JP6004034B1 - Copper powder - Google Patents

Copper powder Download PDF

Info

Publication number
JP6004034B1
JP6004034B1 JP2015086611A JP2015086611A JP6004034B1 JP 6004034 B1 JP6004034 B1 JP 6004034B1 JP 2015086611 A JP2015086611 A JP 2015086611A JP 2015086611 A JP2015086611 A JP 2015086611A JP 6004034 B1 JP6004034 B1 JP 6004034B1
Authority
JP
Japan
Prior art keywords
copper powder
mixed
copper
powder
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015086611A
Other languages
Japanese (ja)
Other versions
JP2016204700A (en
Inventor
尚人 西村
尚人 西村
春樹 両見
春樹 両見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015086611A priority Critical patent/JP6004034B1/en
Application granted granted Critical
Publication of JP6004034B1 publication Critical patent/JP6004034B1/en
Publication of JP2016204700A publication Critical patent/JP2016204700A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】焼結体密度が低い銅粉に、特定の割合で添加することにより、焼結体密度を向上することができる銅粉末を提供する。【解決手段】TMA(熱機械分析)装置を用いた室温から1000℃までの熱収縮挙動測定により、300℃以下の加熱温度で熱収縮挙動を開始する銅粉末(A)であって、300℃以下の加熱温度では熱収縮挙動を開始しない銅粉(B)に添加して混合銅粉を調製したときに、銅粉末(A)の最大収縮率C1(%)が、銅粉(B)の最大収縮率C2(%)よりも大きく、かつ混合銅粉の最大収縮率Cm(%)が、下記の式(1)を満たすことを特徴とする銅粉末などにより提供する。C1−(C1−C2)×0.5≦Cm≦C1+1 ・・・(1)【選択図】図1Provided is a copper powder capable of improving the density of a sintered body by adding the copper powder having a low density to a specific ratio. A copper powder (A) which starts a heat shrinkage behavior at a heating temperature of 300 ° C. or less by measuring a heat shrinkage behavior from room temperature to 1000 ° C. using a TMA (thermomechanical analysis) apparatus, which is 300 ° C. When the mixed copper powder is prepared by adding to the copper powder (B) that does not start the heat shrinkage behavior at the following heating temperature, the maximum shrinkage C1 (%) of the copper powder (A) is the copper powder (B). The maximum shrinkage C2 (%) is greater, and the maximum shrinkage Cm (%) of the mixed copper powder is provided by a copper powder characterized by satisfying the following formula (1). C1- (C1-C2) × 0.5 ≦ Cm ≦ C1 + 1 (1) [Selection] FIG.

Description

本発明は、銅粉末に関し、より詳しくは、焼結体密度が低い銅粉に、特定の割合で添加することにより、焼結体密度を向上することができる銅粉末に関する。   The present invention relates to a copper powder, and more particularly to a copper powder that can improve the sintered body density by adding the copper powder at a specific ratio to a copper powder having a low sintered body density.

積層セラミックスコンデンサ(以後、MLCCという)やチップ抵抗器などの電子部品には、外部電極を付与したり、それを基盤に接合させたり、絶縁基板上に導電回路を形成するために導電ペーストが用いられている。導電ペーストの導電材料としては、銀、ニッケル、銅などの金属粉末が使用されている。銅粉末は、廉価であり抵抗値も低く、銀のようにマイグレーションが発生しにくいという長所があるため、銅ペーストが多用されている。   Electronic components such as multilayer ceramic capacitors (hereinafter referred to as MLCC) and chip resistors are provided with external electrodes, bonded to the substrate, and conductive paste is used to form conductive circuits on an insulating substrate. It has been. As the conductive material of the conductive paste, metal powder such as silver, nickel, copper, etc. is used. Since copper powder is inexpensive, has a low resistance value, and has the advantages that migration is unlikely to occur like silver, copper paste is frequently used.

例えば、MLCCの外部電極として、金属粉末をフィラーとした導電性ペーストを使用する場合、高温で焼成した誘電体であるセラミックスに、外部電極として金属粉末を焼き付けている。形成したセラミックス素体を導電ペーストにディップ後熱処理を行うことで、加熱中にビヒクル分が蒸発または分解除去されるとともに、金属粉末が焼結して導電膜が形成され電極となる。   For example, when a conductive paste using a metal powder as a filler is used as an MLCC external electrode, the metal powder is baked as an external electrode on a ceramic that is a dielectric fired at a high temperature. By dipping the formed ceramic body into a conductive paste and performing a heat treatment, the vehicle component is evaporated or decomposed and removed during heating, and the metal powder is sintered to form a conductive film to be an electrode.

これらの銅ペーストに使用される銅粉としては、電解法やアトマイズ法により得られたものが一般的である。これらの方法で合成される銅粉末は、結晶性が高いため、電極や導電回路を形成するために焼成を行った際に、焼結が十分に進まず、部分的に不連続な導電膜が形成され、良好な導電性が得られないなどの問題が生じる。こうした状況では、導電膜内で発生したジュール熱のため、電子部品の信頼性が損なわれたり、発生した熱により酸化が促進され、更に導電膜の導電性が損なわれる場合がある。   As the copper powder used in these copper pastes, those obtained by an electrolytic method or an atomizing method are common. Since the copper powder synthesized by these methods has high crystallinity, when firing to form electrodes and conductive circuits, sintering does not proceed sufficiently and a partially discontinuous conductive film is formed. There arises a problem that it is formed and good conductivity cannot be obtained. In such a situation, due to Joule heat generated in the conductive film, the reliability of the electronic component may be impaired, or the generated heat may promote oxidation and further deteriorate the conductivity of the conductive film.

銅ペーストによる導電膜の導電性を高めるために、電解法で製造され、表面に銀が被覆されたデンドライト状銅粉を用いることが考えられる(特許文献1参照)。この方法で銀を被覆することにより、導電膜の導電性が低下する原因となる酸化が抑えられるだけでなく、銅よりも導電性の高い銀が被覆されているため、導電膜の導電性を高めるには効果的である。しかしながら、銀は銅よりも高価な金属であり、コストの面で問題がある。   In order to increase the conductivity of the conductive film by copper paste, it is conceivable to use a dendrite-like copper powder produced by an electrolytic method and having a surface coated with silver (see Patent Document 1). By covering silver with this method, not only the oxidation that causes the conductivity of the conductive film to decrease is suppressed, but also silver having a higher conductivity than copper is coated. It is effective to increase. However, silver is a metal more expensive than copper and has a problem in terms of cost.

このほかに、特許文献2に開示されているように、銅粉表面に高級脂肪族アミンの有機酸塩による酸化防止膜を形成させる等、有機被膜により酸化を抑える方法がある。しかし、この方法では、有機被膜の劣化などにより酸化を抑制する効果が必ずしも十分に発揮できないことがあった。また、特許文献2においても、ペーストの構成成分である合成樹脂との親和性を考慮して、表面をさらに被覆する必要があり、適用が制限されることもあった。上述した導電膜の導電性を高める方法は、銅粉の酸化を防止することを目的としており、銅粉の焼結性に起因する導電膜の均一性については考慮されていなかった。   In addition, as disclosed in Patent Document 2, there is a method of suppressing oxidation with an organic coating, such as forming an antioxidant film with an organic acid salt of a higher aliphatic amine on the surface of copper powder. However, in this method, the effect of suppressing oxidation due to deterioration of the organic coating or the like cannot always be sufficiently exhibited. Also in Patent Document 2, it is necessary to further coat the surface in consideration of the affinity with the synthetic resin that is a constituent component of the paste, and the application may be limited. The above-described method for increasing the conductivity of the conductive film is intended to prevent the oxidation of the copper powder, and the uniformity of the conductive film due to the sinterability of the copper powder has not been considered.

ところで、導電ペーストの導電材料として、銀粉末が使用されており、焼成収縮が小さく且つ焼成後の抵抗値の低い導電性ペーストとするために、2種類の銀粉を用いることが提案されている(特許文献3参照)。
この特許文献3では、焼結性の劣るアトマイズ粉末を導電性粉末全体に対して特定の割合で含むことで、配線および層間接続導体を形成するに際して、焼結前後で大きさや形状が殆ど変化しないアトマイズ粉末によって焼成収縮が抑制される。しかし、銀粉末は銅粉末と比べ高価であり、マイグレーションが発生しやすいという短所がある
By the way, silver powder is used as the conductive material of the conductive paste, and it has been proposed to use two types of silver powder in order to obtain a conductive paste that has low firing shrinkage and low resistance after firing ( (See Patent Document 3).
In this patent document 3, when the atomized powder having inferior sinterability is included at a specific ratio with respect to the entire conductive powder, the size and shape hardly change before and after sintering when forming the wiring and the interlayer connection conductor. Firing shrinkage is suppressed by the atomized powder. However, silver powder is more expensive than copper powder and has the disadvantage that migration is likely to occur.

このような状況下、銀粉末よりも安価で、マイグレーションが発生しにくく、電極や導電回路を形成するために焼成を行った際に、焼結が十分に進み、連続な導電膜が形成され、良好な導電性が得られる導電ペーストに適した銅粉末が必要とされている。   Under such circumstances, it is cheaper than silver powder, migration is less likely to occur, and when firing is performed to form electrodes and conductive circuits, sintering proceeds sufficiently, and a continuous conductive film is formed, There is a need for a copper powder suitable for a conductive paste that provides good electrical conductivity.

特開2012−153967号公報JP 2012-153967 A 特公平1−40070号公報Japanese Patent Publication No. 1-40070 特開2007−18884号公報Japanese Patent Laid-Open No. 2007-18884

本発明の目的は、従来技術の問題点に鑑み、焼結時の銅粉の焼結性に着目して、電解法やアトマイズ法で製造される銅粉の焼結性を改善し、導電膜の特性を向上させることができる銅粉末を提供することにある。   In view of the problems of the prior art, the object of the present invention is to improve the sinterability of copper powder produced by an electrolytic method or an atomizing method, focusing on the sinterability of the copper powder during sintering. It is in providing the copper powder which can improve the characteristic of this.

本発明者らは、上記従来技術の問題点を解決するために、鋭意検討を重ねた結果、電解法やアトマイズ法で製造された銅粉に対して、300℃までの加熱温度にて熱収縮の挙動を示す銅粉末を混合し、混合銅粉を調製して、これら粉末の最大収縮率(%)の関係を調べたところ、銅粉末の最大収縮率が、銅粉の最大収縮率よりも大きく、混合銅粉の最大収縮率が特定の数式を満たすときに、焼結性が改善され、導電膜の特性が向上することを見出して、本発明を完成するに至った。   As a result of intensive investigations to solve the problems of the prior art, the present inventors have conducted heat shrinkage at a heating temperature of up to 300 ° C. with respect to copper powder produced by an electrolytic method or an atomizing method. The copper powder showing the above behavior was mixed to prepare mixed copper powder, and when the relationship between the maximum shrinkage (%) of these powders was examined, the maximum shrinkage of the copper powder was higher than the maximum shrinkage of the copper powder. It has been found that when the maximum shrinkage ratio of the mixed copper powder satisfies a specific formula, the sinterability is improved and the properties of the conductive film are improved, and the present invention has been completed.

すなわち、本発明の第1の発明によれば、TMA(熱機械分析)装置を用いた室温から1000℃までの熱収縮挙動測定により、300℃以下の加熱温度で熱収縮挙動を開始する平均粒径が0.025μm〜5μmの銅粉末(A)であって、
銅粉末(A)は、平均粒径が0.5μm〜10μm、かつ300℃以下の加熱温度では熱収縮挙動を開始しない銅粉(B)に添加して、銅粉末(A)の含有量が5質量%〜80質量%の混合銅粉を調製するのに用いられ、銅粉末(A)の最大収縮率C(%)が、銅粉(B)の最大収縮率C(%)よりも大きく、かつ混合銅粉の最大収縮率Cm(%)が、下記の式(1)を満たすことを特徴とする銅粉末が提供される。
−(C−C)×0.5≦Cm≦C+1 ・・・(1)
That is, according to the first invention of the present invention, the average grain size that starts the heat shrinkage behavior at a heating temperature of 300 ° C. or less by measuring the heat shrinkage behavior from room temperature to 1000 ° C. using a TMA (thermomechanical analysis) apparatus. A copper powder (A) having a diameter of 0.025 μm to 5 μm ,
The copper powder (A) is added to a copper powder having an average particle diameter not initiate thermal shrinkage at the heating temperature of 0.5 ~ 10 m, and 300 ° C. or less (B), the content of the copper powder (A) Is used to prepare a mixed copper powder of 5% by mass to 80% by mass , and the maximum shrinkage C 1 (%) of the copper powder (A) is the maximum shrinkage C 2 (%) of the copper powder (B). And the maximum shrinkage Cm (%) of the mixed copper powder satisfies the following formula (1).
C 1 − (C 1 −C 2 ) × 0.5 ≦ Cm ≦ C 1 +1 (1)

また、本発明の第2の発明によれば、第1の発明において、前記混合銅粉の最大収縮率Cmは、式(2)を満たすことを特徴とする銅粉末が提供される。
−(C−C)×0.3≦Cm≦C+1 ・・・(2)
According to a second aspect of the present invention, there is provided the copper powder according to the first aspect, wherein the maximum shrinkage Cm of the mixed copper powder satisfies the formula (2).
C 1 − (C 1 −C 2 ) × 0.3 ≦ Cm ≦ C 1 +1 (2)

また、本発明の第の発明によれば、第1又は2の発明において、前記混合銅粉中の銅粉末(A)の含有量は、5質量%〜50質量%であることを特徴とする銅粉末が提供される。 According to the third invention of the present invention, in the first or second invention, the content of the copper powder (A) in the mixed copper powder is 5% by mass to 50 % by mass. A copper powder is provided.

また、本発明の第の発明によれば、第1〜のいずれかの発明において、前記銅粉末(A)の平均粒径は、前記銅粉(B)の平均粒径の0.05倍〜0.5倍であることを特徴とする銅粉末が提供される。 According to the fourth invention of the present invention, in any one of the first to third inventions, the average particle diameter of the copper powder (A) is 0.05 of the average particle diameter of the copper powder (B). Copper powder characterized in that it is double to 0.5 times is provided.

また、本発明の第1〜4のいずれかの発明の銅粉末(A)と、銅粉(B)を含むことを特徴とする混合銅粉が提供される。
さらに、本発明の第の発明によれば、第1〜のいずれかの発明の銅粉末を含む混合銅粉に、溶剤と樹脂を配合してなる銅ペーストが提供される。
Moreover, the mixed copper powder characterized by including the copper powder (A) of any one of 1st-4th invention of this invention, and copper powder (B) is provided.
Furthermore, according to the 5th invention of this invention, the copper paste formed by mix | blending a solvent and resin with the mixed copper powder containing the copper powder of the invention in any one of 1-4 is provided.

本発明の銅粉末は、電解法やアトマイズ法で製造される一般的な銅粉に添加、混合すると、得られる混合銅粉の焼結性が改善される。この混合銅粉を用いて銅ペーストを調製すると、導電膜を形成したとき導電性が向上するので、電子部品の外部電極や導電回路の製造に有用である。   When the copper powder of the present invention is added to and mixed with a general copper powder produced by an electrolytic method or an atomizing method, the sinterability of the obtained mixed copper powder is improved. When a copper paste is prepared using this mixed copper powder, the conductivity is improved when a conductive film is formed, which is useful for manufacturing external electrodes and conductive circuits of electronic components.

銅粉、銅粉末、混合銅粉の熱収縮挙動の測定結果を示すグラフである。It is a graph which shows the measurement result of the heat shrink behavior of copper powder, copper powder, and mixed copper powder.

以下、本発明の銅粉末の具体的な実施形態について、詳細に説明する。ただし、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。   Hereinafter, specific embodiments of the copper powder of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.

なお、本発明では混同を避けるために、本発明の添加剤として用いられるものを「銅粉末(A)」、焼結性を改善する対象となる電解法やアトマイズ法で製造されたものを「銅粉(B)」ということがあり、両者を混合させたものを「混合銅粉」、これらを総称して単に粉体ともいう。 In the present invention, in order to avoid confusion, “copper powder (A)” is used as an additive of the present invention, and those manufactured by an electrolytic method or an atomizing method that are targets for improving sinterability are “ Sometimes referred to as “copper powder (B)”, a mixture of the two is referred to as “mixed copper powder”, and these are collectively referred to simply as powder.

1.銅粉末(A)
本発明の銅粉末(A)は、銅ペーストの導電材料として一般的に用いられる電解法やアトマイズ法で製造された銅粉(B)の焼結性を改善する目的で、添加剤として用いられるものである。焼結性は、温度に対する熱収縮挙動を評価した時に、最大収縮率で表され、最大収縮率が高いほど、銅ペーストに用いて導電膜とした時に、緻密で均一な膜となり、導電性が高くなる。
1. Copper powder (A)
The copper powder (A) of the present invention is used as an additive for the purpose of improving the sinterability of the copper powder (B) produced by an electrolytic method or an atomizing method generally used as a conductive material for copper paste. Is. Sinterability is expressed by the maximum shrinkage when evaluating thermal shrinkage behavior with respect to temperature. The higher the maximum shrinkage, the denser and more uniform the film becomes when it is used as a conductive film for copper paste. Get higher.

本発明の銅粉末は、ペーストの導電材料として一般的な電解法やアトマイズ法で製造された銅粉よりも結晶性が低く、焼結性が高いことから、湿式法で製造された銅粉末が好ましく、後述するポリオール中で銅化合物を還元させて得られた銅粉末であることがより好ましい。
このポリオール中で得られた銅粉末は、特開昭59−173206号公報や特許3399970号公報にて耐酸化性が高いことが知られており、これを銅粉の添加剤として用いた場合に焼結性を高める効果に繋がっていると推測される。
Since the copper powder of the present invention has lower crystallinity and higher sinterability than copper powder produced by a general electrolytic method or atomizing method as a conductive material for paste, the copper powder produced by a wet method is A copper powder obtained by reducing a copper compound in a polyol described later is more preferable.
The copper powder obtained in this polyol is known to have high oxidation resistance in Japanese Patent Application Laid-Open Nos. 59-173206 and 3399970, and when this is used as an additive for copper powder. It is presumed that this leads to the effect of increasing the sinterability.

また、本発明の銅粉末の平均粒径は、0.025μm〜5μmが好ましい。この平均粒径は、銅ペーストの用途や用いられる領域の微細さ等を考慮して決められるものである。なお、平均粒径(D50)は、例えば、レーザー回折散乱式粒度分布測定法により測定することができる。   The average particle size of the copper powder of the present invention is preferably 0.025 μm to 5 μm. This average particle size is determined in consideration of the use of the copper paste, the fineness of the region used, and the like. The average particle diameter (D50) can be measured by, for example, a laser diffraction / scattering particle size distribution measurement method.

銅粉末の熱収縮挙動は、TMA(熱機械分析)装置を用いて測定される。TMAでは、銅粉末を成形したペレットを、加熱しながらその寸法変化を測定することで測定される。   The thermal shrinkage behavior of the copper powder is measured using a TMA (thermomechanical analysis) apparatus. In TMA, it measures by measuring the dimensional change, heating the pellet which shape | molded the copper powder.

ペレットは、例えば円柱状に成形される金型に粉末を充填し、所定の荷重を加えて圧縮した圧粉体として成形される。荷重は特に限定されないが、成形されるペレットの大きさに応じて0.5kN〜10kNとするのが好ましい。より好ましいのは、1kN〜5kNである。
TMA装置を用いた粉末の熱収縮挙動の測定は、不活性雰囲気か還元雰囲気で行うのが好ましく、より好ましいのは還元雰囲気である。不活性雰囲気とするためには、不活性ガスを連続的にTMA装置内に流し込むのが好ましく、不活性ガスには、窒素ガスやアルゴンガスを用いることができる。還元雰囲気とするためには、不活性ガスに水素を5容量%以下混合させたガスを用いて、連続的にTMA装置内に流し込む。TMA装置内に流し込むガスの流量は特に限定されないが、10ml/分〜500ml/分とするのが好ましい。より好ましくは、50ml/分〜300ml/分とする。TMA装置を用いた粉末の熱収縮挙動の測定では、室温から融点を超えない温度範囲とし、銅粉末の場合には室温から1,000℃とすることができる。加熱速度は特に限定されることはないが、5℃/分〜20℃/分とするのが好ましい。
For example, the pellet is formed as a green compact obtained by filling a powder in a metal mold formed into a cylindrical shape and compressing the powder by applying a predetermined load. Although a load is not specifically limited, It is preferable to set it as 0.5kN-10kN according to the magnitude | size of the pellet shape | molded. More preferred is 1 kN to 5 kN.
The measurement of the heat shrinkage behavior of the powder using the TMA apparatus is preferably performed in an inert atmosphere or a reducing atmosphere, and more preferably in a reducing atmosphere. In order to obtain an inert atmosphere, it is preferable to continuously flow an inert gas into the TMA apparatus. Nitrogen gas or argon gas can be used as the inert gas. In order to obtain a reducing atmosphere, a gas in which 5% by volume or less of hydrogen is mixed with an inert gas is used to continuously flow into the TMA apparatus. The flow rate of the gas flowing into the TMA apparatus is not particularly limited, but is preferably 10 ml / min to 500 ml / min. More preferably, it is 50 ml / min to 300 ml / min. In the measurement of the heat shrinkage behavior of the powder using a TMA apparatus, the temperature range is from room temperature not exceeding the melting point, and in the case of copper powder, the temperature can be from room temperature to 1,000 ° C. The heating rate is not particularly limited, but is preferably 5 ° C / min to 20 ° C / min.

このTMA装置を用いて測定された本発明の銅粉末の熱収縮挙動の結果を図1に示す。このグラフにおいて、本発明の銅粉末は、250〜280℃、すなわち300℃以下の加熱温度で熱収縮挙動を開始している。   The result of the heat shrinkage behavior of the copper powder of the present invention measured using this TMA apparatus is shown in FIG. In this graph, the copper powder of the present invention starts a heat shrinkage behavior at a heating temperature of 250 to 280 ° C., that is, 300 ° C. or less.

2.銅粉(B)
本発明において、銅粉(B)は、電解法やアトマイズ法で製造された金属粉であり、前記銅粉末(A)とともに混合銅粉の材料として使用される。
2. Copper powder (B)
In the present invention, the copper powder (B) is a metal powder produced by an electrolysis method or an atomization method, and is used as a mixed copper powder material together with the copper powder (A) .

銅粉の熱収縮挙動は、前記のTMA(熱機械分析)装置を用いて同様に測定される。図1のグラフにおいて、銅粉は、300℃以下の加熱温度では熱収縮挙動を示さず、むしろ熱膨張する挙動を示すことが多く、熱収縮は400℃以上になってから開始している。   The heat shrinkage behavior of the copper powder is similarly measured using the TMA (thermomechanical analysis) apparatus. In the graph of FIG. 1, the copper powder does not show a heat shrinkage behavior at a heating temperature of 300 ° C. or less, but rather shows a behavior of thermal expansion, and the heat shrinkage starts after reaching 400 ° C. or more.

電解法やアトマイズ法で製造された銅粉の平均粒径は、0.5μm〜10μmである。この平均粒径は、銅ペーストの用途や用いられる領域の微細さ等を考慮して決められるものである。銅粉の平均粒径は、1μm〜8μmが好ましく、1μm〜5μmがより好ましい。銅粉は、比較的粒径が揃った粒度分布の狭いものである必要はなく、粒度分布の広い銅粉であっても、粒度分布が複数のピークをもった銅粉でもかまわないが、その平均粒径をもって本発明の銅粒子の平均粒径を上記数値範囲内とする。   The average particle diameter of the copper powder produced by the electrolytic method or the atomizing method is 0.5 μm to 10 μm. This average particle size is determined in consideration of the use of the copper paste, the fineness of the region used, and the like. The average particle diameter of the copper powder is preferably 1 μm to 8 μm, more preferably 1 μm to 5 μm. The copper powder does not need to have a relatively narrow particle size distribution with a uniform particle size, and may be a copper powder with a wide particle size distribution or a copper powder with a plurality of peaks in the particle size distribution. The average particle diameter of the copper particles of the present invention is within the above numerical range.

3.混合銅粉
前記のとおり、この銅粉(B)に対して本発明の銅粉末(A)を添加剤として用いて混合銅粉とする。銅粉末(A)の平均粒径は、前記のとおり0.025μm〜5μmが好ましく、0.1μm〜5μmがより好ましい。本発明の銅粉末(A)の平均粒径を銅粉に対する比率で示すと、銅粉(B)の平均粒径の0.05倍〜0.5倍が好ましく、より好ましくは0.06倍〜0.4倍、さらに好ましくは0.07倍〜0.3倍である。
3. Mixed copper powder As above-mentioned, it is set as mixed copper powder using the copper powder (A) of this invention as an additive with respect to this copper powder (B) . As described above, the average particle size of the copper powder (A) is preferably 0.025 μm to 5 μm, and more preferably 0.1 μm to 5 μm. When the average particle diameter of the copper powder (A) of the present invention is expressed as a ratio to the copper powder, it is preferably 0.05 to 0.5 times, more preferably 0.06 times the average particle diameter of the copper powder (B). It is -0.4 time, More preferably, it is 0.07 time -0.3 time.

本発明の銅粉末は、3次元的に配置された銅粉の隙間に入り込んで焼結性を改善するので、銅粉の平均粒径よりも小さくする。銅粉末の平均粒径が銅粉の平均粒径の0.05倍未満では、特に添加量が少ない場合に、銅粉の隙間に入り込んだ銅粉末の存在比率が少なすぎて、焼結性の改善が見られない場合がある。本発明の銅粉末の平均粒径が銅粉の平均粒径の0.5倍を超えると、銅粉の隙間に入り込むことはなくなり、焼結性の改善が見られない場合がある。   Since the copper powder of the present invention enters the gap between the three-dimensionally arranged copper powder and improves the sinterability, the copper powder is made smaller than the average particle diameter of the copper powder. If the average particle size of the copper powder is less than 0.05 times the average particle size of the copper powder, the presence ratio of the copper powder that has entered the gaps in the copper powder is too small, particularly when the addition amount is small, There may be no improvement. If the average particle size of the copper powder of the present invention exceeds 0.5 times the average particle size of the copper powder, the copper powder will not enter the gaps and the sinterability may not be improved.

混合銅粉の熱収縮挙動も上述したTMA装置を用いた方法で測定される。本発明の銅粉末の最大収縮率(%)をC、例えば電解法やアトマイズ法で製造された銅粉の最大収縮率(%)をCとして、両者を混合させた混合銅粉の最大収縮率(%)をCmとした時に、本発明の銅粉末を添加剤として用いれば、混合銅粉の熱収縮挙動は本発明の銅粉末の熱収縮挙動に近づき、焼結性が改善されて、混合銅粉の最大収縮率Cmは式(1)を満たすようになる。
また、混合銅粉の最大収縮率Cmが式(2)を満たすようになるとより好ましい。これらの数式は、銅粉に本発明の銅粉末を添加、混合させることで、混合銅粉の最大収縮率Cmが、銅粉の最大収縮率Cよりも本発明の最大収縮率Cに近づき、焼結性が改善されることを意味する。ここで、最大収縮率とは、室温から1,000℃まで加熱させた時に、室温の状態を基準として収縮率(%)が最大となった値を示している。
The heat shrinkage behavior of the mixed copper powder is also measured by the method using the TMA apparatus described above. The maximum shrinkage (%) of the copper powder of the present invention is C 1 , for example, the maximum shrinkage (%) of the copper powder produced by the electrolytic method or the atomizing method is C 2 , and the maximum of the mixed copper powder obtained by mixing the two. When the shrinkage rate (%) is Cm and the copper powder of the present invention is used as an additive, the heat shrinkage behavior of the mixed copper powder approaches that of the copper powder of the present invention, and the sinterability is improved. The maximum shrinkage Cm of the mixed copper powder satisfies the formula (1).
Further, it is more preferable that the maximum shrinkage Cm of the mixed copper powder satisfies the formula (2). These formulas, adding copper powder of the present invention to copper powder, by mixing, the maximum shrinkage Cm mixing copper powder, than the maximum shrinkage rate C 2 of copper powder to the maximum shrinkage C 1 of the present invention This means that the sinterability is improved. Here, the maximum shrinkage rate indicates a value at which the shrinkage rate (%) is maximized based on the room temperature condition when heated from room temperature to 1,000 ° C.

−(C−C)×0.5≦Cm≦C+1 ・・・(1)
−(C−C)×0.3≦Cm≦C+1 ・・・(2)
C 1 − (C 1 −C 2 ) × 0.5 ≦ Cm ≦ C 1 +1 (1)
C 1 − (C 1 −C 2 ) × 0.3 ≦ Cm ≦ C 1 +1 (2)

本発明の銅粉末の最大収縮率Cは、銅粉の最大収縮率Cよりも高い値を示す。これは、銅粉が製造コストを抑えるために、上述した結晶性の高い電解法やアトマイズで製造されており、また、本発明の銅粉末を添加、混合させることで焼結性を高めることを目的としているためであり、本発明の銅粉末の最大収縮率Cは、銅粉の最大収縮率Cよりも高くなる。 Maximum shrinkage rate C 1 of the copper powder of the present invention show a value higher than the maximum shrinkage rate C 2 of copper powder. This is because the copper powder is manufactured by the electrolytic method and atomization with high crystallinity described above in order to suppress the manufacturing cost, and the sinterability is enhanced by adding and mixing the copper powder of the present invention. It is because the aims, the maximum shrinkage rate C 1 of the copper powder of the present invention is higher than the maximum shrinkage rate C 2 of copper powder.

上記式(1)及び式(2)の上限は、基本的には銅粉末の最大収縮率Cとなるが、測定誤差などの影響で混合銅粉の最大収縮率CmがC以上となる。本発明では、このような測定誤差を考慮して、C+1を上限とした。 The upper limit of the above formula (1) and (2) is the maximum shrinkage ratio C 1 of the copper powder is basically the maximum shrinkage Cm mixed copper powder is C 1 or the effect of such measurement error . In the present invention, in consideration of such a measurement error, C 1 +1 is set as the upper limit.

さらに本発明の銅粉末は、熱収縮挙動において、300℃以下にて収縮する挙動を示す。一方、電解法やアトマイズで製造される一般的な銅粉は、熱収縮挙動において、300℃では熱収縮を開始せず、むしろ膨張する挙動を示すことが多く、通常400℃以上の加熱温度で熱収縮を開始する。これらの熱収縮挙動についても、詳しくは後述する製造方法にて説明する。   Furthermore, the copper powder of the present invention exhibits a behavior of shrinking at 300 ° C. or less in the heat shrinking behavior. On the other hand, a general copper powder produced by an electrolysis method or an atomization does not start thermal contraction at 300 ° C., but rather expands in heat contraction behavior, and is usually at a heating temperature of 400 ° C. or more. Initiate heat shrinkage. These heat shrinkage behaviors will also be described in detail in the manufacturing method described later.

混合銅粉における本発明の銅粉末の比率は、全体の質量を100%として5質量%〜80質量%、より好ましくは5質量%〜50質量、さらに好ましくは5質量%〜30質量%である。本発明の銅粉末の比率が5質量%未満では、混合銅粉の焼結性を高める効果が乏しく、混合銅粉を用いた銅ペーストにより得られた導電膜の導電性の向上は見込めない。一方、本発明の銅粉末の比率を高めて、80質量%を超えたとしても、さらなる混合銅粉の焼結性向上効果がほとんどないばかりでなく、本発明の目的である添加剤として使用する範囲を逸脱して、安価な電解法やアトマイズで製造される一般的な銅粉の比率が低くなり、コスト面で不利となる。   The ratio of the copper powder of the present invention in the mixed copper powder is 5% to 80% by mass, more preferably 5% to 50% by mass, more preferably 5% to 30% by mass, with the total mass being 100%. . When the ratio of the copper powder of the present invention is less than 5% by mass, the effect of increasing the sinterability of the mixed copper powder is poor, and the conductivity of the conductive film obtained by the copper paste using the mixed copper powder cannot be expected. On the other hand, even if the ratio of the copper powder of the present invention is increased to exceed 80% by mass, not only the effect of further improving the sinterability of the mixed copper powder is obtained, but also used as an additive which is the object of the present invention. Out of the range, the ratio of general copper powder produced by an inexpensive electrolytic method or atomization becomes low, which is disadvantageous in terms of cost.

TMA測定における初期の圧粉体密度と室温から1,000℃まで加熱させた後の焼結体密度において、銅粉のみを用いた(焼結体密度)/(圧粉体密度)の値よりも、本発明の銅粉末を全体質量100%当たり5質量%〜80質量%添加した混合銅粉の(焼結体密度)/(圧粉体密度)の値は高くなる。本発明の銅粉末をこの範囲で添加、混合させた混合銅粉は、上記説明した通り最大収縮量が本発明の銅粉末の最大収縮量に近づくために焼結体密度がより高くなるためである。この焼結体密度が向上することが、混合銅粉を銅ペーストに用いて導電膜を形成した時に、導電性を高めることとなる。本発明では、焼結体密度/圧粉体密度が1.15以上であることが好ましい。   From the value of (sintered body density) / (compact density) using only copper powder in the initial green compact density and the sintered compact density after heating from room temperature to 1,000 ° C. in TMA measurement However, the value of (sintered body density) / (green compact density) of the mixed copper powder to which the copper powder of the present invention is added at 5% by mass to 80% by mass per 100% of the total mass becomes high. In the mixed copper powder in which the copper powder of the present invention is added and mixed in this range, the sintered body density becomes higher because the maximum shrinkage amount approaches the maximum shrinkage amount of the copper powder of the present invention as described above. is there. The improvement of the sintered body density increases the conductivity when the conductive film is formed using the mixed copper powder as the copper paste. In the present invention, the sintered body density / green compact density is preferably 1.15 or more.

4.銅粉末の製造方法
以下に本発明の銅粉末を製造する方法、すなわちポリオール中で還元された銅粉末の製造方法について詳しく説明する。
4). Method for Producing Copper Powder Hereinafter, a method for producing the copper powder of the present invention, that is, a method for producing a copper powder reduced in a polyol will be described in detail.

本発明の銅粉末は、特定量の銅化合物をポリオール中に懸濁させ、160〜320℃に加熱して銅粉末を得る第1の工程と、得られた銅粉末を純水で洗浄後、アルコールを供給して脱水洗浄する第2の工程を経て製造される。このような工程で製造された銅粉末は酸素濃度が低く、耐酸化性が高く、さらに耐酸化性の経時劣化が小さい。   The copper powder of the present invention is a first step in which a specific amount of a copper compound is suspended in a polyol and heated to 160 to 320 ° C. to obtain a copper powder, and the obtained copper powder is washed with pure water, It is manufactured through a second process of supplying and dehydrating alcohol. The copper powder produced by such a process has a low oxygen concentration, a high oxidation resistance, and a small deterioration over time of the oxidation resistance.

(1)第1の工程
本発明では、まず下記の銅化合物をポリオールと混合し、160〜320℃に加熱して銅化合物を還元し銅粉末を得る。
本発明において、銅粉末の原料として銅化合物を使用する。銅化合物としては、加熱されたポリオール中で、銅化合物は還元され、最終的に銅粉末として堆積されるものであれば特に限定されない。例えば、酸化銅(酸化第一銅および酸化第二銅)、水酸化銅、炭酸銅、シュウ酸銅、硫酸銅などが挙げられる。好ましいのは酸化銅、水酸化銅である。また銅化合物は、水和物(含水物)でも構わない。
(1) 1st process In this invention, the following copper compound is first mixed with a polyol, it heats at 160-320 degreeC, a copper compound is reduce | restored, and copper powder is obtained.
In the present invention, a copper compound is used as a raw material for the copper powder. The copper compound is not particularly limited as long as it is reduced in the heated polyol and finally deposited as copper powder. Examples thereof include copper oxide (cuprous oxide and cupric oxide), copper hydroxide, copper carbonate, copper oxalate, and copper sulfate. Preferred are copper oxide and copper hydroxide. The copper compound may be a hydrate (hydrated product).

ポリオールは、銅化合物の還元機能を有する多価アルコールである。2〜6個のOH基を有するものが好ましく、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、トリメチレングリコール、ポリエチレングリコール、フェニルジグリコールなどが挙げられる。中でもトリエチレングリコールやテトラエチレングリコールが好ましい。これらは複数種を混合しても構わないし、本発明の目的を損なわなければ、水や他の溶剤を添加しても差し支えない。   A polyol is a polyhydric alcohol having a reducing function of a copper compound. Those having 2 to 6 OH groups are preferred, and examples thereof include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, trimethylene glycol, polyethylene glycol, and phenyl diglycol. Of these, triethylene glycol and tetraethylene glycol are preferable. A plurality of these may be mixed, and water and other solvents may be added as long as the object of the present invention is not impaired.

銅化合物は、ポリオールと混合し、160℃以上320℃以下に加熱し、熱せられたポリオール中で懸濁される。この範囲内の温度で撹拌することで、銅化合物の還元反応が促進され、銅粉末が形成される。好ましい加熱温度は、180℃以上310℃以下であり、より好ましくは、190℃以上300℃以下で、かつポリオールの沸点以下である。加熱温度が160℃未満の場合、還元反応が十分に進まず得られる銅粉末の酸素濃度が大幅に上昇するとともに、生産性も悪化する。一方、320℃を超えるとポリオールの分解揮発による減少が著しくなり、十分に還元できなくなる恐れがある。そのため、加熱温度を選択したポリオールの沸点より高く設定した場合は、上限の加熱温度を沸点よりも低くすることが望ましい。   The copper compound is mixed with the polyol, heated to 160 ° C. or higher and 320 ° C. or lower, and suspended in the heated polyol. By stirring at a temperature within this range, the reduction reaction of the copper compound is promoted and copper powder is formed. A preferable heating temperature is 180 ° C. or higher and 310 ° C. or lower, more preferably 190 ° C. or higher and 300 ° C. or lower, and lower than the boiling point of the polyol. When the heating temperature is lower than 160 ° C., the reduction reaction does not proceed sufficiently, and the oxygen concentration of the obtained copper powder is significantly increased and the productivity is also deteriorated. On the other hand, when it exceeds 320 ° C., the decrease due to the decomposition and volatilization of the polyol becomes remarkable, and there is a possibility that it cannot be sufficiently reduced. Therefore, when the heating temperature is set higher than the boiling point of the selected polyol, it is desirable to set the upper limit heating temperature lower than the boiling point.

(2)第2の工程
第1の工程で得られた銅粉末は、次の第2の工程で、純水洗浄後、アルコールを供給して脱水洗浄する。従来、銅粉末の洗浄は、純水のみを用いて行われていた。しかし、純水洗浄のみの場合、乾燥後の銅粉末の酸素濃度が高く、また、耐酸化性が低い銅粉が得られてしまうことがあった。
(2) Second Step The copper powder obtained in the first step is dehydrated and washed by supplying alcohol after pure water washing in the next second step. Conventionally, cleaning of copper powder has been performed using pure water only. However, in the case of pure water cleaning alone, a copper powder having a high oxygen concentration and a low oxidation resistance may be obtained after drying.

そこで、本発明では、還元工程で得られた銅粉末の表面状態や共雑物を詳細に観察した結果、銅化合物またはその含水物とポリオールとを160℃以上に加熱して生起する反応で、銅が析出し、銅粉末の表面や凝集物の内部に溶媒であるポリオールなどが、共雑物として懸濁していることが明らかとなった。そのため、反応後に銅粉末を分離し、始めは純水洗浄により溶媒や不純物を洗い流し、その後、一価アルコールを追加して銅粉末の表面に付着した水分を素早く蒸発させるようにする。なお、洗浄の順を変えて、一価アルコールで洗浄後に純水洗浄を行う場合は、水分を素早く蒸発させた後に再び水分で洗浄するので水分の蒸発が遅く酸素濃度が上がり、所期の効果が得られない。   Therefore, in the present invention, as a result of observing in detail the surface state and contaminants of the copper powder obtained in the reduction step, a reaction that occurs by heating the copper compound or its hydrated product and polyol to 160 ° C. or higher, It was clarified that copper precipitated and the polyol as a solvent was suspended as a contaminant on the surface of the copper powder or inside the aggregate. For this reason, the copper powder is separated after the reaction, and at first, the solvent and impurities are washed away by pure water washing, and thereafter, monohydric alcohol is added to quickly evaporate water adhering to the surface of the copper powder. In addition, when pure water cleaning is performed after cleaning with monohydric alcohol by changing the order of cleaning, since water is quickly evaporated and then washed again with water, the evaporation of water is slow and the oxygen concentration increases, and the expected effect Cannot be obtained.

純水は、導電率が1.0μS/cm以下のものを洗浄に用いるのが好ましく、また導電率が0.1μS/cm未満である超純水を洗浄に用いるのがより好ましい。洗浄温度は特に限定されないが、5〜50℃が好ましく、10〜40℃がより好ましい。純水による洗浄温度が50℃を超えると銅粉末が酸化してしまう恐れがあり、5℃未満では洗浄速度が遅く生産性が低下してしまう恐れがある。   Pure water having a conductivity of 1.0 μS / cm or less is preferably used for cleaning, and ultrapure water having a conductivity of less than 0.1 μS / cm is more preferably used for cleaning. The washing temperature is not particularly limited, but is preferably 5 to 50 ° C, more preferably 10 to 40 ° C. If the cleaning temperature with pure water exceeds 50 ° C., the copper powder may be oxidized, and if it is less than 5 ° C., the cleaning speed may be slow and the productivity may decrease.

一価アルコールとしては、1個のOH基を有する含酸素有機化合物であり、炭素数や分岐、二重結合の有無などによって制限されるものではない。すなわち、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノールなどが挙げられる。ただ、炭素数が1〜5の低級アルコールは、炭素数が6以上の高級アルコールと比べ揮発しやすいので、炭素数が1〜5の低級アルコールを用いることにより、銅粉末の乾燥速度が上昇し、乾燥後の酸素濃度の増加および耐酸化性の悪化を抑えることができ好ましい。本発明の目的を損なわない範囲内で、その他の溶剤を使用したり、混合しても構わない。   The monohydric alcohol is an oxygen-containing organic compound having one OH group, and is not limited by the number of carbon atoms, branching, the presence or absence of a double bond, and the like. That is, methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol and the like can be mentioned. However, since the lower alcohol having 1 to 5 carbon atoms is more volatile than the higher alcohol having 6 or more carbon atoms, the drying rate of the copper powder increases by using the lower alcohol having 1 to 5 carbon atoms. The increase in oxygen concentration after drying and the deterioration of oxidation resistance can be suppressed, which is preferable. Other solvents may be used or mixed within the range not impairing the object of the present invention.

洗浄方法、用いる装置、手段や条件は、銅粉末からポリオールやその他の不純物が洗い落とせれば特に限定されない。一般的には、還元後、作製した銅粉末を沈降させ上澄みを回収した後、残留物に純水を供給し撹拌洗浄する。その後、再び銅粉末を沈降させ上澄みを回収し、残留物に一価アルコールを供給し撹拌脱水洗浄する。または、純水で撹拌洗浄後、銅粉末を沈降させ上澄みを回収してから遠心分離機にて脱水し、その後、遠心分離機で脱水しながら一価アルコールを添加することで銅粉末の水分を早く乾燥させることができる。   The cleaning method, the apparatus used, means and conditions are not particularly limited as long as polyol and other impurities can be washed off from the copper powder. In general, after the reduction, the prepared copper powder is settled and the supernatant is collected, and then pure water is supplied to the residue and washed with stirring. Thereafter, the copper powder is again settled and the supernatant is recovered, and a monohydric alcohol is supplied to the residue, followed by stirring and dewatering washing. Alternatively, after stirring and washing with pure water, the copper powder is allowed to settle and the supernatant is recovered, and then dehydrated with a centrifuge. It can be dried quickly.

以上説明したように、ポリオール中で銅化合物を還元して得られた銅粉末を純水洗浄してからアルコールを供給して脱水洗浄した銅粉末は、酸素濃度が低く、耐酸化性が高く、さらに耐酸化性の経時劣化が低い特性を有している。このような特性を有している銅粉末は、還元雰囲気下で室温から加熱させた熱収縮挙動において、300℃に加熱させた時に収縮する挙動を示す。   As explained above, the copper powder obtained by reducing the copper compound in the polyol and washed with pure water and then dehydrated and washed with alcohol is low in oxygen concentration and high in oxidation resistance. Furthermore, the oxidation resistance has a characteristic of low deterioration with time. The copper powder having such characteristics exhibits a behavior of shrinking when heated to 300 ° C. in a heat shrinking behavior of being heated from room temperature in a reducing atmosphere.

このような挙動を示す理由については不明な点が多いが、銅粉末表面の酸化被膜の状態によるものと推測され、これが耐酸化性等の特性に現れていると考えられる。またこの銅粉末が有する特性と、湿式法で製造されたことによる焼結性の高さから、焼結性の低い銅粉に添加、混合させることで、焼結性を改善させることができる。
一方、ポリオール中で銅化合物を還元して得られた銅粉末でも、例えば純水で洗浄したのみの場合には、耐酸化性が低下することもあり、還元雰囲気下で室温から加熱させた熱収縮挙動において、300℃に加熱させた時に十分に収縮する挙動を示さないこともある。このような銅粉末では、焼結性の低い銅粉に添加、混合させても、焼結性が改善できないこともある。
There are many unclear points about the reason for such behavior, but it is presumed to be due to the state of the oxide film on the surface of the copper powder, which is considered to appear in characteristics such as oxidation resistance. Moreover, sinterability can be improved by adding and mixing to copper powder with low sinterability from the characteristic which this copper powder has, and the high sinterability by having been manufactured by the wet method.
On the other hand, even if the copper powder obtained by reducing the copper compound in the polyol is only washed with pure water, for example, the oxidation resistance may decrease, and the heat heated from room temperature in a reducing atmosphere. In the shrinkage behavior, there is a case where it does not show the behavior of sufficiently shrinking when heated to 300 ° C. In such a copper powder, the sinterability may not be improved even when added to and mixed with copper powder having a low sinterability.

また、上記では、ポリオール中で銅化合物を還元し、純水洗浄後にアルコールを供給して脱水洗浄した銅粉末にて説明したが、もちろん本発明の銅粉末の製造方法は、これに限定されることはなく、上記説明した通り、焼結性が高く、300℃で収縮し、銅粉に添加、混合させた時に焼結性を改善する特性を有していれば、いずれの製造方法でもかまわない。   In the above description, the copper compound is reduced in the polyol and the dehydrated and washed copper powder is supplied with alcohol after the pure water washing, but of course the method for producing the copper powder of the present invention is limited to this. As described above, any manufacturing method may be used as long as it has high sinterability, shrinks at 300 ° C., and has the property of improving sinterability when added to and mixed with copper powder. Absent.

5.銅ペースト
本発明の銅粉末は、銅粉と組み合わせ、溶剤や樹脂等からなるビヒクルと混合、混練させて銅ペーストとすることができる。銅粉末以外に銅ペーストに混合される成分としては、用途に応じて、エポキシ化合物やセルロース、アクリル化合物などの有機樹脂、分散剤、硬化剤や硬化促進剤などの添加剤、有機溶剤、Ag、Au、AlやNiなどの金属粉、シリカ、アルミナなど金属酸化物粉などを適宜選択することができる。
5. Copper paste The copper powder of the present invention can be combined with copper powder, mixed with a vehicle made of a solvent, resin, or the like and kneaded to obtain a copper paste. In addition to the copper powder, the components mixed into the copper paste include organic resins such as epoxy compounds, cellulose and acrylic compounds, additives such as dispersants, curing agents and curing accelerators, organic solvents, Ag, Metal powder such as Au, Al and Ni, metal oxide powder such as silica and alumina, and the like can be appropriately selected.

例えば、MLCCの外部電極として、金属粉末をフィラーとした導電性ペーストを使用する場合、高温で焼成した誘電体であるセラミックスに、外部電極として金属粉末を焼き付けている。形成したセラミックス素体を導電ペーストにディップ後に熱処理を行うことで、加熱中にビヒクル分が蒸発または分解除去されるとともに、金属粉末が焼結して導電膜が形成され電極となる。
これらの銅ペーストには銅粉として、電解法やアトマイズ法により得られたものが一般に使用されている。ところが、これらの方法で合成される銅粉は、結晶性が高いため、電極や導電回路を形成するために焼成を行った際に、焼結が十分に進まず、部分的に不連続な導電膜が形成され、良好な導電性が得られないなどの問題が生じていた。こうした状況では、導電膜内で発生したジュール熱のため、電子部品の信頼性が損なわれたり、発生した熱により酸化が促進され、更に導電膜の導電性が損なわれたりする場合がある。
For example, when a conductive paste using a metal powder as a filler is used as an MLCC external electrode, the metal powder is baked as an external electrode on a ceramic that is a dielectric fired at a high temperature. The formed ceramic body is dipped into a conductive paste and then subjected to heat treatment, whereby the vehicle component is evaporated or decomposed and removed during heating, and the metal powder is sintered to form a conductive film to be an electrode.
In these copper pastes, those obtained by an electrolytic method or an atomizing method are generally used as copper powder. However, since the copper powder synthesized by these methods has high crystallinity, when firing to form electrodes and conductive circuits, sintering does not proceed sufficiently, and partially discontinuous conductive A film was formed, and problems such as inability to obtain good conductivity occurred. In such a situation, due to Joule heat generated in the conductive film, the reliability of the electronic component may be impaired, or the generated heat may promote oxidation, and further the conductivity of the conductive film may be impaired.

これに対して、本発明の銅粉末は、焼結体密度が低い銅粉に、特定の割合で添加することにより、焼結体密度を向上できるために、これを配合した銅ペーストは、MLCCやチップ抵抗器の外部電極や電磁波シールド、スルーホールやビア埋め用のプリント基板、太陽電池やタッチパネルに代表される配線材料など電子素子の製造に好ましく使用できる。   On the other hand, since the copper powder of the present invention can improve the sintered body density by adding to the copper powder having a low sintered body density at a specific ratio, the copper paste containing this is an MLCC. In addition, it can be preferably used for manufacturing electronic devices such as external electrodes of chip resistors, electromagnetic wave shields, printed circuit boards for filling through holes and vias, and wiring materials represented by solar cells and touch panels.

以下に、実施例に基づき本発明を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to these examples.

なお、銅粉として、アトマイズ粉(日本アトマイズ加工株式会社製、平均粒径:2.5μm、300℃における収縮率:−0.5%(膨張)、かつ1,000℃までの最大収縮率:11.3%のものを使用し、比較用の銅粉末として、湿式銅粉(三井金属工業株式会社製、品名:1100Y、平均粒径:1.0μm)を用いた。   As copper powder, atomized powder (manufactured by Nippon Atomizing Co., Ltd., average particle size: 2.5 μm, shrinkage at 300 ° C .: −0.5% (expansion) and maximum shrinkage up to 1,000 ° C .: 11.3% was used, and wet copper powder (manufactured by Mitsui Kinzoku Co., Ltd., product name: 1100Y, average particle size: 1.0 μm) was used as a copper powder for comparison.

また、粉末の平均粒径や熱収縮挙動などの物性は、下記の要領で測定・評価した。
(1)平均粒径
銅粉末、銅粉の平均粒径は、レーザー回折・散乱法粒度分布測定器(日機装株式会社製、HRA9320 X−100)を用いて測定した。
Further, physical properties such as the average particle diameter and heat shrinkage behavior of the powder were measured and evaluated in the following manner.
(1) Average particle diameter The average particle diameter of copper powder and copper powder was measured using a laser diffraction / scattering particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., HRA9320 X-100).

(2)熱収縮挙動(焼結性)
測定対象の粉体を0.3g秤量して直径5mmの金型内に充填させ、プレス機で1.96kNの荷重をかけてペレットに成形した。このペレットを、熱機械分析(TMA)装置(BRUKER axs社製、TMA4000SA)を用いて、加熱時の熱収縮挙動を測定した。測定条件は、ペレットにかける荷重を98mNとし、窒素に2容量%の水素を添加した混合ガスを200ml/分で連続的に流した還元雰囲気中で、室温から1,000℃まで10℃/分の加熱速度とした。
得られた熱収縮挙動から、室温のペレットに対して、300℃における収縮率と、1,000℃まで加熱中の最大収縮率を得た。
以上の測定結果から、混合銅粉の特性として、最大収縮率Cmが式(1)及び式(2)を満たす場合を焼結性が優(◎)、式(1)のみを満たす場合を良(○)とし、式(1)を満たさない場合を不可(×)とした。
−(C−C)×0.5≦Cm≦C+1 ・・・(1)
−(C−C)×0.3≦Cm≦C+1 ・・・(2)
(2) Thermal shrinkage behavior (sinterability)
0.3 g of the powder to be measured was weighed and filled in a metal mold having a diameter of 5 mm, and formed into pellets by applying a load of 1.96 kN with a press. The thermal contraction behavior during heating of the pellet was measured using a thermomechanical analysis (TMA) apparatus (manufactured by BRUKER axes, TMA4000SA). The measurement conditions were as follows: the load applied to the pellet was 98 mN, and a mixed gas in which 2% by volume of hydrogen was added to nitrogen was continuously flowed at 200 ml / min. Heating rate.
From the obtained heat shrinkage behavior, a shrinkage rate at 300 ° C. and a maximum shrinkage rate during heating to 1,000 ° C. were obtained for pellets at room temperature.
From the above measurement results, as the characteristics of the mixed copper powder, when the maximum shrinkage Cm satisfies the formulas (1) and (2), the sinterability is excellent ((), and the case where only the formula (1) is satisfied. The case where (◯) was satisfied and the expression (1) was not satisfied was determined to be impossible (×).
C 1 − (C 1 −C 2 ) × 0.5 ≦ Cm ≦ C 1 +1 (1)
C 1 − (C 1 −C 2 ) × 0.3 ≦ Cm ≦ C 1 +1 (2)

(3)圧粉体密度および焼結体密度
上記作製したTMA測定前のペレットの寸法及び質量から求めた密度を圧粉体密度とし、1,000℃まで加熱させたTMA測定後のペレットの寸法及び質量から求めた密度を焼結体密度とした。
得られた結果について、混合銅粉の焼結体密度/圧粉体密度の値が、銅粉の焼結体密度/圧粉体密度の値よりも高い場合を良(○)とした。
(3) Green compact density and sintered compact density The density obtained from the dimensions and mass of the pellets before the above-mentioned TMA measurement was used as the green compact density, and the pellet dimensions after the TMA measurement were heated to 1,000 ° C. The density determined from the mass was used as the sintered body density.
About the obtained result, the case where the value of the sintered compact density / compact density of the mixed copper powder was higher than the value of the sintered compact density / compact density of the copper powder was judged as good (◯).

(4)コストメリット
銅粉と銅粉末のコストから混合銅粉のコストを試算し、銅粉のコストより著しく上昇する場合を不可(×)、それ以外を良(○)とした。
(5)総合評価
混合銅粉の特性、およびコストメリットの両項目において、一項目でも不可(×)の項目があれば総合評価は不可(×)とし、すべての項目で優(◎)または良(○)の場合のみ総合評価を良(○)とした。
(4) Cost merit The cost of the mixed copper powder was estimated from the costs of the copper powder and the copper powder.
(5) Comprehensive evaluation In both the characteristics of mixed copper powder and cost merit, if there is an item that is not possible (×), comprehensive evaluation is impossible (×), and all items are excellent (◎) or good. Only in the case of (○), the overall evaluation was good (○).

(実施例1〜5)
<銅粉末の製造>
含水率が5質量%の酸化第二銅(含水率5質量%、住友金属鉱山株式会社製)と、ポリオール(溶媒)のトリエチレングリコール(関東化学株式会社製、沸点:287℃)を質量比で23:77の割合で混合した原料を溶媒中に供給し、260℃まで加熱して、この温度を維持しながら1時間撹拌した。
その後、還元後の銅粉末を沈降させ上澄みを回収した後、残留品に洗浄剤として純水:(導電率1.0μS/cm)を供給し、25℃で撹拌洗浄(純水洗浄)し、再び銅粉末を沈降させ上澄みを回収後に、遠心分離機(2300rpm)で遠心脱水しながら、エタノール(関東化学株式会社製)を純水とエタノールの質量比で20:80となるまで供給し、脱水洗浄(アルコール洗浄)して銅粉末を得た。得られた銅粉末の平均粒径は0.38μmであった。また300℃における収縮率を測定すると2.1%で、1,000℃までの最大収縮率を測定すると14.7%を示した。
(Examples 1-5)
<Manufacture of copper powder>
Mass ratio of cupric oxide having a water content of 5% by mass (water content 5% by mass, manufactured by Sumitomo Metal Mining Co., Ltd.) and polyol (solvent) triethylene glycol (manufactured by Kanto Chemical Co., Ltd., boiling point: 287 ° C.) The raw materials mixed at a ratio of 23:77 were fed into a solvent, heated to 260 ° C., and stirred for 1 hour while maintaining this temperature.
Then, after the reduced copper powder is settled and the supernatant is recovered, pure water: (conductivity: 1.0 μS / cm) is supplied to the residual product as a cleaning agent, and stirred and washed at 25 ° C. (pure water cleaning). After the copper powder was settled again and the supernatant was collected, ethanol (manufactured by Kanto Chemical Co., Inc.) was supplied until the mass ratio of pure water to ethanol was 20:80 while performing centrifugal dehydration with a centrifuge (2300 rpm). Washing (alcohol washing) gave a copper powder. The average particle size of the obtained copper powder was 0.38 μm. When the shrinkage at 300 ° C. was measured, it was 2.1%, and when the maximum shrinkage up to 1,000 ° C. was measured, it was 14.7%.

<混合銅粉の特性>
上記得られた銅粉末とアトマイズ粉(銅粉末の平均粒径はアトマイズ粉の0.15倍)を質量比でそれぞれ、5:95(実施例1)、25:75(実施例2)、50:50(実施例3)、75:25(実施例4)、80:20(実施例5)の割合で添加、混合させ、混合銅粉とした。得られた混合銅粉の最大収縮量、圧粉体密度、焼結体密度を測定した。
<Characteristics of mixed copper powder>
The obtained copper powder and atomized powder (the average particle diameter of the copper powder is 0.15 times that of the atomized powder) in mass ratios of 5:95 (Example 1), 25:75 (Example 2), and 50, respectively. : 50 (Example 3), 75:25 (Example 4), and 80:20 (Example 5) were added and mixed to obtain a mixed copper powder. The maximum shrinkage, green compact density, and sintered compact density of the obtained mixed copper powder were measured.

(比較例1、2、従来例、参考例)
実施例において、上記得られた銅粉末とアトマイズ粉の混合割合を変えて、質量比でそれぞれ、3:97(比較例1)、85:15(比較例2)の割合で添加、混合させ、混合銅粉とした。なお、銅粉末とアトマイズ粉の混合割合が0:100、すなわちアトマイズ粉の場合が(従来例)であり、100:0すなわち銅粉末のみの場合が(参考例)である。得られた混合銅粉の最大収縮量、圧粉体密度、焼結体密度を測定した。
(Comparative Examples 1 and 2, Conventional Example, Reference Example)
In Examples, the mixing ratio of the obtained copper powder and atomized powder was changed, and the mass ratio was added and mixed at a ratio of 3:97 (Comparative Example 1) and 85:15 (Comparative Example 2), respectively. Mixed copper powder was used. In addition, the mixing ratio of copper powder and atomized powder is 0: 100, that is, the case of atomized powder (conventional example), and the case of 100: 0, that is, only copper powder is (reference example). The maximum shrinkage, green compact density, and sintered compact density of the obtained mixed copper powder were measured.

「評価」
実施例1〜5および比較例2の混合銅粉の最大収縮量Cmは、図1のように13.1%〜14.3%の収縮を示し、式(1)または式(2)を満たすもので、焼結性は良かった。また実施例1〜5および比較例2の混合銅粉の焼結体密度/圧粉体密度の値は、従来例の別の銅粉のみの焼結体密度/圧粉体密度の値よりも高いことも示し、焼結体密度の判定では良(○)と判断した。
しかしながら、銅粉末の添加、混合比率が混合銅粉全体の85質量%と高い比較例2は混合銅粉の特性は良好ながら、銅粉であるアトマイズ粉よりも製造コストが高い銅粉末の比率が高く、コストメリットがないため、総合評価としては不可(×)となった。
また銅粉末の添加、混合比率が混合銅粉全体の3質量%と低い比較例1は、混合銅粉の最大収縮量Cmが12.3%の収縮と式(1)を満足しない値を示し、総合評価で不可(×)であった。
これらに対して、実施例1〜5については、混合銅粉の特性は良好で、コストメリットもあり、総合評価としては良(○)であった。以上の結果を表1にまとめて示す。
"Evaluation"
The maximum shrinkage Cm of the mixed copper powders of Examples 1 to 5 and Comparative Example 2 shows a shrinkage of 13.1% to 14.3% as shown in FIG. 1 and satisfies the formula (1) or the formula (2). The sinterability was good. Moreover, the value of the sintered body density / green compact density of the mixed copper powders of Examples 1 to 5 and Comparative Example 2 is greater than the value of the sintered body density / green compact density of only another copper powder of the conventional example. It was also shown that the sintered body density was good (◯).
However, in Comparative Example 2 in which the addition of copper powder and the mixing ratio are as high as 85% by mass of the total mixed copper powder, the ratio of the copper powder having a higher manufacturing cost than the atomized powder that is copper powder is good although the characteristics of the mixed copper powder are good. Since it is expensive and there is no cost merit, the overall evaluation is not possible (x).
Further, Comparative Example 1 in which the addition of copper powder and the mixing ratio are as low as 3% by mass of the total mixed copper powder shows a value that does not satisfy the formula (1) with the maximum shrinkage Cm of the mixed copper powder being 12.3%. In general evaluation, it was impossible (×).
On the other hand, about Examples 1-5, the characteristic of mixed copper powder was favorable, there also existed a cost merit, and was good ((circle)) as comprehensive evaluation. The above results are summarized in Table 1.

Figure 0006004034
Figure 0006004034

(実施例6)
<銅粉末の製造>
上記銅粉末の製造条件で、含水率が5質量%の酸化第二銅とトリエチレングリコールの質量比を5:95の割合とした以外は実施例1と同じ条件として銅粉末を得た。
得られた銅粉末の平均粒径は0.21μmであった。また300℃における収縮率を測定すると2.8%の収縮を示し、1,000℃までの最大収縮率を測定すると14.9%の収縮を示した。
<混合銅粉の特性>
上記得られた銅粉末とアトマイズ粉(銅粉末の平均粒径はアトマイズ粉の0.084倍)を質量比で25:75の割合で添加、混合させ、混合銅粉とした。
得られた混合銅粉の最大収縮量Cmを測定した結果、14.3%の収縮を示し、式(1)及び(2)を満足した。またコストメリットもあることから総合評価も良(○)であった。これらの結果を表2に示す。
(Example 6)
<Manufacture of copper powder>
A copper powder was obtained under the same conditions as in Example 1 except that the mass ratio of cupric oxide having a water content of 5 mass% and triethylene glycol was changed to a ratio of 5:95.
The average particle diameter of the obtained copper powder was 0.21 μm. When the shrinkage at 300 ° C. was measured, the shrinkage was 2.8%, and when the maximum shrinkage up to 1,000 ° C. was measured, the shrinkage was 14.9%.
<Characteristics of mixed copper powder>
The obtained copper powder and atomized powder (the average particle diameter of the copper powder was 0.084 times that of the atomized powder) were added and mixed at a mass ratio of 25:75 to obtain mixed copper powder.
As a result of measuring the maximum shrinkage Cm of the obtained mixed copper powder, it showed a shrinkage of 14.3% and satisfied the expressions (1) and (2). In addition, the overall evaluation was good (◯) due to cost merit. These results are shown in Table 2.

(実施例7)
<銅粉末の製造>
上記銅粉末の製造条件で、加熱する温度を225℃とした以外は実施例1と同じ条件として銅粉末を得た。得られた銅粉末の平均粒径は0.97μmであった。また300℃における収縮率を測定すると2.9%の収縮を示し、1,000℃までの最大収縮率を測定すると14.6%の収縮を示した。
<混合銅粉の特性>
上記得られた銅粉末とアトマイズ粉(銅粉末の平均粒径はアトマイズ粉の0.39倍)を質量比で25:75の割合で添加、混合させ、混合銅粉とした。
得られた混合銅粉の最大収縮量Cmを測定した結果、13.5%の収縮を示し、式(1)を満足した。またコストメリットもあることから総合評価も良(○)であった。これらの結果を表2に示す。
(Example 7)
<Manufacture of copper powder>
The copper powder was obtained under the same conditions as in Example 1 except that the heating temperature was set to 225 ° C. under the above copper powder production conditions. The average particle diameter of the obtained copper powder was 0.97 μm. When the shrinkage at 300 ° C. was measured, the shrinkage was 2.9%, and when the maximum shrinkage up to 1,000 ° C. was measured, the shrinkage was 14.6%.
<Characteristics of mixed copper powder>
The obtained copper powder and atomized powder (the average particle diameter of the copper powder was 0.39 times that of the atomized powder) were added and mixed at a mass ratio of 25:75 to obtain mixed copper powder.
As a result of measuring the maximum shrinkage Cm of the obtained mixed copper powder, the shrinkage of 13.5% was shown and the formula (1) was satisfied. In addition, the overall evaluation was good (◯) due to cost merit. These results are shown in Table 2.

(比較例3)
<銅粉末の製造>
上記銅粉末の製造条件で、加熱する温度を200℃とした以外は実施例1と同じ条件として銅粉末を得た。
得られた銅粉末の平均粒径は1.63μmであった。また300℃における収縮率を測定すると2.9%の収縮を示し、1,000℃までの最大収縮率を測定すると14.2%の収縮を示した。
<混合銅粉の特性>
上記により得られた銅粉末と別の銅粉としてアトマイズ粉(銅粉末の平均粒径はアトマイズ粉の0.65倍)を質量比で25:75の割合で添加、混合させ、混合銅粉とした。
得られた混合銅粉の最大収縮量Cmを測定した結果、12.5%の収縮を示し、式(1)式を満足しなかった。従って総合評価は不可(×)と判断された。これらの結果を表2に示す。
(Comparative Example 3)
<Manufacture of copper powder>
A copper powder was obtained under the same conditions as in Example 1 except that the heating temperature was 200 ° C. under the above-mentioned copper powder production conditions.
The average particle size of the obtained copper powder was 1.63 μm. When the shrinkage at 300 ° C. was measured, the shrinkage was 2.9%, and when the maximum shrinkage up to 1,000 ° C. was measured, the shrinkage was 14.2%.
<Characteristics of mixed copper powder>
Atomized powder (the average particle diameter of the copper powder is 0.65 times that of the atomized powder) is added and mixed at a mass ratio of 25:75 as another copper powder and the copper powder obtained as described above. did.
As a result of measuring the maximum shrinkage Cm of the obtained mixed copper powder, it showed 12.5% shrinkage and did not satisfy the formula (1). Therefore, it was judged that comprehensive evaluation was impossible (x). These results are shown in Table 2.

(比較例4)
<銅粉末の製造>
上記銅粉末の製造条件で、遠心脱水中に供給する洗浄液にエタノールを混合させず、純水のみとして脱水洗浄した以外は実施例1と同じ条件として銅粉末を得た。得られた銅粉末の平均粒径は0.40μmであった。また300℃における収縮率を測定すると0.9%の収縮を示し、1,000℃までの最大収縮率を測定すると14.1%の収縮を示した。
<混合銅粉の特性>
上記得られた銅粉末と銅粉としてアトマイズ粉(銅粉末の平均粒径はアトマイズ粉の0.16倍)を質量比で25:75の割合で添加、混合して、混合銅粉とした。
得られた混合銅粉の最大収縮量Cmを測定した結果、12.5%の収縮を示し、式(1)を満足しなかった。従って総合評価は不可(×)と判断された。これらの結果を表2に示す。
(Comparative Example 4)
<Manufacture of copper powder>
A copper powder was obtained under the same conditions as in Example 1 except that ethanol was not mixed with the cleaning liquid supplied during centrifugal dehydration under the above-described conditions for producing the copper powder, and dehydrated and washed as pure water only. The average particle diameter of the obtained copper powder was 0.40 μm. When the shrinkage at 300 ° C. was measured, the shrinkage was 0.9%, and when the maximum shrinkage up to 1,000 ° C. was measured, the shrinkage was 14.1%.
<Characteristics of mixed copper powder>
Atomized powder (the average particle diameter of the copper powder is 0.16 times that of the atomized powder) was added and mixed at a mass ratio of 25:75 as the obtained copper powder and copper powder to obtain a mixed copper powder.
As a result of measuring the maximum shrinkage Cm of the obtained mixed copper powder, it showed 12.5% shrinkage and did not satisfy the formula (1). Therefore, it was judged that comprehensive evaluation was impossible (x). These results are shown in Table 2.

(比較例5)
<銅粉末>
三井金属工業株式会社製の湿式銅粉(品名:1100Y、平均粒径:1.0μm)を用いた。300℃における収縮率を測定すると−0.3%(膨張)を示し、1,000℃までの最大収縮率を測定すると13.8%の収縮を示した。
<混合銅粉の特性>
上記で得られた銅粉末と銅粉としてアトマイズ粉(銅粉末の平均粒径はアトマイズ粉の0.40倍)を質量比で25:75の割合で添加、混合させ、混合銅粉とした。
得られた混合銅粉の最大収縮量Cmを測定した結果、11.9%の収縮を示し、式(1)式を満足しなかった。従って総合評価は不可(×)と判断された。これらの結果を表2に示す。
(Comparative Example 5)
<Copper powder>
Wet copper powder (product name: 1100Y, average particle size: 1.0 μm) manufactured by Mitsui Kinzoku Co., Ltd. was used. Measurement of the shrinkage at 300 ° C. showed −0.3% (expansion), and measurement of the maximum shrinkage up to 1,000 ° C. showed 13.8% shrinkage.
<Characteristics of mixed copper powder>
Atomized powder (the average particle diameter of the copper powder is 0.40 times that of the atomized powder) is added and mixed in a mass ratio of 25:75 as the copper powder and copper powder obtained above to obtain a mixed copper powder.
As a result of measuring the maximum shrinkage Cm of the obtained mixed copper powder, the shrinkage was 11.9%, and the formula (1) was not satisfied. Therefore, it was judged that comprehensive evaluation was impossible (x). These results are shown in Table 2.

Figure 0006004034
Figure 0006004034

本発明の銅粉末は、銅粉に添加、混合させて用いると、銅粉の焼結性が改善され、この混合銅粉を用いて調製した銅ペーストは、導電膜を形成したとき導電性が向上する。そのため、MLCCやチップ抵抗器の外部電極や電磁波シールド、スルーホールやビア埋め用のプリント基板、太陽電池やタッチパネルに代表される配線材料など電子部品の外部電極や導電回路の製造に有効に利用できる。   When the copper powder of the present invention is added to and mixed with copper powder, the sinterability of the copper powder is improved, and the copper paste prepared using this mixed copper powder has conductivity when a conductive film is formed. improves. Therefore, it can be effectively used for the production of external electrodes and conductive circuits of electronic components such as MLCC and external electrodes of chip resistors, electromagnetic wave shields, printed circuit boards for filling through holes and vias, wiring materials typified by solar cells and touch panels. .

Claims (6)

TMA(熱機械分析)装置を用いた室温から1000℃までの熱収縮挙動測定により、300℃以下の加熱温度で熱収縮挙動を開始する平均粒径が0.025μm〜5μmの銅粉末(A)であって、
銅粉末(A)は、平均粒径が0.5μm〜10μm、かつ300℃以下の加熱温度では熱収縮挙動を開始しない銅粉(B)に添加して、銅粉末(A)の含有量が5質量%〜80質量%の混合銅粉を調製するのに用いられ、銅粉末(A)の最大収縮率C(%)が、銅粉(B)の最大収縮率C(%)よりも大きく、かつ混合銅粉の最大収縮率Cm(%)が、下記の式(1)を満たすことを特徴とする銅粉末。
−(C−C)×0.5≦Cm≦C+1 ・・・(1)
Copper powder (A) having an average particle diameter of 0.025 μm to 5 μm that starts the heat shrinkage behavior at a heating temperature of 300 ° C. or less by measuring the heat shrinkage behavior from room temperature to 1000 ° C. using a TMA (thermomechanical analysis) apparatus. Because
The copper powder (A) is added to a copper powder having an average particle diameter not initiate thermal shrinkage at the heating temperature of 0.5 ~ 10 m, and 300 ° C. or less (B), the content of the copper powder (A) Is used to prepare a mixed copper powder of 5% by mass to 80% by mass , and the maximum shrinkage C 1 (%) of the copper powder (A) is the maximum shrinkage C 2 (%) of the copper powder (B). And the maximum shrinkage Cm (%) of the mixed copper powder satisfies the following formula (1).
C 1 − (C 1 −C 2 ) × 0.5 ≦ Cm ≦ C 1 +1 (1)
前記混合銅粉の最大収縮率Cmは、式(2)を満たすことを特徴とする請求項1に記載の銅粉末。
−(C−C)×0.3≦Cm≦C+1 ・・・(2)
The copper powder according to claim 1, wherein the maximum shrinkage Cm of the mixed copper powder satisfies the formula (2).
C 1 − (C 1 −C 2 ) × 0.3 ≦ Cm ≦ C 1 +1 (2)
前記混合銅粉中の銅粉末(A)の含有量は、5質量%〜50質量%であることを特徴とする請求項1又は2に記載の銅粉末。 Content of the copper powder (A) in the said mixed copper powder is 5 mass% -50 mass%, The copper powder of Claim 1 or 2 characterized by the above-mentioned. 前記銅粉末(A)の平均粒径は、前記銅粉(B)の平均粒径の0.05倍〜0.5倍であることを特徴とする請求項1〜のいずれか1項に記載の銅粉末。 The average particle size of the copper powder (A) is in any one of claims 1 to 3, characterized in that a 0.05 times to 0.5 times the average particle size of the copper powder (B) The copper powder as described. 請求項1〜のいずれか1項に記載の銅粉末(A)と、銅粉(B)を含むことを特徴とする混合銅粉The mixed copper powder characterized by including the copper powder (A) and copper powder (B) of any one of Claims 1-4 . 請求項に記載の混合銅粉に、溶剤と樹脂を配合してなることを特徴とする銅ペースト。 A copper paste comprising the mixed copper powder according to claim 5 mixed with a solvent and a resin.
JP2015086611A 2015-04-21 2015-04-21 Copper powder Active JP6004034B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015086611A JP6004034B1 (en) 2015-04-21 2015-04-21 Copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015086611A JP6004034B1 (en) 2015-04-21 2015-04-21 Copper powder

Publications (2)

Publication Number Publication Date
JP6004034B1 true JP6004034B1 (en) 2016-10-05
JP2016204700A JP2016204700A (en) 2016-12-08

Family

ID=57048616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015086611A Active JP6004034B1 (en) 2015-04-21 2015-04-21 Copper powder

Country Status (1)

Country Link
JP (1) JP6004034B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3674683B1 (en) * 2017-08-25 2023-04-19 Fukuda Metal Foil & Powder Co., Ltd. Evaluation method of powder for laminate molding
US11448578B2 (en) 2017-08-25 2022-09-20 Fukuda Metal Foil & Powder Co., Ltd. Lamination shaping powder evaluation method and lamination shaping powder therefor
JP7288368B2 (en) 2019-08-19 2023-06-07 山陽特殊製鋼株式会社 Cu alloy powder

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116303A (en) * 1982-12-22 1984-07-05 Shoei Kagaku Kogyo Kk Manufacture of fine copper powder
US4539041A (en) * 1982-12-21 1985-09-03 Universite Paris Vii Process for the reduction of metallic compounds by polyols, and metallic powders obtained by this process
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JPH05222413A (en) * 1992-02-17 1993-08-31 Sumitomo Metal Mining Co Ltd Production of copper monodisperse particle
JP2005281781A (en) * 2004-03-30 2005-10-13 Kenji Sumiyama Method for producing copper nanoparticle
JP2007018884A (en) * 2005-07-07 2007-01-25 Noritake Co Ltd Conductive paste
JP2008038206A (en) * 2006-08-07 2008-02-21 Mitsubishi Materials Corp Platinum powder for platinum clay, and platinum clay comprising the platinum powder
WO2009051254A1 (en) * 2007-10-18 2009-04-23 Sintobrator, Ltd. Copper alloy powder and method for producing the same
US20100136358A1 (en) * 2004-10-29 2010-06-03 Nanodynamics, Inc. Polyol-based method for producing ultra-fine metal powders
JP2011089153A (en) * 2009-10-20 2011-05-06 Mitsubishi Gas Chemical Co Inc Method for producing copper fine particle
JP2011187225A (en) * 2010-03-05 2011-09-22 Murata Mfg Co Ltd Electronic component, and manufacturing method thereof
JP2013231226A (en) * 2012-05-01 2013-11-14 M Technique Co Ltd Method for producing fine particle
JP2015096637A (en) * 2013-11-15 2015-05-21 三井金属鉱業株式会社 Copper-containing fine-particle aggregate and production method thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539041A (en) * 1982-12-21 1985-09-03 Universite Paris Vii Process for the reduction of metallic compounds by polyols, and metallic powders obtained by this process
JPS59116303A (en) * 1982-12-22 1984-07-05 Shoei Kagaku Kogyo Kk Manufacture of fine copper powder
JPS6299406A (en) * 1985-10-28 1987-05-08 Mitsui Mining & Smelting Co Ltd Production of copper powder
JPH05222413A (en) * 1992-02-17 1993-08-31 Sumitomo Metal Mining Co Ltd Production of copper monodisperse particle
JP2005281781A (en) * 2004-03-30 2005-10-13 Kenji Sumiyama Method for producing copper nanoparticle
US20100136358A1 (en) * 2004-10-29 2010-06-03 Nanodynamics, Inc. Polyol-based method for producing ultra-fine metal powders
JP2007018884A (en) * 2005-07-07 2007-01-25 Noritake Co Ltd Conductive paste
JP2008038206A (en) * 2006-08-07 2008-02-21 Mitsubishi Materials Corp Platinum powder for platinum clay, and platinum clay comprising the platinum powder
WO2009051254A1 (en) * 2007-10-18 2009-04-23 Sintobrator, Ltd. Copper alloy powder and method for producing the same
JP2011089153A (en) * 2009-10-20 2011-05-06 Mitsubishi Gas Chemical Co Inc Method for producing copper fine particle
JP2011187225A (en) * 2010-03-05 2011-09-22 Murata Mfg Co Ltd Electronic component, and manufacturing method thereof
JP2013231226A (en) * 2012-05-01 2013-11-14 M Technique Co Ltd Method for producing fine particle
JP2015096637A (en) * 2013-11-15 2015-05-21 三井金属鉱業株式会社 Copper-containing fine-particle aggregate and production method thereof

Also Published As

Publication number Publication date
JP2016204700A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
Li et al. Self-reducible copper inks composed of copper–amino complexes and preset submicron copper seeds for thick conductive patterns on a flexible substrate
KR102079148B1 (en) Electroconductive paste
JP7170464B2 (en) Method for cleaning silver-coated metal powder, method for producing silver-coated metal powder, silver-coated copper powder, silver-coated copper alloy powder, method for producing conductive paste and conductive film, electronic component, and electric device
JP2015004122A (en) Metal nanoparticle paste, bonding material containing the metal nanoparticle paste, and semiconductor device using the bonding material
JP6004034B1 (en) Copper powder
KR20120022217A (en) Electroconductive paste and fabricating method the same
JP6447903B2 (en) Method for manufacturing conductive paste for multilayer ceramic electronic component, method for manufacturing multilayer ceramic electronic component using this conductive paste, and method for manufacturing multilayer ceramic capacitor by this method
KR20200062263A (en) Silver powder and its manufacturing method
TW201736605A (en) Silver alloy powder and method for producing same
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP6950833B2 (en) Conductive paste for forming external electrodes of laminated ceramic electronic components
JP2018152218A (en) Conductive paste, chip electronic component and method for producing the same
JP7007890B2 (en) Copper powder
JP6295876B2 (en) Method for producing copper powder
JP6060225B1 (en) Copper powder and method for producing the same
JP3994439B2 (en) Conductive paste for multilayer ceramic electronic component terminal electrode
US20240116104A1 (en) Conductive composition for bonding, bonding structure using same, and manufacturing method thereof
JP6197504B2 (en) Conductive paste and substrate with conductive film
JP6295870B2 (en) Method for producing copper powder
TWI755565B (en) Silver powder and method for producing same
JPWO2020137330A1 (en) Silver paste
JP6799931B2 (en) Nickel fine particle-containing composition and its manufacturing method, internal electrodes and laminated ceramic capacitors
JP2016138301A (en) Manufacturing method of dendritic copper powder, and conductive copper paste, conductive coating and conductive sheet using the same
Wu et al. Preparation of fine copper powder with chemical reduction method and its application in MLCC
JP2017025400A (en) Nickel powder for laminated ceramic capacitor and conductive paste

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 6004034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150