JP2006118010A - Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE - Google Patents

Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE Download PDF

Info

Publication number
JP2006118010A
JP2006118010A JP2004308401A JP2004308401A JP2006118010A JP 2006118010 A JP2006118010 A JP 2006118010A JP 2004308401 A JP2004308401 A JP 2004308401A JP 2004308401 A JP2004308401 A JP 2004308401A JP 2006118010 A JP2006118010 A JP 2006118010A
Authority
JP
Japan
Prior art keywords
nanoparticles
solution
silver nitrate
nanoparticle
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004308401A
Other languages
Japanese (ja)
Inventor
Yasuo Kakihara
康男 柿原
Yoshifumi Mitani
佳史 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2004308401A priority Critical patent/JP2006118010A/en
Publication of JP2006118010A publication Critical patent/JP2006118010A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide Ag nanoparticles easily redispersed even if a dispersed solution of Ag nanoparticles is dried and hardened or is made into a state close thereto by a method of concentration or the like, and from which a dispersing agent can be removed by a simple operation, and to obtain a dispersed solution comprising the Ag nanoparticles. <P>SOLUTION: The Ag nanoparticles with a particle diameter of 1 to 20 nm comprising the ammine complex of silver nitrate as a dispersing agent can be obtained by mixing silver nitrate, a reducing agent which does not show reducibility in an organic solvent and alkylamine in an organic solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、Agナノ粒子の分散溶液を濃縮などの方法により乾固またはそれに近い状態にしても再分散が容易で、しかも、分散剤を容易な操作で除去することができるAgナノ粒子及び該Agナノ粒子を含有する分散溶液を提供する。   The present invention provides an Ag nanoparticle which can be easily redispersed even when the dispersion solution of Ag nanoparticle is dried or close to it by a method such as concentration, and the dispersant can be removed by an easy operation. Dispersion solutions containing Ag nanoparticles are provided.

近年、各種電子機器の小型化、高性能化及び軽量化に伴い、電子機器部品に用いられる材料について特性改善が要求されている。   In recent years, along with the reduction in size, performance, and weight of various electronic devices, there is a demand for improvement in characteristics of materials used for electronic device parts.

特に、耐熱性ガラスなどのセラミクス基板に比べて、融点が低い樹脂基板などへの回路配線の材料として、低温処理で焼結して可能な限りバルクの金属に近い導電性が得られる金属ナノ粒子が要求されている。金属の中でもAgナノ粒子は粒子径が数ナノメートルの大きさになると粒子の融点が低下することから、低温焼結材料として有望であるといわれている。
また、単分散であり均一な形状を有したAgナノ粒子は、高性能顔料、2次元あるいは3次元構造を有するナノクリスタル材料に用いることも期待できる。
In particular, as a material for circuit wiring to resin substrates with a low melting point compared to ceramic substrates such as heat-resistant glass, metal nanoparticles that can be sintered as a result of low-temperature processing and have conductivity as close as possible to bulk metal Is required. Among metals, Ag nanoparticles are said to be promising as a low-temperature sintering material because the melting point of the particles decreases when the particle diameter is several nanometers.
Further, the Ag nanoparticles having a monodispersed and uniform shape can be expected to be used for a high performance pigment, a nanocrystal material having a two-dimensional or three-dimensional structure.

ところで、実際に各種電子部品の回路配線などに用いる場合には、大量のAgナノ粒子を安価に調製する方法が要求される。
これまで数ナノメートルの粒子径を有するAgナノ粒子を合成する方法は数多く報告されてはいるが、大量、且つ、安価で工業的生産性に優れる製造方法とは言い難いものであった。
この原因はAgナノ粒子を調製する時の反応濃度とその後の精製工程での効率性にあると筆者は考えた。
By the way, when actually used for circuit wiring of various electronic components, a method for preparing a large amount of Ag nanoparticles at low cost is required.
A number of methods for synthesizing Ag nanoparticles having a particle size of several nanometers have been reported so far, but it was difficult to say that they were large-scale, inexpensive, and excellent in industrial productivity.
The author considered that this was due to the reaction concentration when preparing Ag nanoparticles and the efficiency in the subsequent purification step.

従来、銀塩を含有する水溶液を還元して、銀コロイドを得る方法が知られている(特許文献1〜3)。   Conventionally, a method for obtaining a silver colloid by reducing an aqueous solution containing a silver salt is known (Patent Documents 1 to 3).

また、高分子顔料分散剤を用いて高濃度の銀微粒子コロイドを製造する方法が提案されている(特許文献4〜6)。高分子顔料分散剤を用いることにより、濃縮後には銀微粒子が93%以上という濃厚な銀微粒子のコロイド溶液が得られている。   Moreover, the method of manufacturing a high concentration silver fine particle colloid using a polymer pigment dispersing agent is proposed (patent documents 4-6). By using a polymer pigment dispersant, a concentrated colloidal solution of silver fine particles having 93% or more of silver fine particles after concentration is obtained.

通常、湿式法によりナノ粒子を合成する場合には、反応後に余分な還元剤や分散剤を取り除く精製作業が必要となる。従来、この精製作業としては再結晶法、限外ろ過法、遠心分離法などが行われているが、大量のナノ粒子を精製する手法としては再結晶法が望ましいと言われている。   Usually, when a nanoparticle is synthesized by a wet method, it is necessary to perform a purification operation to remove an excess reducing agent or dispersant after the reaction. Conventionally, a recrystallization method, an ultrafiltration method, a centrifugal separation method, or the like has been performed as the purification work, and it is said that the recrystallization method is desirable as a method for purifying a large amount of nanoparticles.

再結晶法はナノ粒子が分散しにくい貧溶媒をナノ粒子が分散した反応溶液中に加えることでナノ粒子同士を弱く凝集させ、デカンテーションやろ過することにより余分な還元剤や分散剤が溶け込んだ溶液を取り除き、ナノ粒子を精製する方法である。   In the recrystallization method, a poor solvent in which nanoparticles are difficult to disperse is added to the reaction solution in which the nanoparticles are dispersed to weakly aggregate the nanoparticles, and decantation and filtration dissolve excess reducing agent and dispersant. It is a method of removing the solution and purifying the nanoparticles.

この方法は簡便ではあるが、分散剤のナノ粒子への吸着力が弱く余分な分散剤とともにナノ粒子の再分散に必要な分散剤までが除去されたり、ナノ粒子同士の凝集が強すぎるなどの原因により、再分散しない場合がある。また、次工程の良溶媒へ再分散する場合には、先に用いた貧溶媒を十分に除去しておかなければ、特にナノ粒子が高濃度の場合においてナノ粒子の分散安定性が悪化する。
そのため、貧溶媒を除くために常圧下あるいは減圧下において貧溶媒を可能な限り留去する手法がとられる。このときに乾固や乾固に近い状態にすることで再分散性が悪くなる場合がある。これは乾燥時に粒子同士が強く凝集してしまうためであり、貧溶媒を除去するには良溶媒を加えた上で注意深く行い、つねに溶媒で濡れた状態にする必要があった。
Although this method is simple, the adsorptive power of the dispersant to the nanoparticles is weak and the dispersant necessary for redispersion of the nanoparticles together with the extra dispersant is removed, or the aggregation between the nanoparticles is too strong. Depending on the cause, it may not be redistributed. In addition, when redispersing in a good solvent in the next step, unless the poor solvent used previously is sufficiently removed, the dispersion stability of the nanoparticles deteriorates particularly when the concentration of nanoparticles is high.
Therefore, in order to remove the poor solvent, a technique of distilling out the poor solvent as much as possible under normal pressure or reduced pressure is taken. At this time, redispersibility may be deteriorated by making it dry or nearly dry. This is because particles are strongly agglomerated during drying. To remove the poor solvent, it was necessary to carefully add a good solvent and always be wet with the solvent.

このように、特に湿式法によりナノ粒子を合成した場合には、精製工程や再分散工程においてより扱いやすい、すなわちハンドリング性に優れたナノ粒子が求められている。ハンドリング性が良いと精製の効率性も上がり、安価にナノ粒子を得ることが可能になる。   Thus, particularly when nanoparticles are synthesized by a wet method, there is a demand for nanoparticles that are easier to handle in the purification process and the redispersion process, that is, excellent in handling properties. If the handling property is good, the efficiency of purification increases, and nanoparticles can be obtained at low cost.

一方、高分子分散剤を用いて合成されたナノ粒子は、乾固や乾固に近い状態にしても容易に再分散することが可能であり、ハンドリング性に優れていると言える。しかしながら、精製時に限外ろ過法を用いる必要があるということに課題が残る。また、高分子分散剤の場合には分散剤とナノ粒子との吸着力が強い場合が多く、このような粒子では用途にあった分散剤への変換が難しい。また、導電性ペーストの材料に用いた場合には焼成時の加熱で除去されない高分子分散剤によって電気抵抗が上がってしまうことが懸念されている。   On the other hand, nanoparticles synthesized using a polymer dispersant can be easily re-dispersed even in a dry or nearly dry state, and can be said to have excellent handling properties. However, there remains a problem in that it is necessary to use an ultrafiltration method during purification. In the case of a polymer dispersant, the adsorptive power between the dispersant and the nanoparticles is often strong, and it is difficult to convert such a particle into a dispersant suitable for the application. In addition, when used as a material for conductive paste, there is a concern that the electrical resistance is increased by a polymer dispersant that is not removed by heating during firing.

特開平1−104337号公報JP-A-1-104337 特開平1−104338号公報JP-A-1-104338 特開平7−76710号公報JP-A-7-76710 特開平11−80647号公報Japanese Patent Laid-Open No. 11-80647 特開平11−319538号公報JP 11-319538 A 特開2003−103158号公報JP 2003-103158 A 特開2002−121606号公報JP 2002-121606 A

数ナノメートルの粒子径のAgナノ粒子であって、Agナノ粒子を分散した溶液を濃縮により乾固またはそれに近い状態にした後においても再分散が容易であり、しかも、分散剤を置換するために分散剤が容易な操作で除去することができるAgナノ粒子及び該Agナノ粒子を含有する分散溶液は、現在最も要求されているところであるが、未だ得られていない。   An Ag nanoparticle having a particle diameter of several nanometers, which can be easily redispersed even after the solution in which the Ag nanoparticle is dispersed is concentrated to dryness or a state close to it, and to displace the dispersant. In recent years, Ag nanoparticles and a dispersion solution containing the Ag nanoparticles, which can remove the dispersant by an easy operation, have been most demanded, but have not yet been obtained.

即ち、前出特許文献1乃至3記載の製造法では、水溶液での反応であるため、粒子径が数ナノメートルサイズの微細な粒子を得ることが困難である。   That is, in the production methods described in Patent Documents 1 to 3, it is difficult to obtain fine particles having a particle size of several nanometers because of the reaction in an aqueous solution.

前出特許文献4乃至6記載の製造法では、水溶液での反応であるため、数ナノメートルサイズの微細な粒子を得ることが困難である。また、高分子顔料分散剤は分散性に優れてはいるが微細なナノ粒子コロイド溶液の精製、濃縮工程で限外濾過という特別な装置が必要になる。また、導電性ペーストや導電性インクに用いる場合に、高分子顔料分散剤を分解するために高温が必要であり、低温焼結性としては未だ課題が残っている。   In the production methods described in Patent Documents 4 to 6, it is difficult to obtain fine particles having a size of several nanometers because the reaction is performed in an aqueous solution. In addition, although the polymer pigment dispersant is excellent in dispersibility, a special device called ultrafiltration is required in the purification and concentration steps of the fine nanoparticle colloidal solution. In addition, when used in conductive pastes and conductive inks, a high temperature is required to decompose the polymer pigment dispersant, and there remains a problem as a low-temperature sinterability.

また、特許文献7記載の方法では、アルキルアミンを分散剤にする金属微粒子を該金属のアセチルアセトネート塩を原料にした加熱分解法によって生成させており、この場合、分解するための加熱が必要であることと特別な原料を要するため生産性に問題がある。また、従来の技術ではアルキルアミンを分散剤にする銀微粒子を製造するのにガス中蒸発法など特別な真空装置を必要とする。   Further, in the method described in Patent Document 7, metal fine particles using an alkylamine as a dispersant are generated by a thermal decomposition method using an acetylacetonate salt of the metal as a raw material, and in this case, heating for decomposition is necessary. And there is a problem in productivity because special raw materials are required. Further, in the prior art, a special vacuum apparatus such as a gas evaporation method is required to produce silver fine particles using alkylamine as a dispersant.

そこで、本発明においては、Agナノ粒子が分散した溶液を濃縮により乾固またはそれに近い状態にした後においても再分散が容易であり、すなわちナノ粒子のハンドリング性に優れ、所望の分散剤へ置換するために容易に分散剤を除去することができるAgナノ粒子に最適な分散剤の組み合わせを提供することを技術的課題とする。   Therefore, in the present invention, re-dispersion is easy even after a solution in which Ag nanoparticles are dispersed is concentrated to dryness or a state close thereto, that is, the nanoparticles are easy to handle and are replaced with a desired dispersant. Therefore, it is an object of the present invention to provide an optimal combination of dispersants for Ag nanoparticles that can be easily removed.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、硝酸銀のアンミン錯体を含有する平均粒子径が1〜20nmのAgナノ粒子である。   That is, this invention is an Ag nanoparticle with an average particle diameter of 1-20 nm containing the ammine complex of silver nitrate.

また、本発明は、有機溶媒中で、硝酸銀、有機溶媒中で還元能を示さない還元剤及びアルキルアミンを混合することを特徴とする前記Agナノ粒子の製造方法である。   The present invention also provides the method for producing Ag nanoparticles, wherein silver nitrate, a reducing agent that does not exhibit reducing ability in an organic solvent, and an alkylamine are mixed in an organic solvent.

また、本発明は、有機溶媒中にAgナノ粒子とともに、硝酸銀のアンミン錯体を分散剤として含有することを特徴とする分散溶液である。   Moreover, this invention is a dispersion solution characterized by containing the ammine complex of silver nitrate as a dispersing agent with Ag nanoparticle in the organic solvent.

本発明に係るAgナノ粒子は、分散溶液を濃縮により乾固またはそれに近い状態にした後においても再分散が容易であり、また、分散剤を容易な操作で除去することが可能である。   The Ag nanoparticles according to the present invention can be easily redispersed even after the dispersion solution is concentrated to dryness or a state close thereto, and the dispersant can be removed by an easy operation.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

本発明に係るAgナノ粒子は、硝酸銀のアンミン錯体が存在することによって、分散性に優れ、しかも、簡便な操作で除去することが可能である。   The Ag nanoparticles according to the present invention are excellent in dispersibility due to the presence of an ammine complex of silver nitrate, and can be removed by a simple operation.

本発明に係るAgナノ粒子における硝酸銀のアンミン錯体の存在量は、10〜30wt%が好ましい。10wt%未満の場合には分散安定性が悪くなり、30wt%を越える場合には溶液の粘度があがってしまう問題が生じる。より好ましくは20〜28wt%である。なお、硝酸銀のアンミン錯体の存在量はTG(熱量分析)により飛散したアルキルアミン成分から算出した。   The abundance of the silver nitrate ammine complex in the Ag nanoparticles according to the present invention is preferably 10 to 30 wt%. When the amount is less than 10 wt%, the dispersion stability is deteriorated, and when it exceeds 30 wt%, there is a problem that the viscosity of the solution increases. More preferably, it is 20-28 wt%. The abundance of the ammine complex of silver nitrate was calculated from the alkylamine component scattered by TG (calorimetric analysis).

本発明に係るAgナノ粒子の平均粒子径は1〜20nmである。本発明の製造法において、1nm未満のAgナノ粒子を工業的に得ることは困難である。20nmを越える場合には、導電性ペーストなどに応用した場合に低温焼結性に問題があり実用的でない。好ましくは1〜15nmであり、より好ましくは1〜10nmである。   The average particle diameter of the Ag nanoparticles according to the present invention is 1 to 20 nm. In the production method of the present invention, it is difficult to industrially obtain Ag nanoparticles of less than 1 nm. When the thickness exceeds 20 nm, there is a problem in low-temperature sinterability when applied to a conductive paste or the like, which is not practical. Preferably it is 1-15 nm, More preferably, it is 1-10 nm.

本発明に係るAgナノ粒子の分散体におけるAgナノ粒子の濃度は、用途に応じて種々変化させればよいが、有機溶媒中にAgナノ粒子を10〜80wt%含有することが好ましい。
また、有機溶媒としては、Agナノ粒子が安定して分散するものであれば限定されるものではなく、例えば、トルエン、テルピネオール、ヘキサン、テトラデカン等である。
The concentration of Ag nanoparticles in the dispersion of Ag nanoparticles according to the present invention may be variously changed depending on the use, but it is preferable to contain 10-80 wt% of Ag nanoparticles in the organic solvent.
The organic solvent is not limited as long as Ag nanoparticles are stably dispersed, and examples thereof include toluene, terpineol, hexane, and tetradecane.

次に、本発明に係るAgナノ粒子とAgナノ粒子の分散溶液の製造方法について述べる。   Next, a method for producing a dispersion solution of Ag nanoparticles and Ag nanoparticles according to the present invention will be described.

本発明における銀原料としては硝酸銀が好ましい。   The silver raw material in the present invention is preferably silver nitrate.

本発明における還元剤は、有機溶媒中で還元能を有さない還元剤であり、好ましくはアスコルビン酸、アスコルビン酸誘導体、イソアスコルビン酸、イソアスコルビン誘導体又は蟻酸である。還元剤として水素化ホウ素ナトリウムを用いた場合には、巨大粒子の生成や凝集が生じ本発明の目的とする微粒子が得られない。また、水素化ホウ素ナトリウムはわずかな水分に溶解するため、用いる有機溶媒の含水量の管理が必要になり工業的に製造することが困難となる。   The reducing agent in the present invention is a reducing agent that does not have a reducing ability in an organic solvent, and is preferably ascorbic acid, an ascorbic acid derivative, isoascorbic acid, an isoascorbine derivative, or formic acid. When sodium borohydride is used as the reducing agent, large particles are formed or aggregated, and the target fine particles of the present invention cannot be obtained. In addition, since sodium borohydride dissolves in a slight amount of water, it is necessary to control the water content of the organic solvent to be used, making it difficult to produce it industrially.

本発明におけるアルキルアミンとしては、硝酸銀の銀イオンに配位しアンミン錯体を形成することができ、還元反応を促進するために液性を塩基性にすることができ、更に、硝酸銀のアンミン錯体が付着したAgナノ粒子を有機溶媒中に安定に分散させることができるものであれば特に限定されないが、有機溶媒中へのAgナノ粒子の分散安定性と硝酸銀の銀イオンへの配位性を考慮すると、長鎖の1級アルキルアミンが好ましい。   As the alkylamine in the present invention, an ammine complex can be formed by coordinating with the silver ion of silver nitrate, the liquidity can be made basic in order to promote the reduction reaction, There is no particular limitation as long as the adhered Ag nanoparticles can be stably dispersed in an organic solvent, but the dispersion stability of Ag nanoparticles in an organic solvent and the coordination property of silver nitrate to silver ions are taken into consideration. Then, a long-chain primary alkylamine is preferable.

還元剤の添加量は、硝酸銀を還元する十分な量があれば良いが、好ましくは硝酸銀:還元剤の比がモル比で1:1〜1:2である。還元剤の量が前記範囲より多量の場合には、効果が飽和するため必要以上に添加する意味がない。   The reducing agent may be added in an amount sufficient to reduce silver nitrate, but the silver nitrate: reducing agent ratio is preferably 1: 1 to 1: 2 in molar ratio. When the amount of the reducing agent is larger than the above range, the effect is saturated, so there is no meaning to add more than necessary.

アルキルアミンの添加量は、還元反応の促進のため液性を塩基性にするために必要な量と、硝酸銀アンミン錯体としてAgナノ粒子に付着する分散剤として必要な量とを合わせた量が必要であり、硝酸銀とアルキルアミンとの比はモル比で1:1.1〜1:2.1が好ましい。アルキルアミンが前記範囲より多量の場合には、効果が飽和するため必要以上に添加する意味がない。   The amount of alkylamine added should be the sum of the amount necessary to make the liquid basic to promote the reduction reaction and the amount necessary as a dispersant attached to the Ag nanoparticles as a silver nitrate ammine complex. The molar ratio of silver nitrate to alkylamine is preferably 1: 1.1 to 1: 2.1. When the amount of alkylamine is larger than the above range, the effect is saturated and there is no meaning to add more than necessary.

硝酸銀、還元剤及びアルキルアミンの添加順序は、十分に混合されるものであれば特に限定されない。   The order of adding silver nitrate, reducing agent and alkylamine is not particularly limited as long as it is sufficiently mixed.

混合・攪拌手段は、銀塩、還元剤及びアルキルアミンが十分に混合されるものであれば、特に限定されない。   The mixing / stirring means is not particularly limited as long as the silver salt, the reducing agent, and the alkylamine are sufficiently mixed.

混合・攪拌時は、特に加熱する必要が無く、室温で行えばよい。   During mixing / stirring, heating is not particularly necessary, and it may be performed at room temperature.

反応溶液は始め、硝酸銀とアスコルビン酸またはイソアスコルビン酸の白色結晶が分散する無色透明の溶液であるが、撹拌時間とともにAgナノ粒子に特徴的な黄色の色を呈し、さらに、黒みがかった黄色(濃厚な黄色)の溶液となる。   The reaction solution is initially a colorless and transparent solution in which silver nitrate and white crystals of ascorbic acid or isoascorbic acid are dispersed, but with the stirring time, it exhibits a yellow color characteristic of Ag nanoparticles, and further a blackish yellow ( A thick yellow) solution.

なお、還元剤に蟻酸を用いる場合には、あらかじめ硝酸銀とアルキルアミンとの混合溶液中に蟻酸を滴下する手法が好ましい。反応溶液は始め、硝酸銀が分散する無色透明の溶液であるが、撹拌時間とともに銀微粒子に特徴的な黄色を呈し、さらに、黒みがかった黄色(濃厚な黄色)の溶液となる。   In the case where formic acid is used as the reducing agent, a method in which formic acid is dropped in advance in a mixed solution of silver nitrate and alkylamine is preferable. The reaction solution is initially a colorless and transparent solution in which silver nitrate is dispersed, but with the stirring time, it exhibits a yellow color characteristic of silver fine particles, and further becomes a blackish yellow (dense yellow) solution.

得られた反応溶液を多量のアセトンあるいはメタノールと水の混合溶液などに流し込むと、Agナノ粒子が弱く凝集した沈殿が生じる。上澄液をデカンテーションにより取り除き、再度、アセトンあるいはメタノールと水の混合溶媒を加える。この作業を繰り返し、還元反応後の硝酸銀や過剰のアルキルアミンを取り除く。弱く凝集したAgナノ粒子の沈殿物を取り出し、ロータリーエバポレーターなどにより十分に溶媒を取り除き、乾燥した後に再度ヘキサンあるいはトルエンなどの有機溶媒中へ再分散させる。このときに生成したAgの固形分の重量に応じた溶媒を加えることで所望の重量濃度のAgナノ粒子分散溶液を調製できる。   When the obtained reaction solution is poured into a large amount of acetone or a mixed solution of methanol and water, a precipitate in which Ag nanoparticles are weakly aggregated is generated. The supernatant is removed by decantation, and acetone or a mixed solvent of methanol and water is added again. This process is repeated to remove silver nitrate and excess alkylamine after the reduction reaction. The precipitate of weakly agglomerated Ag nanoparticles is taken out, the solvent is sufficiently removed by a rotary evaporator or the like, dried, and then redispersed in an organic solvent such as hexane or toluene. An Ag nanoparticle dispersion solution having a desired weight concentration can be prepared by adding a solvent according to the weight of the solid content of Ag produced at this time.

上記のような湿式合成法によりAgナノ粒子を調製すると、原料になるAgアンミン錯体が分散剤としても作用することが以下の実験事実より推測された。   From the following experimental facts, it was estimated that when Ag nanoparticles were prepared by the wet synthesis method as described above, the Ag ammine complex as a raw material also acts as a dispersant.

(i)上記湿式合成法により生成したAgナノ粒子をメタノールで凝集沈殿させた後、メタノールを用いて洗浄を繰り返し、濃縮・乾固後にトルエンへの再分散を試みたところ、Agナノ粒子の凝集物は容易に再分散した。
(ii)上記湿式合成法により調製したAgナノ粒子をメタノールで凝集沈殿させた後、凝集物を水で洗浄し、続いてメタノールで洗浄後、よく乾燥し、乾固後にトルエンに再分散させたところ、容易に再分散した。
(iii)上記湿式合成法により調製したAgナノ粒子をメタノールで凝集沈殿させた後、凝集物を塩化ナトリウムの水溶液中で洗浄した。続いて、水洗した(水を用いて塩分を取り除いた)後、よく乾燥し、濃縮・乾固後にトルエンへの再分散を試みたところ、再分散性が悪くなり沈殿物が生じた。さらに、洗浄後の沈殿物をメタノールとギ酸を用いて洗浄した後、熱分析により有機分の重量を評価したところ、洗浄前(前記(i)、(ii)の状態)に比べて大幅に有機成分が減量していた(図1)。
(iv)上記湿式合成法により調製したAgナノ粒子をメタノールで凝集沈殿させた後、凝集物を塩化ナトリウムの水溶液中で洗浄した。続いて、水洗した(多量の水を用い塩分を取り除いた)後、乾固しないようにトルエンを加えながら系中から水分を除去し、トルエンへの再分散を試みたところ、容易に再分散した。
(I) Ag nanoparticles produced by the above wet synthesis method were coagulated and precipitated with methanol, and then washed repeatedly using methanol. After concentration and drying, re-dispersion in toluene was attempted. Ag nanoparticle aggregation Things easily redispersed.
(Ii) Ag nanoparticles prepared by the wet synthesis method were coagulated and precipitated with methanol, and then the aggregate was washed with water, subsequently washed with methanol, dried well, re-dispersed in toluene after drying. However, it was easily redispersed.
(Iii) Ag nanoparticles prepared by the wet synthesis method were coagulated and precipitated with methanol, and then the aggregate was washed in an aqueous solution of sodium chloride. Subsequently, it was washed with water (salt was removed using water), dried well, and re-dispersed in toluene after concentration and drying, resulting in poor redispersibility and precipitation. Further, the washed precipitate was washed with methanol and formic acid, and the weight of the organic component was evaluated by thermal analysis. As a result, the organic precipitate was significantly more organic than before washing (states (i) and (ii)). The component was reduced in weight (FIG. 1).
(Iv) Ag nanoparticles prepared by the wet synthesis method were coagulated and precipitated with methanol, and then the aggregate was washed in an aqueous solution of sodium chloride. Subsequently, after washing with water (the salt content was removed using a large amount of water), water was removed from the system while adding toluene so as not to dry, and redispersion in toluene was attempted. .

上記実験事実は、上記の湿式合成法によりAgナノ粒子を調製すると、塩化物イオンで反応する物質が分散剤としての役割を担っていることを示している。本発明に係るAgナノ粒子において、塩化物イオンに反応する物質はAgイオンであるが、トルエン中に溶解するので硝酸銀アンミン錯体であると分かる。硝酸銀アンミン錯体は塩化物イオンにより塩化銀になり、アルキルアミンはAgナノ粒子に付着し、分散剤として作用してAgナノ粒子はトルエンへ分散する((iv)の状態)。
アルキルアミンのみが分散剤であると、分散溶液を乾固またはそれに近い状態にすると再分散性が悪くなり、結果、沈殿物が生じる((iii)の状態)。
アルキルアミンが遊離していることは塩化ナトリウム水溶液で洗浄した凝集物を、アルキルアミンを塩として取り除くために加えるギ酸と洗浄するための溶媒として加えるメタノールの混合物溶液で洗浄することでアルキルアミンが取り除かれ、熱分析により有機成分が減っていることから分かる((i)、(iii)の状態)。
The above experimental facts indicate that when Ag nanoparticles are prepared by the above-described wet synthesis method, a substance that reacts with chloride ions plays a role as a dispersant. In the Ag nanoparticle according to the present invention, the substance that reacts with chloride ions is Ag ion, but it is understood that it is a silver nitrate ammine complex because it dissolves in toluene. The silver nitrate ammine complex becomes silver chloride by chloride ions, the alkylamine adheres to the Ag nanoparticles, acts as a dispersant, and the Ag nanoparticles are dispersed in toluene (state (iv)).
When only the alkylamine is a dispersant, the redispersibility is deteriorated when the dispersion solution is brought to dryness or a state close thereto, and as a result, a precipitate is formed (state (iii)).
Alkylamine is liberated by washing the agglomerate washed with aqueous sodium chloride solution with a mixture of formic acid added to remove alkylamine as a salt and methanol added as a solvent for washing to remove the alkylamine. As can be seen from the thermal analysis, the organic components are reduced (states (i) and (iii)).

このように、上記の湿式法によりAgナノ粒子を調製した場合、硝酸銀のアンミン錯体が分散剤として働き、硝酸銀のアンミン錯体とAgナノ粒子とを組み合わせることで、溶媒を除去し乾固しても再分散性に優れていることが分かる。さらに分散剤である硝酸銀のアンミン錯体は塩化物イオンにより分散安定性を保ったまま((iv)の状態)容易に分解できるので、分散剤として作用しているアルキルアミンから別の所望の分散剤へ変換も可能になる。   As described above, when the Ag nanoparticles are prepared by the above wet method, the silver nitrate ammine complex works as a dispersant, and the silver nitrate ammine complex and Ag nanoparticles are combined to remove the solvent and dry. It turns out that it is excellent in redispersibility. Further, the silver nitrate ammine complex as the dispersant can be easily decomposed by the chloride ion while maintaining the dispersion stability (in the state (iv)), so that the desired dispersant can be separated from the alkylamine acting as the dispersant. Conversion to is also possible.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

Agナノ粒子の平均粒子径は透過型電子顕微鏡(50万倍)で観察し、粒子100個の粒子径を測定して平均値を算出した。   The average particle diameter of Ag nanoparticles was observed with a transmission electron microscope (500,000 times), and the average value was calculated by measuring the particle diameter of 100 particles.

Agナノ粒子は、株式会社島津製作所製 UV−3150を用いて紫外−可視吸収スペクトルを測定し、Agナノ粒子であることを確認した。   Ag nanoparticles were measured for ultraviolet-visible absorption spectrum using UV-3150 manufactured by Shimadzu Corporation, and confirmed to be Ag nanoparticles.

実施例1:<Agナノ粒子分散溶液の製造>
ビーカーに硝酸銀(4.0g)、アスコルビン酸(8.3g)を計り取った。別のビーカーにオレイルアミン(12.6g)を取り、ヘキサン(50mL)に溶解した。ヘキサン溶液を先のビーカーに加え室温下2時間撹拌した。溶液の色は黒みがかった黄色を呈していた。次いで、アセトン、メタノール―水混合溶液を用いてAgナノ粒子を凝集沈殿させ、上澄液をデカンテーションにより取り除き、余分な塩やアルキルアミンなどを洗浄した。
ロータリーエバポレーターにより乾燥後、重量を測定し固形分2.5gを得た。固形分のうち有機成分が20wt%であった。ヘキサン(4.2g)を加えて約30wt%のAgナノ粒子分散溶液を得た。
Example 1: <Production of Ag nanoparticle dispersion solution>
Silver nitrate (4.0 g) and ascorbic acid (8.3 g) were weighed in a beaker. In another beaker, oleylamine (12.6 g) was taken and dissolved in hexane (50 mL). The hexane solution was added to the previous beaker and stirred at room temperature for 2 hours. The solution color was dark yellow. Subsequently, Ag nanoparticles were coagulated and precipitated using a mixed solution of acetone and methanol-water, and the supernatant was removed by decantation to wash off excess salts, alkylamines, and the like.
After drying with a rotary evaporator, the weight was measured to obtain 2.5 g of a solid content. Of the solid content, the organic component was 20 wt%. Hexane (4.2 g) was added to obtain an about 30 wt% Ag nanoparticle dispersion solution.

ここに得たAgナノ粒子分散溶液を十分に希釈したヘキサン溶液を調製し、透過型電子顕微鏡により粒子状態を観察したところ、Agナノ粒子の平均粒子径は8nmであった。また、同溶液の紫外−可視吸収スペクトルを測定したところ、416nmにピークが確認され、Agナノ粒子が生成していることが確認された。   When a hexane solution in which the obtained Ag nanoparticle dispersion solution was sufficiently diluted was prepared and the particle state was observed with a transmission electron microscope, the average particle diameter of the Ag nanoparticles was 8 nm. Moreover, when the ultraviolet-visible absorption spectrum of the same solution was measured, a peak was confirmed at 416 nm, and it was confirmed that Ag nanoparticles were generated.

実施例2
ビーカーに硝酸銀(2.0g)、アスコルビン酸(3.1g)を計り取った。別のビーカーにドデシルアミン(4.3g)を取り、トルエン(50mL)に溶解した。トルエン溶液を先のビーカーに加え室温下2時間撹拌した。溶液の色は黒みがかった黄色を呈していた。
アセトン、メタノール−水混合溶液を用いてAgナノ粒子を凝集沈殿させ、上澄液をデカンテーションにより取り除き、余分な塩やアルキルアミンなどを洗浄除去した。
ロータリーエバポレーターにより乾燥後、重量を測定し固形分1.2gを得た。固形分のうち有機成分は16wt%であった。トルエン(0.8g)を加えて約50wt%のAgナノ粒子分散溶液を得た。
Example 2
Silver nitrate (2.0 g) and ascorbic acid (3.1 g) were weighed into a beaker. In a separate beaker, dodecylamine (4.3 g) was taken and dissolved in toluene (50 mL). The toluene solution was added to the previous beaker and stirred at room temperature for 2 hours. The solution color was dark yellow.
Ag nanoparticles were agglomerated and precipitated using a mixed solution of acetone and methanol-water, and the supernatant was removed by decantation to remove excess salts and alkylamines.
After drying with a rotary evaporator, the weight was measured to obtain 1.2 g of a solid content. Of the solid content, the organic component was 16 wt%. Toluene (0.8 g) was added to obtain an about 50 wt% Ag nanoparticle dispersion solution.

ここに得たAgナノ粒子分散溶液を十分に希釈したヘキサン溶液を調製し、透過型電子顕微鏡により粒子状態を観察したところ、Agナノ粒子の平均粒子径は8nmであった。また、同溶液の紫外−可視吸収スペクトルを測定したところ、416nmにピークが確認され、Agナノ粒子が生成していることが確認された。   When a hexane solution in which the obtained Ag nanoparticle dispersion solution was sufficiently diluted was prepared and the particle state was observed with a transmission electron microscope, the average particle diameter of the Ag nanoparticles was 8 nm. Moreover, when the ultraviolet-visible absorption spectrum of the same solution was measured, a peak was confirmed at 416 nm, and it was confirmed that Ag nanoparticles were generated.

実施例3
ビーカーに硝酸銀(10g)とオレイルアミン(31.5g)を取り、トルエン(100mL)を加え攪拌した。この溶液中にトルエン(50mL)と蟻酸(4.1g)の混合溶液(溶解せず分散した状態)を加えていくと濃黄色の溶液が得られた。3時間攪拌した後、反応溶液をメタノール中に注ぎAgナノ粒子を凝集沈殿させ、上澄液をデカンテーションにより取り除き、余分な塩やアルキルアミンなどを洗浄除去した。凝集体中のAg固形分は約5gであった。凝集体はトルエンに容易に再分散した。再分散した溶液の一部を希釈し透過型電子顕微鏡により微粒子を観察した。
Example 3
Silver nitrate (10 g) and oleylamine (31.5 g) were taken in a beaker, and toluene (100 mL) was added and stirred. When a mixed solution of toluene (50 mL) and formic acid (4.1 g) (dissolved but not dissolved) was added to this solution, a deep yellow solution was obtained. After stirring for 3 hours, the reaction solution was poured into methanol to aggregate and precipitate Ag nanoparticles, the supernatant was removed by decantation, and excess salts and alkylamines were washed away. Ag solid content in the aggregate was about 5 g. Aggregates were easily redispersed in toluene. A part of the redispersed solution was diluted, and the fine particles were observed with a transmission electron microscope.

ここに得たAgナノ粒子分散溶液を十分に希釈したヘキサン溶液を調製し、透過型電子顕微鏡により粒子状態を観察したところ、Agナノ粒子の平均粒子径は8nmであった。また、同溶液の紫外−可視吸収スペクトルを測定したところ、416nmにピークが確認され、Agナノ粒子が生成していることが確認された。   When a hexane solution in which the obtained Ag nanoparticle dispersion solution was sufficiently diluted was prepared and the particle state was observed with a transmission electron microscope, the average particle diameter of the Ag nanoparticles was 8 nm. Moreover, when the ultraviolet-visible absorption spectrum of the same solution was measured, a peak was confirmed at 416 nm, and it was confirmed that Ag nanoparticles were generated.

実施例4
ビーカーに硝酸銀(140g)、イソアスコルビン酸(218g)を計り取った。別のビーカーにオレイルアミン(441g)を取り、トルエン(1000mL)に溶解した。トルエン溶液を先のビーカーに加え室温下2時間撹拌した。溶液の色は黒みがかった黄色を呈していた。
アセトン、メタノール―水混合溶液を用いてAgナノ粒子を凝集沈殿させ、上澄液をデカンテーションにより取り除き、余分な塩やアルキルアミンなどを洗浄除去した。ロータリーエバポレーターにより乾燥後、重量を測定し固形分77gを得た。固形分のうち有機成分は21wt%であった。トルエン(44.7g)を加えて約50wt%のAgナノ粒子分散溶液を得た。
得られたAgナノ粒子分散溶液の熱分析を行った。図1にTGの結果を示す(図1の上段)。
トルエン溶媒が気化した後の固形分が65.7wt%、500℃以上まで加熱後の残渣が55wt%であり、この差の10.7wt%が硝酸銀のアンミン錯体から遊離したと考えられるアルキルアミンと硝酸銀からの硝酸イオン部分に相当すると考えられる。加熱により硝酸銀アンミン錯体の有機分は燃焼し銀イオンはAgへ還元されると考えられるので、Agアミン錯体中の有機成分の分子量比率を換算して、Agナノ粒子に対して約23wt%のAgアミン錯体含まれていることになる。
Example 4
Silver nitrate (140 g) and isoascorbic acid (218 g) were weighed in a beaker. In another beaker, oleylamine (441 g) was taken and dissolved in toluene (1000 mL). The toluene solution was added to the previous beaker and stirred at room temperature for 2 hours. The solution color was dark yellow.
Ag nanoparticles were agglomerated and precipitated using a mixed solution of acetone and methanol-water, and the supernatant was removed by decantation to remove excess salts and alkylamines. After drying with a rotary evaporator, the weight was measured to obtain a solid content of 77 g. Of the solid content, the organic component was 21 wt%. Toluene (44.7 g) was added to obtain an about 50 wt% Ag nanoparticle dispersion solution.
The obtained Ag nanoparticle dispersion solution was subjected to thermal analysis. FIG. 1 shows the result of TG (upper part of FIG. 1).
The solid content after evaporation of the toluene solvent was 65.7 wt%, the residue after heating to 500 ° C. or higher was 55 wt%, and 10.7 wt% of this difference was thought to have been released from the silver nitrate ammine complex It is thought to correspond to the nitrate ion portion from silver nitrate. It is considered that the organic content of the silver nitrate ammine complex is combusted by heating and the silver ions are reduced to Ag. An amine complex is included.

ここに得たAgナノ粒子分散溶液を十分に希釈したヘキサン溶液を調製し、透過型電子顕微鏡により粒子状態を観察したところ、Agナノ粒子の平均粒子径は8nmであった。また、同溶液の紫外−可視吸収スペクトルを測定したところ、416nmにピークが確認され、Agナノ粒子が生成していることが確認された。   When a hexane solution in which the obtained Ag nanoparticle dispersion solution was sufficiently diluted was prepared and the particle state was observed with a transmission electron microscope, the average particle diameter of the Ag nanoparticles was 8 nm. Moreover, when the ultraviolet-visible absorption spectrum of the same solution was measured, a peak was confirmed at 416 nm, and it was confirmed that Ag nanoparticles were generated.

比較例
Agナノ粒子の合成は実施例と同様に行った。
オレイルアミンを用いて調製したAgナノ粒子分散溶液中に多量のメタノールを加えて凝集沈殿させた。続いて、デカンテーションによりメタノールを取り除き、塩化ナトリウム水溶液を加え、激しく1時間攪拌した。塩化ナトリウム水溶液を取り除き、純水で5回洗浄した後、ロータリーエバポレーターにより減圧下、乾固させた。
トルエンを加えて再分散を試みたが、一部は再分散したが、一部は再分散せず凝集したままであった。
Comparative Example Ag nanoparticles were synthesized in the same manner as in the examples.
A large amount of methanol was added to the Ag nanoparticle dispersion solution prepared using oleylamine for coagulation precipitation. Subsequently, methanol was removed by decantation, an aqueous sodium chloride solution was added, and the mixture was vigorously stirred for 1 hour. The aqueous sodium chloride solution was removed, washed 5 times with pure water, and then dried under reduced pressure using a rotary evaporator.
Toluene was added to attempt redispersion, but a part was redispersed, but a part was not redispersed and remained aggregated.

本発明におけるAgナノ粒子およびAgナノ粒子分散溶液を濃縮により乾固またはそれに近い状態にした後でも再分散が容易という優れたハンドリング性により精製工程が容易になり、しかも、分散剤が容易な操作で除去することが可能になる。   In the present invention, the Ag nanoparticle and the Ag nanoparticle dispersion solution are concentrated to dryness or close to it, and thus the refining process is easy due to the excellent handling property that the redispersion is easy, and the operation of the dispersant is easy. Can be removed.

実施例4で得られたAgナノ粒子の熱分析測定結果。上段は実施例4で得られたAgナノ粒子の測定結果。下段は実施例4で得られたAgナノ粒子を塩化ナトリウム水溶液で洗浄後の測定結果。The thermal analysis measurement result of Ag nanoparticle obtained in Example 4. FIG. The upper row shows the measurement results of the Ag nanoparticles obtained in Example 4. The lower row shows the measurement results after the Ag nanoparticles obtained in Example 4 were washed with an aqueous sodium chloride solution.

Claims (3)

硝酸銀のアンミン錯体を含有する平均粒子径が1〜20nmのAgナノ粒子。 Ag nanoparticles having an average particle size of 1 to 20 nm and containing an ammine complex of silver nitrate. 有機溶媒中で、硝酸銀、有機溶媒中で還元能を示さない還元剤及びアルキルアミンを混合することを特徴とする請求項1記載のAgナノ粒子の製造方法。 The method for producing Ag nanoparticles according to claim 1, wherein silver nitrate, a reducing agent that does not exhibit reducing ability in an organic solvent, and an alkylamine are mixed in an organic solvent. 有機溶媒中にAgナノ粒子とともに、硝酸銀のアンミン錯体を含有することを特徴とする分散溶液。
Dispersion solution characterized by containing an ammine complex of silver nitrate together with Ag nanoparticles in an organic solvent.
JP2004308401A 2004-10-22 2004-10-22 Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE Pending JP2006118010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308401A JP2006118010A (en) 2004-10-22 2004-10-22 Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308401A JP2006118010A (en) 2004-10-22 2004-10-22 Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE

Publications (1)

Publication Number Publication Date
JP2006118010A true JP2006118010A (en) 2006-05-11

Family

ID=36536160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308401A Pending JP2006118010A (en) 2004-10-22 2004-10-22 Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE

Country Status (1)

Country Link
JP (1) JP2006118010A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699930B1 (en) 2005-06-22 2007-03-26 김수태 Process for preparing silver solution distributed with silver particles in nano size and the apparatus for preparing thereof
JP2007181810A (en) * 2005-11-16 2007-07-19 Samsung Electro Mech Co Ltd Dispersing agent for nanoparticles having surface on which cap molecule has been bonded, and method for dispersing nanoparticles using the dispersing agent, and nanoparticle-containing thin film containing the dispersing agent
JP2008095194A (en) * 2006-10-05 2008-04-24 Xerox Corp Silver-containing nanoparticle with replacement stabilizer, process for fabricating electronic device, and thin film transistor
JP2008133527A (en) * 2006-10-31 2008-06-12 Toda Kogyo Corp Silver particulate, and method for producing the same
JP2008159498A (en) * 2006-12-26 2008-07-10 Tokai Rubber Ind Ltd Conductive paste and manufacturing method thereof
JP2008190025A (en) * 2007-01-09 2008-08-21 Dowa Electronics Materials Co Ltd Silver fine powder and method for producing the same, and ink
WO2008100163A1 (en) 2007-02-13 2008-08-21 Instytut Wlókien Naturalnych Method of manufacturing silver nanoparticles, cellulosic fibers and nanofibers containing silver nanoparticles, fibers and nanofibers containing silver nanoparticles, use of silver nanoparticles to the manufacture of cellulosic fibers and nanofibers, and wound dressing containing silver nanoparticles
JP2009144197A (en) * 2007-12-13 2009-07-02 Toda Kogyo Corp Silver fine particle, method for producing the same, and method for producing conductive film
JP2010500475A (en) * 2006-08-07 2010-01-07 インクテック カンパニー リミテッド Method for producing silver nanoparticles and silver ink composition comprising silver nanoparticles produced thereby
JP2011038141A (en) * 2009-08-10 2011-02-24 Hitachi Cable Ltd Composite metal-particulate material, metal film, method for producing metal film, printed circuit board and electric wire cable
JP2013070080A (en) * 2007-07-19 2013-04-18 Frys Metals Inc Apparatus with die attached to substrate
WO2013157514A1 (en) * 2012-04-16 2013-10-24 ダイソー株式会社 Electroconductive ink composition
JP2014091849A (en) * 2012-11-02 2014-05-19 Toyo Ink Sc Holdings Co Ltd High-purity metal nanoparticle dispersion and method for manufacturing the same
TWI477332B (en) * 2007-02-27 2015-03-21 Mitsubishi Materials Corp Metal-nanoparticle dispersion solution, production method thereof, and method of synthesizing metal-nanoparticle
CN105108168A (en) * 2015-09-08 2015-12-02 北京印刷学院青岛研究院有限公司 Preparation method of nano-silver particle coated by novel macromolecule protective agent
CN111438371A (en) * 2020-05-11 2020-07-24 东莞市斯坦得电子材料有限公司 Preparation method and application of silver nanoparticle catalyst
CN111777068A (en) * 2020-05-24 2020-10-16 同济大学 Novel chloride ion removing material Ti3C2TxPreparation method and application of/Ag

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104337A (en) * 1987-10-15 1989-04-21 Tanaka Kikinzoku Kogyo Kk Manufacture of silver colloid
JPH09225317A (en) * 1996-02-26 1997-09-02 Kemipuro Kasei Kk Nickel/noble metal binary metal cluster and catalyst made from the cluster and its preparation
JPH11189812A (en) * 1997-12-26 1999-07-13 Mitsui Mining & Smelting Co Ltd Manufacture of granular silver powder
JP2002088406A (en) * 2000-09-12 2002-03-27 Sekisui Chem Co Ltd Method for producing metallic colloidal solution, and metallic colloidal solution obtained by the method
WO2004016376A1 (en) * 2001-06-29 2004-02-26 Nanospin Solutions Metal nanocrystals and synthesis thereof
JP2004183010A (en) * 2002-11-29 2004-07-02 Mitsui Mining & Smelting Co Ltd Silver powder composed of extremely thin plate-like silver particle, its manufacturing method, and conductive paste
JP2004183009A (en) * 2002-11-29 2004-07-02 Mitsuboshi Belting Ltd Method of producing metal fine particle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104337A (en) * 1987-10-15 1989-04-21 Tanaka Kikinzoku Kogyo Kk Manufacture of silver colloid
JPH09225317A (en) * 1996-02-26 1997-09-02 Kemipuro Kasei Kk Nickel/noble metal binary metal cluster and catalyst made from the cluster and its preparation
JPH11189812A (en) * 1997-12-26 1999-07-13 Mitsui Mining & Smelting Co Ltd Manufacture of granular silver powder
JP2002088406A (en) * 2000-09-12 2002-03-27 Sekisui Chem Co Ltd Method for producing metallic colloidal solution, and metallic colloidal solution obtained by the method
WO2004016376A1 (en) * 2001-06-29 2004-02-26 Nanospin Solutions Metal nanocrystals and synthesis thereof
JP2004183010A (en) * 2002-11-29 2004-07-02 Mitsui Mining & Smelting Co Ltd Silver powder composed of extremely thin plate-like silver particle, its manufacturing method, and conductive paste
JP2004183009A (en) * 2002-11-29 2004-07-02 Mitsuboshi Belting Ltd Method of producing metal fine particle

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699930B1 (en) 2005-06-22 2007-03-26 김수태 Process for preparing silver solution distributed with silver particles in nano size and the apparatus for preparing thereof
JP2007181810A (en) * 2005-11-16 2007-07-19 Samsung Electro Mech Co Ltd Dispersing agent for nanoparticles having surface on which cap molecule has been bonded, and method for dispersing nanoparticles using the dispersing agent, and nanoparticle-containing thin film containing the dispersing agent
JP2010500475A (en) * 2006-08-07 2010-01-07 インクテック カンパニー リミテッド Method for producing silver nanoparticles and silver ink composition comprising silver nanoparticles produced thereby
US8282860B2 (en) 2006-08-07 2012-10-09 Inktec Co., Ltd. Process for preparation of silver nanoparticles, and the compositions of silver ink containing the same
KR101379195B1 (en) * 2006-10-05 2014-03-31 제록스 코포레이션 Silver-containing nanoparticles with replacement stabilizer
JP2008095194A (en) * 2006-10-05 2008-04-24 Xerox Corp Silver-containing nanoparticle with replacement stabilizer, process for fabricating electronic device, and thin film transistor
JP2008133527A (en) * 2006-10-31 2008-06-12 Toda Kogyo Corp Silver particulate, and method for producing the same
JP2008159498A (en) * 2006-12-26 2008-07-10 Tokai Rubber Ind Ltd Conductive paste and manufacturing method thereof
JP2008190025A (en) * 2007-01-09 2008-08-21 Dowa Electronics Materials Co Ltd Silver fine powder and method for producing the same, and ink
WO2008100163A1 (en) 2007-02-13 2008-08-21 Instytut Wlókien Naturalnych Method of manufacturing silver nanoparticles, cellulosic fibers and nanofibers containing silver nanoparticles, fibers and nanofibers containing silver nanoparticles, use of silver nanoparticles to the manufacture of cellulosic fibers and nanofibers, and wound dressing containing silver nanoparticles
US9580811B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
TWI477332B (en) * 2007-02-27 2015-03-21 Mitsubishi Materials Corp Metal-nanoparticle dispersion solution, production method thereof, and method of synthesizing metal-nanoparticle
US9580810B2 (en) 2007-02-27 2017-02-28 Mitsubishi Materials Corporation Dispersion of metal nanoparticles, method for producing the same, and method for synthesizing metal nanoparticles
JP2013070080A (en) * 2007-07-19 2013-04-18 Frys Metals Inc Apparatus with die attached to substrate
US11699632B2 (en) 2007-07-19 2023-07-11 Alpha Assembly Solutions Inc. Methods for attachment and devices produced using the methods
US10905041B2 (en) 2007-07-19 2021-01-26 Alpha Assembly Solutions Inc. Methods for attachment and devices produced using the methods
JP2009144197A (en) * 2007-12-13 2009-07-02 Toda Kogyo Corp Silver fine particle, method for producing the same, and method for producing conductive film
JP2011038141A (en) * 2009-08-10 2011-02-24 Hitachi Cable Ltd Composite metal-particulate material, metal film, method for producing metal film, printed circuit board and electric wire cable
WO2013157514A1 (en) * 2012-04-16 2013-10-24 ダイソー株式会社 Electroconductive ink composition
US9481804B2 (en) 2012-04-16 2016-11-01 Osaka Soda Co., Ltd. Electroconductive ink composition
JPWO2013157514A1 (en) * 2012-04-16 2015-12-21 ダイソー株式会社 Conductive ink composition
JP2014091849A (en) * 2012-11-02 2014-05-19 Toyo Ink Sc Holdings Co Ltd High-purity metal nanoparticle dispersion and method for manufacturing the same
CN105108168A (en) * 2015-09-08 2015-12-02 北京印刷学院青岛研究院有限公司 Preparation method of nano-silver particle coated by novel macromolecule protective agent
CN111438371A (en) * 2020-05-11 2020-07-24 东莞市斯坦得电子材料有限公司 Preparation method and application of silver nanoparticle catalyst
CN111777068A (en) * 2020-05-24 2020-10-16 同济大学 Novel chloride ion removing material Ti3C2TxPreparation method and application of/Ag

Similar Documents

Publication Publication Date Title
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
KR100797484B1 (en) Method for manufacturing cubic copper or copper oxide nanoparticles
JP4978242B2 (en) Method for producing silver ultrafine particles
JP6274444B2 (en) Method for producing copper powder
JP4390057B2 (en) Silver ultrafine particle colloid production method
KR101525099B1 (en) Metal microparticle containing composition and process for production of the same
JP2008013846A (en) Method for producing metal nanoparticle, and metal nanoparticle
WO2007105636A1 (en) Process for production of ultrafine silver particles and ultrafine silver particles produced by the process
JP4961587B2 (en) Copper fine particles, copper fine particle manufacturing method, insulating material, wiring structure, printed circuit board manufacturing method, and electronic / electric equipment
KR101541930B1 (en) Organoamine stabilized silver nanoparticles and process for producing same
CN101784352B (en) Preparation method of copper particle composition
JP2009270146A (en) Method for producing silver hyperfine particle
CN101195170A (en) Method for preparing superfine copper powder
JP2008031491A (en) Fine copper powder, its manufacturing method and conductive paste
JP2013541640A (en) Silver particles and method for producing the same
JP5306966B2 (en) Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
JP2007126744A (en) Fine nickel powder and process for producing the same
JP2006089786A (en) Method for producing metallic nano-particle dispersed in polar solvent
Huang et al. Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape
KR20150028970A (en) Silver powder
JP2014152395A (en) Method for producing copper nanoparticle suitable for copper nanoink
JP2006022394A (en) Method for producing metallic copper fine particle
JP4662760B2 (en) Ultrafine copper powder, ultrafine copper powder slurry, and method for producing ultrafine copper powder slurry
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
JP2005281781A (en) Method for producing copper nanoparticle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100602