JP4208705B2 - Method for producing metal powder - Google Patents

Method for producing metal powder Download PDF

Info

Publication number
JP4208705B2
JP4208705B2 JP2003406219A JP2003406219A JP4208705B2 JP 4208705 B2 JP4208705 B2 JP 4208705B2 JP 2003406219 A JP2003406219 A JP 2003406219A JP 2003406219 A JP2003406219 A JP 2003406219A JP 4208705 B2 JP4208705 B2 JP 4208705B2
Authority
JP
Japan
Prior art keywords
metal
copper
metal particles
particles
silicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003406219A
Other languages
Japanese (ja)
Other versions
JP2005163142A (en
Inventor
雅則 友成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2003406219A priority Critical patent/JP4208705B2/en
Publication of JP2005163142A publication Critical patent/JP2005163142A/en
Application granted granted Critical
Publication of JP4208705B2 publication Critical patent/JP4208705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、耐酸化性に優れた金属粉末の製造方法に関する。   The present invention relates to a method for producing a metal powder having excellent oxidation resistance.

金属粉末は良好な電気伝導性を有する廉価な材料であり、コンデンサー等の外部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として幅広く用いられている。また、近年、積層セラミックスコンデンサーの内部電極にも用いられ始めている。積層セラミックスコンデンサーは、電解コンデンサー、フィルムコンデンサー等他の形式のコンデンサーと比較して、大容量が得られ易く、実装性に優れ、安全性・安定性が高いので、急速に普及している。最近の電子機器の小型化に伴い、積層セラミックスコンデンサーも小型化する方向にあるが、大容量を維持するには、セラミックスシートの積層数を減らさずに小型化する必要があり、強度等の点でシートの薄層化には限界があるため、パラジウム、ニッケルや銅などの微細な金属粒子を用い内部電極を薄層化することで、積層セラミックスコンデンサーの小型化を実現している。   Metal powder is an inexpensive material with good electrical conductivity, and as a material to ensure electrical continuity such as external electrodes such as capacitors, electrode members such as printed wiring board circuits, and various electrical contact members. Widely used. In recent years, it has begun to be used for internal electrodes of multilayer ceramic capacitors. Multilayer ceramic capacitors are rapidly spreading because they are easy to obtain a large capacity compared to other types of capacitors such as electrolytic capacitors and film capacitors, are excellent in mountability, and have high safety and stability. With the recent miniaturization of electronic equipment, multilayer ceramic capacitors are also in the direction of miniaturization, but in order to maintain a large capacity, it is necessary to miniaturize without reducing the number of laminated ceramic sheets. However, since there is a limit to thinning the sheet, the miniaturization of the multilayer ceramic capacitor is realized by thinning the internal electrode using fine metal particles such as palladium, nickel and copper.

このような分野では、一般的に、金属粒子をエポキシ樹脂、フェノール樹脂などのバインダーと混合してペースト化あるいは塗料化し、この金属ペースト・塗料を、例えば、プリント配線板であれば、基板にスクリーン印刷した後、積層セラミックスコンデンサーであれば、薄層のセラミックスシート上に塗布し、シートを積層した後、それぞれ加熱焼成して電気回路、電極等を形成している。電気的導通を確保するには、用いる金属粒子に金属酸化物ができる限り含まれないものが良いが、金属粉末は非常に酸化され易く、加熱焼成を窒素ガス等の不活性ガスを用いて非酸化性雰囲気下で行っても、金属粒子表面の酸化を十分に防げず、所望の性能の電極等が得られない。   In such a field, generally, metal particles are mixed with a binder such as an epoxy resin or a phenol resin to form a paste or paint, and the metal paste / paint is, for example, a printed wiring board on a substrate. After printing, if it is a multilayer ceramic capacitor, it is applied onto a thin ceramic sheet, the sheets are laminated, and then heated and fired to form an electric circuit, an electrode, and the like. In order to ensure electrical continuity, the metal particles to be used should not contain metal oxides as much as possible, but metal powders are very easy to oxidize, and heat firing is not performed using an inert gas such as nitrogen gas. Even if it is performed in an oxidizing atmosphere, oxidation of the surface of the metal particles cannot be sufficiently prevented, and an electrode or the like having a desired performance cannot be obtained.

このため、耐酸化性に優れた金属粉末が求められており、例えば、水溶性の有機溶媒中で、金属銅粉、アルコキシシラン、水を反応させてアルコキシシランの加水分解生成物を生成させ、得られた懸濁液にゲル化剤を添加して銅粉の粒子表面にSiOゲルコーティング膜を被着させる技術が提案されている(特許文献1参照)。また一方、金属銅微粒子が液中に分散しているスラリーに、珪酸のアルカリ金属塩等を含む水溶液を添加し、次いで酸もしくはアルカリでpHを調整して、該水溶性塩から誘導される金属酸化物や複合酸化物を銅微粒子表面に固着させて、熱収縮特定を改善する技術が提案されている(特許文献2参照)。 For this reason, metal powder excellent in oxidation resistance is required, for example, in a water-soluble organic solvent, metal copper powder, alkoxysilane, water is reacted to produce an alkoxysilane hydrolysis product, A technique has been proposed in which a gelling agent is added to the obtained suspension to deposit a SiO 2 gel coating film on the surface of the copper powder particles (see Patent Document 1). On the other hand, a metal derived from the water-soluble salt by adding an aqueous solution containing an alkali metal salt of silicic acid to a slurry in which metal copper fine particles are dispersed in the liquid, and then adjusting the pH with an acid or alkali. There has been proposed a technique for improving heat shrinkage specification by fixing an oxide or a composite oxide on the surface of a copper fine particle (see Patent Document 2).

特開2003−16832号公報JP 2003-16832 A 特開2000−345201号公報JP 2000-345201 A

金属粒子の表面に珪素酸化物等を被覆することにより、金属粒子と大気中の酸素との接触はある程度回避され、金属粒子の耐酸化性は改善されるものの、その効果は十分ではなく更なる改善が求められている。即ち、特許文献1記載の技術では、金属銅粒子の表面にSiOゲルコーティング膜を形成させるが、平均粒子径が1〜10μm程度の比較的大きい金属銅粒子の耐酸化性は向上するものの、微細電極に用いられる平均粒子径が1μm以下の微粒子に対しては十分な膜形成ができないためその効果が十分ではない。一方、特許文献2記載の技術では、熱収縮特性を改善し、積層セラミックスコンデンサー製造時に生じるデラミネーションやクラックは抑制されるものの、耐酸化性の効果は不十分であり、そのため、金属銅粒子として予め表面を酸化処理したものを用いているが、それでも所望の耐酸化性は得られていない。そこで、本発明は、より一層耐酸化性に優れ、しかも導電性に優れた金属粉末を提供するものである。 By coating the surface of the metal particles with silicon oxide or the like, contact between the metal particles and oxygen in the atmosphere is avoided to some extent, and the oxidation resistance of the metal particles is improved, but the effect is not sufficient and further There is a need for improvement. That is, in the technique described in Patent Document 1, a SiO 2 gel coating film is formed on the surface of the metal copper particles, but the oxidation resistance of relatively large metal copper particles having an average particle diameter of about 1 to 10 μm is improved. A sufficient film cannot be formed on fine particles having an average particle diameter of 1 μm or less used for a fine electrode, so that the effect is not sufficient. On the other hand, in the technique described in Patent Document 2, although heat shrinkage characteristics are improved and delamination and cracks that occur at the time of manufacturing the multilayer ceramic capacitor are suppressed, the effect of oxidation resistance is insufficient. Although the surface is previously oxidized, the desired oxidation resistance is still not obtained. Therefore, the present invention provides a metal powder that is further excellent in oxidation resistance and excellent in conductivity.

本発明者は、金属粒子の耐酸化性をより改善するために、金属粒子全面に緻密な珪素酸化物の被覆層を均質に形成させる必要があると考え、鋭意研究を重ねた結果、珪素酸化物の被覆工程において保護コロイドを存在させると、その金属粒子の表面に珪素酸化物の被覆が形成され易く、耐酸化性が改善できることなどを見出し、本発明を完成した。   The present inventor considered that it is necessary to form a dense silicon oxide coating layer uniformly on the entire surface of the metal particles in order to further improve the oxidation resistance of the metal particles, and as a result of extensive research, The present inventors have found that when a protective colloid is present in the object coating step, a coating of silicon oxide is easily formed on the surface of the metal particles, and the oxidation resistance can be improved.

即ち、本発明は、天然高分子又は合成高分子からなる保護コロイドと金属粒子の存在下、加水分解性珪素化合物を加水分解して、金属粒子の表面を珪素酸化物で被覆することを特徴とする金属粉末の製造方法である。 That is, the present invention is characterized in that a hydrolyzable silicon compound is hydrolyzed in the presence of a protective colloid made of a natural polymer or a synthetic polymer and metal particles, and the surface of the metal particles is coated with silicon oxide. This is a method for producing metal powder.

本発明の製造方法は、金属粒子の表面に珪素酸化物を被覆した金属粉末を得るものであって、被覆された珪素酸化物が緻密なものになり易く、また、金属粒子全面に均一な被覆層が形成され易いので、金属粒子の耐酸化性をより一層改善できると考えられる。このため、比表面積が大きい微細な金属粒子にも効果が高く、コンデンサー等の外部電極や内部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として幅広く用いることができる。特に、酸化が著しい金属銅粒子にも適用でき、本発明で得られた金属銅粉末をコンデンサー等の外部電極や内部電極、プリント配線板の回路等の電極部材に適用すると、薄膜で高密度の電極が得られる。また、珪素酸化物としてアルコキシシランの加水分解生成物を用いると、バインダー樹脂や溶媒との親和性を改良する効果もあり、分散が容易で、少量のバインダー樹脂、溶媒でペースト化や塗料化が容易にできる。   The production method of the present invention obtains a metal powder in which the surface of metal particles is coated with silicon oxide, and the coated silicon oxide tends to be dense, and the entire surface of the metal particles is uniformly coated. Since the layer is easily formed, it is considered that the oxidation resistance of the metal particles can be further improved. For this reason, it is highly effective for fine metal particles with a large specific surface area, and ensures electrical continuity such as external electrodes and internal electrodes such as capacitors, electrode members such as circuits of printed wiring boards, and various electrical contact members. It can be widely used as a material for this purpose. In particular, it can be applied to metal copper particles that are significantly oxidized. When the metal copper powder obtained in the present invention is applied to electrode members such as capacitors and other external electrodes, internal electrodes, and printed wiring board circuits, it is thin and dense. An electrode is obtained. In addition, when an alkoxysilane hydrolysis product is used as a silicon oxide, there is an effect of improving the affinity with a binder resin or a solvent, and it is easy to disperse and can be made into a paste or paint with a small amount of a binder resin or a solvent. Easy to do.

本発明は、耐酸化性に優れた金属粉末の製造方法であって、保護コロイドと金属粒子の存在下、加水分解性珪素化合物を加水分解して、金属粒子の表面を珪素酸化物で被覆するものである。一般的に、珪素酸化物は金属粒子の表面に被覆し難いと言われ、このため、珪素酸化物では緻密な被覆層が得られず、十分な耐酸化性が得られなかったと考えられる。しかし、本発明では、被覆処理工程において保護コロイドを存在させることにより、緻密な被覆層が得られる。保護コロイドには金属粒子同士の凝集を抑制する効果があり、金属粒子が分散した状態で珪素酸化物を被覆できるため、個々の金属粒子に均質に被覆されるので、緻密な被覆層が得られると推測される。本発明において、金属粉末を構成する金属種には特に制限はないが、周期表VIII族(鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金)、及び、IB族(銅、銀、金)であれば、多くの用途に用いることができ、これらから選ばれる1種の金属を用いても良く、あるいは、2種以上の金属を合金にしたり、2種以上の金属を積層させる等して、組み合わせて用いても良く、更にこれらには酸素、硫黄、リン、水素等の原子が製造方法由来の不純物として含まれていても良い。中でも、金、銀、白金、パラジウム、銅、ニッケルは導電性に優れているので好ましく、銀、銅、ニッケルがより好ましく、特に銅が好ましい。また、本発明において加水分解とは、加水分解性化合物と水とを反応させる通常の加水分解の他に、中和加水分解、加熱加水分解を包含する反応を言い、珪素酸化物とは、珪素の酸化物、珪素の含水酸化物、珪素の水酸化物を包含する化合物である。   The present invention is a method for producing a metal powder having excellent oxidation resistance, wherein a hydrolyzable silicon compound is hydrolyzed in the presence of a protective colloid and metal particles, and the surface of the metal particles is coated with silicon oxide. Is. In general, silicon oxide is said to be difficult to coat on the surface of metal particles. For this reason, it is considered that a dense coating layer cannot be obtained with silicon oxide, and sufficient oxidation resistance cannot be obtained. However, in the present invention, a dense coating layer can be obtained by the presence of a protective colloid in the coating treatment step. The protective colloid has the effect of suppressing the aggregation of metal particles, and since it can be coated with silicon oxide in a state where the metal particles are dispersed, each metal particle is uniformly coated, so that a dense coating layer can be obtained. It is guessed. In the present invention, the metal species constituting the metal powder is not particularly limited, but the periodic table group VIII (iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum) and group IB (copper, (Silver, gold) can be used for many purposes, and one kind of metal selected from these may be used, or two or more kinds of metals may be alloyed or two or more kinds of metals may be laminated. For example, oxygen, sulfur, phosphorus, hydrogen and the like may be contained as impurities derived from the production method. Among these, gold, silver, platinum, palladium, copper, and nickel are preferable because they are excellent in conductivity, and silver, copper, and nickel are more preferable, and copper is particularly preferable. In the present invention, hydrolysis means a reaction including neutralization hydrolysis and heat hydrolysis in addition to normal hydrolysis in which a hydrolyzable compound is reacted with water. Silicon oxide is silicon These compounds include oxides of the above, hydrous oxides of silicon, and hydroxides of silicon.

具体的には、金属粒子を水媒液またはアルコール類等の有機系媒液に分散させた懸濁液の状態とし、その懸濁液と加水分解性珪素化合物を混合し、常法により加水分解性珪素化合物を加水分解して、金属粒子の表面に珪素酸化物を被覆する際に、保護コロイドを存在させる。保護コロイドは、金属粒子の懸濁液中に予め存在させておいても良く、加水分解性珪素化合物を含む溶液に添加し存在させることもでき、あるいは、加水分解性珪素化合物の加水分解の際に別に添加し存在させることができる。   Specifically, it is in a suspension state in which metal particles are dispersed in an aqueous medium liquid or an organic medium liquid such as alcohol, and the suspension and the hydrolyzable silicon compound are mixed and hydrolyzed by a conventional method. The protective colloid is present when the surface of the metal particles is coated with silicon oxide by hydrolyzing the functional silicon compound. The protective colloid may be preliminarily present in the suspension of the metal particles, and may be added to the solution containing the hydrolyzable silicon compound, or may be present during the hydrolysis of the hydrolyzable silicon compound. It can be added separately and exist.

加水分解性珪素化合物としては、アルコキシ基、ハロゲン基などの加水分解性基を有する珪素化合物、水ガラス等の珪酸塩などを用いることができる。中でもアルコキシシランは加水分解反応を制御し易いので好ましい。アルコキシシランは、化学式:R'4−nSi(OR)(式中、R、R'は同種または異種のアルキル基、nは1〜4の整数)で表される化合物や、それを部分縮合させたオリゴマーを包含する化合物である。前記化学式で表されるアルコキシシランは、反応性を有するアルコキシ基の数が多い、例えばnが4のテトラアルコキシシランが好ましく、Rの分子量が小さい方が加水分解が進み易いので、例えば、テトラメトキシシラン、テトラエトキシシラン等が更に好ましい。また、オリゴマーを用いると、モノマーに比べ加水分解・縮重合の速度制御や取扱いが容易であるため好ましく、平均重合度が3〜10程度のものがより好ましい。加水分解性珪素化合物はそのままでも用いることができ、水やアルコール等の媒液に適宜溶解して用いることもできる。加水分解性珪素化合物と金属粒子の懸濁液との混合は、懸濁液に加水分解性珪素化合物を添加し混合するなど通常の方法により行うことができ、混合後任意の時間熟成しても良い。また、加水分解性珪素化合物の使用量は、金属粒子に対し、SiO換算で5〜20重量%の範囲であれば優れた耐酸化性が得られるので好ましく、6〜15重量%の範囲が更に好ましい。 As the hydrolyzable silicon compound, a silicon compound having a hydrolyzable group such as an alkoxy group or a halogen group, or a silicate such as water glass can be used. Of these, alkoxysilane is preferable because it easily controls the hydrolysis reaction. Alkoxysilane is a compound represented by the chemical formula: R ′ 4-n Si (OR) n (wherein R and R ′ are the same or different alkyl groups, and n is an integer of 1 to 4) or a part thereof. It is a compound that includes a condensed oligomer. The alkoxysilane represented by the above chemical formula is preferably a tetraalkoxysilane having a large number of reactive alkoxy groups, for example, n = 4, and the smaller the R molecular weight, the easier the hydrolysis proceeds. Silane, tetraethoxysilane and the like are more preferable. In addition, when an oligomer is used, it is preferable because the rate control and handling of hydrolysis / condensation polymerization are easier than a monomer, and those having an average degree of polymerization of about 3 to 10 are more preferable. The hydrolyzable silicon compound can be used as it is, or can be used by appropriately dissolving in a medium such as water or alcohol. Mixing of the hydrolyzable silicon compound and the suspension of metal particles can be performed by an ordinary method such as adding and mixing the hydrolyzable silicon compound to the suspension, and can be aged for any time after mixing. good. The amount of hydrolyzable silicon compound used is preferably in the range of 5 to 20% by weight in terms of SiO 2 with respect to the metal particles because excellent oxidation resistance is obtained, and the range of 6 to 15% by weight is preferred. Further preferred.

保護コロイドとしては公知のものを用いることができ、例えば、ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等のタンパク質系、デンプン、デキストリン、寒天、アルギン酸ソーダ等の天然高分子や、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等のセルロース系、ポリビニルアルコール、ポリビニルピロリドン等のビニル系、ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等のアクリル酸系、ポリエチレングリコール等の合成高分子、クエン酸等の多価カルボン酸、アニリンまたはそれらの誘導体等が挙げられ、これらを1種または2種以上を用いても良い。保護コロイドは、金属粒子の分散安定化剤として作用するものであり、その使用量は金属100重量部に対し1〜100重量部の範囲にすると、金属粒子が分散安定化し易いので好ましく、2〜50重量部の範囲が更に好ましい。

As the protective colloid, known ones can be used. For example, protein systems such as gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, natural polymers such as starch, dextrin, agar, sodium alginate, hydroxy cellulose, carboxymethyl cellulose, methyl cellulose, cellulose such as ethyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone and vinyl-based, sodium polyacrylate, acrylic acid, such as ammonium polyacrylate-based synthetic polymers such as po triethylene glycol, and citric acid And polyvalent carboxylic acids, anilines or derivatives thereof, and the like may be used alone or in combination of two or more thereof. The protective colloid acts as a dispersion stabilizer for the metal particles. When the amount used is in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the metal, the metal particles are preferably dispersed and stabilized. The range of 50 parts by weight is more preferred.

好ましい態様は、保護コロイドと金属粒子を含む水性懸濁液をアルカリ性にし、このアルカリ性水系懸濁液と加水分解性珪素化合物とを混合して、加水分解性珪素化合物を加水分解することである。アルコキシシランなどの加水分解性珪素化合物はアルカリ性の領域で加水分解し易く、得られた加水分解生成物と金属粒子が表面に有する水酸基との縮重合が進み、金属粒子と強固に結合する。しかし、アルカリ性下では前記加水分解生成物同士の縮重合も進み、粒子表面とは別相でポリシロキサンが形成されるので、被覆層が嵩高く緻密になり難いのではないかと推測される。そこで、保護コロイドを存在させると、加水分解生成物の縮重合を制御する働きをし、前記加水分解生成物が金属粒子の表面と結合してからポリマー化するので、緻密なポリシロキサンの被覆層が得られ易く、耐酸化性が向上すると考えられる。   A preferred embodiment is to hydrolyze the hydrolyzable silicon compound by making the aqueous suspension containing the protective colloid and metal particles alkaline and mixing the alkaline aqueous suspension with the hydrolyzable silicon compound. Hydrolyzable silicon compounds such as alkoxysilanes are easily hydrolyzed in the alkaline region, and the resulting hydrolysis product and polycondensation of the metal particles with hydroxyl groups on the surface proceed to bond firmly to the metal particles. However, under the alkalinity, the polycondensation of the hydrolysis products also proceeds, and polysiloxane is formed in a phase different from the particle surface. Therefore, it is estimated that the coating layer is difficult to be bulky and dense. Therefore, when a protective colloid is present, it functions to control the condensation polymerization of the hydrolysis product and polymerizes after the hydrolysis product is bonded to the surface of the metal particles, so a dense polysiloxane coating layer. It is considered that the oxidation resistance is improved.

金属粒子を懸濁したアルカリ性水系懸濁液は、媒液に水または水とアルコール等の親水性有機媒液との混合物を用い、水系懸濁液のpHを好ましくは8〜13の範囲、より好ましくは9〜12の範囲とする。pH調整に用いる塩基性物質としては種々のものを用いることができ、特に、アンモニウム化合物やアミン類を用いると、洗浄によって除去し易く、洗浄後に金属粒子に残留しても容易に熱分解するので、電極にした場合に導電性を阻害し難いので好ましい。アンモニウム化合物としは、例えば、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム等が、アミン類としては、例えば、エチルアミン、プロピルアミン、ブチルアミン等の第1級アミン類、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の第2級アミン類、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の第3級アミン類や、2−(ジメチルアミノ)エタノール、2−(ジエチルアミノ)エタノール、2−アミノエタノール、ジエタノールアミン、N−ブチルジエタノールアミン、トリエタノールアミン等のアルカノールアミンなどが挙げられ、これらを1種用いても、2種以上を混合して用いても良い。このようなアルカリ性水系懸濁液に保護コロイドを存在させ、次いで、前記の加水分解性珪素化合物と混合すると水と反応して加水分解し、珪素酸化物の被覆が形成される。   In the alkaline aqueous suspension in which metal particles are suspended, water or a mixture of water and a hydrophilic organic medium such as alcohol is used as a medium, and the pH of the aqueous suspension is preferably in the range of 8 to 13, more. Preferably it is set as the range of 9-12. Various basic substances can be used for pH adjustment. Particularly, when ammonium compounds or amines are used, they are easily removed by washing, and even if they remain on metal particles after washing, they are easily decomposed. In the case of using an electrode, it is preferable because the conductivity is hardly hindered. Examples of the ammonium compound include ammonia, ammonium carbonate, and ammonium hydrogen carbonate. Examples of the amine include primary amines such as ethylamine, propylamine, and butylamine, and primary amines such as diethylamine, dipropylamine, and dibutylamine. Tertiary amines such as secondary amines, triethylamine, tripropylamine, tributylamine, 2- (dimethylamino) ethanol, 2- (diethylamino) ethanol, 2-aminoethanol, diethanolamine, N-butyldiethanolamine, Examples thereof include alkanolamines such as ethanolamine, and these may be used singly or in combination of two or more. When such a protective colloid is present in such an alkaline aqueous suspension and then mixed with the hydrolyzable silicon compound, it reacts with water and hydrolyzes to form a silicon oxide coating.

金属粒子は、公知の方法で得られたものを用いることができ、例えば、(a)アトマイズ法等の気相で金属化合物を還元反応する方法、(b)湿式還元法の液相で金属化合物を還元する方法等が挙げられる。中でも、特別な設備を要しない(b)の方法が工業的に有利である。   As the metal particles, those obtained by a known method can be used. For example, (a) a method of reducing a metal compound in a gas phase such as an atomizing method, or (b) a metal compound in a liquid phase of a wet reduction method. And the like. Among these, the method (b) that does not require special equipment is industrially advantageous.

湿式法を適用する場合は、保護コロイドの存在下で、還元反応を行うと、均一に分散した金属粒子が得られるので好ましい。本発明においては、保護コロイドの存在下、金属化合物と還元剤とを反応させて、金属粒子を得る第1の工程、得られた金属粒子と保護コロイドの存在下、加水分解性珪素化合物を加水分解する第2の工程を用いることができる。具体的には、金属化合物を水またはアルコール類等の有機系媒液に溶解し、次いで、還元剤と混合して還元反応を行う際に保護コロイドを存在させる。保護コロイドは、金属化合物溶液あるいは還元剤に添加しても良く、還元反応中に保護コロイドを別途添加しても良い。   When applying the wet method, it is preferable to carry out the reduction reaction in the presence of a protective colloid because uniform dispersed metal particles can be obtained. In the present invention, the first step of obtaining metal particles by reacting a metal compound and a reducing agent in the presence of a protective colloid, the hydrolyzable silicon compound is hydrolyzed in the presence of the obtained metal particles and the protective colloid. A second step of decomposing can be used. Specifically, the metal compound is dissolved in an organic medium such as water or alcohol, and then a protective colloid is present when the reduction reaction is performed by mixing with a reducing agent. The protective colloid may be added to the metal compound solution or the reducing agent, or the protective colloid may be added separately during the reduction reaction.

第1の工程で使用する保護コロイドは、前記の天然高分子、合成高分子、クエン酸等の多価カルボン酸、アニリンまたはそれらの誘導体等を用いることができ、これらを1種または2種以上を用いても良い。その使用量は金属化合物100重量部に対し1〜100重量部の範囲にすると、生成した金属粒子が分散安定化し易いので好ましく、2〜50重量部の範囲が更に好ましい。   As the protective colloid used in the first step, the above-mentioned natural polymer, synthetic polymer, polyvalent carboxylic acid such as citric acid, aniline or derivatives thereof can be used, and one or more of these can be used. May be used. The amount used is preferably in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the metal compound because the generated metal particles are easily dispersed and stabilized, and more preferably in the range of 2 to 50 parts by weight.

金属化合物としては、金属の酸化物、塩化物、塩素酸塩、臭化物、ヨウ化物、硫酸塩、硝酸塩、炭酸塩、炭酸水酸化物や、テトラアンミン金属硫酸塩、テトラシアノ金属酸カリウム等やそれらの水和物の無機金属化合物、金属の蟻酸塩、酢酸塩、シュウ酸塩等やそれらの水和物の有機金属化合物を用いることができる。具体的に銅化合物としては、銅酸化物、塩化銅、塩素酸銅、臭化銅、ヨウ化銅、硫酸銅、硝酸銅、炭酸銅、炭酸水酸化銅、テトラアンミン銅硫酸塩、テトラシアノ銅酸カリウム等やそれらの水和物の無機銅化合物、蟻酸銅、酢酸銅、シュウ酸銅等やそれらの水和物の有機銅化合物を用いることができ、中でも銅酸化物が好ましい。尚、本発明では銅酸化物を、通常の銅の酸化物の他に、銅の含水酸化物、銅の水酸化物を包含する意味で用いており、銅の酸化物としては亜酸化銅(または酸化第一銅)、酸化銅(または酸化第二銅)等を用いることができる。   Examples of metal compounds include metal oxides, chlorides, chlorates, bromides, iodides, sulfates, nitrates, carbonates, carbonate hydroxides, tetraammine metal sulfates, potassium tetracyanometalates, and their water. Japanese inorganic metal compounds, metal formates, acetates, oxalates and the like, and hydrated organometallic compounds can be used. Specific examples of copper compounds include copper oxide, copper chloride, copper chlorate, copper bromide, copper iodide, copper sulfate, copper nitrate, copper carbonate, copper carbonate hydroxide, tetraammine copper sulfate, potassium tetracyanocuprate Etc., inorganic copper compounds of these hydrates, copper formate, copper acetate, copper oxalate and the like, and organic copper compounds of these hydrates can be used, among which copper oxide is preferred. In the present invention, a copper oxide is used in the sense of including a copper hydrated oxide and a copper hydroxide in addition to a normal copper oxide. As the copper oxide, cuprous oxide ( Alternatively, cuprous oxide), copper oxide (or cupric oxide), or the like can be used.

また、還元剤としては公知のものを用いることができ、例えば、ヒドラジンや、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物等のヒドラジン系還元剤、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及び亜リン酸ナトリウム等のその金属塩、次亜リン酸及び次亜リン酸ナトリウム等のその金属塩、アルデヒド類、アルコール類、アミン類、糖類等が挙げられ、これらを1種または2種以上を用いても良い。特に、ヒドラジン系還元剤は還元力が強く好ましい。還元剤の使用量は、金属化合物から金属粒子を生成できる量であれば適宜設定することができ、金属化合物中に含まれる金属1モルに対し0.2〜5モルの範囲にあるのが好ましい。還元反応温度は10℃〜用いた媒液の沸点の範囲であれば反応が進み易いので好ましく、40〜95℃の範囲であれば更に好ましい。   Further, known reducing agents can be used, for example, hydrazine reducing agents such as hydrazine, hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate and other hydrazine compounds, sodium borohydride, sodium sulfite, hydrogen sulfite. Sodium, sodium thiosulfate, sodium nitrite, sodium hyponitrite, phosphorous acid and its metal salts such as sodium phosphite, hypophosphorous acid and its metal salts such as sodium hypophosphite, aldehydes, alcohols , Amines, saccharides and the like, and one or more of these may be used. In particular, hydrazine-based reducing agents are preferred because of their strong reducing power. The amount of the reducing agent used can be appropriately set as long as it is an amount capable of generating metal particles from the metal compound, and is preferably in the range of 0.2 to 5 mol with respect to 1 mol of the metal contained in the metal compound. . The reduction reaction temperature is preferably in the range of 10 ° C. to the boiling point of the liquid medium used, since the reaction is easy to proceed, and more preferably in the range of 40 to 95 ° C.

また、第1の工程の還元反応においては、塩基性物質を添加して、好ましくはpHを8〜13の範囲、より好ましくは9〜12の範囲に調整してから還元反応を行っても良く、予めpH調整を行っておくと、粒子形状が整い粒度分布が均一な金属粒子が得られ易いので好ましい。pH調整に用いる塩基性物質としては種々のものを用いることができ、特に、前記のアンモニウム化合物や、第1級アミン、第2級アミン、第3級アミン、アルカノールアミン等のアミン類を用いると、容易に熱分解するので好ましい。これらの塩基性物質は1種用いても、2種以上を混合して用いても良い。第1の工程の後、必要に応じて適宜、ろ別、洗浄、乾燥を行っても良く、第1の工程の後そのまま、第2の工程に進んでも良い。   In the reduction reaction of the first step, a basic substance may be added, and the reduction reaction may be performed after preferably adjusting the pH to a range of 8 to 13, more preferably 9 to 12. It is preferable to adjust the pH in advance, because it is easy to obtain metal particles having a uniform particle shape and a uniform particle size distribution. Various basic substances can be used for adjusting the pH. Particularly, when the above-mentioned ammonium compound or amines such as primary amine, secondary amine, tertiary amine, alkanolamine are used. It is preferable because it is easily pyrolyzed. These basic substances may be used alone or in combination of two or more. After the first step, filtration, washing, and drying may be appropriately performed as necessary, and the second step may be directly performed after the first step.

次いで、第2の工程において、金属粒子を水媒液またはアルコール類等の有機系媒液に分散させた懸濁液に保護コロイドを存在させ、次いで、アルコキシシランなどの前記の加水分解性珪素化合物とを混合して、加水分解性珪素化合物を加水分解し、金属粒子の表面を珪素酸化物で被覆する。第2の工程で用いる保護コロイドは、第1の工程で用いたものと同じであっても良いし、異なるものであっても良く、第1の工程で用いたものを洗浄等で除くことなく引き続き第2の工程で用いることができる。   Next, in the second step, the protective colloid is present in a suspension obtained by dispersing metal particles in an aqueous medium or an organic medium such as alcohols, and then the hydrolyzable silicon compound such as alkoxysilane. Are mixed to hydrolyze the hydrolyzable silicon compound, and the surfaces of the metal particles are coated with silicon oxide. The protective colloid used in the second step may be the same as or different from that used in the first step, without removing the one used in the first step by washing or the like. It can be subsequently used in the second step.

また、第2の工程の好ましい形態は、保護コロイドと金属粒子を含むアルカリ性水系懸濁液と、アルコキシシランなどの加水分解性珪素化合物とを混合して、加水分解性珪素化合物を加水分解することである。金属粒子を懸濁したアルカリ性水系懸濁液は、媒液に水または水とアルコール等の親水性有機媒液との混合物を用い、水系懸濁液のpHを好ましくは8〜13の範囲、より好ましくは9〜12の範囲とする。水系懸濁液がアルカリ性であると、前述のように、前記加水分解生成物の縮重合が進行し、被覆層を形成し易いので好ましい。pH調整に用いる塩基性物質としては種々のものを用いることができ、特に、前記のアンモニウム化合物や、第1級アミン、第2級アミン、第3級アミン、アルカノールアミン等のアミン類を用いると、容易に熱分解するので好ましい。これらの塩基性物質は1種用いても、2種以上を混合して用いても良い。   The preferred form of the second step is to hydrolyze the hydrolyzable silicon compound by mixing an alkaline aqueous suspension containing protective colloid and metal particles and a hydrolyzable silicon compound such as alkoxysilane. It is. In the alkaline aqueous suspension in which metal particles are suspended, water or a mixture of water and a hydrophilic organic medium such as alcohol is used as a medium, and the pH of the aqueous suspension is preferably in the range of 8 to 13, more. Preferably it is set as the range of 9-12. It is preferable that the aqueous suspension is alkaline, as described above, since the condensation polymerization of the hydrolysis product proceeds and a coating layer is easily formed. Various basic substances can be used for adjusting the pH. Particularly, when the above-mentioned ammonium compound or amines such as primary amine, secondary amine, tertiary amine, alkanolamine are used. It is preferable because it is easily pyrolyzed. These basic substances may be used alone or in combination of two or more.

以上のようにして金属粉末を得た後、適宜、ろ別、洗浄、乾燥を行い、必要に応じて粉砕する。乾燥は金属粒子が酸化し難いように、窒素ガス、ヘリウムガス、アルゴンガス等の非酸化性ガス(不活性ガス)の雰囲気下で行うのが好ましい。   After obtaining the metal powder as described above, it is appropriately filtered, washed and dried, and pulverized as necessary. Drying is preferably performed in an atmosphere of a non-oxidizing gas (inert gas) such as nitrogen gas, helium gas, or argon gas so that the metal particles are not easily oxidized.

本発明で得られる金属粉末は、金属粒子の表面を珪素酸化物で被覆したもので、耐酸化性に優れている。金属銅粉末の場合、酸化されるとCuOとなり重量が増加するので、非酸化性雰囲気下60℃の温度で10時間加熱後の重量に対し、重量の増加率が0.5%となる温度を耐酸化性の指標に用いると、本発明で得られた銅粉末ではこの温度が250℃以上300℃未満となり、比較的低温度の加熱焼成ではほとんど酸化しない。被覆層の厚みには特に制限はなく、通常、約1〜100nm程度、好ましくは1〜50nm、より好ましくは1〜25nm、更に好ましくは2〜15nmである。珪素酸化物の被覆層には、本発明の効果が損なわれない範囲で、未反応の重合性珪素化合物のモノマー、オリゴマーや、水ガラスのアルカリ成分などが含まれていても良い。   The metal powder obtained by the present invention is obtained by coating the surface of metal particles with silicon oxide and is excellent in oxidation resistance. In the case of metallic copper powder, when oxidized, it becomes CuO and the weight increases. Therefore, the temperature at which the rate of weight increase is 0.5% with respect to the weight after heating for 10 hours at a temperature of 60 ° C. in a non-oxidizing atmosphere. When used as an index of oxidation resistance, the copper powder obtained in the present invention has a temperature of 250 ° C. or higher and lower than 300 ° C., and hardly oxidizes when heated and fired at a relatively low temperature. There is no restriction | limiting in particular in the thickness of a coating layer, Usually, about 1-100 nm grade, Preferably it is 1-50 nm, More preferably, it is 1-25 nm, More preferably, it is 2-15 nm. The silicon oxide coating layer may contain an unreacted monomer or oligomer of a polymerizable silicon compound, an alkali component of water glass, or the like as long as the effects of the present invention are not impaired.

金属粒子の形状は球状、板状、フレーク状、角形状などあらゆる形状のものであっても良く、優れた充填性を有するほぼ真球の球状粒子であるのが好ましい。また、金属粒子の大きさはどのようなものであっても良く、平均粒子径として10μm以下であればペースト、インキ、塗料に用いられ易い。特に、0.005〜1μmの範囲であると、欠陥がほとんどない高密度の電極が得られ易く、しかも塗料等への分散性に優れているので、好ましい。より好ましい範囲は、0.05〜1.0μmであり、更に好ましい範囲は0.1〜1.0μmであり、最も好ましい範囲は0.2〜1.0μmである。平均粒子径は電子顕微鏡法により測定した累積50%径で表される。金属の粒子形状は電子顕微鏡で観察される。   The shape of the metal particles may be any shape such as a spherical shape, a plate shape, a flake shape, and a square shape, and is preferably a substantially spherical particle having excellent filling properties. The metal particles may have any size, and if they have an average particle size of 10 μm or less, they are easily used for pastes, inks, and paints. In particular, the range of 0.005 to 1 μm is preferable because a high-density electrode having almost no defects can be easily obtained and the dispersibility in a paint or the like is excellent. A more preferable range is 0.05 to 1.0 μm, a further preferable range is 0.1 to 1.0 μm, and a most preferable range is 0.2 to 1.0 μm. The average particle diameter is expressed as a cumulative 50% diameter measured by electron microscopy. The metal particle shape is observed with an electron microscope.

本発明の製造方法で得た金属粉末は、必要に応じて溶媒あるいはバインダー樹脂と混合して、金属ペースト、金属インキあるいは金属塗料(金属インク)などの流動性を有する組成物にして用いられる。溶媒は用途に応じて適宜選択することができ、例えば、比較的高沸点の非極性溶剤あるいは低極性溶剤、具体的には、テルピネオール、ミネラルスピリット、キシレン、トルエン、エチルベンゼン、メシチレン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、シクロヘキサン、シクロオクタン等を用いることができる。また、バインダー樹脂も用途に応じて適宜選択することができ、例えば、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルフタレート樹脂、オリゴエステルアクリレート樹脂、キシレン樹脂、ビスマレイミドトリアジン樹脂、フラン樹脂、ユリア樹脂、ポリウレタン樹脂、メラミン樹脂、シリコン樹脂等の熱硬化性樹脂を挙げることができ、フェノール樹脂、エポキシ樹脂は、基板との密着性が良好であるので、樹脂成分としてより好ましいものである。溶媒、バインダー樹脂の配合量は用途に応じて適宜設定することができ、例えば、金属粉末100重量部に対して、溶媒は1〜500重量部程度、バインダー樹脂は1〜50重量部程度とすることができる。このような流動性組成物には、粘度調整剤等の流動性調整剤やガラスなどの各種添加剤を配合しても良い。   The metal powder obtained by the production method of the present invention is mixed with a solvent or a binder resin as necessary, and used as a fluid composition such as a metal paste, metal ink, or metal paint (metal ink). The solvent can be appropriately selected depending on the application, for example, a relatively high boiling nonpolar solvent or low polarity solvent, specifically, terpineol, mineral spirit, xylene, toluene, ethylbenzene, mesitylene, hexane, heptane, Octane, decane, dodecane, cyclohexane, cyclooctane and the like can be used. Further, the binder resin can also be appropriately selected according to the application, for example, phenol resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, diallyl phthalate resin, oligoester acrylate resin, xylene resin, bismaleimide triazine resin, Examples include thermosetting resins such as furan resin, urea resin, polyurethane resin, melamine resin, and silicon resin. Phenol resin and epoxy resin are more preferable as resin components because they have good adhesion to the substrate. It is. The amount of the solvent and the binder resin can be appropriately set according to the use. For example, the solvent is about 1 to 500 parts by weight and the binder resin is about 1 to 50 parts by weight with respect to 100 parts by weight of the metal powder. be able to. Such a fluid composition may be blended with a fluidity modifier such as a viscosity modifier and various additives such as glass.

このような流動性組成物は、通常の方法により基板に塗布後、加熱焼成して、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路等や、その他の電極を製造するのに用いることができる。本発明の金属粉末は耐酸化性に優れているので、これを用いて製造した前記の電極は電気特性の優れたものとなる。   Such a flowable composition can be used to produce an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, and other electrodes after being applied to a substrate by a normal method and then heated and fired. . Since the metal powder of the present invention is excellent in oxidation resistance, the electrode produced using the metal powder has excellent electrical characteristics.

以下に実施例を挙げて、本発明を更に詳細に説明するが、本発明はこれらの実施例により制限されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1
銅化合物として工業用酸化銅(N−120:エヌシーテック社製)32g、硫黄化合物として3−メルカプトプロピオン酸0.5g、保護コロイドとしてポリビニルアルコール(平均重合度1000〜1500)3g、還元剤としてヒドラジン一水和物(80%)15.65gを、室温下、純水400ミリリットルに添加した後、2−(ジメチルアミノ)エタノールでpHを10に調整した。その後、40分かけて80℃の温度に昇温し、80℃で2時間還元反応させ、3−メルカプトプロピオン酸が付着した銅粒子を媒液中に生成させた。次いで、この媒液の温度を80℃に保持しながら、テトラエトキシシラン8.9g(銅粒子に対しSiOとして10重量%に相当)をエタノール100ミリリットルに溶解した処理液を30分間で添加し、2時間熟成させた。熟成後、濾液の電気伝導度が100μS/cm以下になるまで水洗してから銅粒子をろ別し、乾燥窒素ガスの雰囲気下で60℃の温度で10時間乾燥して本発明の銅粉末(試料A)を得た。
Example 1
Industrial copper oxide (N-120: manufactured by NC Tech) as a copper compound, 3-mercaptopropionic acid 0.5 g as a sulfur compound, polyvinyl alcohol (average polymerization degree 1000-1500) 3 g as a protective colloid, hydrazine as a reducing agent After adding 15.65 g of monohydrate (80%) to 400 ml of pure water at room temperature, the pH was adjusted to 10 with 2- (dimethylamino) ethanol. Then, it heated up to the temperature of 80 degreeC over 40 minutes, and was made to reduce-react at 80 degreeC for 2 hours, and the copper particle which 3-mercaptopropionic acid adhered was produced | generated in the liquid medium. Next, while maintaining the temperature of the medium at 80 ° C., a treatment solution in which 8.9 g of tetraethoxysilane (corresponding to 10% by weight as SiO 2 with respect to the copper particles) was dissolved in 100 ml of ethanol was added over 30 minutes. Aged for 2 hours. After aging, the filtrate is washed with water until the electric conductivity of the filtrate becomes 100 μS / cm or less, and then the copper particles are filtered off and dried at 60 ° C. for 10 hours in an atmosphere of dry nitrogen gas. Sample A) was obtained.

実施例2
テトラエトキシシランに替えてテトラエトキシシランのオリゴマー(エチルシリケート40:コルコート社製、平均重合度=5)6.4g(銅粒子に対しSiOとして10重量%に相当)を用いたこと以外は実施例1と同様にして本発明の銅粉末(試料B)を得た。
Example 2
Implemented except that 6.4 g of tetraethoxysilane oligomer (ethyl silicate 40: Colcoat, average polymerization degree = 5) (equivalent to 10% by weight as SiO 2 with respect to copper particles) was used instead of tetraethoxysilane. The copper powder (sample B) of the present invention was obtained in the same manner as in Example 1.

実施例3
テトラエトキシシランの使用量を13.4g(銅粒子に対しSiOとして15重量%に相当)に替えたこと以外は実施例1と同様にして本発明の銅粉末(試料C)を得た。
Example 3
A copper powder (sample C) of the present invention was obtained in the same manner as in Example 1 except that the amount of tetraethoxysilane used was changed to 13.4 g (corresponding to 15% by weight as SiO 2 with respect to the copper particles).

実施例4
エチルシリケート40の使用量を9.6g(銅粒子に対しSiOとして15重量%に相当)に替えたこと以外は実施例2と同様にして本発明の銅粉末(試料D)を得た。
Example 4
A copper powder (sample D) of the present invention was obtained in the same manner as in Example 2 except that the amount of ethyl silicate 40 used was changed to 9.6 g (corresponding to 15% by weight as SiO 2 with respect to the copper particles).

実施例5
3−メルカプトプロピオン酸に替えてメルカプト酢酸を用い、ポリビニルアルコールの使用量を2g、テトラエトキシシランの使用量を5.3g(銅粒子に対しSiOとして6重量%に相当)に替えたこと以外は実施例1と同様にして本発明の銅粉末(試料E)を得た。
Example 5
Other than using mercaptoacetic acid instead of 3-mercaptopropionic acid, changing the amount of polyvinyl alcohol used to 2 g and the amount of tetraethoxysilane to 5.3 g (corresponding to 6% by weight as SiO 2 with respect to copper particles) Obtained the copper powder (sample E) of this invention like Example 1. FIG.

実施例6
テトラエトキシシランに替えてテトラエトキシシランのオリゴマー(エチルシリケート40:コルコート社製、平均重合度=5)3.8g(銅粒子に対しSiOとして6重量%に相当)を用いたこと以外は実施例5と同様にして本発明の銅粉末(試料F)を得た。
Example 6
Implemented except using 3.8 g of tetraethoxysilane oligomer (ethyl silicate 40: Colcoat, average polymerization degree = 5) (equivalent to 6 wt% as SiO 2 with respect to copper particles) instead of tetraethoxysilane In the same manner as in Example 5, a copper powder (sample F) of the present invention was obtained.

比較例1
テトラエトキシシランを用いなかったこと以外は実施例1と同様にして銅粉末(試料G)を得た。
Comparative Example 1
A copper powder (sample G) was obtained in the same manner as in Example 1 except that tetraethoxysilane was not used.

比較例2
テトラエトキシシランを用いなかったこと以外は実施例5と同様にして銅粉末(試料H)を得た。
Comparative Example 2
A copper powder (sample H) was obtained in the same manner as in Example 5 except that tetraethoxysilane was not used.

比較例3
銅化合物として工業用酸化銅(N−120:エヌシーテック社製)32g、保護コロイドとしてポリビニルアルコール(平均重合度1000〜1500)3g、還元剤としてヒドラジン一水和物(80%)15.65gを、室温下、純水400ミリリットルに添加した後、2−(ジメチルアミノ)エタノールでpHを10に調整した。その後、40分かけて80℃の温度に昇温し、80℃で2時間還元反応させ、実質的に粒子表面に硫黄化合物が処理されていない銅粒子を媒液中に生成させた。次いで、濾液の電気伝導度が100μS/cm以下になるまで水洗し、保護コロイド及びその他の塩類を除去してから銅粒子をろ別し、銅粒子の湿ケーキを得た。この湿ケーキを400ミリリットルの純水に分散したところ、pHが6.4の銅粒子の懸濁液が得られた。この懸濁液の温度を80℃に保持しながら、テトラエトキシシラン8.9g(銅粒子に対しSiOとして10重量%に相当)をエタノール100ミリリットルに溶解した処理液を30分間で添加し、2時間熟成させた。その後は実施例1と同様に、水洗、ろ別、乾燥して銅粉末(試料I)を得た。
Comparative Example 3
Industrial copper oxide (N-120: manufactured by NC Tech Co.) 32 g as a copper compound, polyvinyl alcohol (average polymerization degree 1000-1500) 3 g as a protective colloid, hydrazine monohydrate (80%) 15.65 g as a reducing agent After adding to 400 ml of pure water at room temperature, the pH was adjusted to 10 with 2- (dimethylamino) ethanol. Then, it heated up to the temperature of 80 degreeC over 40 minutes, and it was made to reduce-react at 80 degreeC for 2 hours, and the copper particle which the sulfur compound was not substantially processed on the particle | grain surface was produced | generated in the liquid medium. Next, the filtrate was washed with water until the electrical conductivity reached 100 μS / cm or less, and after removing the protective colloid and other salts, the copper particles were filtered off to obtain a wet cake of copper particles. When this wet cake was dispersed in 400 ml of pure water, a suspension of copper particles having a pH of 6.4 was obtained. While maintaining the temperature of this suspension at 80 ° C., a treatment solution in which 8.9 g of tetraethoxysilane (corresponding to 10% by weight as SiO 2 with respect to copper particles) was dissolved in 100 ml of ethanol was added over 30 minutes, Aged for 2 hours. Thereafter, in the same manner as in Example 1, it was washed with water, filtered and dried to obtain a copper powder (Sample I).

評価1:平均粒子径の測定
実施例1〜6、比較例1〜3で得られた試料A〜Iに含まれる銅粒子の50%累積平均粒子径を、電子顕微鏡法により測定した。結果を表1に示す。
Evaluation 1: Measurement of average particle diameter The 50% cumulative average particle diameter of the copper particles contained in Samples A to I obtained in Examples 1 to 6 and Comparative Examples 1 to 3 was measured by electron microscopy. The results are shown in Table 1.

評価2:耐酸化性の評価
実施例1〜6、比較例1〜3で得られた試料A〜I10gを、窒素ガス雰囲気下60℃の温度で10時間加熱した後、TAS−200型熱天秤(リガク社製、昇温速度5℃/分)を用いて重量増加率が0.5%になる温度を測定し、これを酸化開始温度とした。また、前記の加熱後の試料10gを、更に酸化性空気雰囲気下150℃、200℃、300℃、400℃の温度で、それぞれ20分間加熱焼成した後の重量を測定し、重量増加率を算出した。結果を表1に示す。酸化開始温度が高く、重量増加が少ない程、耐酸化性が優れていることを示しており、本発明の銅粉末は耐酸化性が優れていることが判る。特に、本発明の銅粉末は、酸化開始温度が250℃以上300℃未満であり、良好である。
Evaluation 2: Evaluation of oxidation resistance Samples A to I obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were heated at a temperature of 60 ° C. for 10 hours in a nitrogen gas atmosphere, and then a TAS-200 type thermobalance. The temperature at which the rate of weight increase was 0.5% was measured using (Rigaku Corporation, temperature rising rate 5 ° C./min), and this was used as the oxidation start temperature. In addition, 10 g of the heated sample was further heated and fired at 150 ° C., 200 ° C., 300 ° C., and 400 ° C. in an oxidizing air atmosphere for 20 minutes, and the weight increase rate was calculated. did. The results are shown in Table 1. The higher the oxidation start temperature and the smaller the weight increase, the better the oxidation resistance, and it can be seen that the copper powder of the present invention is excellent in oxidation resistance. In particular, the copper powder of the present invention has a favorable oxidation start temperature of 250 ° C. or higher and lower than 300 ° C.

Figure 0004208705
Figure 0004208705

本発明の実施例で得られた銅粉末を用いて、溶媒、バインダー樹脂と混合して、銅ペースト、銅インキあるいは銅塗料(銅インク)の流動性組成物を調製し、通常の方法により基板に塗布後、加熱焼成して、電極とした。得られた電極は電気特性の優れたものとなることを確認した。   Using the copper powder obtained in the examples of the present invention, a fluid composition of copper paste, copper ink or copper paint (copper ink) is prepared by mixing with a solvent and a binder resin, and the substrate is prepared by a usual method. After application, the electrode was baked by heating to obtain an electrode. It was confirmed that the obtained electrode had excellent electrical characteristics.

本発明で得られた金属粉末は、コンデンサー等の外部電極や内部電極、プリント配線板の回路等の電極部材や、各種電気的接点部材などの電気的導通を確保するための材料として有用である。特に、本発明で得られた銅粉末を銅ペースト、銅インキ、銅塗料(銅インク)等の流動性組成物にして、例えば、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路等や、その他の電極に用いると、電気特性の優れたものが得られると期待される。
The metal powder obtained in the present invention is useful as a material for ensuring electrical continuity, such as external electrodes and internal electrodes such as capacitors, electrode members such as circuits of printed wiring boards, and various electrical contact members. . In particular, the copper powder obtained in the present invention is made into a fluid composition such as copper paste, copper ink, copper paint (copper ink), for example, internal electrodes of multilayer ceramic capacitors, circuits of printed wiring boards, etc. It is expected that an electrode having excellent electrical characteristics can be obtained.

Claims (7)

天然高分子又は合成高分子からなる保護コロイドと金属粒子の存在下、加水分解性珪素化合物を加水分解して、金属粒子の表面を珪素酸化物で被覆することを特徴とする金属粉末の製造方法。 A method for producing a metal powder comprising hydrolyzing a hydrolyzable silicon compound in the presence of a protective colloid composed of a natural polymer or a synthetic polymer and metal particles, and coating the surface of the metal particles with silicon oxide . 保護コロイドと金属粒子を含むアルカリ性水系懸濁液と加水分解性珪素化合物とを混合して、加水分解性珪素化合物を加水分解することを特徴とする請求項1に記載の金属粉末の製造方法。 The method for producing metal powder according to claim 1, wherein the hydrolyzable silicon compound is hydrolyzed by mixing an alkaline aqueous suspension containing a protective colloid and metal particles and a hydrolyzable silicon compound. 加水分解性珪素化合物としてアルコキシシランを用いることを特徴とする請求項1に記載の金属粉末の製造方法。 2. The method for producing metal powder according to claim 1, wherein alkoxysilane is used as the hydrolyzable silicon compound. 金属粒子として銅粒子を用いることを特徴とする請求項1に記載の金属粉末の製造方法。 2. The method for producing metal powder according to claim 1, wherein copper particles are used as the metal particles. 天然高分子又は合成高分子からなる保護コロイドの存在下、金属化合物と還元剤とを反応させて金属粒子を得る第1の工程、得られた金属粒子と保護コロイドとの存在下、加水分解性珪素化合物を加水分解して、金属粒子の表面を珪素酸化物で被覆する第2の工程からなることを特徴とする金属粉末の製造方法。 First step of obtaining metal particles by reacting a metal compound and a reducing agent in the presence of a protective colloid comprising a natural polymer or a synthetic polymer , hydrolyzability in the presence of the obtained metal particles and the protective colloid A method for producing a metal powder comprising the second step of hydrolyzing a silicon compound and coating the surface of metal particles with silicon oxide. 第2の工程において、保護コロイドと金属粒子を含むアルカリ性水系懸濁液と加水分解性珪素化合物とを混合して、加水分解性珪素化合物を加水分解することを特徴とする請求項5に記載の金属粉末の製造方法。 6. The hydrolyzable silicon compound is hydrolyzed by mixing an alkaline aqueous suspension containing a protective colloid and metal particles and a hydrolyzable silicon compound in the second step. A method for producing metal powder. 加水分解性珪素化合物としてアルコキシシランを用いることを特徴とする請求項6に記載の金属粉末の製造方法。 The method for producing metal powder according to claim 6, wherein alkoxysilane is used as the hydrolyzable silicon compound.
JP2003406219A 2003-12-04 2003-12-04 Method for producing metal powder Expired - Fee Related JP4208705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406219A JP4208705B2 (en) 2003-12-04 2003-12-04 Method for producing metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406219A JP4208705B2 (en) 2003-12-04 2003-12-04 Method for producing metal powder

Publications (2)

Publication Number Publication Date
JP2005163142A JP2005163142A (en) 2005-06-23
JP4208705B2 true JP4208705B2 (en) 2009-01-14

Family

ID=34728659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406219A Expired - Fee Related JP4208705B2 (en) 2003-12-04 2003-12-04 Method for producing metal powder

Country Status (1)

Country Link
JP (1) JP4208705B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771773B1 (en) * 2005-11-01 2007-10-30 삼성전기주식회사 A Composite Nickel Particle and A Preparing Method Thereof
KR100809982B1 (en) 2006-09-21 2008-03-06 삼성전기주식회사 Method for manufacturing copper nanoparticles using microwave
JP2009079269A (en) * 2007-09-26 2009-04-16 Dowa Electronics Materials Co Ltd Copper powder for electroconductive paste, production method therefor and electroconductive paste
JP5526664B2 (en) * 2009-09-03 2014-06-18 マツダ株式会社 Method for surface treatment of metal members
JP4970530B2 (en) * 2009-12-28 2012-07-11 株式会社ノリタケカンパニーリミテド Solar cell paste composition, method for producing the same, and solar cell
JP5938705B2 (en) * 2011-07-21 2016-06-22 国立大学法人京都大学 COMPOSITE NANOPARTICLE AND METHOD FOR PRODUCING SAME, METHOD FOR PRODUCING glazing and metal nanoparticle

Also Published As

Publication number Publication date
JP2005163142A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
KR101730305B1 (en) Metal powder paste and method for producing same
JP5882960B2 (en) Surface-treated metal powder and method for producing the same
WO2006041030A1 (en) Conductive ink
CN104115237B (en) Metal paste mixing and its manufacturing method
WO2006109410A1 (en) Ink composition and metallic material
JPWO2009060803A1 (en) Copper fine particles, production method thereof and copper fine particle dispersion
JP2007039718A (en) Method for producing silver powder
JP5092630B2 (en) Fine silver powder, method for producing the same, and dispersion liquid for conductive paste using the fine silver powder
JP4164009B2 (en) Copper powder, copper paste and paint using the same, electrode
JP5843820B2 (en) Method for producing surface-treated metal powder
JP4208705B2 (en) Method for producing metal powder
JP5843819B2 (en) Method for producing surface-treated metal powder
JPH08259847A (en) Coated inorganic powder and its production
JP2004079211A (en) Silver powder for conductive paste, its manufacturing method, and conductive paste using the same
JP2013171745A (en) Copper powder paste and method of manufacturing the same
JP4208704B2 (en) Copper powder, method for producing the same, fluid composition containing the same, and electrode using the same
JP4586141B2 (en) Conductive paste
JP2011089153A (en) Method for producing copper fine particle
TW201044463A (en) Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
JP2015036440A (en) Surface-treated metal powder and method for producing the same
JP4931063B2 (en) Method for producing metal nanoparticle paste
JP4164010B2 (en) Inorganic ultrafine particle coated metal powder and method for producing the same
JP4176627B2 (en) Colloidal metal particles, method for producing the same, fluid composition containing the same, and electrode formed using the fluid composition
JP5869538B2 (en) Method for producing surface-treated metal powder
JP5986046B2 (en) Surface-treated metal powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R151 Written notification of patent or utility model registration

Ref document number: 4208705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees