JP2011089153A - Method for producing copper fine particle - Google Patents

Method for producing copper fine particle Download PDF

Info

Publication number
JP2011089153A
JP2011089153A JP2009241660A JP2009241660A JP2011089153A JP 2011089153 A JP2011089153 A JP 2011089153A JP 2009241660 A JP2009241660 A JP 2009241660A JP 2009241660 A JP2009241660 A JP 2009241660A JP 2011089153 A JP2011089153 A JP 2011089153A
Authority
JP
Japan
Prior art keywords
fine particles
copper fine
copper
added
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009241660A
Other languages
Japanese (ja)
Inventor
Ken Horino
建 堀野
Toyoji Oshima
豊嗣 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009241660A priority Critical patent/JP2011089153A/en
Publication of JP2011089153A publication Critical patent/JP2011089153A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper fine particles having excellent oxidation resistance by a wet reduction process, to provide a method for producing the copper fine particles, and to provide a dispersion comprising the copper fine particles. <P>SOLUTION: In a method in which the oxide, hydroxide or salt of copper is reduced in an aqueous solution using a reducing agent so as to obtain copper fine particles, inorganic phosphoric acid is added as a protective agent and an alkaline compound is added as a reduction reaction controlling agent so as to obtain the oxidation resistant copper fine particles having a particle diameter of ≤500 nm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電子材料の配線形成用途などに有用な銅微粒子の製造方法に関する。   The present invention relates to a method for producing copper fine particles useful for applications such as wiring formation of electronic materials.

従来から、金属微粒子は、電子材料用の導電性ペーストのような配線形成材料として、プリント配線、半導体の内部配線、プリント配線板と電子部品との接続等に利用されている。また電子材料用の高熱伝導フィラーとしてプラスチック基板やパッケージの放熱材料として利用されている。   Conventionally, metal fine particles have been used as a wiring forming material such as a conductive paste for electronic materials for printed wiring, semiconductor internal wiring, connection between a printed wiring board and electronic components, and the like. It is also used as a heat dissipation material for plastic substrates and packages as a high thermal conductive filler for electronic materials.

一般に、金属微粒子の製造方法としては、例えば、原料となる金属を真空中
又は微量のガス存在下で誘導加熱により蒸発させることにより、気相中で金属
微粒子を合成する方法が知られている(特許文献1、2参照)。しかし、この
方法では、高価な誘導加熱装置や真空装置等を必要とするうえ、金属微粒子が
真空装置内で生成するため、一度に得られる金属微粒子の生成量が少なく、大
量生産に適していない。
In general, as a method for producing metal fine particles, for example, a method of synthesizing metal fine particles in a gas phase by evaporating a metal as a raw material by induction heating in a vacuum or in the presence of a small amount of gas is known ( (See Patent Documents 1 and 2). However, this method requires an expensive induction heating device, a vacuum device, and the like, and metal fine particles are generated in the vacuum device, so that the amount of metal fine particles obtained at one time is small and not suitable for mass production. .

金属を蒸発させる方法には、上記誘電加熱を利用する方法以外にも、アーク放電を利用する方法(特許文献3参照)、電子ビームを利用する方法、レーザーを利用する方法等も知られているが、上記の誘導加熱を利用する方法と同様の理由で高コストであり、やはり大量生産に適した製造方法とは言い難い。   As a method for evaporating a metal, a method using an arc discharge (see Patent Document 3), a method using an electron beam, a method using a laser, and the like are known in addition to the method using the dielectric heating. However, the cost is high for the same reason as the method using the induction heating, and it is difficult to say that the manufacturing method is suitable for mass production.

一方、大量生産に適した金属微粒子の製造方法として、液相中から金属微粒子を製造する化学的な方法が提案されている。一般的な方法としては、金属化合物を溶液中においてヒドラジン等の還元剤により還元する方法がある(特許文献4、5参照)。しかし、この方法では、得られた銅微粒子表面に有機物の保護剤が皮膜を形成してしまい、皮膜を除去するために酸化性条件下で焼成を行った後に、酸化された銅微粒子を還元するために希薄水素還流条件下で再度焼成する必要があり、後工程である焼成工程が煩雑になるという問題点がある。   On the other hand, as a method for producing metal fine particles suitable for mass production, a chemical method for producing metal fine particles from a liquid phase has been proposed. As a general method, there is a method of reducing a metal compound with a reducing agent such as hydrazine in a solution (see Patent Documents 4 and 5). However, in this method, an organic protective agent forms a film on the surface of the obtained copper fine particles, and the oxidized copper fine particles are reduced after firing under oxidizing conditions to remove the film. Therefore, it is necessary to perform firing again under dilute hydrogen reflux conditions, and there is a problem that the subsequent firing step becomes complicated.

特開平3−34211号公報JP-A-3-34211 特開2000−123634号公報JP 2000-123634 A 特開2002−241806号公報JP 2002-241806 A 特開2005−307335号公報JP 2005-307335 A 特開2007−200659号公報Japanese Patent Laid-Open No. 2007-200659

本発明は、このような従来の事情に鑑みてなされたものであり、湿式還元法を用いて、低温焼成配線材料に用いる金属微粒子として好適な粒子径500nm以下の銅微粒子を得ることを目的とする。   The present invention has been made in view of such conventional circumstances, and an object thereof is to obtain copper fine particles having a particle diameter of 500 nm or less suitable as metal fine particles used in low-temperature fired wiring materials by using a wet reduction method. To do.

本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、銅の酸化物、水酸化物又は塩を、水溶液中で還元剤を用いて銅微粒子を得る方法において、銅表面の耐酸化の保護剤として無機リン酸化合物を添加し、且つ還元反応制御剤としてアルカリ化合物を添加することにより、電子材料の配線形成用途などに有用な銅微粒子を得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the inventors of the present invention obtained a copper oxide, hydroxide or salt using a reducing agent in an aqueous solution to obtain copper fine particles. It is found that by adding an inorganic phosphate compound as a protective agent and an alkali compound as a reduction reaction control agent, copper fine particles useful for wiring formation of electronic materials can be obtained, and the present invention is completed. It came to.

すなわち、本発明は、銅の酸化物、水酸化物又は塩を、水溶液中で還元剤により還元して銅微粒子を製造する方法において、該水溶液に、無機リン酸化合物を銅に対して0.01〜0.15の質量比で添加し、且つアルカリ化合物を添加して、反応前の該水溶液のpHを5〜9にして、還元剤を添加することを特徴とする銅微粒子の製造方法に関するものである。   That is, the present invention relates to a method for producing copper fine particles by reducing a copper oxide, hydroxide, or salt with an reducing agent in an aqueous solution. The present invention relates to a method for producing copper fine particles characterized by adding a mass ratio of 01 to 0.15 and adding an alkali compound to adjust the pH of the aqueous solution before the reaction to 5 to 9 and adding a reducing agent. Is.

本発明によれば、大量生産に適した液相法により、耐酸化性に優れた粒子径
500nm以下の銅微粒子及びその分散液を提供することができる。
According to the present invention, it is possible to provide copper fine particles having a particle diameter of 500 nm or less and a dispersion thereof excellent in oxidation resistance by a liquid phase method suitable for mass production.

本発明の銅微粒子の製造方法は、公知の湿式法を応用して、銅の水溶液中で、
還元剤によって還元することにより液相中で銅微粒子を合成するものであって、
銅表面を無機リン酸化合物で保護すると共に、還元反応制御剤としてアルカリ
化合物を添加することを特徴とする。
The method for producing copper fine particles of the present invention applies a known wet method, in a copper aqueous solution,
The copper fine particles are synthesized in the liquid phase by reducing with a reducing agent,
The copper surface is protected with an inorganic phosphate compound, and an alkali compound is added as a reduction reaction control agent.

原料の銅について、酸化物として、例えば酸化銅(I)、酸化銅(II)、水酸化物として水酸化銅、塩として塩化銅、酢酸銅、硫酸銅等が挙げられる。   Regarding the raw material copper, examples of the oxide include copper (I) oxide and copper (II) oxide, hydroxide as copper hydroxide, salt as copper chloride, copper acetate, copper sulfate and the like.

還元剤として、例えば水加ヒドラジンや水素化ホウ素ナトリウム等が挙げられるが、特に水加ヒドラジンを用いるのが好ましく、その使用量は銅に対して3当量以上が好ましい。還元剤の使用量が3当量より少ないと、銅が十分に還元されずに酸化銅が残留する。   Examples of the reducing agent include hydrated hydrazine and sodium borohydride. Particularly, hydrated hydrazine is preferably used, and the amount used is preferably 3 equivalents or more with respect to copper. When the amount of the reducing agent used is less than 3 equivalents, copper is not sufficiently reduced and copper oxide remains.

無機リン酸化合物は、還元析出した銅微粒子の表面を被覆し、その立体障害
により銅微粒子同士の接触を防止して銅微粒子の生成を促進する。また銅表面
を被覆することで耐酸化性を付与する。無機リン酸化合物として、例えばオル
トリン酸、ピロリン酸若しくはポリリン酸、又はこれらのアルカリ金属塩が挙
げられる。その添加量は、銅に対する重量比で0.01〜0.15であること
が好ましい。無機リン酸化合物の添加量が0.01よりも少なすぎると銅表面
を十分被覆できなくなり、耐酸化性が低下する。無機リン酸化合物の添加量が
0.15よりも多過ぎると銅微粒子の凝集が促進され粒子径が増大する。また
凝集した粒子間に洗浄で取り除けない無機リン酸化合物の残留が多くなる。
The inorganic phosphate compound covers the surface of the copper fine particles that have been reduced and precipitated, and prevents the copper fine particles from coming into contact with each other due to its steric hindrance, thereby promoting the formation of copper fine particles. Moreover, oxidation resistance is imparted by coating the copper surface. Examples of the inorganic phosphoric acid compound include orthophosphoric acid, pyrophosphoric acid, polyphosphoric acid, and alkali metal salts thereof. The addition amount is preferably 0.01 to 0.15 by weight ratio to copper. If the amount of the inorganic phosphate compound added is less than 0.01, the copper surface cannot be sufficiently coated and the oxidation resistance is lowered. If the amount of the inorganic phosphate compound added is more than 0.15, the aggregation of the copper fine particles is promoted and the particle diameter is increased. Further, the residual inorganic phosphate compound that cannot be removed by washing between the aggregated particles increases.

アルカリ化合物は、反応系中に水酸化銅を生成する効果を有しており、また
還元反応制御剤として還元析出する銅微粒子の微細化と粒径の均一化に寄与する。アルカリ化合物として、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物やアンモニア、アルキルアミン等のアミン化合物が挙げられるが、特にアンモニアを用いるのが好ましく、その使用量は反応液のpHが5.0〜9.0の範囲になる量であることが好ましい。添加量の不足あるいは過剰により、pHが上記の範囲から外れると、粒子径が増大する。
The alkali compound has an effect of generating copper hydroxide in the reaction system, and contributes to the refinement of copper fine particles that are reduced and deposited as a reduction reaction control agent and to uniform particle size. Examples of the alkali compound include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and amine compounds such as ammonia and alkylamine. Particularly, it is preferable to use ammonia, and the amount used thereof is that of the reaction solution. The amount is preferably such that the pH is in the range of 5.0 to 9.0. If the pH is out of the above range due to insufficient or excessive addition, the particle size increases.

本発明の製造方法としては、原料の銅の酸化物等を水に溶解または懸濁し、無機リン酸化合物、アルカリ化合物を添加する。添加の順序は、特に制限はなく、先にアルカリ化合物を添加して、水酸化銅を析出させてから、無機リン酸化合物を添加し、さらにアルカリ化合物を添加してpHを調整してもよいし、先に無機リン酸化合物を添加してから、アルカリ化合物を添加してもよい。   In the production method of the present invention, a raw material copper oxide or the like is dissolved or suspended in water, and an inorganic phosphate compound or an alkali compound is added. The order of addition is not particularly limited, and the pH may be adjusted by adding an inorganic compound first after adding an alkali compound to precipitate copper hydroxide, and then adding an alkali compound. And after adding an inorganic phosphoric acid compound previously, you may add an alkali compound.

pH調整後に還元剤を添加することにより、銅微粒子が水溶液中に分散した状態で得られる。この溶液中には、銅微粒子以外に、無機リン酸化合物、還元剤、還元反応制御剤が含まれている。銅微粒子はインクやペーストに加工された後、焼成工程を経て放熱材料や配線材料用に使用されるが、無機リン酸化合物、還元剤、還元反応制御剤が過剰に存在すると熱抵抗や電気抵抗の上昇、構造欠陥の発生などの不具合をもたらす原因となる。   By adding a reducing agent after pH adjustment, the copper fine particles are obtained in a dispersed state in an aqueous solution. In addition to the copper fine particles, the solution contains an inorganic phosphate compound, a reducing agent, and a reduction reaction controlling agent. Copper fine particles are processed into inks and pastes, and then used for heat dissipation materials and wiring materials through a baking process. However, if there are excessive inorganic phosphate compounds, reducing agents, and reduction reaction control agents, thermal resistance and electrical resistance This causes problems such as an increase in the number of defects and the occurrence of structural defects.

そこで、本発明で得られた銅微粒子は、水やアルコールなどを用いて洗浄することによって溶液中に含まれる無機リン酸化合物、還元剤、還元反応制御剤をできるだけ除去し、銅微粒子が溶媒に分散したインクおよびペーストを作製するのが好ましい。   Therefore, the copper fine particles obtained in the present invention are washed with water, alcohol, or the like to remove as much as possible the inorganic phosphate compound, reducing agent, and reduction reaction control agent contained in the solution, and the copper fine particles are used as a solvent. It is preferred to make dispersed inks and pastes.

かかる銅微粒子分散液を得る方法としては、得られた銅微粒子を含む溶液を、水、アルコール、炭化水素などの極性溶媒で希釈した後、限外濾過や遠心分離などにより溶媒置換・濃縮を行う。アルコールとしてメタノールが挙げられ、炭化水素としてトルエンが挙げられる。希釈後、必要に応じて、真空乾燥して粉体として取り出すか、更に極性溶媒による希釈と、溶媒置換・濃縮を繰り返して、所望の銅濃度と不純物品位に調整した分散液とする。   As a method for obtaining such a copper fine particle dispersion, the solution containing the obtained copper fine particles is diluted with a polar solvent such as water, alcohol, or hydrocarbon, and then subjected to solvent substitution / concentration by ultrafiltration or centrifugation. . An example of the alcohol is methanol, and an example of the hydrocarbon is toluene. After the dilution, if necessary, vacuum-dry and take out as a powder, or further diluting with a polar solvent and solvent substitution / concentration to obtain a dispersion adjusted to a desired copper concentration and impurity grade.

以下、本発明について実施例、比較例により具体的に説明するが、これらの
例により何ら限定されるものではない。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, it is not limited at all by these examples.

原料として、硫酸銅5水和物(和光純薬工業(株)製)を、保護剤として8
5質量%オルトリン酸(和光純薬工業(株)製)、ピロリン酸(和光純薬工業
(株)製)、ポリリン酸(和光純薬工業(株)製)を、還元剤として高純度水
加ヒドラジン(三菱ガス化学(株)製)を、還元反応制御剤としてアンモニア
水(和光純薬工業(株)製)を用いた。なお、ヒドラジンは、純水を添加して、
25質量%の水溶液を調製した。
As a raw material, copper sulfate pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is used as a protective agent.
5% by mass orthophosphoric acid (manufactured by Wako Pure Chemical Industries, Ltd.), pyrophosphoric acid (manufactured by Wako Pure Chemical Industries, Ltd.), polyphosphoric acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a reducing agent with high purity hydration Hydrazine (Mitsubishi Gas Chemical Co., Ltd.) was used, and ammonia water (Wako Pure Chemical Industries, Ltd.) was used as the reduction reaction control agent. Hydrazine is added pure water,
A 25% by weight aqueous solution was prepared.

評価結果について、銅微粒子の酸化状態は、X線回折測定(理学電気(株)製RINT2100)による酸化銅の(100)のピーク面積と銅の(100)のピーク面積の比によって定量した。また、銅微粒子の粒子径は、走査電子顕微鏡(日立ハイテクフィールディング(株)製S−4700)による粒子の形状観察により無作為に100個の粒子を選択して測定した粒子径から平均粒子径を算出した。また粒子の形状が球状で無い場合は長径を粒子径とした。   About the evaluation result, the oxidation state of the copper fine particle was quantified by the ratio of the peak area of (100) of copper oxide and the peak area of (100) of copper by X-ray diffraction measurement (RINT2100 manufactured by Rigaku Corporation). In addition, the particle size of the copper fine particles is the average particle size from the particle size measured by selecting 100 particles randomly by observing the shape of the particles with a scanning electron microscope (S-4700 manufactured by Hitachi High-Tech Fielding Co., Ltd.). Calculated. When the particle shape was not spherical, the major axis was taken as the particle size.

実施例1
200mlの三口フラスコに、硫酸銅5水和物4.71gと予め窒素ガスでバブリングした純水105gを加え、75℃に加熱したウォーターバスにセットした。テフロン(登録商標)撹拌羽根を用いてメカニカルスターラーで300rpmに撹拌して硫酸銅を溶解後、水溶液の温度が70℃になった時、28質量%アンモニア水を2.20ml添加して水酸化銅を析出させた。次に、85質量%オルトリン酸0.12gを純水1.0gに希釈した溶液を添加し、さらに28質量%アンモニア水を0.20ml添加した。ここで、フラスコ内の水溶液のpHは、7.9であった。
Example 1
To a 200 ml three-necked flask, 4.71 g of copper sulfate pentahydrate and 105 g of pure water previously bubbled with nitrogen gas were added and set in a water bath heated to 75 ° C. After stirring copper sulfate with a mechanical stirrer using a Teflon (registered trademark) stirring blade to dissolve copper sulfate, when the temperature of the aqueous solution reached 70 ° C., 2.20 ml of 28% by mass ammonia water was added and copper hydroxide was added. Was precipitated. Next, a solution obtained by diluting 85% by mass of orthophosphoric acid (0.12 g) in 1.0 g of pure water was added, and 0.20 ml of 28% by mass of ammonia water was further added. Here, the pH of the aqueous solution in the flask was 7.9.

次に、撹拌回転数を450rpmにして、25質量%ヒドラジン水溶液7.14gを滴下ポンプで4分間かけて添加し、さらに滴下終了後、1時間攪拌を続けた。反応終了後、反応液を250mlのプラスチック容器に移し、遠心分離機で析出した固体を沈降させた。上澄み液を除いた沈殿物に純水60gを加えて超音波洗浄機で5分間洗浄、遠心分離機で固体を沈降させた。同様の操作をもう一度繰り返し、上澄み液を除いて、メタノール40gを加えて超音波洗浄機で5分間洗浄、遠心分離機で固体を沈降させた。上澄み液を除いて室温で真空乾燥機器を用いて乾燥させて銅微粒子1.14gを得た。得られた銅微粒子の評価結果を表1に示す。   Next, the stirring rotation speed was set to 450 rpm, and 7.14 g of a 25% by mass hydrazine aqueous solution was added with a dropping pump over 4 minutes, and stirring was further continued for 1 hour after the dropping was completed. After completion of the reaction, the reaction solution was transferred to a 250 ml plastic container, and the precipitated solid was precipitated by a centrifuge. 60 g of pure water was added to the precipitate excluding the supernatant, washed with an ultrasonic washer for 5 minutes, and the solid was precipitated with a centrifuge. The same operation was repeated once again, the supernatant was removed, 40 g of methanol was added, the mixture was washed with an ultrasonic washer for 5 minutes, and the solid was precipitated with a centrifuge. The supernatant was removed and dried at room temperature using a vacuum drying device to obtain 1.14 g of copper fine particles. Table 1 shows the evaluation results of the obtained copper fine particles.

得られた銅微粒子を硝酸水溶液に溶解し、銅微粒子中のリンをICP−AESで定量分析を行ったところ320ppmであり、耐酸化の保護剤として添加したオルトリン酸による保護層が極めて薄く、電子部品の材料に適していることがわかった。   The obtained copper fine particles were dissolved in an aqueous nitric acid solution, and phosphorus in the copper fine particles was quantitatively analyzed by ICP-AES. As a result, it was 320 ppm. It was found to be suitable for the material of the parts.

実施例2
200mlの三口フラスコに、硫酸銅5水和物4.71gと予め窒素ガスでバブリングした純水105gを加え、75℃に加熱したウォーターバスにセットした。テフロン(登録商標)撹拌羽根を用いてメカニカルスターラーで300rpmに撹拌して硫酸銅を溶解後、水溶液の温度が70℃になった時、85質量%オルトリン酸0.12gを純水1.0gに希釈した溶液を添加し、28質量%アンモニア水を2.40ml添加して水酸化銅を析出させた。ここで、フラスコ内の水溶液のpHは、7.9であった。
Example 2
To a 200 ml three-necked flask, 4.71 g of copper sulfate pentahydrate and 105 g of pure water previously bubbled with nitrogen gas were added and set in a water bath heated to 75 ° C. After stirring copper sulfate with a mechanical stirrer using a Teflon (registered trademark) stirring blade to dissolve copper sulfate, when the temperature of the aqueous solution reached 70 ° C., 0.12 g of 85% by mass orthophosphoric acid was changed to 1.0 g of pure water. The diluted solution was added, and 2.40 ml of 28% by mass ammonia water was added to precipitate copper hydroxide. Here, the pH of the aqueous solution in the flask was 7.9.

次に、撹拌回転数を450rpmにして、25質量%ヒドラジン水溶液7.14gを滴下ポンプで4分間かけて添加し、さらに滴下終了後、1時間攪拌を続けた。反応終了後、反応液を250mlのプラスチック容器に移し、遠心分離機で析出した固体を沈降させた。上澄み液を除いた沈殿物に純水60gを加えて超音波洗浄機で5分間洗浄、遠心分離機で固体を沈降させた。同様の操作をもう一度繰り返し、上澄み液を除いて、メタノール40gを加えて超音波洗浄機で5分間洗浄、遠心分離機で固体を沈降させた。上澄み液を除いて室温で真空乾燥機器を用いて乾燥させて銅微粒子1.12gを得た。得られた銅微粒子の評価結果を表1に示す。   Next, the stirring rotation speed was set to 450 rpm, and 7.14 g of a 25% by mass hydrazine aqueous solution was added with a dropping pump over 4 minutes, and stirring was further continued for 1 hour after the dropping was completed. After completion of the reaction, the reaction solution was transferred to a 250 ml plastic container, and the precipitated solid was precipitated by a centrifuge. 60 g of pure water was added to the precipitate excluding the supernatant, washed with an ultrasonic washer for 5 minutes, and the solid was precipitated with a centrifuge. The same operation was repeated once again, the supernatant was removed, 40 g of methanol was added, the mixture was washed with an ultrasonic washer for 5 minutes, and the solid was precipitated with a centrifuge. The supernatant was removed and dried at room temperature using a vacuum dryer to obtain 1.12 g of copper fine particles. Table 1 shows the evaluation results of the obtained copper fine particles.

実施例3
200mlの三口フラスコに、硫酸銅5水和物4.71gと予め窒素ガスでバブリングした純水105gを加えた。32℃に加熱したウォーターバスにセットした。テフロン(登録商標)撹拌羽根を用いてメカニカルスターラーで300rpmに撹拌して硫酸銅を溶解後、水溶液の温度が30℃になった時、50質量%水酸化ナトリウム水溶液を3.0ml添加して水酸化銅を析出させた。その後、ウォーターバスの温度を75℃にして水溶液の温度が70℃になった時、85質量%オルトリン酸0.12gを純水1.0gに希釈した溶液を添加し、さらに2N水酸化ナトリウム水溶液を0.60ml添加した。ここで、フラスコ内の水溶液のpHは、8.0であった。
Example 3
To a 200 ml three-necked flask, 4.71 g of copper sulfate pentahydrate and 105 g of pure water previously bubbled with nitrogen gas were added. It was set in a water bath heated to 32 ° C. After stirring copper sulfate with a mechanical stirrer using a Teflon (registered trademark) stirring blade to dissolve copper sulfate, when the temperature of the aqueous solution reached 30 ° C., 3.0 ml of a 50% by mass aqueous sodium hydroxide solution was added and water was added. Copper oxide was deposited. Thereafter, when the temperature of the water bath is 75 ° C. and the temperature of the aqueous solution is 70 ° C., a solution obtained by diluting 0.12 g of 85% by mass orthophosphoric acid into 1.0 g of pure water is added, and further 2N aqueous sodium hydroxide solution is added. Of 0.60 ml was added. Here, the pH of the aqueous solution in the flask was 8.0.

次に、撹拌回転数を450rpmにして、25質量%ヒドラジン水溶液7.14gを滴下ポンプで4分間かけて添加し、さらに滴下終了後、1時間攪拌を続けた。反応終了後、反応液を250mlのプラスチック容器に移し、遠心分離機で析出した固体を沈降させた。上澄み液を除いた沈殿物に純水60gを加えて超音波洗浄機で5分間洗浄、遠心分離機で固体を沈降させた。同様の操作をもう一度繰り返し、上澄み液を除いて、メタノール40gを加えて超音波洗浄機で5分間洗浄、遠心分離機で固体を沈降させた。上澄み液を除いて室温で真空乾燥機器を用いて乾燥させて銅微粒子1.10gを得た。得られた銅微粒子の評価結果を表1に示す。   Next, the stirring rotation speed was set to 450 rpm, and 7.14 g of a 25% by mass hydrazine aqueous solution was added with a dropping pump over 4 minutes, and stirring was further continued for 1 hour after the dropping was completed. After completion of the reaction, the reaction solution was transferred to a 250 ml plastic container, and the precipitated solid was precipitated by a centrifuge. 60 g of pure water was added to the precipitate excluding the supernatant, washed with an ultrasonic washer for 5 minutes, and the solid was precipitated with a centrifuge. The same operation was repeated once again, the supernatant was removed, 40 g of methanol was added, the mixture was washed with an ultrasonic washer for 5 minutes, and the solid was precipitated with a centrifuge. The supernatant was removed and dried at room temperature using a vacuum dryer to obtain 1.10 g of copper fine particles. Table 1 shows the evaluation results of the obtained copper fine particles.

実施例4
85質量%オルトリン酸0.12gをピロリン酸0.10gに変更した以外は、実施例1と同様にして、銅微粒子1.11gを得た。得られた銅微粒子の評価結果を表1に示す。
Example 4
1.11 g of copper fine particles were obtained in the same manner as in Example 1 except that 0.12 g of 85 mass% orthophosphoric acid was changed to 0.10 g of pyrophosphoric acid. Table 1 shows the evaluation results of the obtained copper fine particles.

実施例5
85質量%オルトリン酸0.12gをポリリン酸0.10gに変更した以外は、実施例1と同様にして、銅微粒子1.04gを得た。得られた銅微粒子の評価結果を表1に示す。銅微粒子を硝酸水溶液に溶解し、銅微粒子中のリンをICP−AESで定量分析を行ったところ420ppmであり、耐酸化の保護剤として添加したポリリン酸による保護層が極めて薄く、電子部品の材料に適していることがわかった。
Example 5
Except for changing 0.12 g of 85% by mass orthophosphoric acid to 0.10 g of polyphosphoric acid, 1.04 g of copper fine particles were obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained copper fine particles. The copper fine particles were dissolved in an aqueous nitric acid solution, and the phosphorus in the copper fine particles was quantitatively analyzed by ICP-AES. As a result, it was 420 ppm, and the protective layer made of polyphosphoric acid added as an oxidation-resistant protective agent was extremely thin. It was found to be suitable for.

実施例6
85質量%オルトリン酸0.12gを0.05gに変更した以外は、実施例1と同様にして、銅微粒子1.16gを得た。得られた銅微粒子の評価結果を表1に示す。得られた銅微粒子を硝酸水溶液に溶解し、銅微粒子中のリンをICP−AESで定量分析を行ったところ350ppmであり、耐酸化の保護剤として添加したオルトリン酸による保護層が極めて薄く、電子部品の材料に適していることがわかった。
Example 6
1.16 g of copper fine particles were obtained in the same manner as in Example 1 except that 0.12 g of 85 mass% orthophosphoric acid was changed to 0.05 g. Table 1 shows the evaluation results of the obtained copper fine particles. The obtained copper fine particles were dissolved in an aqueous nitric acid solution, and the phosphorus in the copper fine particles was quantitatively analyzed by ICP-AES. As a result, it was 350 ppm, and the protective layer made of orthophosphoric acid added as an anti-oxidation protective agent was extremely thin. It was found to be suitable for the material of the parts.

実施例7
ポリリン酸0.10gを0.04gに変更した以外は、実施例5と同様にして、銅微粒子1.07gを得た。得られた銅微粒子の評価結果を表1に示す。
銅微粒子を硝酸水溶液に溶解し、銅微粒子中のリンをICP−AESで定量分析を行ったところ430ppmであり、耐酸化の保護剤として添加したポリリン酸による保護層が極めて薄く、電子部品の材料に適していることがわかった。
Example 7
Except for changing 0.10 g of polyphosphoric acid to 0.04 g, the same procedure as in Example 5 was performed to obtain 1.07 g of copper fine particles. Table 1 shows the evaluation results of the obtained copper fine particles.
Copper fine particles were dissolved in aqueous nitric acid, and phosphorus in the copper fine particles was quantitatively analyzed by ICP-AES. As a result, it was 430 ppm, and the protective layer made of polyphosphoric acid added as an anti-oxidation protective agent was extremely thin. It was found to be suitable for.

実施例8
200mlの三口フラスコに、硫酸銅5水和物4.71gと予め窒素ガスでバブリングした純水105gを加え、75℃に加熱したウォーターバスにセットした。テフロン(登録商標)撹拌羽根を用いてメカニカルスターラーで300rpmに撹拌して硫酸銅を溶解後、水溶液の温度が70℃になった時、28質量%アンモニア水を2.10ml添加して水酸化銅を析出させた。次に、ポリリン酸0.10gを純水1.0gに希釈した溶液を添加した。ここで、フラスコ内の水溶液のpHは、5.0であった。
Example 8
To a 200 ml three-necked flask, 4.71 g of copper sulfate pentahydrate and 105 g of pure water previously bubbled with nitrogen gas were added and set in a water bath heated to 75 ° C. After stirring copper sulfate with a mechanical stirrer using a Teflon (registered trademark) stirring blade to dissolve copper sulfate, when the temperature of the aqueous solution reached 70 ° C., 2.10 ml of 28% by mass ammonia water was added and copper hydroxide was added. Was precipitated. Next, a solution obtained by diluting 0.10 g of polyphosphoric acid in 1.0 g of pure water was added. Here, the pH of the aqueous solution in the flask was 5.0.

次に、撹拌回転数を450rpmにして、25質量%ヒドラジン水溶液7.14gを滴下ポンプで4分間かけて添加し、さらに滴下終了後、1時間攪拌を続けた。反応終了後、反応液を250mlのプラスチック容器に移し、遠心分離機で析出した固体を沈降させた。上澄み液を除いた沈殿物に純水60gを加えて超音波洗浄機で5分間洗浄、遠心分離機で固体を沈降させた。同様の操作をもう一度繰り返し、上澄み液を除いて、メタノール40gを加えて超音波洗浄機で5分間洗浄、遠心分離機で固体を沈降させた。上澄み液を除いて室温で真空乾燥機器を用いて乾燥させて銅微粒子1.10gを得た。得られた銅微粒子の評価結果を表1に示す。   Next, the stirring rotation speed was set to 450 rpm, and 7.14 g of a 25% by mass hydrazine aqueous solution was added with a dropping pump over 4 minutes, and stirring was further continued for 1 hour after the dropping was completed. After completion of the reaction, the reaction solution was transferred to a 250 ml plastic container, and the precipitated solid was precipitated by a centrifuge. 60 g of pure water was added to the precipitate excluding the supernatant, washed with an ultrasonic washer for 5 minutes, and the solid was precipitated with a centrifuge. The same operation was repeated once again, the supernatant was removed, 40 g of methanol was added, the mixture was washed with an ultrasonic washer for 5 minutes, and the solid was precipitated with a centrifuge. The supernatant was removed and dried at room temperature using a vacuum dryer to obtain 1.10 g of copper fine particles. Table 1 shows the evaluation results of the obtained copper fine particles.

実施例1〜8で得られた固体をX線回折により分析した結果、酸化銅に対応するピークが観測されず、銅のピークのみが観測された。   As a result of analyzing the solids obtained in Examples 1 to 8 by X-ray diffraction, a peak corresponding to copper oxide was not observed, and only a copper peak was observed.

比較例1
85質量%オルトリン酸0.12gを0.36gに変更した以外は、実施例1と同様にして、銅微粒子1.16gを得た。得られた銅微粒子の評価結果を表1に示す。
Comparative Example 1
1.16 g of copper fine particles were obtained in the same manner as in Example 1 except that 0.12 g of 85 mass% orthophosphoric acid was changed to 0.36 g. Table 1 shows the evaluation results of the obtained copper fine particles.

比較例2
ポリリン酸0.10gを0.30gに変更した以外は、実施例5と同様にして、銅微粒子1.05gを得た。得られた銅微粒子の評価結果を表1に示す。
Comparative Example 2
Except for changing 0.10 g of polyphosphoric acid to 0.30 g, the same procedure as in Example 5 was performed to obtain 1.05 g of copper fine particles. Table 1 shows the evaluation results of the obtained copper fine particles.

比較例3
200mlの三口フラスコに、硫酸銅5水和物4.71gと予め窒素ガスでバブリングした純水105gを加え、75℃に加熱したウォーターバスにセットした。テフロン(登録商標)撹拌羽根を用いてメカニカルスターラーで300rpmに撹拌して硫酸銅を溶解後、水溶液の温度が70℃になった時、ポリリン酸0.10gを純水1.0gに希釈した溶液を添加した。ここで、フラスコ内の水溶液のpHは、2.0であった。
Comparative Example 3
To a 200 ml three-necked flask, 4.71 g of copper sulfate pentahydrate and 105 g of pure water previously bubbled with nitrogen gas were added and set in a water bath heated to 75 ° C. A solution obtained by diluting 0.10 g of polyphosphoric acid to 1.0 g of pure water when the temperature of the aqueous solution reaches 70 ° C. after dissolving copper sulfate by stirring at 300 rpm with a mechanical stirrer using a Teflon (registered trademark) stirring blade. Was added. Here, the pH of the aqueous solution in the flask was 2.0.

次に、撹拌回転数を450rpmにして、実施例1と同様にヒドラジン水溶液添加して反応させ、反応終了後、精製して銅微粒子1.11gを得た。得られた銅微粒子の評価結果を表1に示す。   Next, the stirring rotation speed was set to 450 rpm, and a hydrazine aqueous solution was added and reacted in the same manner as in Example 1. After completion of the reaction, purification was performed to obtain 1.11 g of copper fine particles. Table 1 shows the evaluation results of the obtained copper fine particles.

比較例4
200mlの三口フラスコに、硫酸銅5水和物4.71gと予め窒素ガスでバブリングした純水105gを加え、75℃に加熱したウォーターバスにセットした。テフロン(登録商標)撹拌羽根を用いてメカニカルスターラーで300rpmに撹拌して硫酸銅を溶解後、水溶液の温度が70℃になった時、28質量%アンモニア水を6.50ml添加して銅アンモニア錯体を形成させた。
Comparative Example 4
To a 200 ml three-necked flask, 4.71 g of copper sulfate pentahydrate and 105 g of pure water previously bubbled with nitrogen gas were added and set in a water bath heated to 75 ° C. After stirring copper sulfate with a mechanical stirrer using a Teflon (registered trademark) stirring blade to dissolve copper sulfate, when the temperature of the aqueous solution reached 70 ° C., 6.50 ml of 28% by mass ammonia water was added to the copper ammonia complex. Formed.

次に、ポリリン酸0.10gを純水1.0gに希釈した溶液を添加し、さらに28質量%アンモニア水を1.0ml添加した。ここで、フラスコ内の水溶液のpHは、9.8であった。次に、撹拌回転数を450rpmにして、実施例1と同様にヒドラジン水溶液添加して反応させ、反応終了後、精製して銅微粒子0.84gを得た。得られた銅微粒子の評価結果を表1に示す。   Next, a solution obtained by diluting 0.10 g of polyphosphoric acid in 1.0 g of pure water was added, and 1.0 ml of 28% by mass ammonia water was further added. Here, the pH of the aqueous solution in the flask was 9.8. Next, the stirring rotation speed was set to 450 rpm, and a hydrazine aqueous solution was added and reacted in the same manner as in Example 1. After the reaction was completed, purification was performed to obtain 0.84 g of copper fine particles. Table 1 shows the evaluation results of the obtained copper fine particles.

比較例5
85質量%オルトリン酸0.12gを高分子分散剤である分子量30,000のポリビニルピロリドン(PVP)2.4gに変更した以外は、実施例1と同様にして、銅微粒子0.94gを得た。得られた銅微粒子の評価結果を表1に示す。
Comparative Example 5
0.94 g of copper fine particles was obtained in the same manner as in Example 1 except that 0.12 g of 85% by mass orthophosphoric acid was changed to 2.4 g of polyvinyl pyrrolidone (PVP) having a molecular weight of 30,000 as a polymer dispersant. . Table 1 shows the evaluation results of the obtained copper fine particles.

比較例6
オルトリン酸水溶液を添加しなかった以外は、実施例1と同様にして、銅微粒子1.17gを得た。得られた銅微粒子の評価結果を表1に示す。
Comparative Example 6
1.17 g of copper fine particles were obtained in the same manner as in Example 1 except that the aqueous orthophosphoric acid solution was not added. Table 1 shows the evaluation results of the obtained copper fine particles.

Figure 2011089153
Figure 2011089153

実施例9
実施例1、5、6および7で得られた銅微粒子をテルピネオールに50質量%になるように分散させ、スライドガラスに塗布して真空乾燥させた後に、管状炉を用いて窒素雰囲気下250〜350℃で30分間焼成を行い、銅の導電膜を作製した。作製した銅の導電膜は、抵抗率測定計(三菱化学株式会社製Loresta−EP)の測定により、体積抵抗率が10−30μΩcm(@350℃)及び20−60μΩcm(@300℃)、300−1000μΩcm(@250℃)の範囲にあり、良好な導電膜であることを確認できた。
Example 9
The copper fine particles obtained in Examples 1, 5, 6 and 7 were dispersed in terpineol so as to be 50% by mass, applied to a slide glass and vacuum-dried, and then 250 to 250 under a nitrogen atmosphere using a tubular furnace. Firing was carried out at 350 ° C. for 30 minutes to produce a copper conductive film. The produced copper conductive film has a volume resistivity of 10-30 μΩcm (@ 350 ° C.), 20-60 μΩcm (@ 300 ° C.), 300-, as measured by a resistivity meter (Loresta-EP manufactured by Mitsubishi Chemical Corporation). It was in the range of 1000 μΩcm (@ 250 ° C.), and it was confirmed that the film was a good conductive film.

本発明の銅微粒子を用いたインクまたはペーストは、電子材料用の配線、接合、放熱材料として好適である。   The ink or paste using the copper fine particles of the present invention is suitable as a wiring, bonding, and heat dissipation material for electronic materials.

Claims (7)

銅の酸化物、水酸化物又は塩を、水溶液中で還元剤により還元して銅微粒子を製造する方法において、該水溶液に、無機リン酸化合物を銅に対して0.01〜0.15の質量比で添加し、且つアルカリ化合物を添加して、反応前の該水溶液のpHを5〜9にして、還元剤を添加することを特徴とする銅微粒子の製造方法。   In the method of producing copper fine particles by reducing a copper oxide, hydroxide or salt in an aqueous solution with a reducing agent, the aqueous phosphoric acid compound is 0.01 to 0.15 relative to copper in the aqueous solution. A method for producing copper fine particles, comprising adding a mass ratio, adding an alkali compound, adjusting the pH of the aqueous solution before the reaction to 5 to 9, and adding a reducing agent. アルカリ化合物を添加して、還元反応を制御する請求項1に記載の銅微粒子の製造方法。   The method for producing copper fine particles according to claim 1, wherein an alkaline compound is added to control the reduction reaction. アルカリ化合物がアンモニアまたはアルカリ金属水酸化物である請求項1または2に記載の銅微粒子の製造方法。   The method for producing copper fine particles according to claim 1 or 2, wherein the alkali compound is ammonia or an alkali metal hydroxide. 無機リン酸化合物がオルトリン酸、ピロリン酸またはポリリン酸である請求項1に記載の銅微粒子の製造方法。   2. The method for producing copper fine particles according to claim 1, wherein the inorganic phosphate compound is orthophosphoric acid, pyrophosphoric acid or polyphosphoric acid. 還元剤が水加ヒドラジンである請求項1に記載の銅微粒子の製造方法。   2. The method for producing copper fine particles according to claim 1, wherein the reducing agent is hydrazine hydrate. 請求項1に記載の方法により得られた銅微粒子。   Copper fine particles obtained by the method according to claim 1. 請求項6の銅微粒子を含む銅微粒子分散液。   A copper fine particle dispersion containing the copper fine particles of claim 6.
JP2009241660A 2009-10-20 2009-10-20 Method for producing copper fine particle Pending JP2011089153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009241660A JP2011089153A (en) 2009-10-20 2009-10-20 Method for producing copper fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241660A JP2011089153A (en) 2009-10-20 2009-10-20 Method for producing copper fine particle

Publications (1)

Publication Number Publication Date
JP2011089153A true JP2011089153A (en) 2011-05-06

Family

ID=44107659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241660A Pending JP2011089153A (en) 2009-10-20 2009-10-20 Method for producing copper fine particle

Country Status (1)

Country Link
JP (1) JP2011089153A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023699A (en) * 2011-07-15 2013-02-04 Tokyo Institute Of Technology Production of metal fine particle by microwave heating
CN103341633A (en) * 2013-06-24 2013-10-09 深圳先进技术研究院 Method for preparing conductive ink nanometer copper
CN103464778A (en) * 2013-09-05 2013-12-25 江苏大学 Synthetic method of nanometer copper particles different in particle size under irradiation of microwave and ultraviolet
JP6004034B1 (en) * 2015-04-21 2016-10-05 住友金属鉱山株式会社 Copper powder
CN108480616A (en) * 2018-03-21 2018-09-04 苏州思美特表面材料科技有限公司 A kind of powder preparation method of effective control metal powder particles surface roughness
JP2019178059A (en) * 2018-03-20 2019-10-17 旭化成株式会社 Method for manufacturing dispersion

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023699A (en) * 2011-07-15 2013-02-04 Tokyo Institute Of Technology Production of metal fine particle by microwave heating
CN103341633A (en) * 2013-06-24 2013-10-09 深圳先进技术研究院 Method for preparing conductive ink nanometer copper
CN103341633B (en) * 2013-06-24 2015-10-28 深圳先进技术研究院 A kind of preparation method of conductive ink nanometer copper
CN103464778A (en) * 2013-09-05 2013-12-25 江苏大学 Synthetic method of nanometer copper particles different in particle size under irradiation of microwave and ultraviolet
JP6004034B1 (en) * 2015-04-21 2016-10-05 住友金属鉱山株式会社 Copper powder
JP2016204700A (en) * 2015-04-21 2016-12-08 住友金属鉱山株式会社 Copper powder
JP2019178059A (en) * 2018-03-20 2019-10-17 旭化成株式会社 Method for manufacturing dispersion
CN108480616A (en) * 2018-03-21 2018-09-04 苏州思美特表面材料科技有限公司 A kind of powder preparation method of effective control metal powder particles surface roughness

Similar Documents

Publication Publication Date Title
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
KR100702595B1 (en) Metal nanoparticles and method for producing the same
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
JP2011089153A (en) Method for producing copper fine particle
JP2008095195A (en) Method for producing copper nanoparticle, and copper nanoparticle produced thereby
JP2018523758A (en) Method for producing silver powder for high-temperature sintered conductive paste
TWI716526B (en) Nickel powder
JP2014001443A (en) Oxide coated copper fine particle and production method of the same
JP7042372B2 (en) Nickel powder and its manufacturing method, nickel paste
JP5213592B2 (en) Copper fine powder, dispersion thereof and method for producing copper fine powder
WO2015087967A1 (en) Method for producing silver particles, and silver particles produced by said method
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
JP4924824B2 (en) Method for producing carbon-coated nickel powder
JP6209249B2 (en) Method for producing oxide-coated copper fine particles
JP2012251222A (en) Method for producing silver nanoparticle, and ink
JP2008262916A (en) Silver powder for conductive paste, and conductive paste using silver powder
KR20190123777A (en) Nickel Powder And Nickel Paste
JP2012140661A (en) Flat copper particle
JP2009062611A (en) Metal fine particle material, dispersion liquid of metal fine particle material, conductive ink containing the dispersion liquid, and their manufacturing methods
JP6404523B1 (en) Method for producing silver nanoparticles
JP2020029611A (en) Production method of copper nanoparticle
JP2019077926A (en) Composite copper particle, copper ink and method for producing composite copper particle
JP4208705B2 (en) Method for producing metal powder
JP5063624B2 (en) Method for producing nickel fine particles

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120119