first gas flow path and the second gas flow path distributes the first gas and / or the second gas in a plurality of directions. Is provided.
前記カーボンナノチューブの製造装置は、個別にかつ互いに独立に、第1ガスの炭素重量フラックスを調整する第1炭素重量フラックス調整手段と、第2ガスの炭素重量フラックスを調整する第2炭素重量フラックス調整手段とを備える。 The carbon nanotube manufacturing apparatus includes a first carbon weight flux adjusting unit that adjusts the carbon weight flux of the first gas and a second carbon weight flux adjustment that adjusts the carbon weight flux of the second gas individually and independently of each other. Means.
前記ガス流形成手段が、前記基材の触媒層の表面に対して略平行方向の原料ガス流を形成する。 The gas flow forming means forms a raw material gas flow in a direction substantially parallel to the surface of the catalyst layer of the substrate.
前記第1ガス流路および前記第2ガス流路は前記ガス流形成手段に接続する配管により形成され、前記配管が前記基材の触媒層の表面に対して略垂直方向の原料ガス流を形成する。 The first gas flow path and the second gas flow path are formed by piping connected to the gas flow forming means, and the piping forms a material gas flow in a direction substantially perpendicular to the surface of the catalyst layer of the substrate. To do.
前記配管が、乱流抑制手段を備える。 The piping includes turbulent flow suppression means.
前記第1ガスは、原料ガスを含み、前記第2ガスは、触媒賦活物質を含む。 The first gas includes a raw material gas, and the second gas includes a catalyst activation material.
本発明の一実施形態に係るカーボンナノチューブの製造方法は、合成炉内に配設された基材上の触媒層に、還元ガスを供給して接触させるフォーメーション工程と、原料ガスと触媒賦活物質の各々を、前記合成炉内に配設された互いに異なる配管から前記触媒層の近傍のガス混合領域に供給して、前記ガス混合領域で前記原料ガスと前記触媒賦活物質とを混合して反応させて、カーボンナノチューブを成長させるカーボンナノチューブ成長工程と、を備える。 A method for producing carbon nanotubes according to an embodiment of the present invention includes a formation step in which a reducing gas is supplied and brought into contact with a catalyst layer on a substrate disposed in a synthesis furnace, and a raw material gas and a catalyst activation material. Each is supplied to a gas mixing region in the vicinity of the catalyst layer from different pipes arranged in the synthesis furnace, and the raw material gas and the catalyst activator are mixed and reacted in the gas mixing region. And a carbon nanotube growth step for growing the carbon nanotubes.
本発明の方法によれば、CNTの合成において、触媒層の近傍に到達する前に触媒賦活物質と原料ガスの反応を抑制することで、触媒層に所定の量の触媒賦活物質を安定して供給するカーボンナノチューブの製造装置および製造方法が提供される。本発明の方法によれば、従来手法に比べ、高収量、高速成長で、高比表面積、高純度のCNT集合体を製造できるため、原料ガスの無駄を大きく減らすことも可能であると共に短時間で高純度、高表面積のCNT集合体を大量に、かつ、連続的に安定に製造することが容易である。このため、産業界への利用が十分に期待できるものである。 According to the method of the present invention, in the synthesis of CNT, by suppressing the reaction between the catalyst activator and the raw material gas before reaching the vicinity of the catalyst layer, a predetermined amount of the catalyst activator can be stably stabilized in the catalyst layer. An apparatus and a method for manufacturing carbon nanotubes to be supplied are provided. According to the method of the present invention, it is possible to produce a CNT aggregate having a high specific surface area and a high purity with a high yield and a high-speed growth as compared with the conventional method. Therefore, it is easy to stably produce a large amount of CNT aggregates with high purity and high surface area continuously. For this reason, it can be fully expected to be used in industry.
(a)は本発明の一実施形態に係るCNTの製造装置100を概念的に示した図であり、(b)は(a)に示すA-A’断面における配管55及び配管57の断面図である。(A) is the figure which showed conceptually the CNT manufacturing apparatus 100 which concerns on one Embodiment of this invention, (b) is sectional drawing of the piping 55 and the piping 57 in the AA 'cross section shown to (a). It is. (a)は本発明の一実施形例に係るCNTの製造装置200を概念的に示した図であり、(b)は(a)に示すA-A’断面における配管55及び配管57の断面図である。(A) is the figure which showed notionally the manufacturing apparatus 200 of CNT which concerns on one Example of this invention, (b) is the cross section of the piping 55 and the piping 57 in the AA 'cross section shown to (a). FIG. (a)は本発明の一実施例に係るガス流形成手段21と配管55及び配管57とから形成される第1ガス流路45及び第2ガス流路47を示す模式図であり、(b)は(a)に示すA-A’断面における配管55及び配管57の断面図である。(A) is the schematic diagram which shows the 1st gas flow path 45 and the 2nd gas flow path 47 which are formed from the gas flow formation means 21, the piping 55, and the piping 57 which concern on one Example of this invention, (b) ) Is a cross-sectional view of the pipe 55 and the pipe 57 in the section AA ′ shown in FIG. (a)は本発明の一実施例に係るガス流形成手段21、ガス流形成手段221、配管55及び配管57とから形成される第1ガス流路45及び第2ガス流路47を示す模式図であり、(b)は(a)に示すA-A’断面における配管55及び配管57の断面図である。(A) is the model which shows the 1st gas flow path 45 and the 2nd gas flow path 47 which are formed from the gas flow formation means 21, the gas flow formation means 221, the piping 55, and the piping 57 which concern on one Example of this invention. FIG. 5B is a cross-sectional view of the pipe 55 and the pipe 57 in the AA ′ cross section shown in FIG. (a)は本発明の一実施例に係るガス流形成手段21、ガス流形成手段221、配管55及び配管57とから形成される第1ガス流路45及び第2ガス流路47を示す模式図であり、(b)は(a)に示すA-A’断面における配管55及び配管57の断面図である。(A) is the model which shows the 1st gas flow path 45 and the 2nd gas flow path 47 which are formed from the gas flow formation means 21, the gas flow formation means 221, the piping 55, and the piping 57 which concern on one Example of this invention. FIG. 5B is a cross-sectional view of the pipe 55 and the pipe 57 in the AA ′ cross section shown in FIG. 本発明の一実施例に係るCNT製造装置を概念的に示した図である。It is the figure which showed notionally the CNT manufacturing apparatus which concerns on one Example of this invention. 本発明の一実施例に係るCNT製造装置を概念的に示した図である。It is the figure which showed notionally the CNT manufacturing apparatus which concerns on one Example of this invention. 従来のCNTの製造装置500を概念的に示した図である。It is the figure which showed the conventional CNT manufacturing apparatus 500 notionally.
以下に本発明のカーボンナノチューブの製造装置および製造方法について添付の図面を参照して詳細に説明する。本発明のカーボンナノチューブの製造装置および製造方法は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び後述する実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, a carbon nanotube production apparatus and production method of the present invention will be described in detail with reference to the accompanying drawings. The carbon nanotube production apparatus and production method of the present invention are not construed as being limited to the description of the embodiments and examples shown below. Note that in the drawings referred to in this embodiment mode and examples to be described later, the same portions or portions having similar functions are denoted by the same reference numerals, and description thereof is not repeated.
本発明が適用される製造装置の一例を図1(a)に示す。また、図1(b)は、図1(a)に示すA-A’断面における配管55及び配管57の断面図である。本発明の実施形態に係るカーボンナノチューブ(CNT)の製造装置100は触媒層3を備える基材1を受容する例えば石英ガラスや耐熱合金等からなる合成炉10と、合成炉10の上壁およびまたは側壁に設けられ、合成炉10と連通する第1ガスを供給するための第1ガス供給管41及び第2ガスを供給するための第2ガス供給管43と、下流側の下壁もしくは側壁に設けられ、合成炉10と連通し、第1ガスおよび第2ガスを排気するガス排気管50と、合成炉内10を所定温度に加熱するために合成炉10を外囲して設けられた例えば抵抗発熱コイルなどからなる加熱手段30と、炉内温度を所定の温度に調整するための加熱温度調整手段と、加熱手段30と加熱温度調整手段により、所定温度に加熱された合成炉10内の加熱領域31(図1の場合、合成炉全体が加熱されているため、合成炉内の空間が加熱領域となる)と、を備える。合成炉10内の加熱領域31に、触媒層3を備える基材1を保持するための基材ホルダ5が設けられている。 An example of a manufacturing apparatus to which the present invention is applied is shown in FIG. FIG. 1B is a cross-sectional view of the pipe 55 and the pipe 57 in the A-A ′ cross section shown in FIG. A carbon nanotube (CNT) manufacturing apparatus 100 according to an embodiment of the present invention includes a synthesis furnace 10 made of, for example, quartz glass or a heat-resistant alloy that receives a base material 1 provided with a catalyst layer 3, and an upper wall of the synthesis furnace 10 and / or A first gas supply pipe 41 for supplying a first gas that communicates with the synthesis furnace 10 and a second gas supply pipe 43 for supplying a second gas, and a lower wall or a side wall on the downstream side. For example, a gas exhaust pipe 50 that communicates with the synthesis furnace 10 and exhausts the first gas and the second gas, and surrounds the synthesis furnace 10 to heat the synthesis furnace 10 to a predetermined temperature. In the synthesis furnace 10 heated to a predetermined temperature by the heating means 30 composed of a resistance heating coil, the heating temperature adjusting means for adjusting the furnace temperature to a predetermined temperature, and the heating means 30 and the heating temperature adjusting means. Heating area Includes 1 (the case of FIG. 1, the entire synthesis furnace is heated, the space of the composite furnace is heated region), the. A base material holder 5 for holding the base material 1 including the catalyst layer 3 is provided in the heating region 31 in the synthesis furnace 10.
基材ホルダ5および触媒層3の上方の加熱領域31内には、好ましくはガス流形成手段21を介して第1ガス供給管41に接続し、加熱手段30によって加熱された加熱領域内に配設された配管55により第1ガス流路45が構成される。第1ガス供給管41から供給される原料ガスを含む第1ガスを、ガス流形成手段21により分配・分散し、複数の方向へ流れる原料ガス流を形成することが好ましい。ガス流形成手段21は、基材1の触媒層の表面に対して略平行の複数の方向に原料ガスの流れを形成する。分配・分散した第1ガスは、配管55により基材1の触媒層の表面に対して略垂直方向のガス流として供給される。また、同様に、基材ホルダ5および触媒層3の上方の加熱領域31内には、第2ガス供給管43に接続し、加熱手段30によって加熱された加熱領域内に配設された配管57により第2ガス流路47が構成される。第2ガス流路47は第2ガス供給管43から供給される触媒賦活物質を含む第2ガスを基材1の触媒層の表面に対して略垂直方向のガス流として供給する。ここで第1ガス流路と第2ガス流路の少なくとも一部において第1ガス流路と第2ガス流路とを独立して設け、触媒層に到達する前の、加熱領域内での第1ガスと第2ガスの混合を抑制する。 The heating region 31 above the substrate holder 5 and the catalyst layer 3 is preferably connected to the first gas supply pipe 41 via the gas flow forming means 21 and arranged in the heating region heated by the heating means 30. The first gas flow path 45 is configured by the provided pipe 55. The first gas containing the source gas supplied from the first gas supply pipe 41 is preferably distributed and dispersed by the gas flow forming means 21 to form a source gas flow that flows in a plurality of directions. The gas flow forming means 21 forms a flow of source gas in a plurality of directions substantially parallel to the surface of the catalyst layer of the substrate 1. The distributed and dispersed first gas is supplied as a gas flow in a substantially vertical direction with respect to the surface of the catalyst layer of the substrate 1 through the pipe 55. Similarly, in the heating region 31 above the substrate holder 5 and the catalyst layer 3, a pipe 57 connected to the second gas supply pipe 43 and disposed in the heating region heated by the heating means 30. Thus, the second gas flow path 47 is configured. The second gas flow path 47 supplies the second gas containing the catalyst activation material supplied from the second gas supply pipe 43 as a gas flow substantially perpendicular to the surface of the catalyst layer of the substrate 1. Here, the first gas channel and the second gas channel are independently provided in at least a part of the first gas channel and the second gas channel, and the first gas channel and the second gas channel in the heating region before reaching the catalyst layer are provided. Mixing of 1 gas and 2nd gas is suppressed.
第1ガスと第2ガスとは、それぞれすくなくとも一部が独立した、異なる配管55により構成された第1ガス流路45と配管57により構成された第2ガス流路47をそれぞれ通って供給されるため、すくなくとも第1ガス流路45と第2ガス流路47の一部の領域において、第1ガスと第2ガスが混合することはないため、流路内で反応する量が少なく、したがって、第2ガスに含まれる触媒賦活物質を流路内での減少量をすくなくできる。第1ガスおよび第2ガスは、それぞれすくなくとも一部が独立した、異なる配管55により構成された第1ガス流路45と配管57を通ったのち、触媒層の近傍で混合され、ガス混合領域80を形成し、基材1上の触媒層を配置した領域に単位面積あたり所定の供給量を触媒に接触する。 The first gas and the second gas are respectively supplied through a first gas passage 45 constituted by different pipes 55 and a second gas passage 47 constituted by pipes 57, each of which is at least partially independent. Therefore, since the first gas and the second gas are not mixed in at least a part of the first gas flow path 45 and the second gas flow path 47, the amount of reaction in the flow path is small. The catalyst activation material contained in the second gas can be reduced in amount within the flow path. The first gas and the second gas are mixed in the vicinity of the catalyst layer after passing through the first gas flow path 45 and the pipe 57 constituted by different pipes 55, each of which is at least partly independent. And a predetermined supply amount per unit area is brought into contact with the catalyst in a region where the catalyst layer is disposed on the substrate 1.
図1においては、基材ホルダ5および触媒層3に対向する第1ガス流路45を構成する配管55の出口が第1ガス供給管41の径よりも大きく、第2ガス流路47を構成する配管57と第2ガス供給管43の径が同じであるものとして示したが、本実施形態に係るCNTの製造装置100はこれに限定されるものではなく、十分な量の第1ガスおよび第2ガスを供給できればよい。例えば、配管57の出口を第2ガス供給管43の径よりも大きくしてもよい。 In FIG. 1, the outlet of the pipe 55 constituting the first gas flow path 45 facing the substrate holder 5 and the catalyst layer 3 is larger than the diameter of the first gas supply pipe 41, and the second gas flow path 47 is formed. However, the CNT manufacturing apparatus 100 according to the present embodiment is not limited to this, and a sufficient amount of the first gas and the second gas supply pipe 43 have the same diameter. It is sufficient if the second gas can be supplied. For example, the outlet of the pipe 57 may be made larger than the diameter of the second gas supply pipe 43.
従来では、原料ガスと触媒賦活物質とを混合したガスを合成炉10内に供給していたため、触媒層の近傍に到達する前に原料ガスと触媒賦活物質とが反応してしまい、触媒賦活物質を触媒に所定の量を供給することが困難であった。本発明のカーボンナノチューブの製造装置および製造方法によれば、原料ガスを含む第1ガスと、触媒賦活物質を含む第2ガスとを別々のすくなくとも一部が独立したガス供給管から供給し、加熱領域内のすくなくとも一部が別々の配管により構成されたガス流路を流すことにより、触媒層の近傍に到達する前に原料ガスと触媒賦活物質とが混合して反応することを抑制し、触媒層の近傍で第1ガスと第2ガスとを混合して、ガス混合領域を形成することで触媒層に接触させることができるため、高純度、高比表面積のCNT集合体を、大面積に且つ効率よく製造することができる。 Conventionally, since a gas in which a raw material gas and a catalyst activator are mixed is supplied into the synthesis furnace 10, the raw material gas and the catalyst activator react before reaching the vicinity of the catalyst layer, and thus the catalyst activator. It was difficult to supply a predetermined amount to the catalyst. According to the carbon nanotube production apparatus and production method of the present invention, the first gas containing the source gas and the second gas containing the catalyst activator are supplied from separate gas supply pipes, at least partially, and heated. By flowing through a gas flow path at least a part of which is composed of separate pipes in the region, the raw material gas and the catalyst activator are prevented from mixing and reacting before reaching the vicinity of the catalyst layer, and the catalyst Since the first gas and the second gas are mixed in the vicinity of the layer to form a gas mixing region, the catalyst layer can be brought into contact with, so that a CNT aggregate having a high purity and a high specific surface area can be formed in a large area. And it can manufacture efficiently.
〔合成炉〕
合成炉とは、触媒を担持した基材1を受容し、CNTの合成を行う炉のことを指す。合成炉10の材質は、CNTの成長を阻害せず、成長温度で触媒を担持した基材1を受容することができ、炉内の均熱性を保ち得るものとすると良い。さらには、大量のCNTを合成するために、合成炉10は、基材1を複数、もしくは連続的に供給・取り出しを行うシステムを装備していてもよい。
[Synthesis furnace]
The synthesis furnace refers to a furnace that receives the substrate 1 carrying a catalyst and synthesizes CNTs. The material of the synthesis furnace 10 may be such that it does not inhibit the growth of CNTs, can receive the base material 1 carrying the catalyst at the growth temperature, and can maintain the heat uniformity in the furnace. Furthermore, in order to synthesize a large amount of CNTs, the synthesis furnace 10 may be equipped with a system that supplies or removes a plurality of base materials 1 or continuously.
本発明の効果を得るためには合成炉10は横型よりも縦型であることが好ましい。ここで縦型合成炉とは、原料ガスが縦(鉛直)方向から供給される合成炉を示す。原料ガスおよび触媒賦活物質を縦(鉛直)方向から供給すると、基材1を水平方向に配設し、かつ、原料ガスを鉛直方向から、触媒に接触させることが容易なため好ましい。 In order to obtain the effects of the present invention, the synthesis furnace 10 is preferably a vertical type rather than a horizontal type. Here, the vertical synthesis furnace refers to a synthesis furnace in which source gas is supplied from the vertical (vertical) direction. It is preferable to supply the raw material gas and the catalyst activation material from the vertical (vertical) direction because the base material 1 is disposed in the horizontal direction and the raw material gas is easily brought into contact with the catalyst from the vertical direction.
〔ガス流路〕
加熱手段30によって加熱された加熱領域内に配設された第1ガス流路45と第2ガス流路47とは、それぞれ第1ガスと第2ガスの各々を少なくとも一部の領域で互いに接触することなく独立して、基材1の触媒層の表面に対して略垂直方向のガス流として供給する流路である。本発明に係るガス流路は、ガス供給管に接続し、加熱領域31内に配設されたガス流形成手段21及び配管により構成される。ただし、本発明においては、第1ガスと第2ガスの各々を互いに接触することなく少なくとも一部の領域で独立して、供給することができればよく、配管により構成することを限定するものではない。ガス流路がハニカム構造体を備えてもよい(図2b)。第1ガス供給管41から供給される第1ガスに含まれる原料ガスは、加熱領域内に配設された第1ガス流路45を通過する間に分解が促進され、CNT成長に最適化された原料ガスを基材1上の触媒層近傍のガス混合領域に供給することが可能になる。また、第2ガス供給管43から供給される第2ガスに含まれる触媒賦活物質は、加熱領域内に配設された第2ガス流路47を通過する間には、原料ガスとは反応する量が少ないため、基材1上の触媒層近傍のガス混合領域に単位面積あたり所定の供給量を触媒に接触させることができる。
[Gas flow path]
The first gas flow path 45 and the second gas flow path 47 disposed in the heating area heated by the heating means 30 respectively contact the first gas and the second gas with each other at least in a partial area. It is a flow path that is independently supplied as a gas flow in a substantially vertical direction with respect to the surface of the catalyst layer of the substrate 1. The gas flow path according to the present invention is constituted by a gas flow forming means 21 and a pipe connected to a gas supply pipe and disposed in the heating region 31. However, in the present invention, it is only necessary that each of the first gas and the second gas can be supplied independently in at least a part of the region without being in contact with each other. . The gas flow path may comprise a honeycomb structure (FIG. 2b). The source gas contained in the first gas supplied from the first gas supply pipe 41 is accelerated in decomposition while passing through the first gas flow path 45 disposed in the heating region, and is optimized for CNT growth. The raw material gas can be supplied to the gas mixing region in the vicinity of the catalyst layer on the substrate 1. Further, the catalyst activation material contained in the second gas supplied from the second gas supply pipe 43 reacts with the raw material gas while passing through the second gas passage 47 disposed in the heating region. Since the amount is small, a predetermined supply amount per unit area can be brought into contact with the catalyst in the gas mixing region in the vicinity of the catalyst layer on the substrate 1.
従来は、原料ガスと触媒賦活物質とは同一の流路を用いて加熱領域内に供給され、触媒層の近傍に到達するまでに、相当量の触媒賦活物質が原料ガスと反応して、減少していた。このため、触媒層に接触させる触媒賦活物質の適切な量を制御することは困難であった。本発明においては、合成炉10内に配設されたすくなくとも一部が独立の互いに異なる配管55と配管57とにより、第1ガス流路45と第2ガス流路47をそれぞれ構成することにより、加熱領域31内においての接触が抑制され、供給される第1ガスおよび第2ガスは、流路から放出された後に、触媒層の近傍のガス混合領域80で混合される。第1ガスに含まれる分解の促進された原料ガスと、減少することなく所定の量で供給される触媒賦活物質とがガス混合領域80で混合されることにより、CNT成長に最適な状態の混合ガスとして供給することが可能となる。 Conventionally, the source gas and the catalyst activator are supplied into the heating zone using the same flow path, and a considerable amount of the catalyst activator reacts with the source gas to reach the vicinity of the catalyst layer. Was. For this reason, it has been difficult to control an appropriate amount of the catalyst activator to be brought into contact with the catalyst layer. In the present invention, the first gas flow path 45 and the second gas flow path 47 are configured by pipes 55 and 57 that are at least partially disposed in the synthesis furnace 10 and are different from each other, Contact in the heating region 31 is suppressed, and the supplied first gas and second gas are discharged from the flow path and then mixed in the gas mixing region 80 near the catalyst layer. The raw material gas promoted to be decomposed contained in the first gas and the catalyst activation material that is supplied in a predetermined amount without being reduced are mixed in the gas mixing region 80, whereby mixing in a state optimal for CNT growth is achieved. It becomes possible to supply as gas.
〔ガス混合領域〕
ガス混合領域と加熱領域内で第1ガスと第2ガスが混合する領域であり、本発明においては、触媒層近傍の加熱領域内の領域内にあることが好ましい。ガス混合領域は、それぞれが独立した第1流路と第2ガス流路の出口から、合成炉内の基板の触媒層に第1ガスおよび第2ガスが到着するまでに、第1ガスおよび/または第2ガスが混合して流れる空間であることが好ましい。第1ガスと第2ガスとが混合したガス混合領域は、CNTを好適に成長させることができる空間の体積を有していればよい。
[Gas mixing area]
It is a region where the first gas and the second gas are mixed in the gas mixing region and the heating region, and in the present invention, it is preferably in the region in the heating region near the catalyst layer. The gas mixing region includes the first gas and / or the second gas until the first gas and the second gas arrive at the catalyst layer of the substrate in the synthesis furnace from the outlets of the first flow path and the second gas flow path, which are independent from each other. Or it is preferable that it is the space which 2nd gas mixes and flows. The gas mixing region in which the first gas and the second gas are mixed only needs to have a space volume in which CNTs can be preferably grown.
第1流路の出口、および/または第2流路の出口から触媒層までの距離が好ましくは0.3センチ以上、より好ましくは0.5センチ以上あることが、第1ガスと第2ガスをよく混合するために好ましい。また、第1流路の出口、および/または第2流路の出口から触媒層までの距離が10センチ以下、より好ましくは5センチ以下であることが、混合した第1ガスと第2ガスの反応を抑制するために好ましい。ここで、第1流路(および/または第2流路)の出口から触媒層までの距離は、触媒層を構成する全ての点に関し、もっとも第1流路(および/または第2流路)の出口に近い位置に存在する該点と、第1流路(および/または第2流路)の出口との距離で定義する。 The distance from the outlet of the first channel and / or the outlet of the second channel to the catalyst layer is preferably 0.3 cm or more, more preferably 0.5 cm or more. In order to mix well. Further, the distance from the outlet of the first flow path and / or the outlet of the second flow path to the catalyst layer is 10 cm or less, more preferably 5 cm or less. It is preferable for suppressing the reaction. Here, the distance from the outlet of the first flow path (and / or the second flow path) to the catalyst layer is the first flow path (and / or the second flow path) with respect to all points constituting the catalyst layer. It is defined by the distance between the point existing near the outlet of the first flow path and the outlet of the first flow path (and / or the second flow path).
〔ガス供給管〕
第1ガス供給管41は炭素重量フラックス調整手段70から供給された原料ガス、雰囲気ガス、還元ガスなどを含む第1ガスを合成炉10内の第1ガス流路45を構成する配管55に接続され、第2ガス供給管43は触媒賦活物質などを含む第2ガスを合成炉10内の第2ガス流路47を構成する配管57に接続される。なお、第1ガス供給管41および第2ガス供給管43は、ガスのみならず、液体を供給してもよい。第1ガス供給管41および第2ガス供給管43は、合成炉10の上壁、およびまたは、側壁に設けられた、開口から合成炉10内へ設けることができるが、原料ガスおよび触媒賦活物質を縦(鉛直)方向から供給することが好ましい。配管の一部は合成炉10の中に挿設されていてもよく、加熱領域31内にその末端が設けられていてもよい。合成炉10の中に挿設されている配管は各種ガスと反応せず、高熱下においてもその品質、形状を保ち得るものであればよく、石英、各種金属材料などが挙げられる。
[Gas supply pipe]
The first gas supply pipe 41 connects the first gas containing the source gas, the atmospheric gas, the reducing gas, etc. supplied from the carbon weight flux adjusting means 70 to the pipe 55 constituting the first gas flow path 45 in the synthesis furnace 10. The second gas supply pipe 43 is connected to the pipe 57 constituting the second gas flow path 47 in the synthesis furnace 10 for supplying the second gas containing the catalyst activation material and the like. Note that the first gas supply pipe 41 and the second gas supply pipe 43 may supply not only gas but also liquid. The first gas supply pipe 41 and the second gas supply pipe 43 can be provided in the synthesis furnace 10 from the opening provided on the upper wall and / or the side wall of the synthesis furnace 10. Is preferably supplied from the vertical (vertical) direction. A part of the piping may be inserted into the synthesis furnace 10, or its end may be provided in the heating region 31. The piping inserted in the synthesis furnace 10 may be any pipe that does not react with various gases and can maintain its quality and shape even under high heat, such as quartz and various metal materials.
〔ガス流形成手段〕
ガス流形成手段21は、好ましくは複数の第1ガス流路45および/または第2ガス流路47に配設され、第1ガス供給管41および/または第2ガス供給管43から供給される原料ガスおよび/または触媒賦活物質を、複数の方向に分配する手段のことである。ガス流形成手段21は、原料ガスおよび/または触媒賦活物質を複数の方向に分配・分散することができれば、材質、形状等は特に制限されず、公知のものを適宜用いることができる。
[Gas flow forming means]
The gas flow forming means 21 is preferably disposed in the plurality of first gas flow paths 45 and / or second gas flow paths 47 and supplied from the first gas supply pipe 41 and / or the second gas supply pipe 43. It is means for distributing the raw material gas and / or the catalyst activator in a plurality of directions. As long as the gas flow forming means 21 can distribute and disperse the source gas and / or the catalyst activator in a plurality of directions, the material, the shape and the like are not particularly limited, and known materials can be appropriately used.
ガス流形成手段21の形状・形態としては、図1(a)に示したように、第2ガス流路47を中心に配置し、下流に向かって断面が広がる円錐形の第1ガス流路45の配置を例示できる。 As the shape and form of the gas flow forming means 21, as shown in FIG. 1 (a), a conical first gas flow path that is disposed around the second gas flow path 47 and has a cross section that extends toward the downstream side. 45 arrangements can be illustrated.
第1ガス流路45および/または第2ガス流路47にガス流形成手段21を用いれば、第1ガス供給管41および/または第2ガス供給管43から点状に供給される原料ガスおよび/または触媒賦活物質を、平面状に分配・分散させ、基材1上の触媒層近傍のガス混合領域に単位面積あたりの所定の供給量をもって接触させることができ、格段の効果を奏するとともに、触媒層に到達する前に原料ガスと触媒賦活物質とが反応するのを防ぐ優れた効果を奏する。ガス流形成手段21を用いて、複数の方向に分配される原料ガスおよび/または触媒賦活物質は、異なる複数の方向に流れる原料ガス流および/または触媒賦活物質のガス流を形成する。原料ガス流および/または触媒賦活物質のガス流の流れる複数の方向の軸線の間の最大角度が、90度以上(より好ましくは180度以上)になることが、第1ガス供給管41および/または第2ガス供給管43から点状に供給される原料ガスおよび/または触媒賦活物質を、平面状に分配・分散させるためには好ましい。 If the gas flow forming means 21 is used in the first gas flow path 45 and / or the second gas flow path 47, the raw material gas supplied in the form of dots from the first gas supply pipe 41 and / or the second gas supply pipe 43 and In addition, the catalyst activator can be distributed and dispersed in a planar shape and brought into contact with the gas mixing region in the vicinity of the catalyst layer on the substrate 1 with a predetermined supply amount per unit area. There is an excellent effect of preventing the source gas and the catalyst activation material from reacting before reaching the catalyst layer. Using the gas flow forming means 21, the raw material gas and / or the catalyst activation material distributed in a plurality of directions forms a raw material gas flow and / or a gas flow of the catalyst activation material flowing in a plurality of different directions. The first gas supply pipe 41 and / or the maximum angle between the axes in a plurality of directions in which the raw material gas flow and / or the gas flow of the catalyst activator flows is 90 degrees or more (more preferably 180 degrees or more). Alternatively, it is preferable to distribute and disperse the raw material gas and / or the catalyst activation material supplied in a dot shape from the second gas supply pipe 43 in a planar shape.
また、ガス流形成手段21が対称軸又は対称点を有し、対称軸上又は対称点上に第1ガス供給管41および/または第2ガス供給管43が連通されていることは、第1ガス供給管41および/または第2ガス供給管43から点状に供給される原料ガスおよび/または触媒賦活物質を、第1ガス流路45および/または第2ガス流路47に対して平面状に分配・分散させるためには好ましい。また、基材1平面に対して略平行方向な複数の方向に原料ガス流および/または触媒賦活物質のガス流を形成するガス流形成手段21は、上記効果を得るために好ましい。略平行方向とは、ガス流形成手段21により、複数の方向に分配・分散された原料ガスおよび/または触媒賦活物質が流れる方向の軸線が基材1の法線と成す角が45°以上135°未満となるような方向を示す。ガス流形成手段21が対称軸又は対称点を有することにより、複数の方向に均一にガスを分配・分散することができる。 Further, the gas flow forming means 21 has a symmetry axis or a symmetry point, and the first gas supply pipe 41 and / or the second gas supply pipe 43 communicate with each other on the symmetry axis or the symmetry point. The raw material gas and / or the catalyst activation material supplied in a dot shape from the gas supply pipe 41 and / or the second gas supply pipe 43 is planar with respect to the first gas flow path 45 and / or the second gas flow path 47. It is preferable to distribute and disperse. Further, the gas flow forming means 21 that forms the raw material gas flow and / or the gas flow of the catalyst activation material in a plurality of directions substantially parallel to the plane of the substrate 1 is preferable in order to obtain the above effect. The substantially parallel direction means that the angle formed by the axis of the flow direction of the raw material gas and / or the catalyst activation material distributed and dispersed in a plurality of directions by the gas flow forming means 21 with the normal of the substrate 1 is 45 ° or more and 135. The direction is less than °. Since the gas flow forming means 21 has an axis of symmetry or a point of symmetry, the gas can be uniformly distributed and distributed in a plurality of directions.
〔配管〕
配管とは、第1ガス流路45および/または第2ガス流路47を規定できるものであれば何れの公知の手段を用いてもよい。配管を用いて第1ガス流路45および第2ガス流路47を規定すれば、第1ガス供給管41および/または第2ガス供給管43から合成炉10内に供給された、原料ガス、雰囲気ガス、還元ガス等と、触媒賦活物質とが合成炉10内で接触し反応することを防ぐことができ、本発明の効果を得ることができる。また、配管を用いて第1ガス流路45および第2ガス流路47を規定すれば、第1ガス供給管41および/または第2ガス供給管43から合成炉10内に供給された、原料ガス、雰囲気ガス、還元ガス等と、触媒賦活物質の加熱体積を増加・調整させて、触媒層表面の近傍に供給することができる。ただし、本発明においては、第1ガスと第2ガスの各々を互いに接触することなく独立して、基材1の触媒層の表面に対して略垂直方向のガス流として供給することができればよい。配管は、加熱領域31内のガス流形成手段21の下流に、触媒層の表面に対して略垂直方向で開口したハニカム構造体であってもよい。配管をガス流形成手段21に配設することで、第1ガス流路45および/または第2ガス流路47は、基材1の触媒層に接触する原料ガスおよび/または触媒賦活物質良好に分散する効果がある。
〔Piping〕
As the piping, any known means may be used as long as the first gas passage 45 and / or the second gas passage 47 can be defined. If the first gas flow path 45 and the second gas flow path 47 are defined using piping, the source gas supplied into the synthesis furnace 10 from the first gas supply pipe 41 and / or the second gas supply pipe 43, It is possible to prevent atmospheric gas, reducing gas, and the like and the catalyst activation material from contacting and reacting in the synthesis furnace 10, and the effects of the present invention can be obtained. Moreover, if the 1st gas flow path 45 and the 2nd gas flow path 47 are prescribed | regulated using piping, the raw material supplied in the synthesis furnace 10 from the 1st gas supply pipe 41 and / or the 2nd gas supply pipe 43 Gas, atmospheric gas, reducing gas, and the like, and the heating volume of the catalyst activation material can be increased / adjusted and supplied to the vicinity of the catalyst layer surface. However, in the present invention, it is sufficient that each of the first gas and the second gas can be independently supplied as a gas flow in a direction substantially perpendicular to the surface of the catalyst layer of the substrate 1 without contacting each other. . The piping may be a honeycomb structure opened in a direction substantially perpendicular to the surface of the catalyst layer downstream of the gas flow forming means 21 in the heating region 31. By disposing the piping in the gas flow forming means 21, the first gas flow path 45 and / or the second gas flow path 47 can improve the raw material gas and / or the catalyst activation material in contact with the catalyst layer of the substrate 1. There is an effect to disperse.
配管は、基材1の触媒層の表面に対して略垂直方向の原料ガス流および/または触媒賦活物質のガス流を形成し、第1ガス流路45および/または第2ガス流路47を構成する。略垂直方向とは、配管の噴射軸線が基材1の法線と成す角が0°以上45°未満となるような方向を示す。つまり配管から噴出するガス流の方向が、基材1の触媒層3に鉛直方向から接触するようにされていることを指す。 The piping forms a raw material gas flow and / or a gas flow of the catalyst activator in a direction substantially perpendicular to the surface of the catalyst layer of the substrate 1, and the first gas flow path 45 and / or the second gas flow path 47 is formed. Constitute. The substantially vertical direction indicates a direction in which the angle formed by the injection axis of the pipe and the normal of the substrate 1 is 0 ° or more and less than 45 °. That is, it means that the direction of the gas flow ejected from the pipe is in contact with the catalyst layer 3 of the substrate 1 from the vertical direction.
〔ガス排気管〕
ガス排気管50は、合成炉10から、原料ガス、雰囲気ガス、還元ガス等を含む第1ガス、および触媒賦活物質を含む第2ガスを排気する配管、ダクト等の手段を指す。なお、ガス排気管50は、ガスのみならず、液体を排気してもよい。ガス排気管50の材料は各種ガスと反応せず、その品質、形状を保ち得るものであればよく、石英、各種金属材料などが挙げられる。ガス排気管50は、合成炉10の下壁、およびまたは、第1ガス供給管41および第2ガス供給管43より下側の側壁に設けられた、開口から合成炉10内へ挿設するのが好ましい。このように、第1ガス供給官41および第2ガス供給管43とガス排気管50を配設すれば、合成炉10内で原料ガスが縦(鉛直)方向から触媒に供給され、好ましい。
[Gas exhaust pipe]
The gas exhaust pipe 50 refers to means such as a pipe or a duct for exhausting the first gas containing the raw material gas, the atmospheric gas, the reducing gas, and the second gas containing the catalyst activation material from the synthesis furnace 10. The gas exhaust pipe 50 may exhaust not only gas but also liquid. The material of the gas exhaust pipe 50 may be any material that does not react with various gases and can maintain its quality and shape, and examples thereof include quartz and various metal materials. The gas exhaust pipe 50 is inserted into the synthesis furnace 10 through an opening provided on the lower wall of the synthesis furnace 10 and / or on the side wall below the first gas supply pipe 41 and the second gas supply pipe 43. Is preferred. If the first gas supplier 41, the second gas supply pipe 43, and the gas exhaust pipe 50 are provided in this way, the raw material gas is preferably supplied to the catalyst from the vertical (vertical) direction in the synthesis furnace 10.
〔加熱手段および加熱領域〕
加熱手段30は、合成炉10を外囲するように設けられた合成炉10、を加熱するための装置を指す。電熱線を用いるもの、赤外線を用いるものなど既存の加熱手段30を用いることができる。なお、本明細書で言う加熱領域31とは、加熱手段30により、加熱された合成炉10の内部の空間を言う。
[Heating means and heating area]
The heating means 30 refers to an apparatus for heating the synthesis furnace 10 provided so as to surround the synthesis furnace 10. The existing heating means 30 such as one using a heating wire or one using infrared rays can be used. In addition, the heating area | region 31 said by this specification means the space inside the synthesis furnace 10 heated by the heating means 30. FIG.
〔製造装置の材質〕
製造装置の一部、特に第1ガス流路45を構成する配管55、第2ガス流路47を構成する配管57の材質は、その機能を発現できるものであればよく、公知の物を適宜用いることができる。このような材質としては耐熱合金とすると良い。耐熱合金は、加工性、機械的強度に優れるため好ましい。
[Material of manufacturing equipment]
The material of a part of the manufacturing apparatus, in particular, the pipe 55 constituting the first gas flow path 45 and the pipe 57 constituting the second gas flow path 47 may be any material as long as it can exhibit its function. Can be used. Such a material is preferably a heat resistant alloy. A heat resistant alloy is preferable because it is excellent in workability and mechanical strength.
〔本発明のメカニズム〕
本発明のカーボンナノチューブの製造装置および製造方法が触媒賦活物質含環境下で、高速にかつ高収量で効率良く効率よく、高純度、高比表面積のCNTを製造することができるメカニズムは以下のように推察される。
[Mechanism of the present invention]
The mechanism by which the carbon nanotube production apparatus and production method of the present invention can produce high-purity, high-specific surface area CNTs at high speed, high yield and efficiency efficiently in an environment containing a catalyst activator is as follows. Is inferred.
第1ガス供給管41から供給される第1ガスは、第1ガス流路45を通り配管55の出口から触媒層の近傍のガス混合領域80に供給される。第1ガスに含まれる原料ガスは、第1ガス流路45を通る間に高温に晒されることになり、その結果、原料ガスの分解反応が進み、原料ガスが触媒と接触した際に、容易に反応し、CNTの製造が促進される。 The first gas supplied from the first gas supply pipe 41 passes through the first gas flow path 45 and is supplied from the outlet of the pipe 55 to the gas mixing region 80 near the catalyst layer. The source gas contained in the first gas is exposed to a high temperature while passing through the first gas flow path 45. As a result, the decomposition reaction of the source gas proceeds, and when the source gas comes into contact with the catalyst, it is easy. The production of CNT is promoted.
一方、第2ガス供給管43から供給される第2ガスは、第2ガス流路47を通り配管57の出口から触媒の近傍のガス混合領域80に供給される。第2ガスに含まれる触媒賦活物質は、第2ガス流路47を通る間は、原料ガスと反応する量が少ないため、ガス混合領域80に所定の量の触媒賦活物質が供給される。 On the other hand, the second gas supplied from the second gas supply pipe 43 passes through the second gas flow path 47 and is supplied from the outlet of the pipe 57 to the gas mixing region 80 near the catalyst. Since the amount of the catalyst activation material contained in the second gas reacts with the raw material gas while passing through the second gas flow path 47, a predetermined amount of the catalyst activation material is supplied to the gas mixing region 80.
したがって、本発明のカーボンナノチューブの製造装置および製造方法においては、原料ガスの分解反応が進み、CNTの製造に好適な状態の原料ガスと、所定の量の触媒賦活物質とがガス混合領域80に供給されて、混合することとなる。これにより、基材1の触媒層近傍のガス混合領域に原料ガスと、単位面積あたり所定の供給量の触媒賦活物質とを供給して反応させることができる。この結果、触媒の寿命が改善し、CNTの合成効率が著しく向上したことに着目すれば、従来よりも、合成効率が最適化されると考えることができる。 Therefore, in the carbon nanotube production apparatus and production method of the present invention, the decomposition reaction of the raw material gas proceeds, and the raw material gas in a state suitable for the production of CNT and a predetermined amount of the catalyst activation material are in the gas mixing region 80. Supplied and mixed. As a result, the raw material gas and a predetermined amount of catalyst activation material per unit area can be supplied to the gas mixing region in the vicinity of the catalyst layer of the substrate 1 to cause a reaction. As a result, it can be considered that the synthesis efficiency is optimized as compared with the prior art by paying attention to the fact that the life of the catalyst is improved and the synthesis efficiency of CNT is remarkably improved.
〔CNTの製造方法〕
本発明に係るCNTの製造には、上述したCNTの製造装置を用いることで、公知の合成法を適用することができる。これは、基材1上に触媒層を製造し、その触媒から複数のCNTを化学気相成長(合成)させるものである。
[Method for producing CNT]
A known synthesis method can be applied to the production of the CNT according to the present invention by using the above-described CNT production apparatus. In this method, a catalyst layer is produced on the substrate 1, and a plurality of CNTs are chemically vapor-grown (synthesized) from the catalyst.
図1を参照しながら説明すると、先ず、第1ガス供給管41から第1ガス流路45を介して供給された雰囲気ガス(例えばヘリウム)が満たされた合成炉10内に、触媒層3(例えばアルミナ-鉄薄膜)を別工程で予め成膜した基材1(例えばシリコンウエハ)を搬入し、基材ホルダ5に載置する。 Referring to FIG. 1, first, in the synthesis furnace 10 filled with the atmospheric gas (for example, helium) supplied from the first gas supply pipe 41 through the first gas flow path 45, the catalyst layer 3 ( For example, a base material 1 (for example, a silicon wafer) on which an alumina-iron thin film is formed in a separate process is carried in and placed on the base material holder 5.
このとき、触媒層3表面と第1ガス流路45および第2ガス流路47とが概して垂直に交わるように基材1を配設し、原料ガスが効率良く触媒に供給されるようにする。 At this time, the base material 1 is disposed so that the surface of the catalyst layer 3 and the first gas flow path 45 and the second gas flow path 47 intersect substantially vertically so that the source gas is efficiently supplied to the catalyst. .
次いで第1ガス供給管41から第1ガス流路45を介して合成炉10内に還元ガス(例えば水素)を供給しながら、合成炉10内を所定の温度(例えば750℃)に加熱し、その状態を所望の時間保持するフォーメーション工程を行う。 Next, while supplying a reducing gas (for example, hydrogen) from the first gas supply pipe 41 to the synthesis furnace 10 via the first gas flow path 45, the interior of the synthesis furnace 10 is heated to a predetermined temperature (for example, 750 ° C.), A formation process for holding the state for a desired time is performed.
この還元ガスにより、触媒層3が微粒子化され、CNTの触媒として好適な状態に調整される。また、フォーメーション工程においては、必要に応じて第2ガス供給管43から第2ガス流路47を介して触媒賦活物質を含む第2ガスを添加してもよい。 With this reducing gas, the catalyst layer 3 is finely divided and adjusted to a state suitable as a catalyst for CNTs. In the formation step, a second gas containing a catalyst activation material may be added from the second gas supply pipe 43 through the second gas flow path 47 as necessary.
次いで第1ガス流路45からの還元ガスおよび雰囲気ガスの供給を所望(反応条件)に応じて停止あるいは低減すると共に、原料ガスと触媒賦活物質の各々を、合成炉10内に配設された互いに異なる配管から触媒層3の近傍のガス混合領域80に供給する。すなわち、原料ガス(例えばエチレン)と、雰囲気ガスを含む第1ガスを、第1ガス供給管41から第1ガス流路45を介して合成炉10内に供給し、触媒賦活物質(例えば水)を含む第2ガスを第2ガス供給管43から第2ガス流路47を介して合成炉10内に供給する。第1ガス流路45およびまたは第2ガス流路47から供給されたこれらのガスは、ガス流形成手段により分配・分散し、複数の方向へ流れる原料ガス流を形成した後に、触媒層3の近傍のガス混合領域80で混合し、好適な量で、基材1上の触媒層3表面に供給される。 Next, the supply of the reducing gas and the atmospheric gas from the first gas flow path 45 is stopped or reduced as desired (reaction conditions), and each of the raw material gas and the catalyst activation material is disposed in the synthesis furnace 10. It supplies to the gas mixing area | region 80 of the catalyst layer 3 vicinity from mutually different piping. That is, a raw material gas (for example, ethylene) and a first gas containing an atmospheric gas are supplied from the first gas supply pipe 41 into the synthesis furnace 10 via the first gas flow path 45, and a catalyst activation material (for example, water). Is supplied from the second gas supply pipe 43 into the synthesis furnace 10 through the second gas flow path 47. These gases supplied from the first gas flow path 45 and / or the second gas flow path 47 are distributed and dispersed by the gas flow forming means, and after forming a raw material gas flow flowing in a plurality of directions, It mixes in the gas mixing area | region 80 of the vicinity, and is supplied to the catalyst layer 3 surface on the base material 1 by a suitable quantity.
ここで、第1ガス流路45を通過する間に第1ガスに含まれる原料ガスは分解反応が進み、CNTの製造に好適な状態となる。また、第2ガス流路47から供給されることで、原料ガスとは反応せずに十分な量の触媒賦活物質がガス混合領域80に供給される。このように最適化された第1ガスと第2ガスとをガス混合領域80で混合して触媒層3に接触させ、基材1に被着した触媒層から高速にかつ高収量で効率良くCNTが成長する(成長工程)。また、触媒層3に接触した後には、これらのガスは速やかにガス排気管50より排気され、炭素不純物の発生は最小限に抑えられる。 Here, the raw material gas contained in the first gas undergoes a decomposition reaction while passing through the first gas flow path 45, and is in a state suitable for the production of CNTs. Further, by supplying from the second gas flow path 47, a sufficient amount of the catalyst activation material is supplied to the gas mixing region 80 without reacting with the source gas. The first gas and the second gas optimized in this way are mixed in the gas mixing region 80 and brought into contact with the catalyst layer 3, and the CNTs are efficiently produced at high speed and high yield from the catalyst layer deposited on the substrate 1. Grows (growth process). Further, after coming into contact with the catalyst layer 3, these gases are quickly exhausted from the gas exhaust pipe 50, and the generation of carbon impurities is minimized.
CNTの生産終了後、合成炉10内に残余する、第1ガスに含まれる原料ガス、第2ガスに含まれる触媒賦活物質、それらの分解物、または合成炉10内に存在する炭素不純物等がCNT集合体へ付着することを抑制するために、第1ガス流路45から雰囲気ガスのみを流し、CNT集合体への不純物の接触を抑制する(炭素不純物付着抑制工程)。 After the production of CNTs is finished, the raw material gas contained in the first gas, the catalyst activator contained in the second gas, the decomposition products thereof, or the carbon impurities existing in the synthesis furnace 10 remain in the synthesis furnace 10. In order to suppress the adhesion to the CNT aggregate, only the atmospheric gas is allowed to flow from the first gas flow path 45 to suppress the contact of impurities to the CNT aggregate (carbon impurity adhesion suppression step).
このようにして、基材1上の触媒層3から同時に成長した複数のCNTは、触媒層3に直交する向きに成長して、配向し、高さが概ねそろった高比表面積、高純度のCNT集合体を構成する。 In this way, the plurality of CNTs grown simultaneously from the catalyst layer 3 on the base material 1 grow in a direction orthogonal to the catalyst layer 3 and are oriented, and have a high specific surface area and high purity with almost the same height. A CNT aggregate is formed.
以下、これらの各種条件について詳述する。
〔フォーメーション工程〕
フォーメーション工程とは、合成炉10内に配設された基材1上の触媒層3に、還元ガスを供給して接触させる工程であって、基材1に担持された触媒層の周囲環境を還元ガス環境とすると共に、触媒層または第1ガス流路45から供給する還元ガスの少なくとも一方を加熱する工程である。この工程により、触媒の還元、触媒のCNTの成長に適合した状態の微粒子化促進、および触媒の活性向上の少なくとも一つの効果が現れる。例えば、触媒がアルミナ-鉄薄膜である場合、鉄触媒層は還元されて微粒子化し、アルミナ層上にナノメートルサイズの触媒微粒子が多数形成される。
Hereinafter, these various conditions will be described in detail.
[Formation process]
The formation process is a process in which a reducing gas is supplied and brought into contact with the catalyst layer 3 on the substrate 1 disposed in the synthesis furnace 10, and the environment surrounding the catalyst layer supported on the substrate 1 is changed. This is a step of heating at least one of the reducing gas supplied from the catalyst layer or the first gas flow path 45 while setting the reducing gas environment. By this step, at least one of the effects of reducing the catalyst, promoting atomization in a state suitable for the growth of the catalyst CNT, and improving the activity of the catalyst appears. For example, when the catalyst is an alumina-iron thin film, the iron catalyst layer is reduced to form fine particles, and a large number of nanometer-sized catalyst fine particles are formed on the alumina layer.
〔成長工程〕
成長工程とは、CNTの生産に好適な触媒の周囲環境を原料ガス環境とすると共に、触媒層または第2ガス供給管43から供給する原料ガスの少なくとも一方を加熱することにより、CNT集合体を成長させる工程のことを意味する。フォーメーション工程の後に成長工程を行うことはCNT集合体の生産に好適である。
[Growth process]
The growth process means that the surrounding environment of the catalyst suitable for the production of CNTs is a source gas environment, and at least one of the source gases supplied from the catalyst layer or the second gas supply pipe 43 is heated, so that the CNT aggregate is It means the process of growing. Performing the growth step after the formation step is suitable for the production of CNT aggregates.
〔冷却工程〕
冷却工程とは、CNT集合体、触媒、および基材1を、成長工程後に冷却する工程のことである。成長工程後のCNT集合体、触媒、および基材1は高温状態にあるため、酸素存在環境下に置かれると酸化してしまうおそれがある。それを防ぐために冷却ガス環境下でCNT集合体、触媒、および基材1を、好ましくは400℃以下、より好ましくは200℃以下に冷却する。冷却ガスとしては、第2ガス供給管43から供給する不活性ガスが好ましく、特に安全性、経済性、およびパージ性などの点から窒素が好ましい。
[Cooling process]
The cooling step is a step of cooling the CNT aggregate, the catalyst, and the substrate 1 after the growth step. Since the CNT aggregate, the catalyst, and the base material 1 after the growth process are in a high temperature state, there is a possibility that they will be oxidized when placed in an oxygen-existing environment. In order to prevent this, the CNT aggregate, the catalyst, and the substrate 1 are preferably cooled to 400 ° C. or lower, more preferably 200 ° C. or lower in a cooling gas environment. As the cooling gas, an inert gas supplied from the second gas supply pipe 43 is preferable, and nitrogen is particularly preferable from the viewpoints of safety, economy, purgeability, and the like.
〔基材(基板)〕
基材1(基板)とは、その表面にCNTを成長させる触媒を担持することのできる部材であり、最低限400℃以上の高温でも形状を維持できるものであれば適宜のものを用いることができる。
[Base material (substrate)]
The base material 1 (substrate) is a member capable of supporting a catalyst for growing CNTs on the surface thereof, and an appropriate material can be used as long as the shape can be maintained even at a high temperature of 400 ° C. or higher. it can.
基材1の形態としては、平板等の平面状の形態が、本発明の効果を用いて、大量のCNTを製造するために好ましく、これまでにCNTの製造に実績のある材質であればよい。しかしながら、粉末、または線状体の集合体で、平面状をなす基材1でもよい。 As a form of the base material 1, a flat form such as a flat plate is preferable for producing a large amount of CNTs using the effects of the present invention, and any material having a proven record in producing CNTs so far may be used. . However, it may be a base material 1 that is a powder or an aggregate of linear bodies and has a planar shape.
金属は、シリコンやセラミックと比較して廉価である点が好ましく、特に、鉄-クロム(Fe-Cr)合金、鉄-ニッケル(Fe-Ni)合金、および鉄-クロム-ニッケル(Fe-Cr-Ni)合金などが本発明の実施に好適である。 The metal is preferably cheaper than silicon or ceramic, and in particular, iron-chromium (Fe-Cr) alloy, iron-nickel (Fe-Ni) alloy, and iron-chromium-nickel (Fe-Cr-). Ni) alloys and the like are suitable for the practice of the present invention.
粉末、または線状体としては、具体的には、板状アルミナ・石英フレーク・石英繊維・セラミック繊維・繊維状酸化チタンなどを例示できる。 Specific examples of the powder or linear body include plate-like alumina, quartz flakes, quartz fibers, ceramic fibers, and fibrous titanium oxide.
〔触媒〕
本発明の実施において基材1に担持され、触媒層3を形成する触媒としては、これまでのCNTの製造に実績のあるものであれば適宜のものを用いることができるが、具体的には、鉄・ニッケル・コバルト・モリブデン、およびこれらの塩化物並びに合金や、これらがさらにアムミニウム・アルミナ・チタニア・窒化チタン・酸化シリコンと複合化、または重層化したものでもよい。
〔catalyst〕
In the practice of the present invention, any catalyst that is supported on the substrate 1 and forms the catalyst layer 3 can be used as long as it has a proven record in the production of CNTs so far. , Iron, nickel, cobalt, molybdenum, and chlorides and alloys thereof, and those further compounded or layered with aluminium, alumina, titania, titanium nitride, and silicon oxide.
〔還元ガス〕
フォーメーション工程で用いる還元ガスは、触媒の還元、触媒のCNTの成長に適合した状態の微粒子化促進、および触媒の活性向上の少なくとも一つの効果を持つガスである。本発明の実施に用いる還元ガスとしては、これまでのCNTの製造に実績のある還元性を有するガスであれば適宜のものを用いることができるが、例えば水素・アンモニア・水、およびそれらの混合ガスを適用することができる。
[Reducing gas]
The reducing gas used in the formation step is a gas that has at least one of the effects of reducing the catalyst, promoting the atomization suitable for the growth of the CNT of the catalyst, and improving the activity of the catalyst. As the reducing gas used in the practice of the present invention, any suitable gas can be used as long as it has a proven reductivity in the production of conventional CNTs. For example, hydrogen, ammonia, water, and mixtures thereof Gas can be applied.
〔不活性ガス(雰囲気ガス)〕
化学気相成長の雰囲気ガス(キャリアガス)としては、CNTの成長温度で不活性であり、成長するCNTと反応しないガスであればよく、本発明の実施に用いる雰囲気ガスとしては、これまでのCNTの製造に実績のあるものであれば適宜のものを用いることができる。一般的には、不活性ガスが好ましく、ヘリウム・アルゴン・水素・窒素・ネオン・クリプトン・二酸化炭素・塩素などや、これらの混合ガスが挙げられ、特に窒素・ヘリウム・アルゴン・水素、およびこれらの混合ガスが好適である。
[Inert gas (atmosphere gas)]
The atmospheric gas (carrier gas) for chemical vapor deposition may be any gas that is inert at the growth temperature of CNT and does not react with the growing CNT. As the atmospheric gas used in the practice of the present invention, As long as there is a track record in the manufacture of CNTs, an appropriate one can be used. In general, an inert gas is preferable, and examples thereof include helium, argon, hydrogen, nitrogen, neon, krypton, carbon dioxide, chlorine, and a mixed gas thereof. Particularly, nitrogen, helium, argon, hydrogen, and these A mixed gas is preferred.
〔原料(原料ガス)〕
本発明の実施においてCNTの製造に用いる原料としては、これまでのCNTの製造に実績のあるものであれば、適宜な物質を用いることができる。本明細書では、原料ガスを含有するガスを第1ガスと規定する。第1ガスは触媒賦活物質を含有しないことが好ましい。
[Raw material (Raw material gas)]
As a raw material used for the production of CNT in the practice of the present invention, an appropriate substance can be used as long as it has a proven record in the production of CNTs so far. In this specification, the gas containing source gas is prescribed | regulated as 1st gas. The first gas preferably does not contain a catalyst activator.
本発明の実施形態に係る原料ガスとしては、芳香族化合物・飽和炭化水素・不飽和炭化水素・不飽和鎖式炭化水素・飽和鎖式炭化水素・環状不飽和炭化水素・環状飽和炭化水素などのガス状炭素化合物を例示できる。中でも、メタン・エタン・プロパン・ブタン・ペンタン・ヘキサン・ヘプタン・プロピレン・エチレン・ブタジエン・ポリアセチレン・アセチレンなどの炭化水素が好適である。これらの原料ガスが成長工程において触媒と接触することにより、触媒表面にCNTが生成される。 Examples of the source gas according to the embodiment of the present invention include aromatic compounds, saturated hydrocarbons, unsaturated hydrocarbons, unsaturated chain hydrocarbons, saturated chain hydrocarbons, cyclic unsaturated hydrocarbons, and cyclic saturated hydrocarbons. A gaseous carbon compound can be illustrated. Of these, hydrocarbons such as methane, ethane, propane, butane, pentane, hexane, heptane, propylene, ethylene, butadiene, polyacetylene, and acetylene are preferable. When these source gases come into contact with the catalyst in the growth process, CNTs are generated on the catalyst surface.
〔触媒賦活物質の添加〕
CNTの成長工程において、触媒賦活物質を添加する。触媒賦活物質の添加により、触媒の寿命を延長し、且つ活性を高め、結果としてCNTの生産効率向上や高純度化を推進することができる。第2ガスは、好ましくは原料ガスを含有せず、触媒賦活物質を含有することが好ましい。
[Addition of catalyst activator]
In the CNT growth process, a catalyst activator is added. By adding a catalyst activator, the life of the catalyst can be extended and the activity can be increased. As a result, improvement in the production efficiency and high purity of CNT can be promoted. The second gas preferably does not contain a raw material gas, but preferably contains a catalyst activator.
ここで用いる触媒賦活物質としては、酸素もしくは、硫黄などの酸化力を有する物質であり、且つ成長温度でCNTに多大なダメージを与えない物質であればよく、水・酸素・オゾン・酸性ガス、および酸化窒素・一酸化炭素・二酸化炭素などの低炭素数の含酸素化合物、またはエタノール・メタノール・イソプロパノールなどのアルコール類、テトラヒドロフランなどのエーテル類、アセトンなどのケトン類、アルデヒドロ類・酸類・塩類・アミド類・エステル類、並びにこれらの混合物が有効である。この中でも、水・酸素・二酸化炭素・一酸化炭素・エーテル類・アルコール類が好ましいが、特に、極めて容易に入手できる水が好適である。触媒賦活物質として、炭素を含むものを用いた場合、触媒賦活物質中の炭素が、CNTの原料となりうる。 The catalyst activator used here may be a substance having an oxidizing power such as oxygen or sulfur, and any substance that does not cause much damage to the CNT at the growth temperature, such as water, oxygen, ozone, acid gas, And low carbon number oxygen-containing compounds such as nitrogen oxide, carbon monoxide and carbon dioxide, or alcohols such as ethanol, methanol and isopropanol, ethers such as tetrahydrofuran, ketones such as acetone, aldehydes, acids and salts -Amides, esters, and mixtures thereof are effective. Among these, water, oxygen, carbon dioxide, carbon monoxide, ethers, and alcohols are preferable, but water that can be easily obtained is particularly preferable. When a material containing carbon is used as the catalyst activation material, carbon in the catalyst activation material can be a raw material for CNT.
〔触媒賦活物質および原料の条件〕
成長工程において触媒賦活物質と原料とを用いてCNTを製造する際には、(1)原料は炭素を含み酸素を含まず、(2)触媒賦活物質は酸素を含むことが、CNTを高効率で製造することが好ましい。上述したように、本発明においては、原料ガスを含む第1ガスは第1ガス流路45を介して合成炉10内に供給し、触媒賦活物質(例えば水)を含む第2ガスは第2ガス流路47を介して合成炉10内に供給する。これにより、第1ガス流路45を通過する間に原料ガスは分解反応が進み、CNTの製造に好適な状態となる。また、第2ガス流路47から供給されることで、原料ガスとの反応が抑制され、十分な量の触媒賦活物質がガス混合領域80に供給される。このように最適化された第1ガスおよび第2ガスがガス混合領域80で混合して触媒層3に接触させることにより、CNTを高効率で製造することが可能となる。
[Catalyst activator and raw material conditions]
When producing CNTs using a catalyst activator and raw materials in the growth process, (1) the raw materials contain carbon and no oxygen, and (2) the catalyst activators contain oxygen, which makes the CNT highly efficient. It is preferable to manufacture by. As described above, in the present invention, the first gas containing the source gas is supplied into the synthesis furnace 10 via the first gas flow path 45, and the second gas containing the catalyst activation material (for example, water) is the second gas. The gas is supplied into the synthesis furnace 10 through the gas flow path 47. As a result, the raw material gas undergoes a decomposition reaction while passing through the first gas flow path 45, and is in a state suitable for the production of CNTs. Further, by being supplied from the second gas flow path 47, the reaction with the source gas is suppressed, and a sufficient amount of the catalyst activation material is supplied to the gas mixing region 80. The first gas and the second gas optimized in this way are mixed in the gas mixing region 80 and brought into contact with the catalyst layer 3, whereby CNTs can be produced with high efficiency.
〔反応温度〕
CNTを成長させる反応温度は、金属触媒、原料炭素源、および反応圧力などを考慮して適宜に定められるが、触媒失活の原因となる副次生成物を排除するために触媒賦活剤を添加する工程を含むため、その効果が十分に発現する温度範囲に設定することが望ましい。
[Reaction temperature]
The reaction temperature for growing CNTs is appropriately determined in consideration of the metal catalyst, raw material carbon source, reaction pressure, etc., but a catalyst activator is added to eliminate by-products that cause catalyst deactivation. Therefore, it is desirable to set the temperature range in which the effect is sufficiently exhibited.
つまり、最も望ましい温度範囲としては、アモルファスカーボンやグラファイトなどの副次生成物を触媒賦活物質が除去し得る温度を下限値とし、主生成物であるCNTが触媒賦活物質によって酸化されない温度を上限値とすることである。 That is, the most desirable temperature range is the lower limit value at which the catalyst activator can remove by-products such as amorphous carbon and graphite, and the upper limit temperature at which the main product CNT is not oxidized by the catalyst activator. It is to do.
具体的には、触媒賦活物質として水を用いる場合は、好ましくは400℃以上1000℃以下とすることである。400℃未満では触媒賦活物質の効果が発現せず、1000℃を超えると触媒賦活物質がCNTと反応してしまう。 Specifically, when water is used as the catalyst activator, it is preferably 400 ° C. or higher and 1000 ° C. or lower. If it is less than 400 ° C., the effect of the catalyst activator does not appear, and if it exceeds 1000 ° C., the catalyst activator reacts with CNT.
また触媒賦活物質として二酸化炭素を用いる場合は、400℃以上1100℃以下とすることがより好ましい。400℃未満では触媒賦活物質の効果が発現せず、1100℃を超えると触媒賦活物質がCNTと反応してしまう。 Moreover, when using a carbon dioxide as a catalyst activation material, it is more preferable to set it as 400 degreeC or more and 1100 degrees C or less. If the temperature is lower than 400 ° C., the effect of the catalyst activating material does not appear, and if it exceeds 1100 ° C., the catalyst activating material reacts with CNT.
〔CNT集合体〕
上記した生産装置、および製造法により、触媒賦活物質含有雰囲気で、基材上の触媒から原料ガスを用いて、高効率でCNTを成長させることができ、触媒から成長した多数のCNTは特定の方向に配向し、CNT集合体を形成する。CNT配向集合体とは基材1から剥離して得られた物体でも良い。その場合、CNT集合体は粉体状であっても良い。
[CNT aggregate]
With the production apparatus and the manufacturing method described above, it is possible to grow CNTs with high efficiency using a raw material gas from a catalyst on a substrate in a catalyst-activating substance-containing atmosphere. Oriented in the direction to form a CNT aggregate. The aligned CNT aggregate may be an object obtained by peeling from the substrate 1. In that case, the CNT aggregate may be in a powder form.
炭素不純物が単層CNT集合体に付着すると、単層CNT集合体の比表面積が低下する。本発明に係る単層CNT集合体は、炭素不純物の発生が抑制されているために、比表面積は800m/g以上2600m/g以下と非常に大きい。CNT集合体の比表面積は、液体窒素の77Kでの吸脱着等温線の計測によって求めることができる。このように大きな比表面積は、触媒の担持体やエネルギー・物質貯蔵材として有効であり、スーパーキャパシタやアクチュエータなどの用途に好適である。 When carbon impurities adhere to the single-walled CNT aggregate, the specific surface area of the single-walled CNT aggregate decreases. The single-walled CNT aggregate according to the present invention has a very large specific surface area of 800 m 2 / g or more and 2600 m 2 / g or less because generation of carbon impurities is suppressed. The specific surface area of the CNT aggregate can be determined by measuring the adsorption and desorption isotherm of liquid nitrogen at 77K. Such a large specific surface area is effective as a catalyst carrier and energy / material storage material, and is suitable for applications such as supercapacitors and actuators.
大きい比表面積を得るためには、CNTが可能な限り高純度であることが望ましい。ここでいう純度とは、炭素純度である。炭素純度とは、CNT集合体の重量の何パーセントが炭素で構成されているかを示し、蛍光X線を用いた元素分析等から求めるとよい。大きな比表面積を得る上での炭素純度に上限はないが、製造上の都合から、99.9999%以上の炭素純度を有するCNT集合体を得ることは困難である。炭素純度が95%に満たないと、未開口CNTの場合、800m/gを超える比表面積を得ることが困難となる。 In order to obtain a large specific surface area, it is desirable that the CNTs have the highest possible purity. The purity here is carbon purity. The carbon purity indicates what percentage of the weight of the CNT aggregate is composed of carbon, and may be obtained from elemental analysis using fluorescent X-rays. Although there is no upper limit to the carbon purity for obtaining a large specific surface area, it is difficult to obtain a CNT aggregate having a carbon purity of 99.9999% or more for convenience of production. If the carbon purity is less than 95%, it is difficult to obtain a specific surface area exceeding 800 m 2 / g in the case of unopened CNTs.
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(実施例1)
本実施例においては、第1ガス流路45および第2ガス流路47の少なくとも一方が、第1ガス、および/または、第2ガスを複数の方向に分配するガス流形成手段21を備える例について説明する。本実施例においては、一例として、第1ガス流路45がガス流形成手段21を備えるCNTの製造装置200について説明する。
Example 1
In the present embodiment, at least one of the first gas flow path 45 and the second gas flow path 47 includes the gas flow forming means 21 that distributes the first gas and / or the second gas in a plurality of directions. Will be described. In the present embodiment, as an example, a CNT manufacturing apparatus 200 in which the first gas flow path 45 includes the gas flow forming means 21 will be described.
図2に本実施例に係るCNTの製造装置200の模式図を示す。図2(a)は本発明の一実施形例に係るCNTの製造装置200を概念的に示した図であり、図2(b)は図2(a)に示すA-A’断面における配管55及び配管57の断面図である。CNTの製造装置200は上述したCNTの製造装置100の第1ガス流路45と第2ガス流路47がガス流形成手段21と配管55及び配管57によりそれぞれ構成される。加熱領域31内に配設された第1ガス流路45には、第1ガス供給管41から供給される原料ガスを含む第1ガスを分配・分散させ、複数の方向へ流れる原料ガス流を形成させる、ガス流形成手段21が配設されている。ガス流形成手段21は、基材1の触媒層の表面に対して略平行の複数の方向に原料ガスの流れを形成する。また第1ガス流路45は、ガス流形成手段21に接続し、基材1の触媒層の表面に対して略垂直方向の原料ガス流を形成する複数の配管55が設けられている。配管55は、基材1の触媒層に対して、略平行な同一面内に配設されている。また同様に、第2ガス流路47に第2ガス供給管43から供給される触媒賦活物質を含む第2ガスを分配・分散させ、複数の方向へ流れる原料ガス流を形成させる、ガス流形成手段を配置することもできる。 FIG. 2 is a schematic diagram of a CNT manufacturing apparatus 200 according to the present embodiment. FIG. 2 (a) is a diagram conceptually showing a CNT manufacturing apparatus 200 according to an embodiment of the present invention, and FIG. 2 (b) is a pipe in the section AA ′ shown in FIG. 2 (a). 55 is a cross-sectional view of a pipe 55 and a pipe 57. FIG. In the CNT manufacturing apparatus 200, the first gas flow path 45 and the second gas flow path 47 of the CNT manufacturing apparatus 100 described above are constituted by the gas flow forming means 21, the pipe 55, and the pipe 57, respectively. The first gas flow path 45 disposed in the heating region 31 distributes and disperses the first gas including the source gas supplied from the first gas supply pipe 41, and the source gas flow flowing in a plurality of directions is supplied. A gas flow forming means 21 to be formed is disposed. The gas flow forming means 21 forms a flow of source gas in a plurality of directions substantially parallel to the surface of the catalyst layer of the substrate 1. The first gas flow path 45 is connected to the gas flow forming means 21 and is provided with a plurality of pipes 55 that form a raw material gas flow in a direction substantially perpendicular to the surface of the catalyst layer of the substrate 1. The piping 55 is disposed in the same plane that is substantially parallel to the catalyst layer of the substrate 1. Similarly, the second gas flow path 47 distributes and disperses the second gas containing the catalyst activation material supplied from the second gas supply pipe 43 to form a raw material gas flow that flows in a plurality of directions. Means can also be arranged.
第1ガス流路45は、このようなガス流形成手段21を備えることにより、第1ガス供給管41から供給された原料ガスを含む第1ガスを、基材1の触媒層の表面と略平行な平面に展開・分散してから、基材1の触媒層と略垂直方向から触媒と接触させることができる。また、第2ガス流路47にガス流形成手段を用いることにより、第2ガス供給管43から供給された触媒賦活物質を含む第2ガスを、基材1の触媒層の表面と略平行な平面に展開・分散してから、基材1の触媒層と略垂直方向から触媒と接触させてもよい。 The first gas flow path 45 is provided with such a gas flow forming means 21 so that the first gas containing the source gas supplied from the first gas supply pipe 41 is substantially the same as the surface of the catalyst layer of the substrate 1. After spreading and dispersing in parallel planes, the catalyst can be brought into contact with the catalyst layer of the substrate 1 from a substantially vertical direction. Further, by using a gas flow forming means in the second gas flow path 47, the second gas containing the catalyst activation material supplied from the second gas supply pipe 43 is substantially parallel to the surface of the catalyst layer of the substrate 1. You may make it contact with a catalyst from the catalyst layer of the base material 1 from a substantially perpendicular direction, after expand | deploying and disperse | distributing to a plane.
本発明のCNTの製造装置200によれば、第1ガス流路45は、原料ガスを含む第1ガスをガス流形成手段21により分配・分散させ、複数の方向へ流れる原料ガス流を形成させる。また、第1ガス流路45は、配管55により基材1の触媒層の表面に対して略垂直方向の原料ガス流を形成する。また、複数の配管55を有する第1ガスの流路43は、断面積が大きくして、加熱体積、を増加・調整することにより、原料ガスの分解反応が進み、原料ガスが触媒と接触した際に、容易に反応し、CNTの製造が促進される。また、触媒賦活物質を含む第2ガスは、第2ガス流路47からガス混合領域80に供給されるため、触媒層の近傍に到達する前に原料ガスと触媒賦活物質とが混合して反応する量が少なく、触媒表面に到達する前に第1ガスと第2ガスとを混合して触媒層に接触することができるため、高純度、高比表面積のCNT集合体を、大面積に且つ効率よく製造することができる。 According to the CNT manufacturing apparatus 200 of the present invention, the first gas flow path 45 distributes and disperses the first gas containing the raw material gas by the gas flow forming means 21 to form a raw material gas flow that flows in a plurality of directions. . In addition, the first gas flow path 45 forms a raw material gas flow in a direction substantially perpendicular to the surface of the catalyst layer of the substrate 1 by the pipe 55. In addition, the flow path 43 of the first gas having the plurality of pipes 55 has a large cross-sectional area and increases / adjusts the heating volume, so that the decomposition reaction of the source gas proceeds and the source gas comes into contact with the catalyst. In this case, it easily reacts to promote the production of CNTs. Further, since the second gas containing the catalyst activation material is supplied from the second gas flow path 47 to the gas mixing region 80, the source gas and the catalyst activation material are mixed and reacted before reaching the vicinity of the catalyst layer. Since the first gas and the second gas can be mixed and brought into contact with the catalyst layer before reaching the catalyst surface, a high purity, high specific surface area CNT aggregate can be formed in a large area It can be manufactured efficiently.
また、CNTの製造装置200は、CNTの原料となる炭素化合物を収容する原料ガスボンベ61、原料ガスや触媒賦活物質のキャリアガスを収容する雰囲気ガスボンベ63、触媒を還元するための還元ガスボンベ65、および触媒賦活物質を収容する触媒賦活物質ボンベ67を備える。また、個別にかつ互いに独立に、第1ガスの炭素重量フラックスを調整する第1炭素重量フラックス調整手段71と、第2ガスの炭素重量フラックスを調整する第2炭素重量フラックス調整手段73とを備える。本実施例においては、第1炭素重量フラックス調整手段71は原料ガスボンベ61、雰囲気ガスボンベ63、還元ガスボンベ65からのガスの供給量を制御して第1ガスの炭素重量フラックスを調整し、第2炭素重量フラックス調整手段73は触媒賦活物質ボンベ67からのガスの供給量を制御して第2ガスの炭素重量フラックスを調整する。このような構成は、最適化された量のガスを触媒に接触させるために好適である。 The CNT manufacturing apparatus 200 includes a source gas cylinder 61 that stores a carbon compound that is a source of CNT, an atmosphere gas cylinder 63 that stores a source gas or a carrier gas of a catalyst activation material, a reducing gas cylinder 65 for reducing the catalyst, and A catalyst activation material cylinder 67 that contains the catalyst activation material is provided. In addition, the first carbon weight flux adjusting means 71 for adjusting the carbon weight flux of the first gas and the second carbon weight flux adjusting means 73 for adjusting the carbon weight flux of the second gas are provided individually and independently of each other. . In this embodiment, the first carbon weight flux adjusting means 71 adjusts the carbon weight flux of the first gas by controlling the amount of gas supplied from the source gas cylinder 61, the atmospheric gas cylinder 63, and the reducing gas cylinder 65, and the second carbon The weight flux adjusting means 73 adjusts the carbon weight flux of the second gas by controlling the amount of gas supplied from the catalyst activator cylinder 67. Such a configuration is suitable for bringing an optimized amount of gas into contact with the catalyst.
第1ガス供給管41、第2ガス供給管43、ガス排出管50、並びに各供給部の適所には、逆止弁、流量制御弁、および流量センサが設けられており、図示されていない制御装置からの制御信号によって各流量制御弁を適宜に開閉制御することにより、所定流量の原料ガス、雰囲気ガス、還元ガスが、並びに触媒賦活物質、第1ガス供給管41および第2ガス供給管43から反応プロセスに応じて連続的にあるいは間欠的に合成炉10内に供給されるようになっている。 A check valve, a flow rate control valve, and a flow rate sensor are provided at appropriate positions of the first gas supply pipe 41, the second gas supply pipe 43, the gas discharge pipe 50, and each supply unit, and a control not shown in the figure. By appropriately opening and closing each flow control valve in accordance with a control signal from the apparatus, the raw material gas, the atmospheric gas, the reducing gas at a predetermined flow rate, the catalyst activation material, the first gas supply pipe 41 and the second gas supply pipe 43 are provided. Are supplied into the synthesis furnace 10 continuously or intermittently depending on the reaction process.
(配管の形状)
図3(a)は本実施例に係る流路の変形例を示す。ガス流形成手段21と配管55及び配管57とから形成される第1ガス流路45及び第2ガス流路47を示す模式図であり、図3(b)は(a)に示すA-A’断面における配管55及び配管57の断面図である。また、図3では、第2ガス供給管43と接続する1本の配管57により構成された第2ガス流路47として例示したが、例えば、図4や図5に示すような配置を用いることにより、複数の配管57を配設して複数の第2ガス流路47を構成してもよい。図4(a)は、本発明の流路の変形例に係るガス流形成手段21、ガス流形成手段221、配管55及び配管57とから形成される第1ガス流路45及び第2ガス流路47を示す模式図であり、図4(b)は(a)に示すA-A’断面における配管55及び配管57の断面図である。本実施例においては、図3に示したガス流形成手段21において、第1ガス流路45を形成する配管55の径を細くして、配設する配管数を増やし、第2ガス流路47を形成する配管57を複数配設した例を示す。図4(a)においては、第2ガス流路47を複数の流路に分配するために、ガス流形成手段21の内部に複数の配管57に接続するガス流形成手段221をさらに配設する。
(Pipe shape)
FIG. 3A shows a modification of the flow channel according to the present embodiment. FIG. 3B is a schematic diagram showing the first gas flow path 45 and the second gas flow path 47 formed from the gas flow forming means 21, the pipe 55, and the pipe 57, and FIG. 3B is an AA view shown in FIG. 'It is sectional drawing of the piping 55 and the piping 57 in a cross section. Moreover, in FIG. 3, although illustrated as the 2nd gas flow path 47 comprised by one piping 57 connected with the 2nd gas supply pipe | tube 43, for example, arrangement | positioning as shown in FIG.4 and FIG.5 is used. Thus, a plurality of pipes 57 may be provided to constitute a plurality of second gas flow paths 47. FIG. 4A shows the first gas flow path 45 and the second gas flow formed by the gas flow forming means 21, the gas flow forming means 221, the pipe 55, and the pipe 57 according to the modification of the flow path of the present invention. FIG. 4B is a schematic view showing the path 47, and FIG. 4B is a cross-sectional view of the pipe 55 and the pipe 57 in the AA ′ section shown in FIG. In the present embodiment, in the gas flow forming means 21 shown in FIG. 3, the diameter of the pipe 55 forming the first gas flow path 45 is reduced to increase the number of pipes to be arranged, and the second gas flow path 47. An example in which a plurality of pipes 57 for forming a pipe is provided is shown. In FIG. 4A, in order to distribute the second gas flow path 47 into a plurality of flow paths, a gas flow formation means 221 connected to a plurality of pipes 57 is further arranged inside the gas flow formation means 21. .
本実施例においては、第1ガス及び第2ガスは複数の配管57を用いて第1ガス流路45および第2ガス流路47を複数の流路として触媒層の近傍のガス混合領域80に供給されることにより、配管55及び配管57から供給される第1ガス及び第2ガスの放出範囲を細かく制御して、触媒層の近傍のガス混合領域80で混合される第1ガス及び第2ガスの濃度をCNTの成長に最適な状態に制御することができる。 In the present embodiment, the first gas and the second gas are supplied to the gas mixing region 80 in the vicinity of the catalyst layer using the plurality of pipes 57 and the first gas channel 45 and the second gas channel 47 as a plurality of channels. By being supplied, the discharge range of the first gas and the second gas supplied from the pipe 55 and the pipe 57 is finely controlled, and the first gas and the second gas mixed in the gas mixing region 80 in the vicinity of the catalyst layer. It is possible to control the gas concentration to an optimum state for CNT growth.
また、図5(a)は、本発明の他の流路の変形例に係るガス流形成手段21、ガス流形成手段221、配管55及び配管57とから形成される第1ガス流路45及び第2ガス流路47を示す模式図であり、図5(b)は図5(a)に示すA-A’断面における配管55及び配管57の断面図である。本実施例においては、ガス流形成手段221に接続された第2ガス供給管43を複数の第2ガス流路47に分岐するように配管57を配設した例である。図5(a)においては、第2ガス流路47を複数の流路に分配するために、ガス流形成手段21の内部に複数の配管57に接続するガス流形成手段221配設する。 FIG. 5A shows a first gas flow path 45 formed of a gas flow forming means 21, a gas flow forming means 221, a pipe 55 and a pipe 57 according to another flow path modification of the present invention. FIG. 5B is a schematic view showing the second gas flow path 47, and FIG. 5B is a cross-sectional view of the pipe 55 and the pipe 57 in the AA ′ cross section shown in FIG. 5A. In this embodiment, a pipe 57 is provided so as to branch the second gas supply pipe 43 connected to the gas flow forming means 221 into a plurality of second gas flow paths 47. In FIG. 5A, in order to distribute the second gas flow path 47 into a plurality of flow paths, a gas flow forming means 221 connected to a plurality of pipes 57 is disposed inside the gas flow forming means 21.
本実施例においては、複数の配管55を用いて第1ガス流路45を複数の流路として触媒層の近傍のガス混合領域80に供給し、複数の配管57を用いて第2ガス流路47を複数の流路として触媒層の近傍のガス混合領域80に供給する。第1ガス流路45および第2ガス流路47が複数の流路として分散されることにより、CNTの合成において、基材1上に形成された触媒層3の全面に、より均一に第1ガスおよび第2ガスを供給することができる。また、配管55及び配管57の第1ガス流路45および第2ガス流路47の断面積や配置を調整することで、ガス混合領域80での第1ガスおよび第2ガスの供給量を個別に制御することができる。したがって、第1ガスおよび第2ガスの供給量を空間的に制御し、CNTの成長に最適な混合ガスの濃度の分布を形成することができる。 In this embodiment, a plurality of pipes 55 are used to supply the first gas flow path 45 as a plurality of flow paths to the gas mixing region 80 near the catalyst layer, and a plurality of pipes 57 are used to supply the second gas flow path. 47 is supplied to the gas mixing region 80 in the vicinity of the catalyst layer as a plurality of flow paths. By dispersing the first gas flow path 45 and the second gas flow path 47 as a plurality of flow paths, the first gas path is more uniformly distributed over the entire surface of the catalyst layer 3 formed on the substrate 1 in the synthesis of CNTs. A gas and a second gas can be supplied. Further, the supply amounts of the first gas and the second gas in the gas mixing region 80 can be individually adjusted by adjusting the cross-sectional areas and arrangements of the first gas passage 45 and the second gas passage 47 of the pipe 55 and the pipe 57. Can be controlled. Therefore, the supply amount of the first gas and the second gas can be spatially controlled to form a distribution of the concentration of the mixed gas optimal for the growth of CNTs.
また、基材1上に設けられた触媒層3の表面と第1流路と第2流路の出口との距離は、1cmと設定した。出口から触媒層3の表面の空間をガス混合領域と規定した。触媒層3の表面と第1流路と第2流路の出口との距離が0.3センチより小さいと、CNT集合体の収量が著しく減少した。 The distance between the surface of the catalyst layer 3 provided on the substrate 1, the first flow path, and the outlet of the second flow path was set to 1 cm. The space from the outlet to the surface of the catalyst layer 3 was defined as the gas mixing region. When the distance between the surface of the catalyst layer 3 and the outlets of the first channel and the second channel was less than 0.3 cm, the yield of CNT aggregates was significantly reduced.
〔炭素重量フラックス調整手段〕
炭素重量フラックス調整手段は、ガスフロー装置等により、CNTの原料となる炭素化合物となる原料ガスの供給量及び原料ガスや触媒賦活物質のキャリアガスである雰囲気ガスの供給量をそれぞれ調整し、任意の炭素重量フラックスを炉内に供給する手段である。図2において、第1炭素重量フラックス調整手段71は、原料ガス、雰囲気ガスおよび還元ガスの供給量を調整し、第2炭素重量フラックス調整手段73は触媒賦活物質の供給量を調整するものとして示したが、第2炭素重量フラックス調整手段73にも雰囲気ガスボンベ63を接続することで、触媒賦活物質と雰囲気ガスとを混合した第2ガスを供給してもよい。
[Carbon weight flux adjustment means]
The carbon weight flux adjusting means adjusts the supply amount of the source gas that becomes the carbon compound that is the raw material of CNT and the supply amount of the atmospheric gas that is the carrier gas of the raw material gas and the catalyst activator by means of a gas flow device, etc. It is means for supplying the carbon weight flux of the inside of the furnace. In FIG. 2, the first carbon weight flux adjusting means 71 adjusts the supply amount of the source gas, the atmospheric gas and the reducing gas, and the second carbon weight flux adjusting means 73 is shown as adjusting the supply amount of the catalyst activator. However, the second gas obtained by mixing the catalyst activation material and the atmospheric gas may be supplied by connecting the atmospheric gas cylinder 63 also to the second carbon weight flux adjusting means 73.
図2に示したCNTの製造装置200を用いて、本発明の実施形態において説明した方法を採用して、CNT集合体、およびCNT配向集合体を製造した。図2および図6を参照しながら説明する。 A CNT aggregate and an aligned CNT aggregate were manufactured using the CNT manufacturing apparatus 200 shown in FIG. 2 by employing the method described in the embodiment of the present invention. This will be described with reference to FIGS.
本実施例において、縦型合成炉10としては、円筒等の石英管(内径80mm)を用いた。加熱手段30、および加熱領域31の長さは260mmであった。中心部の水平位置から20mm下流に石英からなる基材ホルダ5を設けた。基材ホルダ5は、水平方向に設置され、平面状の基材1を載置することが可能である。 In this example, a quartz tube (inner diameter: 80 mm) such as a cylinder was used as the vertical synthesis furnace 10. The length of the heating means 30 and the heating area | region 31 was 260 mm. A base material holder 5 made of quartz was provided 20 mm downstream from the horizontal position of the center. The base material holder 5 is installed in the horizontal direction, and the flat base material 1 can be placed thereon.
合成炉10の上壁には、合成炉10上壁中心に設けられた開口に鉛直方向に挿入された直径22mm(内径(φ)20mm)の耐熱合金からなる第1ガス供給管41を設け、第1ガス供給管41には直径6mm(内径4mm)の耐熱合金からなる第2ガス供給管43を設けた。また下壁には、合成炉10下壁中心に設けられた開口に鉛直方向に挿入されたガス排気管50を設けた。合成炉10を外囲して設けられた抵抗発熱コイルからなる加熱手段30と加熱温度調整手段を設け、所定温度に加熱された合成炉10内の加熱領域31を規定した。 The upper wall of the synthesis furnace 10 is provided with a first gas supply pipe 41 made of a heat-resistant alloy having a diameter of 22 mm (inner diameter (φ) 20 mm) inserted vertically in an opening provided in the center of the upper wall of the synthesis furnace 10, The first gas supply pipe 41 is provided with a second gas supply pipe 43 made of a heat-resistant alloy having a diameter of 6 mm (inner diameter of 4 mm). The lower wall was provided with a gas exhaust pipe 50 inserted in the vertical direction into an opening provided in the center of the lower wall of the synthesis furnace 10. A heating means 30 and a heating temperature adjusting means comprising a resistance heating coil provided surrounding the synthesis furnace 10 were provided, and a heating region 31 in the synthesis furnace 10 heated to a predetermined temperature was defined.
直径78mmの円筒状で扁平な中空構造をなす耐熱合金インコネル600からなるガス流形成手段21を、第1ガス供給管41の合成炉10内の端部に連通して接続するように設けた。第1ガス供給管41はガス流形成手段21の中心に連通して接続した。 A gas flow forming means 21 made of a heat-resistant alloy Inconel 600 having a cylindrical and flat hollow structure with a diameter of 78 mm was provided so as to communicate with the end of the first gas supply pipe 41 in the synthesis furnace 10. The first gas supply pipe 41 communicated with and connected to the center of the gas flow forming means 21.
ガス流形成手段21は基材1の触媒層の表面に対して、略平行な同一面内に配設し、基材1の中心が、ガス流形成手段21の中心と一致するように配設された。本実施例においては、図3に示すように、ガス流形成手段21は中空構造を有する円柱状の形状で、寸法は、一例としては、上端直径22mm×下端直径78mmの円筒形であり、径:32mmの4本の配管57を接続した。また、第1ガス供給管41の中心と一致するように配設された第2ガス供給管43は、ガス流形成手段21およびの中心と一致するように延伸し、の中心と一致して、径:13mmの出口が配設された。 The gas flow forming means 21 is arranged in the same plane substantially parallel to the surface of the catalyst layer of the base material 1, and is arranged so that the center of the base material 1 coincides with the center of the gas flow forming means 21. It was done. In the present embodiment, as shown in FIG. 3, the gas flow forming means 21 has a cylindrical shape having a hollow structure, and the dimensions are, for example, a cylindrical shape having an upper end diameter of 22 mm and a lower end diameter of 78 mm. : Four pipes 57 of 32 mm were connected. Further, the second gas supply pipe 43 arranged so as to coincide with the center of the first gas supply pipe 41 extends so as to coincide with the center of the gas flow forming means 21 and coincides with the center thereof, Diameter: 13 mm outlet was disposed.
配管55および配管57の供給孔は基材1の触媒層3を臨む位置に設けられ、基材1の平面に対して略垂直方向から原料ガスを触媒に供給させた。臨む位置とは、供給孔の、噴射軸線が基材の法線と成す角が0°以上90°未満となるような配置を示す。ガス流形成手段21の配管55および配管57の接続部と対向する触媒層の表面との距離は150mmとした。 The supply holes of the pipe 55 and the pipe 57 were provided at positions facing the catalyst layer 3 of the substrate 1, and the source gas was supplied to the catalyst from a direction substantially perpendicular to the plane of the substrate 1. The facing position indicates an arrangement in which the angle of the supply hole formed between the injection axis and the normal of the substrate is 0 ° or more and less than 90 °. The distance between the connecting portion of the piping 55 and the piping 57 of the gas flow forming means 21 and the surface of the catalyst layer facing the connecting portion was 150 mm.
このようにして、第1ガス供給管41から点状に合成炉10に供給される原料ガスは、拡散・分配され基材1の触媒層の表面に対して略平行面の360度に渡る全方向に供給され、そして、原料ガスは基材1の触媒層の表面に対して略垂直方向から基材1上の触媒層3に接触する。 In this way, the source gas supplied to the synthesis furnace 10 in the form of dots from the first gas supply pipe 41 is all diffused and distributed over 360 degrees that is substantially parallel to the surface of the catalyst layer of the substrate 1. Then, the raw material gas contacts the catalyst layer 3 on the substrate 1 from a direction substantially perpendicular to the surface of the catalyst layer of the substrate 1.
ここで、意図的にガス流形成手段21と触媒表面の間に150mmの距離を設け、第1ガス流路45および第2ガス流路47の加熱体積を増加させ、その加熱体積を設けた。第1ガス流路45は、ガス流形成手段21と接続され、乱流防止手段23を備える、第1ガス流路45は、耐熱合金インコネル600からなるハニカム構造のように配設されたφ32mmの4本の配管55を備え、第2ガス流路47は、4本の配管55の中心と一致するように配設されたφ13mmの配管57を備える。 Here, a distance of 150 mm was intentionally provided between the gas flow forming means 21 and the catalyst surface, the heating volumes of the first gas channel 45 and the second gas channel 47 were increased, and the heating volume was provided. The first gas flow path 45 is connected to the gas flow forming means 21 and includes a turbulent flow prevention means 23. The first gas flow path 45 has a diameter of 32 mm arranged like a honeycomb structure made of the heat-resistant alloy Inconel 600. The four gas pipes 55 are provided, and the second gas flow path 47 includes a φ57 mm pipe 57 arranged so as to coincide with the center of the four pipes 55.
第1炭素重量フラックス調整手段71はCNTの原料となる炭素化合物となる原料ガスボンベ61、原料ガスや触媒賦活物質のキャリアガスである雰囲気ガスボンベ63、ならびに触媒を還元するための還元ガスボンベ65をそれぞれガスフロー装置に接続して構成し、それぞれ供給量を独立に制御しながら、第1ガス供給管41に供給することで、原料ガスの供給量を制御した。また、第2炭素重量フラックス調整手段73は、触媒賦活物質ボンベ67をガスフロー装置に接続して構成し、第2ガス供給管43に供給することで、触媒賦活物質の供給量を制御した。 The first carbon weight flux adjusting means 71 gasses a raw material gas cylinder 61 that is a carbon compound that is a raw material of CNT, an atmospheric gas cylinder 63 that is a carrier gas of a raw material gas or a catalyst activation material, and a reducing gas cylinder 65 for reducing the catalyst. The supply amount of the raw material gas was controlled by connecting to the flow device and supplying the first gas supply pipe 41 while independently controlling the supply amount. Further, the second carbon weight flux adjusting means 73 is configured by connecting the catalyst activation material cylinder 67 to the gas flow device and supplying it to the second gas supply pipe 43 to control the supply amount of the catalyst activation material.
基材1としては、触媒であるAlを30nm、Feを1.8nmスパッタリングした厚さ500nmの熱酸化膜付きSi基材(縦40mm×横40mm)を用いた。 As the base material 1, a Si base material (40 mm long × 40 mm wide) with a thermal oxide film having a thickness of 500 nm obtained by sputtering 30 nm of Al 2 O 3 as a catalyst and 1.8 nm of Fe was used.
基材1を合成炉2の加熱領域31の中心の水平位置から20mm下流に設置された基板ホルダ8上に搬入した(搬入工程)。基板は水平方向になるように設置した。これにより、基板上の触媒と混合ガスの流路が概して垂直に交わり、原料ガスが効率良く触媒に供給される。 The base material 1 was carried in on the substrate holder 8 installed 20 mm downstream from the horizontal position of the center of the heating region 31 of the synthesis furnace 2 (carrying-in process). The substrate was placed in a horizontal direction. As a result, the catalyst and mixed gas flow paths on the substrate generally intersect perpendicularly, and the source gas is efficiently supplied to the catalyst.
次いで、還元ガスとしてHe:200sccm、H:1800sccmの混合ガス(全流量:2000sccm)を第1ガス流路45から供給しながら、炉内圧力を1.02×10Paとした合成炉10内を、加熱手段30を用いて合成炉10内の温度を室温から15分かけて830℃まで上昇させた。さらに触媒賦活物質として水:80sccmを第2ガス供給管43から供給しながら、830℃に保持した状態で3分間触媒付き基材を熱した(フォーメーション工程)。これにより、鉄触媒層は還元されて単層CNTの成長に適合した状態の微粒子化が促進され、ナノメートルサイズの触媒微粒子がアルミナ層上に多数形成された。 Next, the synthesis furnace 10 in which the internal pressure of the furnace is 1.02 × 10 5 Pa while supplying a mixed gas (total flow rate: 2000 sccm) of He: 200 sccm and H 2 : 1800 sccm as the reducing gas from the first gas flow path 45. Inside, the temperature in the synthesis furnace 10 was increased from room temperature to 830 ° C. over 15 minutes using the heating means 30. Further, while supplying 80 sccm of water as a catalyst activator from the second gas supply pipe 43, the substrate with catalyst was heated for 3 minutes while maintaining at 830 ° C. (formation step). As a result, the iron catalyst layer was reduced to promote the formation of fine particles in a state suitable for the growth of single-walled CNTs, and a large number of nanometer-sized catalyst fine particles were formed on the alumina layer.
次いで、炉内圧力を1.02×10Pa(大気圧)とした合成炉10の温度を830℃とし、第1ガス流路45から雰囲気ガスHe:総流量比89%(1850sccm)、原料ガスであるC:総流量比7%(150sccm)を、第2ガス供給管43から触媒賦活物質としてHO含有He(相対湿度23%):総流量比4%(80sccm)を10分間供給した(成長工程)。 Next, the temperature of the synthesis furnace 10 at an internal pressure of 1.02 × 10 5 Pa (atmospheric pressure) is set to 830 ° C., and the atmosphere gas He: total flow ratio 89% (1850 sccm) from the first gas flow path 45, raw material C 2 H 4 as gas: total flow ratio 7% (150 sccm), and H 2 O-containing He (relative humidity 23%): total flow ratio 4% (80 sccm) as a catalyst activator from the second gas supply pipe 43 It was supplied for 10 minutes (growth process).
これにより、単層CNTが各触媒微粒子から成長し(成長工程)、配向した単層CNTの集合体が得られた。このようにして、触媒賦活物質含有環境下で、CNTを基材1上より成長させた。 Thereby, single-walled CNT grew from each catalyst fine particle (growth process), and an aggregate of oriented single-walled CNTs was obtained. In this manner, CNTs were grown from the base material 1 in a catalyst activator-containing environment.
成長工程の後、3分間、雰囲気ガス(総流量4000sccm)のみを第1ガス流路45から供給し、残余の原料ガス、発生した炭素不純物、触媒賦活剤を排除した(炭素不純物付着抑制工程・フラッシュ工程)。 After the growth step, only the atmospheric gas (total flow rate 4000 sccm) is supplied from the first gas flow path 45 for 3 minutes to eliminate the remaining raw material gas, generated carbon impurities, and catalyst activator (carbon impurity adhesion suppression step / Flash process).
その後、基板を400℃以下に冷却した後、合成炉10内から基板を取り出す(冷却・基板取り出し工程)ことにより、一連の単層CNT集合体の製造工程を完了させた。 Then, after cooling a board | substrate to 400 degrees C or less, the manufacturing process of a series of single-walled CNT aggregates was completed by taking out a board | substrate from the synthesis furnace 10 (cooling and board | substrate taking-out process).
〔CNT集合体の成長速度〕
CNT集合体の成長速度は380μm/minであった。Appl. Phys. Lett.93巻,143115頁2008年などで今までに報告されているCNTの成長速度は高々200μm/min程度であるので、本発明の装置構成と製造法は、高速に配向したCNT集合体を製造するのに著しく効果があることが分かる。
[Growth rate of CNT aggregate]
The growth rate of the CNT aggregate was 380 μm / min. Phys. Lett. 93, 143115, 2008, etc. The growth rate of CNTs reported so far is at most about 200 μm / min. Therefore, the apparatus configuration and manufacturing method of the present invention are oriented at high speed. It can be seen that there is a significant effect in producing the CNT aggregate.
また本製造法での収量は4.45mg/cmであり、従来の原料ガスと触媒賦活物質とが触媒表面の近傍に到達する前に反応する製造装置、製造法での収量が1.5~2.0mg/cm程度であるのに比較して、本発明の装置構成と製造法は、高効率でCNT集合体を製造するのに著しく効果があることが分かる。また、基材1上の触媒層3上に一面に、約均一な高さでCNT集合体が製造でき、本発明の装置構成と製造法は、大面積に略均一に且つ効率よくCNT集合体を製造するのに著しく効果があることが分かる。 The yield in this production method is 4.45 mg / cm 2 , and the yield in the production apparatus and production method in which the conventional raw material gas and the catalyst activator react before reaching the vicinity of the catalyst surface is 1.5. It can be seen that the apparatus configuration and the manufacturing method of the present invention are remarkably effective in manufacturing a CNT aggregate with high efficiency as compared to about -2.0 mg / cm 2 . In addition, a CNT aggregate can be produced on the catalyst layer 3 on the substrate 1 with a uniform height on one side, and the apparatus configuration and the manufacturing method of the present invention are substantially uniform and efficient over a large area. It can be seen that there is a remarkable effect in producing
〔実施例1で製造されるCNTの特性〕
単層CNT集合体の特性は、製造条件の詳細に依存するが、実施例1の製造条件では、典型値として、高さが1010μm、単層CNT含有率99%(2層CNT、多層CNTに対する単層CNTの本数割合であり、合成した、単層CNT集合体を透過型電子顕微鏡で観察し画像から求める)、重量密度:0.03g/cm、BET-比表面積:1150m/g、炭素純度99.9%、ヘルマンの配向係数0.7である。
[Characteristics of CNT produced in Example 1]
The characteristics of the single-walled CNT aggregate depend on the details of the manufacturing conditions, but in the manufacturing conditions of Example 1, as a typical value, the height is 1010 μm and the single-walled CNT content is 99% (relative to the two-walled CNT and the multilayered CNT) The number ratio of single-walled CNTs, and the synthesized single-walled CNT aggregates are observed with a transmission electron microscope and obtained from an image), weight density: 0.03 g / cm 3 , BET-specific surface area: 1150 m 2 / g, The carbon purity is 99.9% and the Herman orientation coefficient is 0.7.
〔CNT集合体の比表面積〕
基板から剥離したCNT集合体から50mgの塊を取り出し、これをBELSORP-MINI(株式会社日本ベル製)を用いて77Kで液体窒素の吸脱着等温線を計測した(吸着平衡時間は600秒とした)。この吸脱着等温線からBrunauer, Emmett, Teller(BET)の方法で比表面積を計測したところ、1150m/gであった。
[Specific surface area of CNT aggregate]
A 50 mg mass was taken out from the CNT aggregate peeled from the substrate, and an adsorption / desorption isotherm of liquid nitrogen was measured at 77 K using BELSORP-MINI (manufactured by Nippon Bell Co., Ltd.) (adsorption equilibrium time was 600 seconds). ). The specific surface area was measured from this adsorption / desorption isotherm by the method of Brunauer, Emmett, Teller (BET) and found to be 1150 m 2 / g.
以上説明したように、本実施例のカーボンナノチューブの製造装置および製造方法においては、原料ガスを含む第1ガスは第1ガス流路を介して合成炉内に供給され、触媒賦活物質を含む第2ガスは第2ガス流路を介して合成炉内に供給される。これにより、第1ガス流路を通過する間に原料ガスは分解反応が進み、CNTの製造に好適な状態となる。また、第2ガス流路から供給されることで、原料ガスとの反応が抑制され、十分な量の触媒賦活物質がガス混合領域に供給される。このように最適化された第1ガスおよび第2ガスがガス混合領域で混合して触媒層に接触させることにより、CNTを高効率で製造することが可能となる。 As described above, in the carbon nanotube production apparatus and production method of the present embodiment, the first gas containing the source gas is supplied into the synthesis furnace via the first gas flow path, and the first gas containing the catalyst activation material is contained. Two gases are supplied into the synthesis furnace via the second gas flow path. Thus, the raw material gas undergoes a decomposition reaction while passing through the first gas flow path, and is in a state suitable for the production of CNTs. Moreover, by supplying from a 2nd gas flow path, reaction with source gas is suppressed and sufficient quantity of a catalyst activation material is supplied to a gas mixing area | region. By mixing the optimized first gas and second gas in the gas mixing region and bringing them into contact with the catalyst layer, it is possible to manufacture CNTs with high efficiency.
(実施例2)CNTの製造装置300
本実施例においては、ガス流形成手段21と接続かつ連通された、複数枚の複数の孔を備える、板状の整流板からなる乱流抑制手段23を有する配管55を備えるCNTの製造装置300を説明する。図7は、本実施例に係るCNTの製造装置300の模式図である。本実施例において、特に、第1ガス流路45に乱流抑制手段23を有する配管55を備える例について説明する。
(Example 2) CNT manufacturing apparatus 300
In the present embodiment, a CNT manufacturing apparatus 300 including a pipe 55 having a turbulent flow suppression means 23 made of a plate-like rectifying plate, which is connected to and communicated with the gas flow forming means 21 and has a plurality of holes. Will be explained. FIG. 7 is a schematic diagram of a CNT manufacturing apparatus 300 according to the present embodiment. In the present embodiment, an example in which the first gas flow path 45 is provided with a pipe 55 having the turbulent flow suppression means 23 will be described.
CNTの製造装置300において、第1ガス流路45には、複数の乱流抑制手段23を有する配管55が配設され、配管55内の原料ガスの乱流を抑制し、基材1上の触媒に接触するまでの加熱体積を調整する。また、図7では第2ガス供給管43と接続する1本の配管57で構成された第2ガス流路47として例示したが、第2ガス供給管43とガス流形成手段21を介して接続された複数の配管57で構成された第2ガス流路47を配設してもよい。 In the CNT manufacturing apparatus 300, the first gas flow path 45 is provided with a pipe 55 having a plurality of turbulent flow suppression means 23 to suppress turbulent flow of the source gas in the pipe 55, The heating volume until contact with the catalyst is adjusted. Further, in FIG. 7, the second gas flow path 47 configured by one pipe 57 connected to the second gas supply pipe 43 is exemplified, but the second gas supply pipe 43 and the gas flow forming means 21 are connected. A second gas channel 47 composed of a plurality of pipes 57 may be provided.
このようにすれば、第1ガス流路45において、配管55中の原料ガスを含む第1ガスの流路の断面積が大きくなり、加熱体積を増加・調整させることが容易になる。また、同様に第2ガスの加熱体積を調整することもできる。なお、CNTの製造装置300のその他の構成は、実施形態および実施例1と同様であるため、説明は省略する。 If it does in this way, in the 1st gas flow path 45, the cross-sectional area of the flow path of the 1st gas containing the source gas in the piping 55 will become large, and it will become easy to increase and adjust a heating volume. Similarly, the heating volume of the second gas can be adjusted. Other configurations of the CNT manufacturing apparatus 300 are the same as those in the embodiment and Example 1, and thus the description thereof is omitted.
〔乱流抑制手段〕
乱流抑制手段とは、第1ガス流路45および/または第2ガス流路47において、原料ガスおよび/または触媒賦活物質が、触媒に接触するまでの間に乱流となることを抑制する手段である。乱流抑制手段23は配管55および/または配管57の内部に配設され、乱流抑制手段23の形状、材質等はとくに制限されず、整流板、ハニカム等、公知の方法を適宜用いることができる。本実施例においては整流板を用いる例を示したが、実施例1においては複数の配管を配置することで、複数の配管が乱流抑制手段23の機能も有することとなる。
(Turbulent flow suppression means)
The turbulent flow suppression means suppresses that the source gas and / or the catalyst activator in the first gas flow channel 45 and / or the second gas flow channel 47 become a turbulent flow until contacting the catalyst. Means. The turbulent flow suppressing means 23 is disposed inside the pipe 55 and / or the pipe 57, and the shape, material, etc. of the turbulent flow suppressing means 23 are not particularly limited, and a known method such as a rectifying plate or a honeycomb can be appropriately used. it can. In the present embodiment, an example in which a rectifying plate is used has been shown. However, in the first embodiment, a plurality of pipes also have the function of the turbulent flow suppression means 23 by arranging a plurality of pipes.
本実施例のカーボンナノチューブの製造装置および製造方法によれば、原料ガスを含む第1ガスと、触媒賦活物質を含む第2ガスとは、別々のガス供給管から供給され、加熱領域内の別々のガス流路を流れることにより、触媒層の近傍に到達する前に原料ガスと触媒賦活物質とが混合して反応することなく供給され、触媒層の近傍に到達する前に第1ガスと第2ガスとが混合して触媒層に接触しないため、高純度、高比表面積のCNT集合体を、大面積に且つ効率よく製造することができる。また、ガス流路を構成する配管に複数の乱流抑制手段を備えることにより、ガスの乱流を抑制し、配管内を流れるガスの加熱体積を調整することができる。 According to the carbon nanotube production apparatus and production method of the present embodiment, the first gas containing the source gas and the second gas containing the catalyst activation material are supplied from separate gas supply pipes, and are separately provided in the heating region. By flowing through the gas flow path, the raw material gas and the catalyst activator are mixed and supplied before reaching the vicinity of the catalyst layer without reacting with each other, and before reaching the vicinity of the catalyst layer, the first gas and the first gas are supplied. Since the two gases are mixed and do not come into contact with the catalyst layer, a CNT aggregate having a high purity and a high specific surface area can be efficiently produced in a large area. In addition, by providing a plurality of turbulent flow suppression means in the pipe constituting the gas flow path, the turbulent flow of the gas can be suppressed and the heating volume of the gas flowing in the pipe can be adjusted.
(比較例1)
実施例1と同じ、合成炉10を用い、原料ガスと、触媒賦活物質を合成炉に供給する前に混合して、第1ガス供給管と、第2ガス供給管に原料ガスと触媒賦活物質の混合ガスを供給して、実施例1と同じ、基材1、触媒を用いて、実施例1と同じ工程でCNT集合体を製造した。
(Comparative Example 1)
As in Example 1, the synthesis furnace 10 is used, the raw material gas and the catalyst activation material are mixed before being supplied to the synthesis furnace, and the raw material gas and the catalyst activation material are mixed in the first gas supply pipe and the second gas supply pipe. CNT aggregates were produced in the same process as in Example 1 using the same base material 1 and catalyst as in Example 1.
実施例1と同じ工程、製造方法を用いてCNT集合体を製造した、比較例1の製造法での収量は1.72mg/cmであり、高さは362μmであった。 The yield in the production method of Comparative Example 1 in which the CNT aggregate was produced using the same process and production method as in Example 1 was 1.72 mg / cm 2 and the height was 362 μm.
これらの結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
These results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
1:基材、3:触媒層、5:基材ホルダ、10:合成炉、21:ガス流形成手段、23:乱流抑制手段、30:加熱手段、31:加熱領域、41:第1ガス供給管、43:第2ガス供給管、45:第1ガス流路、47:第2ガス流路、49:混合ガス流路、50:ガス排気管、55:配管、57:配管、61:原料ガスボンベ、63:触媒賦活物質ボンベ、65:雰囲気ガスボンベ、67:還元ガスボンベ、71:第1炭素重量フラックス調整手段、73:第2炭素重量フラックス調整手段、80:ガス混合領域、100:製造装置、200:製造装置、221:ガス流形成手段、300:製造装置、500:従来の製造装置、501:原料ガス供給管、503:ガス吐出口 1: base material, 3: catalyst layer, 5: base material holder, 10: synthesis furnace, 21: gas flow forming means, 23: turbulent flow suppressing means, 30: heating means, 31: heating region, 41: first gas Supply pipe, 43: second gas supply pipe, 45: first gas flow path, 47: second gas flow path, 49: mixed gas flow path, 50: gas exhaust pipe, 55: pipe, 57: pipe, 61: Raw material gas cylinder, 63: catalyst activation material cylinder, 65: atmosphere gas cylinder, 67: reducing gas cylinder, 71: first carbon weight flux adjusting means, 73: second carbon weight flux adjusting means, 80: gas mixing region, 100: manufacturing apparatus , 200: manufacturing apparatus, 221: gas flow forming means, 300: manufacturing apparatus, 500: conventional manufacturing apparatus, 501: raw material gas supply pipe, 503: gas discharge port

Claims (8)

  1. 合成炉と、前記合成炉内を所定温度に加熱するための加熱手段と、第1ガスを供給するための第1ガス供給管と、第2ガスを供給するための第2ガス供給管と、ガス排気管と、を備え、
    基材に設けられた触媒層からカーボンナノチューブを製造し、前記ガス排気管より、前記第1ガスおよび前記第2ガスを排気するカーボンナノチューブの製造装置において、
    前記加熱手段によって加熱された加熱領域内に配設された前記第1ガスが流れる第1ガス流路および前記第2ガスが流れる第2ガス流路を備え、
    前記第1ガス流路と前記第2ガス流路との少なくとも一部において、前記第1ガス流路と前記第2ガス流路とを独立して設け、
    前記第1ガスと前記第2ガスとが混合するガス混合領域を備えることを特徴とするカーボンナノチューブの製造装置。
    A synthesis furnace, heating means for heating the interior of the synthesis furnace to a predetermined temperature, a first gas supply pipe for supplying a first gas, a second gas supply pipe for supplying a second gas, A gas exhaust pipe,
    In the carbon nanotube production apparatus for producing carbon nanotubes from the catalyst layer provided on the substrate, and exhausting the first gas and the second gas from the gas exhaust pipe,
    A first gas flow path through which the first gas flows and a second gas flow path through which the second gas flows are disposed in a heating region heated by the heating means;
    In at least a part of the first gas channel and the second gas channel, the first gas channel and the second gas channel are provided independently,
    An apparatus for producing carbon nanotubes, comprising a gas mixing region in which the first gas and the second gas are mixed.
  2. 前記第1ガス流路および前記第2ガス流路の少なくとも一方が、前記第1ガス、および/または、前記第2ガスを複数の方向に分配するガス流形成手段を備えることを特徴とする請求項1に記載のカーボンナノチューブの製造装置。 At least one of the first gas flow path and the second gas flow path includes a gas flow forming unit that distributes the first gas and / or the second gas in a plurality of directions. Item 2. The carbon nanotube production apparatus according to Item 1.
  3. 個別にかつ互いに独立に、前記第1ガスの炭素重量フラックスを調整する第1炭素重量フラックス調整手段と、前記第2ガスの炭素重量フラックスを調整する第2炭素重量フラックス調整手段とを備えることを特徴とする請求項1に記載のカーボンナノチューブの製造装置。 The first carbon weight flux adjusting means for adjusting the carbon weight flux of the first gas and the second carbon weight flux adjusting means for adjusting the carbon weight flux of the second gas individually and independently of each other. The carbon nanotube manufacturing apparatus according to claim 1, wherein the apparatus is a carbon nanotube manufacturing apparatus.
  4. 前記ガス流形成手段が、前記基材の触媒層の表面に対して略平行方向の原料ガス流を形成することを特徴とする請求項1に記載のカーボンナノチューブの製造装置。 The apparatus for producing carbon nanotubes according to claim 1, wherein the gas flow forming means forms a raw material gas flow in a direction substantially parallel to the surface of the catalyst layer of the base material.
  5. 前記第1ガス流路および前記第2ガス流路は前記ガス流形成手段に接続する配管により形成され、前記配管が前記基材の触媒層の表面に対して略垂直方向の原料ガス流を形成することを特徴とする請求項1に記載のカーボンナノチューブの製造装置。 The first gas flow path and the second gas flow path are formed by piping connected to the gas flow forming means, and the piping forms a material gas flow in a direction substantially perpendicular to the surface of the catalyst layer of the substrate. The carbon nanotube manufacturing apparatus according to claim 1, wherein:
  6. 前記配管が、乱流抑制手段を備えることを特徴とする、請求項5に記載のカーボンナノチューブの製造装置。 6. The carbon nanotube manufacturing apparatus according to claim 5, wherein the pipe includes turbulent flow suppression means.
  7. 前記第1ガスは、原料ガスを含み、前記第2ガスは、触媒賦活物質を含むことを特徴とする請求項1に記載のカーボンナノチューブの製造装置。 2. The carbon nanotube manufacturing apparatus according to claim 1, wherein the first gas includes a source gas, and the second gas includes a catalyst activation material.
  8. 合成炉内に配設された基材上の触媒層に、還元ガスを供給して接触させるフォーメーション工程と、
    原料ガスと触媒賦活物質の各々を、前記合成炉内に配設された互いに異なる配管から前記触媒層の近傍のガス混合領域に供給して、前記ガス混合領域で前記原料ガスと前記触媒賦活物質とを混合して反応させ、カーボンナノチューブを成長させるカーボンナノチューブ成長工程と、
    を備えることを特徴とするカーボンナノチューブの製造方法。
    A formation process in which a reducing gas is supplied and brought into contact with the catalyst layer on the substrate disposed in the synthesis furnace;
    Each of the raw material gas and the catalyst activation material is supplied to a gas mixing region in the vicinity of the catalyst layer from different pipes arranged in the synthesis furnace, and the raw material gas and the catalyst activation material are supplied in the gas mixing region. And a carbon nanotube growth process for growing carbon nanotubes by mixing and reacting with
    A method for producing a carbon nanotube, comprising:
PCT/JP2011/078868 2010-12-15 2011-12-14 Device and process for production of carbon nanotubes WO2012081600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012548801A JP5791157B2 (en) 2010-12-15 2011-12-14 Synthesis furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-279725 2010-12-15
JP2010279725 2010-12-15

Publications (1)

Publication Number Publication Date
WO2012081600A1 true WO2012081600A1 (en) 2012-06-21

Family

ID=46244697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078868 WO2012081600A1 (en) 2010-12-15 2011-12-14 Device and process for production of carbon nanotubes

Country Status (2)

Country Link
JP (1) JP5791157B2 (en)
WO (1) WO2012081600A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125418A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp Apparatus and method for producing carbon nanofiber
CN111017926A (en) * 2019-12-06 2020-04-17 南京理工大学 Method and device for preparing magnetic carbon nanotube/porous carbon material by using green environment-friendly biomass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137831A (en) * 2006-11-30 2008-06-19 Nikon Corp Device and method for manufacturing carbon nanotubes
WO2008096699A1 (en) * 2007-02-05 2008-08-14 National Institute Of Advanced Industrial Science And Technology Apparatus and process for production of oriented carbon nanotube
JP2009140746A (en) * 2007-12-06 2009-06-25 Nissan Motor Co Ltd Fuel cell system, and control method of fuel cell system
WO2009107846A1 (en) * 2008-02-29 2009-09-03 独立行政法人産業技術総合研究所 Carbon nanotube film structure and method for manufacturing the same
JP2009208976A (en) * 2008-02-29 2009-09-17 National Institute Of Advanced Industrial & Technology Method and apparatus for producing oriented carbon nanotube assembly
JP2010248073A (en) * 2008-04-16 2010-11-04 Nippon Zeon Co Ltd Apparatus and method for producing aligned carbon-nanotube aggregate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137831A (en) * 2006-11-30 2008-06-19 Nikon Corp Device and method for manufacturing carbon nanotubes
WO2008096699A1 (en) * 2007-02-05 2008-08-14 National Institute Of Advanced Industrial Science And Technology Apparatus and process for production of oriented carbon nanotube
JP2009140746A (en) * 2007-12-06 2009-06-25 Nissan Motor Co Ltd Fuel cell system, and control method of fuel cell system
WO2009107846A1 (en) * 2008-02-29 2009-09-03 独立行政法人産業技術総合研究所 Carbon nanotube film structure and method for manufacturing the same
JP2009208976A (en) * 2008-02-29 2009-09-17 National Institute Of Advanced Industrial & Technology Method and apparatus for producing oriented carbon nanotube assembly
JP2010248073A (en) * 2008-04-16 2010-11-04 Nippon Zeon Co Ltd Apparatus and method for producing aligned carbon-nanotube aggregate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DON N. FUTABA ET AL.: "A background level of oxygen-containing aromatics for synthetic control of carbon nanotube structure", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, 20 October 2009 (2009-10-20), pages 15992 - 15993 *
PLACIDUS B. AMAMA ET AL.: "Role of water in super growth of single-walled carbon nanotube carpets", NANO LETTERS, vol. 9, no. 1, 1 December 2008 (2008-12-01), pages 44 - 49 *
TAKEO YAMADA ET AL.: "Single- and Double-Walled Carbon Nanotube Synthesis by Super Growth Method", SHOKUBAI, vol. 51, no. 1, 15 January 2009 (2009-01-15), pages 2 - 7 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125418A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp Apparatus and method for producing carbon nanofiber
CN111017926A (en) * 2019-12-06 2020-04-17 南京理工大学 Method and device for preparing magnetic carbon nanotube/porous carbon material by using green environment-friendly biomass

Also Published As

Publication number Publication date
JPWO2012081600A1 (en) 2014-05-22
JP5791157B2 (en) 2015-10-07

Similar Documents

Publication Publication Date Title
JP5549984B2 (en) Method for producing aggregate of carbon nanotubes with high specific surface area
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
KR101073768B1 (en) Equipment and method for producing orientated carbon nano-tube aggregates
CN102471065B (en) Device for manufacturing aligned carbon nanotube assembly
JP5590603B2 (en) Equipment for producing aligned carbon nanotubes
US8455050B2 (en) Manufacturing apparatus and manufacturing method for alined carbon nanotubes
US20100062229A1 (en) Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, powdered aligned single-walled carbon nanotube aggregate, and production method thereof
WO2010092786A1 (en) Base for producing oriented carbon nanotube aggregate, and method for producing oriented carbon nanotube aggregate
JP5608952B2 (en) Carbon nanotube manufacturing apparatus and manufacturing method
Shukrullah et al. Mass production of carbon nanotubes using fluidized bed reactor: A short review
KR20190004096A (en) Carbon nanotube synthesis in a fluidized bed reactor
JP6492598B2 (en) Method for producing carbon nanotube
JP5582574B2 (en) Carbon nanotube production equipment
WO2012057229A1 (en) Process for production of carbon nanotubes
JP2008169092A (en) Carbon nanotube production method
JP5791157B2 (en) Synthesis furnace
JP5505785B2 (en) Equipment for producing aligned carbon nanotubes
Jašek et al. Synthesis of carbon nanostructures by plasma enhanced chemical vapour deposition at atmospheric pressure
US10954128B2 (en) Method of producing fibrous carbon nanostructures
JP5549983B2 (en) Method for producing aggregate of carbon nanotubes with high specific surface area
JP2014166936A (en) Method of producing carbon nanotube aggregate
Shen et al. Synthesis of high-specific volume carbon nanotube structures for gas-phase applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849839

Country of ref document: EP

Kind code of ref document: A1