JP2010099572A - Catalytic base material and method of manufacturing carbon nano structure using the same - Google Patents

Catalytic base material and method of manufacturing carbon nano structure using the same Download PDF

Info

Publication number
JP2010099572A
JP2010099572A JP2008272100A JP2008272100A JP2010099572A JP 2010099572 A JP2010099572 A JP 2010099572A JP 2008272100 A JP2008272100 A JP 2008272100A JP 2008272100 A JP2008272100 A JP 2008272100A JP 2010099572 A JP2010099572 A JP 2010099572A
Authority
JP
Japan
Prior art keywords
catalyst
carbon
crystal growth
producing
growth surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008272100A
Other languages
Japanese (ja)
Inventor
Takeshi Hikata
威 日方
Tomoyuki Mizukoshi
朋之 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Sumitomo Electric Industries Ltd
Original Assignee
Osaka Prefecture
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture, Sumitomo Electric Industries Ltd filed Critical Osaka Prefecture
Priority to JP2008272100A priority Critical patent/JP2010099572A/en
Publication of JP2010099572A publication Critical patent/JP2010099572A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic base material capable of improving the deposition efficiency in the manufacture of the a carbon nano-structure and a method of manufacturing the carbon nano-structure using the base material. <P>SOLUTION: The manufacturing method of the catalytic base material is used to manufacture the carbon nano-structure by growing carbon crystals by vapor phase growth and includes: a step of forming a catalytic structure having a catalytic material penetrated from a raw material gas supply face to a crystal growth face; and a step of oxidizing the catalytic material on the crystal growth face side of the catalytic structure with water. The method of manufacturing the carbon nano-structure uses the catalytic material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、たとえばカーボンナノチューブ等のカーボンナノ構造体を効率良く生成させるために用いられる触媒基材、およびこれを用いたカーボンナノ構造体の製造方法に関する。   The present invention relates to a catalyst base used for efficiently generating a carbon nanostructure such as a carbon nanotube, and a method for producing a carbon nanostructure using the same.

従来、カーボンナノチューブ等のカーボンナノ構造体の製造において、炭素を浸透させることが可能な金属を触媒として用い、該触媒から炭素材料を成長させる方法が検討されている。   Conventionally, in the production of carbon nanostructures such as carbon nanotubes, a method has been studied in which a metal capable of permeating carbon is used as a catalyst and a carbon material is grown from the catalyst.

たとえば特許文献1には、浸炭可能な金属元素を含む触媒層上にカーボンナノチューブを形成させる方法であって、触媒層上に設けられた突起部から上方に向かってカーボンナノチューブを成長させる工程を含むカーボンナノチューブの製造方法が提案されている。   For example, Patent Document 1 is a method of forming carbon nanotubes on a catalyst layer containing a carburizable metal element, and includes a step of growing the carbon nanotubes upward from a protrusion provided on the catalyst layer. A method for producing carbon nanotubes has been proposed.

また、特許文献2および特許文献3には、触媒材料を含む触媒基材の結晶成長面から気相成長によってカーボン結晶を成長させるカーボンナノ構造体の製造方法において、触媒材料の内部を介してカーボンを結晶成長面に供給する技術が開示されている。   In Patent Document 2 and Patent Document 3, carbon nanostructures are produced through the inside of a catalyst material in a carbon nanostructure manufacturing method in which carbon crystals are grown by vapor phase growth from a crystal growth surface of a catalyst base material containing a catalyst material. A technique for supplying the crystal to the crystal growth surface is disclosed.

しかし、触媒層を炭素が透過するようにして触媒層上に炭素材料を析出させる方法においては、触媒層上への炭素材料の析出をより確実に生じさせ、炭素材料の析出効率を向上させることが求められている。
特開2006−160592号公報 特開2005−330175号公報 特開2005−350281号公報
However, in the method of depositing the carbon material on the catalyst layer so that the carbon permeates the catalyst layer, the carbon material is more reliably deposited on the catalyst layer and the deposition efficiency of the carbon material is improved. Is required.
JP 2006-160592 A JP-A-2005-330175 JP 2005-350281 A

本発明は上記の課題を解決し、気相成長によって炭素結晶からなるカーボンナノ構造体を製造する際の析出効率を向上させることが可能な触媒基材、および該触媒基材を用いたカーボンナノ構造体の製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems and can improve the deposition efficiency when producing a carbon nanostructure composed of carbon crystals by vapor phase growth, and carbon nanostructures using the catalyst base An object of the present invention is to provide a method for manufacturing a structure.

本発明は気相成長によってカーボン結晶を成長させカーボンナノ構造体を製造するために用いられる触媒基材の製造方法であって、原料ガス供給面から結晶成長面に貫通する触媒材料を有する触媒構造体を形成する工程と、前記触媒構造体の結晶成長面側の触媒材料を水を用いて酸化処理する工程とを含む、触媒基材の製造方法である。   The present invention relates to a method for producing a catalyst base material used for producing a carbon nanostructure by growing a carbon crystal by vapor phase growth, and a catalyst structure having a catalyst material penetrating from a raw material gas supply surface to a crystal growth surface A method for producing a catalyst base material, comprising: a step of forming a body; and a step of oxidizing the catalyst material on the crystal growth surface side of the catalyst structure with water.

前記触媒材料を酸化処理する水は100℃以上300℃以下の水蒸気であることが好ましい。   The water for oxidizing the catalyst material is preferably water vapor at 100 ° C. or higher and 300 ° C. or lower.

前記触媒材料を酸化処理する工程は、カーボンナノ構造体の製造工程において、前記触媒構造体の原料ガス供給面からカーボンを供給する際に前記触媒構造体の結晶成長面側から水を供給し触媒材料の酸化処理工程を開始し、前記カーボン結晶が成長を開始する前の段階で前記水の供給を停止することが好ましい。   The step of oxidizing the catalyst material comprises supplying water from the crystal growth surface side of the catalyst structure when supplying carbon from the raw material gas supply surface of the catalyst structure in the manufacturing process of the carbon nanostructure. It is preferable to stop the supply of water at the stage before starting the oxidation treatment process of the material and before the carbon crystal starts growing.

前記触媒基材が、前記結晶成長面を上面とする柱状の前記触媒材料の側面の少なくとも一部に前記カーボン結晶の成長に対して実質的に触媒作用を有しない非触媒材料が形成されてなる前記触媒構造体を複数配置した集合体として形成される工程を含むことが好ましい。   The catalyst base is formed with a non-catalytic material having substantially no catalytic action on the growth of the carbon crystal on at least a part of a side surface of the columnar catalyst material having the crystal growth surface as an upper surface. It is preferable to include a step of forming as an aggregate in which a plurality of the catalyst structures are arranged.

前記触媒材料がFeからなり、かつ、前記非触媒材料がAgおよび/またはAg含有合金からなることが好ましい。   The catalyst material is preferably made of Fe, and the non-catalyst material is preferably made of Ag and / or an Ag-containing alloy.

前記触媒基材が縮径加工により形成されることが好ましい。
前記縮径加工が、引抜加工、押出加工、ロール加工、鍛造加工の少なくともいずれかにより行なわれることが好ましい。
It is preferable that the catalyst base is formed by a diameter reduction process.
It is preferable that the diameter reduction process is performed by at least one of a drawing process, an extrusion process, a roll process, and a forging process.

本発明は、前記触媒基材の製造方法で得られた触媒基材の原料ガス供給面からカーボンを供給して前記触媒材料中のカーボンの少なくとも一部を飽和状態にする工程と、結晶成長面からカーボン結晶を成長させる工程とを含む、カーボンナノ構造体の製造方法である。   The present invention includes a step of supplying carbon from a raw material gas supply surface of the catalyst base obtained by the method for producing a catalyst base to saturate at least a part of the carbon in the catalyst material, and a crystal growth surface. A process for growing a carbon crystal from the carbon nanostructure.

本発明は、前記触媒構造体の原料ガス供給面からカーボンを供給して前記触媒材料中のカーボンの少なくとも一部を飽和状態にする工程の際に触媒構造体の結晶成長面側から水を供給し触媒材料の酸化処理工程を開始し、結晶成長面からカーボン結晶が成長を開始する前の段階で前記水の供給を停止する工程とを含む、カーボンナノ構造体の製造方法である。   In the present invention, water is supplied from the crystal growth surface side of the catalyst structure during the step of supplying carbon from the source gas supply surface of the catalyst structure to saturate at least a part of the carbon in the catalyst material. And a step of starting the oxidation treatment step of the catalyst material and stopping the supply of water at a stage before the carbon crystal starts growing from the crystal growth surface.

カーボンナノ構造体の製造方法において、カーボン結晶を成長させる前またはカーボン結晶を成長させる際に前記触媒基材の原料ガス供給面に還元性ガスを接触させ、前記触媒材料の内部を介して還元性ガスが結晶成長面に連続的に供給されることが好ましい。   In the method for producing a carbon nanostructure, a reducing gas is brought into contact with the raw material gas supply surface of the catalyst substrate before or when the carbon crystal is grown, and the reducing property is reduced through the inside of the catalyst material. It is preferable that the gas is continuously supplied to the crystal growth surface.

本発明によれば、触媒構造体の結晶成長面側の触媒材料を水を用いて酸化処理することにより、気相成長によって炭素結晶からなるカーボンナノ構造体を製造する際の析出効率を向上させることが可能な触媒基材、および該触媒基材を用いたカーボンナノ構造体の製造方法を提供することが可能となる。   According to the present invention, the catalyst material on the crystal growth surface side of the catalyst structure is oxidized with water to improve the deposition efficiency when producing carbon nanostructures made of carbon crystals by vapor phase growth. It is possible to provide a catalyst base that can be used, and a method for producing a carbon nanostructure using the catalyst base.

<触媒基材>
本発明の触媒基材の構造を図1(E)および(F)を用いて説明する。本発明の触媒基材は気相成長によって炭素結晶からなるカーボンナノ構造体を製造するために用いられ、原料ガス供給面から結晶成長面に貫通する触媒材料11を有する触媒構造体17の結晶成長面(触媒構造体17の上面または下面に該当)側の触媒材料11表面が水を用いて酸化処理されていることを特徴とする。酸化処理することで、結晶成長面に露出した一の触媒材料11表面にカーボンナノ構造体の成長起点が複数形成されるため、カーボンナノ構造体の析出効率を向上させることができる。
<Catalyst substrate>
The structure of the catalyst substrate of the present invention will be described with reference to FIGS. 1 (E) and 1 (F). The catalyst base material of the present invention is used for producing a carbon nanostructure composed of carbon crystals by vapor phase growth, and crystal growth of a catalyst structure 17 having a catalyst material 11 penetrating from the source gas supply surface to the crystal growth surface. The surface of the catalyst material 11 on the surface (corresponding to the upper surface or the lower surface of the catalyst structure 17) is oxidized using water. By performing the oxidation treatment, a plurality of carbon nanostructure growth starting points are formed on the surface of one catalyst material 11 exposed on the crystal growth surface, so that the deposition efficiency of the carbon nanostructure can be improved.

本発明に使用される触媒基材は触媒材料のみで形成されても良いが、端面が結晶成長面である柱状体として形成された触媒材料の側面の少なくとも一部に、カーボン結晶の成長に対して実質的に触媒作用を有しない非触媒材料が形成されることが好ましい。この場合、結晶成長面方向へのカーボン結晶の広がりが非触媒材料の存在によって防止され、カーボン結晶の成長方向が制御されることにより、形状のより均一なカーボンナノ構造体の製造が可能となる。   The catalyst base material used in the present invention may be formed of only the catalyst material, but at least part of the side surface of the catalyst material formed as a columnar body whose end face is a crystal growth surface, against the growth of carbon crystals. It is preferable that a non-catalytic material having substantially no catalytic action is formed. In this case, the spread of the carbon crystal in the crystal growth surface direction is prevented by the presence of the non-catalytic material, and the growth direction of the carbon crystal is controlled, so that the carbon nanostructure having a more uniform shape can be manufactured. .

触媒材料としては、Feが挙げられる。結晶成長面に露出したFeを水を用いて酸化処理することにより、該Fe表面にカーボンナノ構造体の成長起点が形成される。さらにFeは後述するように非触媒材料として好ましく使用されるAgと合金等を実質的に形成しない他、変質し難い触媒であるという点からも好適である。   An example of the catalyst material is Fe. By oxidizing the Fe exposed on the crystal growth surface using water, the growth starting point of the carbon nanostructure is formed on the Fe surface. Further, Fe is preferable in that it does not substantially form an alloy with Ag, which is preferably used as a non-catalytic material, as described later, and is a catalyst that hardly changes in quality.

非触媒材料はカーボン結晶の成長に対して実質的に触媒作用を有しないものであれば良く、具体的には、Ag、Au、Ru、Rh、Pd、Os、Ir、Ptから選択される1種以上を含む金属または合金等が好ましく挙げられる。中でもAgおよびAg含有合金は、比較的安価で加工し易く、化学的に安定であるという点で好適である。Ag含有合金としては、Ag−Pd合金、Ag−Pt合金、Ag−Au合金等が好ましく使用できる。   The non-catalytic material may be any material that does not substantially have a catalytic action on the growth of carbon crystals. Specifically, it is selected from Ag, Au, Ru, Rh, Pd, Os, Ir, and Pt. Preferred examples include metals or alloys containing at least species. Among them, Ag and an Ag-containing alloy are preferable in that they are relatively inexpensive, easy to process, and chemically stable. As the Ag-containing alloy, an Ag—Pd alloy, an Ag—Pt alloy, an Ag—Au alloy, or the like can be preferably used.

触媒材料と非触媒材料との複合体からなる触媒基材を用いる場合、触媒材料および非触媒材料は、互いの接触による合金の生成や反応などが実質的に生じず、結晶成長面の形状が損なわれる危険性が少ない組み合わせで用いられることが好ましい。このような組み合わせとしては、たとえば触媒材料がFeからなり、非触媒材料が、Agおよび/またはAg含有合金からなる組み合わせが好ましい。   When a catalyst base material composed of a composite of a catalyst material and a non-catalyst material is used, the catalyst material and the non-catalyst material are substantially free from alloy formation or reaction due to contact with each other, and the crystal growth surface has a shape. It is preferable to use in a combination with little risk of damage. As such a combination, for example, a combination in which the catalyst material is made of Fe and the non-catalyst material is made of Ag and / or an Ag-containing alloy is preferable.

非触媒材料の融点は、カーボンナノ構造体の生成温度よりも高いことが好ましい。この場合結晶成長時の非触媒材料の変形が生じ難く、カーボンナノ構造体の析出効率を向上させることができる。   The melting point of the non-catalytic material is preferably higher than the generation temperature of the carbon nanostructure. In this case, deformation of the non-catalytic material during crystal growth hardly occurs, and the deposition efficiency of the carbon nanostructure can be improved.

本発明においては、効率よくカーボンナノ構造体を生成させるため、たとえば、触媒材料と非触媒材料とからなる柱状の触媒構造体を複数配置することによって形成される柱状の触媒基材が好ましく使用できる。複数の触媒構造体からなる触媒基材を用いることで、カーボンナノ構造体の製造効率を向上させることができる。   In the present invention, in order to efficiently generate carbon nanostructures, for example, a columnar catalyst base formed by arranging a plurality of columnar catalyst structures composed of a catalyst material and a non-catalyst material can be preferably used. . By using a catalyst base composed of a plurality of catalyst structures, the production efficiency of the carbon nanostructure can be improved.

触媒材料と非触媒材料とからなる触媒構造体が複数配置された柱状の集合体として触媒基材が形成される場合には、該集合体の側面の少なくとも一部に非触媒材料がさらに形成されることが好ましい。この場合、各々の触媒構造体における非触媒材料の寄与に加え、集合体の側面に形成された非触媒材料の寄与により、生成したカーボンナノ結晶が結晶成長面の面方向に広がることによるカーボンナノ構造体の形状の不均一化がさらに抑制される。   When the catalyst base is formed as a columnar aggregate in which a plurality of catalyst structures composed of a catalyst material and a non-catalyst material are arranged, the non-catalytic material is further formed on at least a part of the side surface of the aggregate. It is preferable. In this case, in addition to the contribution of the non-catalytic material in each catalyst structure, the carbon nanocrystals generated by the contribution of the non-catalytic material formed on the side surface of the aggregate spread in the plane direction of the crystal growth surface. Unevenness of the shape of the structure is further suppressed.

触媒材料と非触媒材料とからなる触媒基材の少なくとも一部、好ましくは該触媒基材の周縁部の少なくとも一部には、該触媒基材の変形を抑制するための補強材料が形成されていても良い。この場合、触媒材料と非触媒材料との間の間隙の発生が該補強材料によって抑制され、触媒材料と非触媒材料との界面からカーボンが不純物として生成することを防止できるため、カーボンナノ構造体の純度をより向上させることができる。補強材料としては、カーボンナノ構造体の製造条件において触媒材料および非触媒材料からなる触媒基材よりも大きいヤング率を有する材料が好ましく用いられ、特に非触媒材料よりも耐熱性の高いものは好ましく用いられる。具体的には、たとえばタングステンカーバイド、セラミックス、インコネル等の耐熱高強度金属等が挙げられる。   A reinforcing material for suppressing deformation of the catalyst base material is formed on at least a part of the catalyst base material composed of the catalyst material and the non-catalyst material, preferably at least a part of the peripheral edge of the catalyst base material. May be. In this case, since the generation of a gap between the catalyst material and the non-catalyst material is suppressed by the reinforcing material, carbon can be prevented from being generated as an impurity from the interface between the catalyst material and the non-catalyst material. The purity of can be further improved. As the reinforcing material, a material having a Young's modulus larger than that of a catalyst base material made of a catalyst material and a non-catalyst material is preferably used in the production conditions of the carbon nanostructure, and a material having higher heat resistance than the non-catalyst material is particularly preferable. Used. Specifically, for example, heat-resistant and high-strength metals such as tungsten carbide, ceramics, and Inconel can be used.

本発明における縮径加工の方法としては、触媒材料、または触媒材料と非触媒材料との複合材料を塑性変形させて径を小さくすることが可能な方法が採用でき、具体的には、引抜加工、押出加工、ロール加工、鍛造加工から選択される少なくともいずれか1つが好ましく挙げられる。これらのうち2以上の加工を組み合わせて行なう場合、たとえば棒状等に形成された材料をロール加工で一定の程度まで細線化した後、引抜加工または押出加工によってさらに縮径する方法、鍛造加工によって棒状材料の半径方向に応力をかけるよう型押しして一定の程度まで細線化した後、引抜加工または押出加工によってさらに縮径する方法、等が採用できる。縮径加工を行なう際には、材料の物性低下を防止するため、急激な塑性変形を生じさせない加工条件を適宜選択することが好ましい。   As a diameter reduction method in the present invention, a method capable of plastically deforming a catalyst material or a composite material of a catalyst material and a non-catalyst material to reduce the diameter can be employed. Preferred is at least one selected from extrusion processing, roll processing, and forging processing. When two or more of these processes are performed in combination, for example, a material formed into a bar shape or the like is thinned to a certain degree by roll processing, and then further reduced in diameter by drawing or extrusion, or bar-shaped by forging. A method of reducing the diameter by drawing or extruding after embossing the material so as to apply stress in the radial direction of the material and thinning the wire to a certain degree can be employed. When performing diameter reduction processing, it is preferable to appropriately select processing conditions that do not cause rapid plastic deformation in order to prevent deterioration of physical properties of the material.

<触媒基材の製造方法>
以下に本発明の触媒基材の作製方法について図を参照しながら説明する。図1は、本発明の触媒基材の作製方法の例を示す図である。
<Method for producing catalyst substrate>
Hereinafter, a method for producing a catalyst substrate of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an example of a method for producing a catalyst substrate of the present invention.

まず、図1(A)に示すように、棒状の触媒材料11をパイプ状の非触媒材料12に充填して複合材料13を得る。   First, as shown in FIG. 1A, a rod-like catalyst material 11 is filled in a pipe-like non-catalyst material 12 to obtain a composite material 13.

次に、図1(B)に示すように複合材料13を引抜ダイス14に通して引抜加工することにより該複合材料13を塑性変形させて縮径し、さらに図1(C)に示すようにパイプ状の非触媒材料15に充填して複合材料16を得る。   Next, as shown in FIG. 1 (B), the composite material 13 is drawn through a drawing die 14 to be plastically deformed to reduce the diameter, and as shown in FIG. 1 (C). The composite material 16 is obtained by filling the pipe-shaped non-catalytic material 15.

図1(D)に示すように得られた複合材料16を再び引抜ダイス14に通すことにより塑性変形させて縮径する。上記の充填および縮径の操作を繰り返すことにより、たとえば10μm以下の直径を有する触媒材料11が複数配置された柱状の集合体が得られる。   The composite material 16 obtained as shown in FIG. 1 (D) is again plastically deformed by passing it through the drawing die 14 to reduce the diameter. By repeating the above filling and shrinking operations, a columnar aggregate in which a plurality of catalyst materials 11 having a diameter of, for example, 10 μm or less are arranged is obtained.

該集合体を所定の長さに切断し、切断面を研磨して、最終的に、図1(E)および図1(F)に示すような複数の触媒材料11からなる柱状体であって、該柱状体の端面の一方が結晶成長面、他方が原料ガス供給面となる触媒構造体17が得られる(ここで図1(E)および図1(F)の点線で囲まれた部分は同一の領域を示している)。   The aggregate is cut into a predetermined length, the cut surface is polished, and finally a columnar body made of a plurality of catalyst materials 11 as shown in FIGS. 1 (E) and 1 (F). Thus, a catalyst structure 17 is obtained in which one of the end faces of the columnar body is a crystal growth surface and the other is a source gas supply surface (here, the portion surrounded by the dotted line in FIGS. 1E and 1F) Shows the same area).

図1(E)に示す触媒構造体17の結晶成長面および原料ガス供給面に現れる触媒材料11は円形状を有している。該触媒材料11の断面形状は円形状以外の形状であっても良く、たとえば縮径加工の結果生じるいずれの形状(長方形、楕円形など)でも良い。従来の技術では、結晶成長面に現れる触媒材料の断面全体をカーボン結晶成長の成長起点として用いるため、触媒材料の結晶成長面における断面積を、所望のカーボンナノチューブの径に合わせる必要があった。そのため、触媒材料の伸線加工後における外径を、伸線加工前に比べて、たとえば1%以下にしなければならなかった。前記外径の触媒材料を得るためには伸線加工を繰り返さなければならないが、この間に触媒材料が切断されないように伸線加工を施すのは技術的に難しく、作業工程も多くなっていた。本発明によれば、後の工程において、触媒構造体の結晶成長面側の触媒材料を水を用いて酸化処理し、結晶成長面に露出した触媒材料表面上にカーボン結晶成長起点を複数形成するため、結晶成長面に現れた触媒材料の断面積を所望のカーボンナノチューブの径にまで細くすることを要しない。したがって、本発明に係る触媒基材は伸線加工の工程が減り、大量生産に適している。   The catalyst material 11 appearing on the crystal growth surface and the raw material gas supply surface of the catalyst structure 17 shown in FIG. 1 (E) has a circular shape. The cross-sectional shape of the catalyst material 11 may be a shape other than a circular shape, for example, any shape (rectangular shape, elliptical shape, etc.) generated as a result of diameter reduction processing. In the conventional technique, since the entire cross section of the catalyst material appearing on the crystal growth surface is used as the growth starting point of the carbon crystal growth, it is necessary to match the cross sectional area of the catalyst material on the crystal growth surface with the desired carbon nanotube diameter. For this reason, the outer diameter of the catalyst material after the drawing process has to be, for example, 1% or less as compared with that before the drawing process. In order to obtain the catalyst material having the outer diameter, the wire drawing process must be repeated. However, it is technically difficult to perform the wire drawing process so that the catalyst material is not cut during this time, and the number of work steps is increased. According to the present invention, in a later step, the catalyst material on the crystal growth surface side of the catalyst structure is oxidized using water to form a plurality of carbon crystal growth starting points on the catalyst material surface exposed on the crystal growth surface. For this reason, it is not necessary to reduce the cross-sectional area of the catalyst material appearing on the crystal growth surface to the desired carbon nanotube diameter. Therefore, the catalyst base according to the present invention is suitable for mass production because the number of wire drawing processes is reduced.

次に、該触媒構造体17の結晶成長面側の触媒材料を水を用いて酸化処理する。酸化処理は結晶成長面を水蒸気を含んだ大気雰囲気中で100〜300℃で熱処理することにより行う。   Next, the catalyst material on the crystal growth surface side of the catalyst structure 17 is oxidized using water. The oxidation treatment is performed by heat-treating the crystal growth surface at 100 to 300 ° C. in an air atmosphere containing water vapor.

なお、該酸化処理の前に、結晶成長面に露出している触媒材料11の酸化が進みやすくなるように、非触媒材料12をエッチング処理して触媒材料11をさらに露出させても良い。   Before the oxidation treatment, the non-catalytic material 12 may be etched to further expose the catalyst material 11 so that the oxidation of the catalyst material 11 exposed on the crystal growth surface can easily proceed.

さらに、該酸化処理は、カーボンナノ構造体の製造工程において、触媒構造体11の原料ガス供給面からカーボンを供給する際に前記触媒構造体の結晶成長面側から水を供給し酸化処理工程を開始し、前記カーボン結晶が成長を開始する前の段階で前記水の供給を停止して行うこともできる。   Further, the oxidation treatment is performed by supplying water from the crystal growth surface side of the catalyst structure when supplying carbon from the raw material gas supply surface of the catalyst structure 11 in the carbon nanostructure manufacturing process. The water supply can be stopped at a stage before the carbon crystal starts growing.

ここで、たとえば触媒構造体17の原料ガス供給面に触媒材料層を設けても良い。このような構成の触媒基材を用い、原料ガス供給面に原料ガスを接触させた場合、表面積が大きい触媒材料層の寄与によって触媒材料11内部に高濃度のカーボンが溶解し、結晶成長面にカーボンが高濃度で供給されるため、カーボンナノ構造体の生成速度を向上させることができる。   Here, for example, a catalyst material layer may be provided on the raw material gas supply surface of the catalyst structure 17. When the catalyst base material having such a structure is used and the source gas is brought into contact with the source gas supply surface, the high concentration carbon is dissolved in the catalyst material 11 due to the contribution of the catalyst material layer having a large surface area, and the crystal growth surface is formed. Since carbon is supplied at a high concentration, the generation rate of carbon nanostructures can be improved.

棒状および/またはパイプ状の触媒材料、または触媒材料と非触媒材料との複合材料を用いる場合、縮径加工された触媒材料または複合材料を所望の長さに切断し、たとえばイオンミリング、レーザービーム加工等によって切断面(端面)を研磨して、該端面のうち一方を結晶成長面、他方を原料ガス供給面とする柱状の触媒基材として形成されることが好ましい。   When a rod-like and / or pipe-like catalyst material, or a composite material of a catalyst material and a non-catalyst material is used, the reduced-diameter catalyst material or composite material is cut to a desired length, for example, ion milling, laser beam It is preferable that the cut surface (end surface) is polished by processing or the like and formed as a columnar catalyst base having one of the end surfaces as a crystal growth surface and the other as a source gas supply surface.

触媒基材が柱状体として形成される場合、触媒基材の厚み、すなわち柱状体の高さは、たとえば1〜100μm程度に設定されることが好ましい。触媒基材の厚みが1μm以上であれば触媒基材の調製が容易であり、100μm以下であれば原料ガス供給面のみに原料ガスが接触される場合にも結晶成長面に安定してカーボンが供給される。しかし、触媒基材の厚みが比較的小さい場合には、雰囲気ガスの供給条件等の製造条件によっては触媒基材の変形が生じる場合がある。   When the catalyst substrate is formed as a columnar body, the thickness of the catalyst substrate, that is, the height of the columnar body is preferably set to about 1 to 100 μm, for example. If the thickness of the catalyst substrate is 1 μm or more, the preparation of the catalyst substrate is easy, and if it is 100 μm or less, carbon can be stably formed on the crystal growth surface even when the source gas is brought into contact with only the source gas supply surface. Supplied. However, when the thickness of the catalyst base is relatively small, the catalyst base may be deformed depending on the manufacturing conditions such as the atmospheric gas supply conditions.

<カーボンナノ構造体の製造>
本発明においてカーボンナノ構造体を製造する方法について以下に説明する。図2は、カーボンナノ構造体の製造装置の例を示す図である。加熱装置である電気炉、ガス導入・排気系、成長温度制御系、真空制御系、ガス流量計等を備えた耐熱耐圧熱処理炉管21に、触媒材料22と非触媒材料23とからなる触媒基材24を挿入し、シール材25で隙間を塞いだ状態で該触媒基材24を耐熱耐圧熱処理炉管21に固定する。触媒基材24およびシール材25によって、耐熱耐圧熱処理炉管21は、結晶成長面側の空間と非結晶成長面側の空間とに分離される。原料ガス供給面側の空間には、たとえば隔壁26を設け、矢印の方向に流れるように原料ガスを供給する。結晶成長面側の空間にはキャリアガスを供給する。原料ガス供給面側の空間に供給された原料ガスの熱分解によって生じたカーボンは、触媒基材24中の触媒材料22の内部を移動して結晶成長面27に達し、結晶成長面27からカーボン結晶として析出して、複数本のカーボンナノチューブおよび/またはカーボンナノファイバーからなるカーボンナノ構造体28が成長する。
<Manufacture of carbon nanostructure>
A method for producing a carbon nanostructure in the present invention will be described below. FIG. 2 is a diagram illustrating an example of a carbon nanostructure manufacturing apparatus. A heat-resistant pressure-resistant heat treatment furnace tube 21 equipped with an electric furnace as a heating device, a gas introduction / exhaust system, a growth temperature control system, a vacuum control system, a gas flow meter, and the like is provided with a catalyst base made of a catalyst material 22 and a non-catalyst material 23. The catalyst base material 24 is fixed to the heat and pressure resistant heat treatment furnace tube 21 in a state where the material 24 is inserted and the gap is closed with the sealing material 25. The catalyst base material 24 and the sealing material 25 separate the heat and pressure resistant heat treatment furnace tube 21 into a space on the crystal growth surface side and a space on the non-crystal growth surface side. In the space on the source gas supply surface side, for example, a partition wall 26 is provided, and source gas is supplied so as to flow in the direction of the arrow. A carrier gas is supplied to the space on the crystal growth surface side. Carbon generated by thermal decomposition of the source gas supplied to the space on the source gas supply surface side moves inside the catalyst material 22 in the catalyst base 24 to reach the crystal growth surface 27, and from the crystal growth surface 27 to the carbon A carbon nanostructure 28 composed of a plurality of carbon nanotubes and / or carbon nanofibers is grown as a crystal.

<原料ガス>
本発明においてカーボンナノ構造体を成長させるための原料ガスとしては、プロパンガス、エチレンガス、アセチレンガス等の炭化水素系ガス、メチルアルコールガス、エチルアルコールガス等のアルコール系ガス、一酸化炭素等、カーボンナノ構造体の製造に対して一般的に用いられるガスを用いることができる。
<Raw gas>
As a raw material gas for growing the carbon nanostructure in the present invention, hydrocarbon gas such as propane gas, ethylene gas, acetylene gas, alcohol gas such as methyl alcohol gas, ethyl alcohol gas, carbon monoxide, etc. Gases generally used for the production of carbon nanostructures can be used.

ここで、生成したカーボンナノ構造体は水素ガス等により分解する場合があるため、結晶成長面近傍においては、生成するカーボン結晶を実質的に変質させないガスをキャリアガスとして供給することが好ましい。好ましいキャリアガスとしては、たとえばアルゴン、窒素等の不活性ガスが挙げられる。   Here, since the generated carbon nanostructure may be decomposed by hydrogen gas or the like, it is preferable to supply a gas that does not substantially alter the generated carbon crystal as a carrier gas in the vicinity of the crystal growth surface. Preferable carrier gases include inert gases such as argon and nitrogen.

触媒基材に接触させるガスの供給条件は、結晶成長面近傍と原料ガス供給面近傍とで同一とされても良いが、両者を異なる条件として触媒材料に対するカーボンの溶解とカーボン結晶の析出とが触媒基材表面の別個の部位で発生するように制御することが好ましい。たとえば、原料ガス供給面近傍に原料ガスを接触させ、結晶成長面近傍にカーボンソースを含まないキャリアガスを接触させる場合、結晶成長面に対して供給されるカーボンは、原料ガス供給面から供給され、触媒基材内部を移動して結晶成長面に達したカーボンのみであるため、結晶成長面近傍の雰囲気ガス中にカーボンや水素、酸素などを含む活性なガスが存在する場合に発生し易い不純物の生成を抑制し、より高純度のカーボンナノ構造体を生成させることができる。   The gas supply conditions for contacting the catalyst substrate may be the same in the vicinity of the crystal growth surface and in the vicinity of the raw material gas supply surface. It is preferable to control so that it occurs at a separate site on the surface of the catalyst substrate. For example, when the source gas is brought into contact with the vicinity of the source gas supply surface and the carrier gas not containing a carbon source is brought into contact with the vicinity of the crystal growth surface, the carbon supplied to the crystal growth surface is supplied from the source gas supply surface. Impurities that are likely to occur when there is active gas containing carbon, hydrogen, oxygen, etc. in the atmosphere gas near the crystal growth surface because only the carbon that has moved inside the catalyst substrate and reached the crystal growth surface Production of carbon nanostructures with higher purity can be produced.

本発明において使用されるガスとしては、たとえば1種の原料ガスのみ、または原料ガスおよびキャリアガスの2種とする組み合わせ、等が採用できるが、3種以上のガスを組み合わせて用いても良い。具体的には、結晶成長面近傍以外の部位における触媒材料に対して原料ガスを接触させるとともに、結晶成長面近傍にカーボンナノ構造体の成長を促進する第1のキャリアガスを供給し、さらに生成させたカーボンナノ構造体を移動させるための第2のキャリアガスを供給する組み合わせや、原料ガス自体および触媒基材と原料ガスとの接触部位からのカーボンの析出を抑制するガスと、原料ガスとの組み合わせ等が採用され得る。   As the gas used in the present invention, for example, only one kind of raw material gas or a combination of two kinds of raw material gas and carrier gas can be adopted, but three or more kinds of gases may be used in combination. Specifically, the source gas is brought into contact with the catalyst material in a portion other than the vicinity of the crystal growth surface, and the first carrier gas that promotes the growth of the carbon nanostructure is supplied near the crystal growth surface, and further generated. A combination for supplying the second carrier gas for moving the carbon nanostructures formed, a gas for suppressing the deposition of carbon from the contact point between the source gas itself and the catalyst base material and the source gas, and the source gas A combination of these may be employed.

特に、触媒基材と原料ガスとの接触部位における雰囲気ガスの圧力が、結晶成長面近傍の雰囲気ガスの圧力よりも高くなるように設定される場合、原料ガスの熱分解によって生じたカーボンが触媒材料内部に対してより効率良く取り込まれるため好ましい。   In particular, when the pressure of the atmospheric gas at the contact portion between the catalyst base material and the raw material gas is set to be higher than the pressure of the atmospheric gas in the vicinity of the crystal growth surface, the carbon generated by the thermal decomposition of the raw material gas is the catalyst. This is preferable because it is more efficiently taken into the material.

また、雰囲気ガスのうち1種以上が大気圧以上の圧力で触媒基材に接触するように供給されることも好ましい。原料ガスが大気圧以上の圧力で触媒基材に接触する場合、触媒材料内部により効率的にカーボンが取り込まれる。また結晶成長面近傍の雰囲気ガスの圧力と原料ガス供給側の雰囲気ガスの圧力とが同等となるように設定することにより、触媒基材の変形を抑制することができる。   Moreover, it is also preferable that at least one of the atmospheric gases is supplied so as to contact the catalyst substrate at a pressure of atmospheric pressure or higher. When the raw material gas comes into contact with the catalyst base at a pressure higher than atmospheric pressure, the carbon is efficiently taken into the catalyst material. Further, by setting the pressure of the atmospheric gas in the vicinity of the crystal growth surface to be equal to the pressure of the atmospheric gas on the raw material gas supply side, deformation of the catalyst base material can be suppressed.

また、触媒基材表面において原料ガスと接触する触媒材料の断面積が、結晶成長面に現れる触媒材料の断面積より大きくなるように設定されることも好ましい。この場合、原料ガスの熱分解により生じたカーボンがより高濃度で結晶成長面に供給されるため、カーボンナノ構造体の製造効率が良好となる。   It is also preferable that the cross-sectional area of the catalyst material that contacts the raw material gas on the surface of the catalyst base is set to be larger than the cross-sectional area of the catalyst material that appears on the crystal growth surface. In this case, carbon produced by thermal decomposition of the source gas is supplied to the crystal growth surface at a higher concentration, so that the production efficiency of the carbon nanostructure is improved.

<触媒基材の還元>
本発明においては、カーボン結晶を成長させる前またはカーボン結晶を成長させる際に、触媒材料の少なくとも炭素原料を供給する面に対して還元性ガスを接触させることが好ましい。本発明においては、触媒基材の作製工程で結晶成長面に露出している触媒材料は酸化されているが、還元性ガスたとえば水素などを触媒材料を通して拡散させて、結晶成長面の金属酸化物層を下地から還元することにより、カーボンナノ構造体の成長起点とすることができる。
<Reduction of catalyst substrate>
In the present invention, it is preferable to bring a reducing gas into contact with at least the surface of the catalyst material to which the carbon raw material is supplied before the carbon crystal is grown or when the carbon crystal is grown. In the present invention, the catalyst material exposed on the crystal growth surface in the catalyst base preparation process is oxidized, but a reducing gas such as hydrogen is diffused through the catalyst material to form a metal oxide on the crystal growth surface. By reducing the layer from the base, it can be used as a growth starting point of the carbon nanostructure.

<カーボンナノ構造体の製造条件>
本発明におけるカーボンナノ構造体の生成温度は特に限定されず、適用される触媒基材の性状や原料ガスの種類等によって適宜選択されれば良いが、たとえば500〜960℃程度に設定されることができる。但し製造条件によっては触媒材料が変形する場合がある他、触媒材料表面に不純物が付着して触媒材料の合金化や化合物化等が生じ、触媒活性が低下するという変質が起こる場合がある。触媒材料の結晶成長面が変形または変質した場合、所望の形状を有するカーボンナノ構造体を確実に成長させることが困難となるため、カーボンナノ構造体の生成温度は触媒基材を変形または変質させない温度以下に設定されることが好ましい。たとえばFeを含む触媒材料を使用する場合、カーボンナノ構造体の生成温度は、Fe(鉄)のA1変態温度(たとえば純鉄のA1変態温度である723℃)以上、特に850℃以上に設定されることが好ましい。
<Production conditions for carbon nanostructure>
The generation temperature of the carbon nanostructure in the present invention is not particularly limited and may be appropriately selected depending on the properties of the applied catalyst base, the type of raw material gas, and the like, but is set to about 500 to 960 ° C., for example. Can do. However, depending on the manufacturing conditions, the catalyst material may be deformed, and impurities may adhere to the surface of the catalyst material to cause alloying or compounding of the catalyst material, resulting in deterioration such as a decrease in catalyst activity. When the crystal growth surface of the catalyst material is deformed or altered, it becomes difficult to reliably grow a carbon nanostructure having a desired shape, and therefore, the generation temperature of the carbon nanostructure does not deform or alter the catalyst substrate. It is preferable that the temperature is set to a temperature or lower. For example, when a catalyst material containing Fe is used, the generation temperature of the carbon nanostructure is set to not less than the A1 transformation temperature of Fe (iron) (for example, 723 ° C. which is the A1 transformation temperature of pure iron), particularly 850 ° C. or more. It is preferable.

(実施例1〜5、比較例1)
(1)触媒基材の作製
本実施例においては図1に示す方法で触媒基材を作製した。非触媒材料12として外径が3mm、内径が1mmのAg(銀、純度99.99%)パイプの内側に、触媒材料11として外径が1mmのFe(鉄、純度99.998%)棒を挿入して得られた複合材料13を(図1(A))、外径が1mmになるまで引抜ダイス14によって伸線加工し、線材1を得た(図1(B))。線材1を長さ1mごとに切断して束ね、空隙が生じないようにAgのスペーサーで隙間を埋めながら、非触媒材料15として外径20mm、内径16mmのAgパイプに充填して複合材料16を形成し(図1(C))、該複合材料16を引抜ダイス14に通して直径約1.2mmになるまで伸線加工し、線材2を得た(図1(D))。水素ガスを用いた軟化熱処理を工程の途中に入れながら、線材1から線材2を得る工程を繰り返し、最終的に、Feフィラメントの断面が縦5μm、横0.2μmの長方形に設定され、触媒材料と非触媒材料とからなる複数の触媒構造体が束ねられてなる直径10mmの集合体を得た。該複合体を長さ1mmに切断し、両端の切断面(両端面)をバフ研磨で厚さが50μmになるまで研磨した。
(Examples 1-5, Comparative Example 1)
(1) Production of catalyst base material In this example, a catalyst base material was produced by the method shown in FIG. A non-catalytic material 12 having an outer diameter of 3 mm and an inner diameter of 1 mm inside an Ag (silver, purity 99.99%) pipe and a catalytic material 11 having an outer diameter of 1 mm Fe (iron, purity 99.998%) rod. The composite material 13 obtained by insertion (FIG. 1 (A)) was drawn with a drawing die 14 until the outer diameter became 1 mm to obtain the wire 1 (FIG. 1 (B)). The wire 1 is cut and bundled every 1 m in length, and the composite material 16 is filled by filling an Ag pipe having an outer diameter of 20 mm and an inner diameter of 16 mm as the non-catalytic material 15 while filling the gap with an Ag spacer so that no gap is generated. After forming (FIG. 1 (C)), the composite material 16 was drawn through a drawing die 14 until it had a diameter of about 1.2 mm to obtain a wire 2 (FIG. 1 (D)). The process of obtaining the wire 2 from the wire 1 is repeated while performing a softening heat treatment using hydrogen gas in the middle of the process. Finally, the cross section of the Fe filament is set to a rectangle having a length of 5 μm and a width of 0.2 μm. Thus, an aggregate having a diameter of 10 mm was obtained by bundling a plurality of catalyst structures made of a non-catalytic material. The composite was cut to a length of 1 mm, and the cut surfaces (both end surfaces) at both ends were polished by buffing to a thickness of 50 μm.

触媒材料であるFe部分の構造が両端面にフィラメント状で露出するように過酸化水素とアンモニアの混合水溶液を使ってAgをエッチング処理し、両面のFeフィラメントを露出させ、触媒材料11のFe部分が非触媒材料12のAg部分の中に多数配置された触媒構造体17を作製した(図1(E))。   Etching is performed using a mixed aqueous solution of hydrogen peroxide and ammonia so that the structure of the Fe portion that is the catalyst material is exposed in the form of filaments on both end faces, the Fe filaments on both sides are exposed, and the Fe portion of the catalyst material 11 Produced a large number of catalyst structures 17 arranged in the Ag portion of the non-catalytic material 12 (FIG. 1E).

次に作製した触媒構造体17を水蒸気を用いて酸化処理して触媒基材を作製した。実施例1−5は水蒸気を含んだ大気雰囲気中で熱処理を行った。一方、比較例1は作製した触媒構造体17を室温で減圧雰囲気中で乾燥することにより、触媒構造体17の表面の水分を除去した。実施例1−5の酸化処理温度を表1に示す。   Next, the produced catalyst structure 17 was oxidized using steam to produce a catalyst substrate. In Example 1-5, heat treatment was performed in an air atmosphere containing water vapor. On the other hand, the comparative example 1 removed the water | moisture content on the surface of the catalyst structure 17 by drying the produced catalyst structure 17 in the pressure-reduced atmosphere at room temperature. Table 1 shows the oxidation treatment temperature of Example 1-5.

(2)カーボンナノ構造体の製造
上記で得た触媒基材17(実施例1−5)または触媒構造体(比較例1)を用い、図2の製造装置を使用し、炭素透過法によってカーボンナノ構造体としてのカーボンナノチューブを製造した。加熱装置である電気炉、ガス導入・排気系、成長温度制御系、真空制御系、ガス流量計等を備えた耐熱耐圧熱処理炉管21を、挿入された触媒基材24または触媒構造体およびシール材25によって結晶成長面側の空間と原料ガス供給面側の空間とに分離した。触媒材料22は結晶成長面側と原料ガス供給面側の両空間に露出している。触媒基材24または触媒構造体の原料ガス供給面側に原料ガス(CH4ガス:200cc/min、H2ガス:400cc/min、Arガス:400cc/min)を供給しながら、耐熱耐圧熱処理炉管21内の温度を850℃に設定し2時間熱処理した。一方結晶成長面側にはキャリアガスとしてArガス(1000cc/min)を供給した。
(2) Production of carbon nanostructures Using the catalyst base 17 (Example 1-5) or catalyst structure (Comparative Example 1) obtained above, carbon was produced by the carbon permeation method using the production apparatus of FIG. Carbon nanotubes as nanostructures were manufactured. An electric furnace, gas introduction / exhaust system, growth temperature control system, vacuum control system, gas flow meter, etc., which is a heating device, is provided with a heat-resistant pressure-resistant heat treatment furnace tube 21 and a catalyst base 24 or a catalyst structure and a seal. The material 25 was separated into a space on the crystal growth surface side and a space on the source gas supply surface side. The catalyst material 22 is exposed in both spaces on the crystal growth surface side and the source gas supply surface side. While supplying the source gas (CH 4 gas: 200 cc / min, H 2 gas: 400 cc / min, Ar gas: 400 cc / min) to the source gas supply surface side of the catalyst base 24 or the catalyst structure, the heat and pressure resistant heat treatment furnace The temperature in the tube 21 was set to 850 ° C. and heat-treated for 2 hours. On the other hand, Ar gas (1000 cc / min) was supplied as a carrier gas to the crystal growth surface side.

(3)結果
結果を表1に示す。実施例1−5では、触媒基材17の結晶成長面に露出したFeフィラメントから長さ0.2mmのカーボンナノチューブ(以下「CNT」ともいう)の生成が確認された。さらに、実施例1−3では結晶成長面に露出したFeフィラメントの全てからCNTが生成していた。一方、比較例1ではCNTは生成しなかった。
(3) Results The results are shown in Table 1. In Example 1-5, it was confirmed that carbon nanotubes having a length of 0.2 mm (hereinafter also referred to as “CNT”) were formed from the Fe filament exposed on the crystal growth surface of the catalyst substrate 17. Furthermore, in Example 1-3, CNT was generated from all of the Fe filaments exposed on the crystal growth surface. On the other hand, in Comparative Example 1, CNT was not generated.

Figure 2010099572
Figure 2010099572

CNTの生成:1 全てのFeフィラメントからCNTが生成、2 一部のFeフィラメントからCNTが生成、3 CNTの生成なし
(実施例6および比較例2、3)
(1)触媒構造体の作製
本実施例においては図1に示す方法で触媒基材を作製した。非触媒材料12として外径が3mm、内径が1mmのAg(銀、純度99.99%)パイプの内側に、触媒材料11として外径が1mmのFe(鉄、純度99.998%)棒を挿入して得られた複合材料13を(図1(A))、外径が1mmになるまで引抜ダイス14によって伸線加工し、線材1を得た(図1(B))。線材1を長さ1mごとに切断して束ね、空隙が生じないようにAgのスペーサーで隙間を埋めながら、非触媒材料15としての外径20mm、内径16mmのAgパイプに充填して複合材料16を形成し(図1(C))、該複合材料16を引抜ダイス14に通して直径約1.2mmになるまで伸線加工し、線材2を得た(図1(D))。実施例1と同様の方法で線材1から線材2を得る工程を繰り返し、最終的に、Feフィラメントの断面が縦5μm、横0.2μmの長方形に設定され、触媒材料と非触媒材料とからなる複数の触媒構造体が束ねられてなる直径10mmの集合体を得た。該複合体を長さ1mmに切断し、両端の切断面(両端面)をバフ研磨で厚さが50μmになるまで研磨した。
Production of CNT: 1 CNT is produced from all Fe filaments, 2 CNT is produced from some Fe filaments, 3 CNT is not produced (Example 6 and Comparative Examples 2 and 3)
(1) Production of catalyst structure In this example, a catalyst substrate was produced by the method shown in FIG. A non-catalytic material 12 having an outer diameter of 3 mm and an inner diameter of 1 mm inside an Ag (silver, purity 99.99%) pipe and a catalytic material 11 having an outer diameter of 1 mm Fe (iron, purity 99.998%) rod. The composite material 13 obtained by insertion (FIG. 1 (A)) was drawn with a drawing die 14 until the outer diameter became 1 mm to obtain the wire 1 (FIG. 1 (B)). The wire 1 is cut and bundled every 1 m in length, and filled with an Ag pipe having an outer diameter of 20 mm and an inner diameter of 16 mm as the non-catalytic material 15 while filling the gap with an Ag spacer so that no gap is generated. (FIG. 1 (C)), the composite material 16 was drawn through a drawing die 14 until it had a diameter of about 1.2 mm, and the wire 2 was obtained (FIG. 1 (D)). The process of obtaining the wire 2 from the wire 1 in the same manner as in Example 1 is repeated. Finally, the Fe filament cross section is set to a rectangle of 5 μm in length and 0.2 μm in width, and consists of a catalyst material and a non-catalyst material. An aggregate having a diameter of 10 mm obtained by bundling a plurality of catalyst structures was obtained. The composite was cut to a length of 1 mm, and the cut surfaces (both end surfaces) at both ends were polished by buffing to a thickness of 50 μm.

触媒材料のFe部分の構造が両端面にフィラメント状で露出するように過酸化水素とアンモニアの混合水溶液を使ってAgをエッチング処理し、両面のFeフィラメントを露出させ、触媒材料11のFe部分が非触媒材料12のAg部分の中に多数配置された触媒構造体17を作製した(図1(E))。   Etching is performed on Ag using a mixed aqueous solution of hydrogen peroxide and ammonia so that the structure of the Fe portion of the catalyst material is exposed in the form of filaments on both end faces, and the Fe filaments on both sides are exposed. A large number of catalyst structures 17 arranged in the Ag portion of the non-catalytic material 12 were produced (FIG. 1E).

(2)カーボンナノ構造体の製造
上記で得た触媒構造体17を用い、図2の製造装置を使用し、炭素透過法によってカーボンナノ構造体としてのカーボンナノチューブを製造した。加熱装置である電気炉、ガス導入・排気系、成長温度制御系、真空制御系、ガス流量計等を備えた耐熱耐圧熱処理炉管21を、挿入された触媒構造体24およびシール材25によって結晶成長面側の空間と非結晶成長面側の空間とに分離した。触媒材料22は結晶成長面側と原料ガス供給面側の両空間に露出している。
(2) Manufacture of carbon nanostructure Using the catalyst structure 17 obtained above, a carbon nanotube as a carbon nanostructure was manufactured by a carbon permeation method using the manufacturing apparatus of FIG. A heat-resistant pressure-resistant heat treatment furnace tube 21 equipped with an electric furnace as a heating device, a gas introduction / exhaust system, a growth temperature control system, a vacuum control system, a gas flow meter, and the like is crystallized by an inserted catalyst structure 24 and a sealing material 25. It was separated into a space on the growth surface side and a space on the amorphous growth surface side. The catalyst material 22 is exposed in both spaces on the crystal growth surface side and the source gas supply surface side.

実施例6では触媒構造体24の原料ガス供給面側に原料ガス(CH4ガス:200cc/min、H2ガス:400cc/min、Arガス:400cc/min)を供給しながら、耐熱耐圧熱処理炉管21内の温度を850℃に設定し2時間熱処理した。一方結晶成長面側にはキャリアガスとして最初の1分間は加湿したArガス(1000cc/min)を供給し、その後1時間50分は乾燥したArガス(1000cc/min)を供給した。 In Example 6, while supplying the source gas (CH 4 gas: 200 cc / min, H 2 gas: 400 cc / min, Ar gas: 400 cc / min) to the source gas supply surface side of the catalyst structure 24, the heat and pressure resistant heat treatment furnace The temperature in the tube 21 was set to 850 ° C. and heat-treated for 2 hours. On the other hand, as the carrier gas, humidified Ar gas (1000 cc / min) was supplied as the carrier gas for the first minute, and then dried Ar gas (1000 cc / min) was supplied for 1 hour and 50 minutes.

比較例2では実施例6と同様の条件で原料ガスを供給し、キャリアガスとしては2時間を通じて乾燥したArガス(1000cc/min)を供給した。   In Comparative Example 2, the raw material gas was supplied under the same conditions as in Example 6, and Ar gas (1000 cc / min) dried for 2 hours was supplied as the carrier gas.

比較例3では作製した触媒構造体17の表面をあらかじめH2ガスで800℃、10分間熱処理することにより、Feフィラメントの表面の酸化膜を完全に還元して除去し、その状態を保ったまま比較例2と同様の条件で原料ガスとキャリアガスを供給した。 In Comparative Example 3, the surface of the prepared catalyst structure 17 was preliminarily heat treated with H 2 gas at 800 ° C. for 10 minutes to completely reduce and remove the oxide film on the surface of the Fe filament, while maintaining the state. The raw material gas and the carrier gas were supplied under the same conditions as in Comparative Example 2.

(3)結果
実施例6では、触媒基材17の結晶成長面に露出したFeフィラメントから長さ0.2mmのカーボンナノチューブの生成が確認された。一方、比較例2、3ではCNTは生成しなかった。
(3) Results In Example 6, it was confirmed that a carbon nanotube having a length of 0.2 mm was formed from the Fe filament exposed on the crystal growth surface of the catalyst substrate 17. On the other hand, in Comparative Examples 2 and 3, CNT was not generated.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明において使用される触媒基材の作製方法の例を示す図である。It is a figure which shows the example of the preparation methods of the catalyst base material used in this invention. カーボンナノ構造体の製造装置の例を示す図である。It is a figure which shows the example of the manufacturing apparatus of a carbon nanostructure.

符号の説明Explanation of symbols

11,22 触媒材料、23 非触媒材料、13,16 複合材料、14 引抜ダイス、17,24 触媒構造体、21 耐熱耐圧熱処理炉管、25 シール材、26 隔壁、27 結晶成長面、28 カーボンナノ構造体。   11, 22 Catalytic material, 23 Non-catalytic material, 13, 16 Composite material, 14 Drawing die, 17, 24 Catalytic structure, 21 Heat-resistant pressure-resistant heat treatment furnace tube, 25 Sealing material, 26 Bulkhead, 27 Crystal growth surface, 28 Carbon nano Structure.

Claims (10)

気相成長によってカーボン結晶を成長させカーボンナノ構造体を製造するために用いられる触媒基材の製造方法であって、
原料ガス供給面から結晶成長面に貫通する触媒材料を有する触媒構造体を形成する工程と、
前記触媒構造体の結晶成長面側の触媒材料を水を用いて酸化処理する工程とを含む、
触媒基材の製造方法。
A method for producing a catalyst substrate used for producing carbon nanostructures by growing carbon crystals by vapor phase growth,
Forming a catalyst structure having a catalyst material penetrating from the source gas supply surface to the crystal growth surface;
Oxidizing the catalyst material on the crystal growth surface side of the catalyst structure with water,
A method for producing a catalyst substrate.
前記触媒材料を酸化処理する水は100℃以上300℃以下の水蒸気である、請求項1に記載の触媒基材の製造方法。   The method for producing a catalyst base material according to claim 1, wherein water for oxidizing the catalyst material is water vapor of 100 ° C. or more and 300 ° C. or less. 前記触媒材料を酸化処理する工程は、カーボンナノ構造体の製造工程において、前記触媒構造体の原料ガス供給面からカーボンを供給する際に前記触媒構造体の結晶成長面側から水を供給し触媒材料の酸化処理工程を開始し、前記カーボン結晶が成長を開始する前の段階で前記水の供給を停止する、請求項1または2いずれか1つに記載の触媒基材の製造方法。   The step of oxidizing the catalyst material comprises supplying water from the crystal growth surface side of the catalyst structure when supplying carbon from the raw material gas supply surface of the catalyst structure in the manufacturing process of the carbon nanostructure. The method for producing a catalyst substrate according to any one of claims 1 and 2, wherein an oxidation treatment step of the material is started and the supply of the water is stopped at a stage before the carbon crystal starts growing. 前記触媒基材が、前記結晶成長面を上面とする柱状の前記触媒材料の側面の少なくとも一部に前記カーボン結晶の成長に対して実質的に触媒作用を有しない非触媒材料が形成されてなる前記触媒構造体を複数配置した集合体として形成される工程を含む、請求項1〜3いずれか1つに記載の触媒基材の製造方法。   The catalyst base is formed with a non-catalytic material having substantially no catalytic action on the growth of the carbon crystal on at least a part of a side surface of the columnar catalyst material having the crystal growth surface as an upper surface. The manufacturing method of the catalyst base material of any one of Claims 1-3 including the process formed as an aggregate | assembly which has arrange | positioned multiple said catalyst structures. 前記触媒材料がFeからなり、かつ、前記非触媒材料がAgおよび/またはAg含有合金からなる、請求項4に記載の触媒基材の製造方法。   The method for producing a catalyst base material according to claim 4, wherein the catalyst material is made of Fe, and the non-catalyst material is made of Ag and / or an Ag-containing alloy. 前記触媒基材が縮径加工により形成される、請求項1〜5いずれか1つに記載の触媒基材の製造方法。   The method for producing a catalyst substrate according to any one of claims 1 to 5, wherein the catalyst substrate is formed by a diameter reduction process. 前記縮径加工が、引抜加工、押出加工、ロール加工、鍛造加工の少なくともいずれかにより行なわれる、請求項6に記載の触媒基材の製造方法。   The method for producing a catalyst base material according to claim 6, wherein the diameter reduction processing is performed by at least one of drawing processing, extrusion processing, roll processing, and forging processing. 請求項1記載の製造方法で得られた触媒基材の原料ガス供給面からカーボンを供給して前記触媒材料中のカーボンの少なくとも一部を飽和状態にする工程と、
結晶成長面からカーボン結晶を成長させる工程とを含む、
カーボンナノ構造体の製造方法。
Supplying carbon from the raw material gas supply surface of the catalyst base obtained by the production method according to claim 1 to saturate at least a part of the carbon in the catalyst material;
A step of growing a carbon crystal from the crystal growth surface,
A method for producing a carbon nanostructure.
請求項1記載の触媒構造体の原料ガス供給面からカーボンを供給して前記触媒材料中のカーボンの少なくとも一部を飽和状態にする工程の際に触媒構造体の結晶成長面側から水を供給し請求項1記載の触媒材料の酸化処理工程を開始し、
結晶成長面からカーボン結晶が成長を開始する前の段階で前記水の供給を停止する工程とを含む、
カーボンナノ構造体の製造方法。
The water is supplied from the crystal growth surface side of the catalyst structure in the step of supplying carbon from the raw material gas supply surface of the catalyst structure according to claim 1 to saturate at least a part of the carbon in the catalyst material. And starting the oxidation treatment step of the catalyst material according to claim 1,
Stopping the supply of water at a stage before the carbon crystal starts growing from the crystal growth surface,
A method for producing a carbon nanostructure.
カーボン結晶を成長させる前またはカーボン結晶を成長させる際に前記触媒基材の原料ガス供給面に還元性ガスを接触させ、前記触媒材料の内部を介して還元性ガスが結晶成長面に連続的に供給される、請求項8または9いずれか1つに記載のカーボンナノ構造体の製造方法。   A reducing gas is brought into contact with the raw material gas supply surface of the catalyst substrate before or when the carbon crystal is grown, and the reducing gas continuously contacts the crystal growth surface through the inside of the catalyst material. The method for producing a carbon nanostructure according to claim 8, wherein the carbon nanostructure is supplied.
JP2008272100A 2008-10-22 2008-10-22 Catalytic base material and method of manufacturing carbon nano structure using the same Pending JP2010099572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272100A JP2010099572A (en) 2008-10-22 2008-10-22 Catalytic base material and method of manufacturing carbon nano structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272100A JP2010099572A (en) 2008-10-22 2008-10-22 Catalytic base material and method of manufacturing carbon nano structure using the same

Publications (1)

Publication Number Publication Date
JP2010099572A true JP2010099572A (en) 2010-05-06

Family

ID=42290693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272100A Pending JP2010099572A (en) 2008-10-22 2008-10-22 Catalytic base material and method of manufacturing carbon nano structure using the same

Country Status (1)

Country Link
JP (1) JP2010099572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121317A1 (en) 2011-03-08 2012-09-13 住友電気工業株式会社 Carbon nanostructures, capacitor, method for processing carbon nanostructures, and production process
WO2020138378A1 (en) * 2018-12-27 2020-07-02 住友電気工業株式会社 Carbon nanotube production method, carbon nanotube assembly wire production method, carbon nanotube assembly wire bundle production method, carbon nanotube production device, carbon nanotube assembly wire production device and carbon nanotube assembly wire bundle production device
JP7455805B2 (en) 2019-02-22 2024-03-26 住友電気工業株式会社 Carbon nanotube production method, carbon nanotube assembly wire production method, carbon nanotube assembly wire bundle production method, carbon nanotube production apparatus, carbon nanotube assembly wire production apparatus, and carbon nanotube assembly wire bundle production apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238586A (en) * 1988-07-27 1990-02-07 Hitachi Metals Ltd Oxidation preventing coated member and production thereof
JPH04193965A (en) * 1990-11-27 1992-07-14 Hitachi Metals Ltd Method for composite surface treatment of cast iron material
JPH0748110A (en) * 1993-06-03 1995-02-21 Nec Corp Purification of carbon-nanotube
JP3421332B1 (en) * 2002-03-29 2003-06-30 理化学研究所 Method for producing carbon nanotube
JP2005238142A (en) * 2004-02-27 2005-09-08 Sumitomo Electric Ind Ltd Catalytic structure and method for producing carbon nanotube by using the same
JP2005314161A (en) * 2004-04-28 2005-11-10 National Institute For Materials Science Method of synthesizing carbon nanotube
JP2005330175A (en) * 2004-04-23 2005-12-02 Sumitomo Electric Ind Ltd Method for manufacturing carbon nano-structure
JP2005350281A (en) * 2004-06-08 2005-12-22 Sumitomo Electric Ind Ltd Method for producing carbon nano-structure
JP2006188389A (en) * 2005-01-06 2006-07-20 Univ Nagoya Method for production of high-purity two- to five-walled carbon nanotube, and composition containing the same
JP2007224433A (en) * 2006-02-21 2007-09-06 Sumitomo Electric Ind Ltd Method for producing carbon nano structure, catalyst metal substrate and catalyst reaction container
JP2008074647A (en) * 2006-09-19 2008-04-03 National Institute Of Advanced Industrial & Technology Manufacturing process of carbon nanotube

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238586A (en) * 1988-07-27 1990-02-07 Hitachi Metals Ltd Oxidation preventing coated member and production thereof
JPH04193965A (en) * 1990-11-27 1992-07-14 Hitachi Metals Ltd Method for composite surface treatment of cast iron material
JPH0748110A (en) * 1993-06-03 1995-02-21 Nec Corp Purification of carbon-nanotube
JP3421332B1 (en) * 2002-03-29 2003-06-30 理化学研究所 Method for producing carbon nanotube
JP2005238142A (en) * 2004-02-27 2005-09-08 Sumitomo Electric Ind Ltd Catalytic structure and method for producing carbon nanotube by using the same
JP2005330175A (en) * 2004-04-23 2005-12-02 Sumitomo Electric Ind Ltd Method for manufacturing carbon nano-structure
JP2005314161A (en) * 2004-04-28 2005-11-10 National Institute For Materials Science Method of synthesizing carbon nanotube
JP2005350281A (en) * 2004-06-08 2005-12-22 Sumitomo Electric Ind Ltd Method for producing carbon nano-structure
JP2006188389A (en) * 2005-01-06 2006-07-20 Univ Nagoya Method for production of high-purity two- to five-walled carbon nanotube, and composition containing the same
JP2007224433A (en) * 2006-02-21 2007-09-06 Sumitomo Electric Ind Ltd Method for producing carbon nano structure, catalyst metal substrate and catalyst reaction container
JP2008074647A (en) * 2006-09-19 2008-04-03 National Institute Of Advanced Industrial & Technology Manufacturing process of carbon nanotube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121317A1 (en) 2011-03-08 2012-09-13 住友電気工業株式会社 Carbon nanostructures, capacitor, method for processing carbon nanostructures, and production process
US9305711B2 (en) 2011-03-08 2016-04-05 Sumitomo Electric Industries, Ltd. Carbon nanostructure, capacitor, method for processing carbon nanostructure, and method for producing carbon nanostructure
WO2020138378A1 (en) * 2018-12-27 2020-07-02 住友電気工業株式会社 Carbon nanotube production method, carbon nanotube assembly wire production method, carbon nanotube assembly wire bundle production method, carbon nanotube production device, carbon nanotube assembly wire production device and carbon nanotube assembly wire bundle production device
JP7441799B2 (en) 2018-12-27 2024-03-01 住友電気工業株式会社 Carbon nanotube production method, carbon nanotube assembly wire production method, carbon nanotube assembly wire bundle production method, carbon nanotube production apparatus, carbon nanotube assembly wire production apparatus, and carbon nanotube assembly wire bundle production apparatus
JP7455805B2 (en) 2019-02-22 2024-03-26 住友電気工業株式会社 Carbon nanotube production method, carbon nanotube assembly wire production method, carbon nanotube assembly wire bundle production method, carbon nanotube production apparatus, carbon nanotube assembly wire production apparatus, and carbon nanotube assembly wire bundle production apparatus

Similar Documents

Publication Publication Date Title
US7658971B2 (en) Method of producing carbon nanostructure
KR101110409B1 (en) Method of manufacturing carbon nanostructure
TW200535093A (en) Catalyst structural body and process for producing carbon nonotube by using the same
JPWO2007061078A1 (en) CARBON NANOTUBE, SUBSTRATE EQUIPPED WITH THE SAME, ELECTRON-EMITTING ELEMENT, CARBON NANOTUBE SYNTHESIS SUBSTRATE, MANUFACTURING METHOD THEREOF, AND MANUFACTURING APPARATUS
US20100047152A1 (en) Growth of carbon nanotubes using metal-free nanoparticles
JP5909826B2 (en) Method for producing carbon nanostructure
JP2010099572A (en) Catalytic base material and method of manufacturing carbon nano structure using the same
JP2009119414A (en) Substrate for cnt (carbon nanotube) growth and method of manufacturing cnt
JP2007091484A (en) Method for production of carbon fiber, and substrate unit
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
JP4905702B2 (en) Catalyst structure and method for producing carbon nanostructure using the same
JP5288511B2 (en) Catalyst structure and method for producing carbon nanostructure using the same
CN110791809B (en) Preparation method of single-layer and double-layer reversibly-regulated cerium oxide single crystal nano film
JP5499643B2 (en) Catalyst member, carbon nanotube production apparatus, and carbon nanotube production method
JP6638339B2 (en) Method for producing carbon nanostructure and apparatus for producing carbon nanostructure
KR101128219B1 (en) Method for preparing carbon nanostructure
JP4838990B2 (en) Method for producing carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001