JP2009270146A - Method for producing silver hyperfine particle - Google Patents

Method for producing silver hyperfine particle Download PDF

Info

Publication number
JP2009270146A
JP2009270146A JP2008120363A JP2008120363A JP2009270146A JP 2009270146 A JP2009270146 A JP 2009270146A JP 2008120363 A JP2008120363 A JP 2008120363A JP 2008120363 A JP2008120363 A JP 2008120363A JP 2009270146 A JP2009270146 A JP 2009270146A
Authority
JP
Japan
Prior art keywords
silver
oxalate
oleylamine
complex compound
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008120363A
Other languages
Japanese (ja)
Inventor
Masato Kurihara
正人 栗原
Masaomi Sakamoto
政臣 坂本
Nobutsugu Kawasaki
修嗣 川▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP2008120363A priority Critical patent/JP2009270146A/en
Publication of JP2009270146A publication Critical patent/JP2009270146A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing silver hyperfine particles in an order of nanometer size which has a narrow grain size distribution, also has excellent storage stability, further is easily producible, has a high yield and has excellent low temperature sinterability as well. <P>SOLUTION: Silver oxalate and oleylamine are reacted, so as to produce a complex compound at least comprising silver, oleylamine and oxalic acid ions, and the produced complex compound is decomposed under heating, so as to produce silver hyperfine particles. Preferably, silver oxalate is reacted with saturated aliphatic amine in addition to oleylamine, so as to produce a complex compound. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ナノメートルサイズの銀超微粒子の製造方法に関する。   The present invention relates to a method for producing nanometer-sized silver ultrafine particles.

粒子径が100nm以下、特に数nm〜数十nmオーダーの金属の超微粒子は、高い表面活性を利用した触媒、吸着剤、吸収剤として用いられる。このほか、溶剤や樹脂等の液状分散媒に分散させてフィルム状、ペースト状、塗料状またはインク状とし、各種電子回路や半導体素子の電極、配線などの導体パターンや、透明導電膜、帯電防止膜、電磁波遮蔽膜、カラーフィルタ、機能性フィルム等の、導電性被膜を形成するための材料としても使用される。特に、このようなナノメートルサイズの金属微粒子(ナノ粒子)は、通常厚膜導体ペーストの導電性フィラーとして使用されるマイクロメートルサイズの金属粉末に比べてはるかに低温で焼結するので、100〜300℃程度の低い温度で熱処理することにより、高い導電性を有する導電性被膜が得られる。また、粒子が微細であるため薄く緻密で、微細な導体パターンを形成することができる。このため、エレクトロニクス分野での応用が期待されている。さらには、導体パターンをインクジェット印刷により形成するために用いる、インクジェットインク用の導電性フィラーとしても適していると考えられる。また、通常の厚膜導体ペーストの添加剤、即ち導電性向上剤、焼結促進剤等としても利用することができる。さらに、抗菌剤、医薬品としての用途も重要である。   Metal ultrafine particles having a particle size of 100 nm or less, particularly several nanometers to several tens of nanometers, are used as catalysts, adsorbents, and absorbents utilizing high surface activity. In addition, films, pastes, paints, or inks are dispersed in liquid dispersion media such as solvents and resins. Conductive patterns such as electrodes and wiring of various electronic circuits and semiconductor elements, transparent conductive films, and antistatics It is also used as a material for forming a conductive film such as a film, an electromagnetic wave shielding film, a color filter, and a functional film. In particular, such nanometer-sized metal fine particles (nanoparticles) sinter at a much lower temperature than micrometer-sized metal powders that are usually used as conductive fillers in thick film conductor pastes. By conducting heat treatment at a low temperature of about 300 ° C., a conductive film having high conductivity can be obtained. Further, since the particles are fine, a thin and fine conductor pattern can be formed. For this reason, application in the electronics field is expected. Furthermore, it is considered suitable as a conductive filler for inkjet ink used to form a conductor pattern by inkjet printing. It can also be used as an additive for ordinary thick film conductor pastes, that is, a conductivity improver, a sintering accelerator and the like. Furthermore, the use as an antibacterial agent and a pharmaceutical is also important.

これらの用途において、ナノメートルサイズで粒度分布が狭く、粒子形状の揃った金属超微粒子を高収率で容易に製造することが要求される。また、特に導電性被膜形成材料として用いる場合、100〜300℃程度の低温で焼結すること、また、分散媒中で高度に分散した安定な状態で存在すること、さらに分散液の状態でもまた粉末の状態でも凝集しにくく長期保存が可能であることが望まれる。   In these applications, it is required to easily produce ultrafine metal particles having a nanometer size, a narrow particle size distribution, and a uniform particle shape with a high yield. In particular, when used as a conductive film-forming material, it must be sintered at a low temperature of about 100 to 300 ° C., exist in a stable state highly dispersed in a dispersion medium, and further in a dispersion state. It is desired that the powder is not aggregated even in a powder state and can be stored for a long time.

このような金属超微粒子の製造方法として、例えば、特許文献1では、炭酸塩、脂肪酸塩などの金属塩とアミン化合物とを不活性雰囲気中で熱処理を行うことによって複合金属ナノ粒子を得ることが開示されている。具体的には、シュウ酸錫、炭酸銀及びオクチルアミンを混合し窒素雰囲気下で加熱攪拌することによって、銀/錫の複合金属ナノ粒子を得ている。しかしながら、上記特許文献1におけるアミン化合物は、オクチルアミン等の1級〜3級飽和脂肪族アミンの例示があるが、オレイルアミンの例示はなされていない。
特開2005−298921号公報
As a method for producing such ultrafine metal particles, for example, in Patent Document 1, composite metal nanoparticles are obtained by heat-treating a metal salt such as carbonate or fatty acid salt and an amine compound in an inert atmosphere. It is disclosed. Specifically, silver / tin composite metal nanoparticles are obtained by mixing tin oxalate, silver carbonate and octylamine and stirring under heating in a nitrogen atmosphere. However, the amine compound in Patent Document 1 is exemplified by primary to tertiary saturated aliphatic amines such as octylamine, but no oleylamine is exemplified.
JP 2005-298922 A

ところで、金属超微粒子として銀の超微粒子を製造する場合、例えばシュウ酸銀や炭酸銀を熱分解する方法が試みられている。シュウ酸銀や炭酸銀を熱分解すると、銀の還元反応が自発的に生じて銀粒子が得られる。なかでもシュウ酸銀は、炭酸銀に比べて低温で熱分解して銀を析出するので、出発原料としてはシュウ酸銀が好ましく用いられる。この熱分解においては、シュウ酸イオンが二酸化炭素に分解されて除去されるため、還元剤を使って銀化合物を還元する場合のように、還元剤を除去する工程を必要とせず、また不純物の少ない銀粒子が得られるという利点がある。しかしながら、生成する銀粒子は微粒子が凝集した多孔体となるため、本発明の目的であるナノメートルサイズの銀超微粒子がよく分散した粉体や分散液が得られないという問題がある。また、シュウ酸銀の熱分解は爆発的に生じるために、危険であるという問題があった。
シュウ酸銀をカルボン酸の存在下で熱分解した場合には、爆発的熱分解は抑制され、また比較的小さい銀粒子が得られるが、やはり凝集を完全に防止することができないため、得られる粒子の径は粗大で粒径にばらつきが生じ、粒径の揃ったナノメートルサイズの銀粒子を得ることができない。また、シュウ酸銀を飽和脂肪族アミンの存在下で熱分解した場合にも、同様に銀の粒子同士が凝集して粒径の揃ったナノメートルサイズの銀粒子を得ることができない。
本発明は、上記事情に鑑みてなされたもので、平均粒径が1nm〜50nm、特に5nm〜20nmで、粒度分布が狭く、保存安定性に優れた銀超微粒子を容易にかつ高収率で製造し得る銀超微粒子の製造方法を提供することを目的としている。
また、低温焼結性の優れた銀超微粒子の製造方法を提供することを目的としている。
By the way, when producing ultrafine silver particles as ultrafine metal particles, for example, a method of thermally decomposing silver oxalate or silver carbonate has been attempted. When silver oxalate or silver carbonate is thermally decomposed, a silver reduction reaction occurs spontaneously to obtain silver particles. Among them, silver oxalate is preferably used as a starting material because silver oxalate is thermally decomposed at a lower temperature than silver carbonate to precipitate silver. In this thermal decomposition, oxalate ions are decomposed into carbon dioxide and removed, so that there is no need for a step of removing the reducing agent as in the case of reducing the silver compound by using a reducing agent, and impurities are removed. There is an advantage that few silver particles can be obtained. However, since the silver particles to be produced become a porous body in which fine particles are aggregated, there is a problem that it is impossible to obtain a powder or dispersion in which nanometer-sized silver ultrafine particles, which is the object of the present invention, are well dispersed. In addition, the thermal decomposition of silver oxalate is explosive and therefore dangerous.
When silver oxalate is pyrolyzed in the presence of carboxylic acid, explosive pyrolysis is suppressed and relatively small silver particles can be obtained, but it is also obtained because aggregation cannot be completely prevented. The particle size is coarse and the particle size varies, and nanometer-sized silver particles having a uniform particle size cannot be obtained. In addition, when silver oxalate is thermally decomposed in the presence of a saturated aliphatic amine, similarly, silver particles are aggregated and nanometer-sized silver particles having a uniform particle size cannot be obtained.
The present invention has been made in view of the above circumstances. Silver ultrafine particles having an average particle diameter of 1 nm to 50 nm, particularly 5 nm to 20 nm, a narrow particle size distribution, and excellent storage stability can be easily obtained at a high yield. It aims at providing the manufacturing method of the silver ultrafine particle which can be manufactured.
Another object of the present invention is to provide a method for producing ultrafine silver particles having excellent low-temperature sinterability.

上記課題を解決するため、請求項1の発明は、銀超微粒子の製造方法において、
シュウ酸銀と、オレイルアミンとを反応させて少なくとも銀とオレイルアミンとシュウ酸イオンとを含む錯化合物を生成し、
生成した前記錯化合物を加熱分解させて銀超微粒子を生成することを特徴とする。
In order to solve the above problems, the invention of claim 1 is a method for producing ultrafine silver particles,
Silver oxalate and oleylamine are reacted to form a complex compound containing at least silver, oleylamine and oxalate ion,
The produced complex compound is thermally decomposed to produce ultrafine silver particles.

請求項2の発明は、請求項1に記載の銀超微粒子の製造方法において、
前記シュウ酸銀と、前記オレイルアミンに加えて飽和脂肪族アミンを反応させて前記錯化合物を生成することを特徴とする。
Invention of Claim 2 is the manufacturing method of the silver ultrafine particle of Claim 1,
The complex compound is produced by reacting the silver oxalate with a saturated aliphatic amine in addition to the oleylamine.

請求項3の発明は、請求項2に記載の銀超微粒子の製造方法において、
前記飽和脂肪族アミンの総炭素数は、1〜18であることを特徴とする。
Invention of Claim 3 in the manufacturing method of the silver ultrafine particle of Claim 2,
The saturated aliphatic amine has a total carbon number of 1 to 18.

請求項4の発明は、請求項2又は3に記載の銀超微粒子の製造方法において、
前記飽和脂肪族アミンの少なくとも一部が前記シュウ酸銀に被着していることを特徴とする。
Invention of Claim 4 in the manufacturing method of the silver ultrafine particle of Claim 2 or 3,
At least a part of the saturated aliphatic amine is deposited on the silver oxalate.

請求項5の発明は、請求項1〜4のいずれか一項に記載の銀超微粒子の製造方法において、
前記シュウ酸銀と前記オレイルアミン、または前記シュウ酸銀と前記オレイルアミンと前記飽和脂肪族アミンを、脂肪酸の存在下に反応させて前記錯化合物を生成することを特徴とする。
Invention of Claim 5 is the manufacturing method of the silver ultrafine particle as described in any one of Claims 1-4,
The complex compound is produced by reacting the silver oxalate and the oleylamine, or the silver oxalate, the oleylamine, and the saturated aliphatic amine in the presence of a fatty acid.

請求項6の発明は、請求項1〜5のいずれか一項に記載の銀超微粒子の製造方法において、
前記シュウ酸銀のシュウ酸イオンの20モル%以下が、炭酸イオン、硝酸イオン、酸化物イオンの少なくともいずれか一種以上で置換されていることを特徴とする。
Invention of Claim 6 is the manufacturing method of the silver ultrafine particle as described in any one of Claims 1-5,
20 mol% or less of the oxalate ion of the silver oxalate is substituted with at least one of carbonate ion, nitrate ion and oxide ion.

本発明によれば、シュウ酸銀とオレイルアミンとを反応させ、銀とシュウ酸イオンとオレイルアミンを含む錯化合物(以下、単に「錯化合物」ということもある)を生成させる。そして、この錯化合物を加熱分解させることによりシュウ酸イオンが二酸化炭素に分解されて除去され、オレイルアミンで保護された平均粒径1nm〜50nm、特に5nm〜20nmで、粒径及び形状の揃った高分散性の銀超微粒子を高収率で得ることができる。また、シュウ酸イオンが二酸化炭素に分解されるため、アミン以外の有機物や還元剤に起因する不純物が残留しない点で有利である。
また、オレイルアミンに加えて、脂肪族アミン、特に総炭素数18以下の飽和脂肪族アミンを添加して反応させることにより、錯化合物を容易に生成でき、銀超微粒子の製造に要する時間を短縮できる。しかも、これらのアミンで保護された銀超微粒子をより高収率で生成することができる。
また、前記オレイルアミンや総炭素数18以下の飽和脂肪族アミンは熱分解温度が比較的低く、低温で除去することができる。このため得られた銀超微粒子は低温焼結性に優れ、例えば導電性被膜形成材料として用いた場合、100〜300℃程度の加熱でも容易に焼結し、緻密で導電性が高く、極めて薄い電極等を形成することができる。さらに、本発明の方法で得られるアミン保護銀超微粒子は、有機溶媒に容易に分散して安定なナノ銀分散インクを作りやすく、インクジェットインクとしても好適である。
さらに、シュウ酸銀とオレイルアミンとを反応させる際に脂肪酸を存在させることにより、低温焼結性を損なうことなく、生成する銀超微粒子の安定性及び各種の溶媒に対する分散性を改善することができ、より導電性の高い導電性被膜を形成することが可能になる。
According to the present invention, silver oxalate and oleylamine are reacted to form a complex compound containing silver, oxalate ion, and oleylamine (hereinafter sometimes simply referred to as “complex compound”). Then, by thermally decomposing this complex compound, the oxalate ions are decomposed and removed into carbon dioxide, and the average particle size of 1 nm to 50 nm, particularly 5 nm to 20 nm, protected with oleylamine, is high in particle size and shape. Dispersible silver ultrafine particles can be obtained in high yield. Further, since the oxalate ion is decomposed into carbon dioxide, it is advantageous in that impurities derived from organic substances other than amines and reducing agents do not remain.
Further, in addition to oleylamine, an aliphatic amine, particularly a saturated aliphatic amine having a total carbon number of 18 or less, is added and reacted, whereby a complex compound can be easily formed and the time required for producing silver ultrafine particles can be shortened. . In addition, ultrafine silver particles protected with these amines can be produced in a higher yield.
The oleylamine and saturated aliphatic amine having a total carbon number of 18 or less have a relatively low thermal decomposition temperature and can be removed at a low temperature. For this reason, the ultrafine silver particles obtained are excellent in low-temperature sinterability. For example, when used as a conductive film-forming material, the silver ultrafine particles are easily sintered even when heated at about 100 to 300 ° C., dense, highly conductive, and extremely thin. An electrode or the like can be formed. Furthermore, the amine-protected silver ultrafine particles obtained by the method of the present invention can be easily dispersed in an organic solvent to easily form a stable nanosilver-dispersed ink, and is also suitable as an inkjet ink.
Furthermore, the presence of a fatty acid when reacting silver oxalate and oleylamine can improve the stability of the ultrafine silver particles produced and the dispersibility in various solvents without impairing the low-temperature sinterability. It becomes possible to form a conductive film having higher conductivity.

以下、本発明に係る銀超微粒子の製造方法について詳細に説明する。まず、銀超微粒子の製造方法に用いられる化合物について説明する。   Hereinafter, the method for producing silver ultrafine particles according to the present invention will be described in detail. First, compounds used in the method for producing silver ultrafine particles will be described.

(シュウ酸銀)
銀超微粒子の原料として用いるシュウ酸銀は、銀含有率が高く、また通常150℃以下の低温で分解しやすい。熱分解すると、シュウ酸イオンが二酸化炭素として除去されて金属銀が得られるため、還元剤を必要とせず、不純物が残留しにくい点で有利である。
シュウ酸銀としては制限はなく、例えば市販のシュウ酸銀を用いることができる。また、シュウ酸銀のシュウ酸イオンの20モル%以下を炭酸イオン、硝酸イオン、酸化物イオンの1種以上で置換しても良い。特にシュウ酸イオンの20モル%以下を炭酸イオンで置換した場合、シュウ酸銀の熱的安定性を高める効果があるので好ましい。置換量が20モル%を超えると前記錯化合物が加熱分解しにくくなる場合がある。シュウ酸イオンをこれらのイオンで置換する方法に限定はないが、例えばシュウ酸イオンと炭酸イオンとが溶解した溶液に銀イオン溶液を反応させ、共沈により炭酸イオン含有シュウ酸銀を得る方法や、シュウ酸銀に炭酸銀、硝酸銀、酸化銀等の化合物を被着し、複合化する方法などがある。
(Silver oxalate)
Silver oxalate used as a raw material for the ultrafine silver particles has a high silver content and is usually easily decomposed at a low temperature of 150 ° C. or lower. Thermal decomposition is advantageous in that the oxalate ions are removed as carbon dioxide to obtain metallic silver, so that no reducing agent is required and impurities are difficult to remain.
There is no restriction | limiting as silver oxalate, For example, commercially available silver oxalate can be used. Further, 20 mol% or less of silver oxalate oxalate ion may be substituted with one or more of carbonate ion, nitrate ion and oxide ion. In particular, when 20 mol% or less of oxalate ions are substituted with carbonate ions, it is preferable because of the effect of increasing the thermal stability of silver oxalate. When the substitution amount exceeds 20 mol%, the complex compound may be difficult to thermally decompose. There is no limitation on the method of replacing oxalate ions with these ions. For example, a method in which a silver ion solution is reacted with a solution in which oxalate ions and carbonate ions are dissolved to obtain carbonate ion-containing silver oxalate by coprecipitation. There is a method in which a compound such as silver carbonate, silver nitrate or silver oxide is deposited on silver oxalate and combined.

(アミン)
オレイルアミンは、シュウ酸銀と反応して、銀と少なくともオレイルアミンとシュウ酸イオンを含む錯化合物を形成する。本発明においては、中間体としてこの錯化合物を形成させることが重要である。シュウ酸銀を直接熱分解すると微粒子が凝集した多孔体となるが、この錯化合物を形成してから加熱分解することにより、極めて微細で高分散性の銀超微粒子が得られる。しかもシュウ酸銀を直接熱分解する場合と異なり、熱分解反応が極めて穏やかである。このような効果は、シュウ酸銀とオレイルアミンを反応させず、単に混合しただけでは得られない。
錯化合物の熱分解で生成する銀超微粒子にはオレイルアミンが被着しており、これが保護剤として作用するため、粒成長が抑制され、また凝集しにくく、高分散性を保ったまま極めて安定に保存が可能である。また、得られたオレイルアミン保護銀超微粒子は各種の溶媒に容易に分散して、安定な銀超微粒子分散液とすることができる。またオレイルアミンは200℃以下の低温で揮発または分解して銀超微粒子から除去されるので、脂肪酸系の保護剤に比べて銀超微粒子の低温焼結性を阻害することがない。
(Amine)
Oleylamine reacts with silver oxalate to form a complex compound containing silver and at least oleylamine and oxalate ions. In the present invention, it is important to form this complex compound as an intermediate. Direct thermal decomposition of silver oxalate results in a porous body in which fine particles are aggregated. By forming this complex compound and then thermally decomposing it, extremely fine and highly dispersible silver ultrafine particles can be obtained. Moreover, unlike the case where silver oxalate is directly pyrolyzed, the pyrolysis reaction is extremely gentle. Such an effect cannot be obtained by simply mixing silver oxalate and oleylamine without reacting them.
Silver ultrafine particles produced by thermal decomposition of complex compounds are coated with oleylamine, which acts as a protective agent, which suppresses grain growth, resists aggregation, and is extremely stable while maintaining high dispersibility. Can be saved. The obtained oleylamine-protected silver ultrafine particles can be easily dispersed in various solvents to form a stable silver ultrafine particle dispersion. In addition, oleylamine volatilizes or decomposes at a low temperature of 200 ° C. or less and is removed from the ultrafine silver particles, so that the low temperature sinterability of the ultrafine silver particles is not inhibited as compared with the fatty acid-based protective agent.

なお、オレイルアミンの代わりにステアリン酸等の飽和脂肪酸やオレイン酸等の不飽和脂肪酸を使用した場合には、中間体として脂肪酸銀を形成すると考えられるが、これを加熱還元して得られる銀粒子は粒径が大きく、粒度分布にもばらつきが生じる。   In addition, when using saturated fatty acid such as stearic acid or unsaturated fatty acid such as oleic acid instead of oleylamine, it is considered that fatty acid silver is formed as an intermediate. The particle size is large and the particle size distribution also varies.

また本発明においては、好ましくはオレイルアミンに加えて飽和脂肪族アミンを反応させる。飽和脂肪族アミンはオレイルアミンと共に前記錯化合物を形成する。飽和脂肪族アミンを併用することにより錯化合物の形成が起こりやすくなり、短時間で収率よく銀超微粒子を製造することができる。オレイルアミンを使用せず飽和脂肪族アミンを単独で用いた場合は、たとえ銀、アミン、シュウ酸イオンを含む錯化合物を形成したとしても、これを熱分解して生成する粒子が凝集し、目的の粒径の揃った高分散性銀超微粒子が得られない。
飽和脂肪族アミンとしては特に制限はないが、望ましくはオレイルアミンと同じかそれより短い炭素鎖を有するもの、即ち炭素数18以下のものを使用する。炭素数18以下の飽和脂肪族アミンとしては、例えばオクチルアミン、ヘキシルアミン、2−エチルヘキシルアミン、ステアリルアミンなどが挙げられる。このような鎖長の短い飽和脂肪族アミンは、オレイルアミンと同様、生成する銀超微粒子の優れた保護剤であると同時に、低温で容易に分解除去できるために有利である。オレイルアミンと飽和脂肪族アミンの比率は、モル比でおよそ5:1〜1:2の範囲であることが望ましい。この範囲では最も高収率で銀超微粒子を製造することができる。飽和脂肪族アミンがこの範囲を超えて多くなると錯化合物を形成するオレイルアミンの比率が低下するため、粒径の揃った高分散性銀超微粒子が得られなくなる。
更に、前記飽和脂肪族アミンの一部又は全部を予めシュウ酸銀に被着させておくと、オレイルアミンと反応させる段階においてシュウ酸銀とアミンとの反応がより起こりやすくなるので好ましい。この場合の飽和脂肪族アミンの被着量は、シュウ酸銀に対して、0.1重量%〜20重量%であることが望ましい。0.1重量%以下では効果が小さく、また20重量%を超えるとシュウ酸銀が熱的に不安定となって取扱いが困難になる場合がある。シュウ酸銀に飽和脂肪族アミンを被着させる方法は限定されない。例えばシュウ酸銀と飽和脂肪族アミンとを直接混合した後乾燥する、または溶媒中に分散したシュウ酸銀と飽和脂肪族アミンとを混合し、乾燥するなどの方法がある。
In the present invention, a saturated aliphatic amine is preferably reacted in addition to oleylamine. Saturated aliphatic amines form the complex with oleylamine. By using a saturated aliphatic amine in combination, complex compounds are easily formed, and silver ultrafine particles can be produced in a high yield in a short time. When a saturated aliphatic amine is used alone without using oleylamine, even if a complex compound containing silver, amine, and oxalate ions is formed, the particles produced by thermal decomposition of these compounds aggregate to form the target Highly dispersible silver ultrafine particles having a uniform particle size cannot be obtained.
The saturated aliphatic amine is not particularly limited, but preferably has a carbon chain equal to or shorter than that of oleylamine, that is, one having 18 or less carbon atoms. Examples of the saturated aliphatic amine having 18 or less carbon atoms include octylamine, hexylamine, 2-ethylhexylamine, stearylamine and the like. Such a saturated aliphatic amine having a short chain length is advantageous because, like oleylamine, it is an excellent protective agent for the resulting ultrafine silver particles, and at the same time, it can be easily decomposed and removed at low temperatures. The ratio of oleylamine to saturated aliphatic amine is preferably in the range of about 5: 1 to 1: 2 in molar ratio. In this range, silver ultrafine particles can be produced with the highest yield. When the amount of saturated aliphatic amine exceeds this range, the ratio of oleylamine forming a complex compound is lowered, so that highly dispersible silver ultrafine particles having a uniform particle size cannot be obtained.
Furthermore, it is preferable that a part or all of the saturated aliphatic amine is preliminarily deposited on silver oxalate because the reaction between silver oxalate and amine is more likely to occur at the stage of reaction with oleylamine. In this case, the saturated aliphatic amine is preferably deposited in an amount of 0.1% by weight to 20% by weight with respect to silver oxalate. If the amount is less than 0.1% by weight, the effect is small, and if it exceeds 20% by weight, silver oxalate may become thermally unstable and difficult to handle. The method for depositing the saturated aliphatic amine on silver oxalate is not limited. For example, there is a method in which silver oxalate and a saturated aliphatic amine are directly mixed and then dried, or silver oxalate dispersed in a solvent and a saturated aliphatic amine are mixed and dried.

(脂肪酸)
本発明においては、シュウ酸銀と前記アミンを反応させて錯化合物を形成する際、好ましくは脂肪酸を存在させる。オレイルアミンを使用することなく、直接シュウ酸銀を脂肪酸の存在下で加熱分解した場合には、前述のように中間体として脂肪酸銀を形成し生成粒子の粒径が大きくなったりばらつきを生じたりしやすいが、本発明において脂肪酸をオレイルアミンと共に用いる場合はこのような問題はなく、微細で粒径及び形状の揃った銀超微粒子が得られ、凝集も生じにくい。
脂肪酸の作用は必ずしも明確でないが、アミンと共に錯化合物を形成すると考えられ、またこの錯化合物の熱分解で生成する銀超微粒子に、アミンと共に脂肪酸が被着して保護剤として作用するため、さらに安定性が高くかつ低温焼結性の優れた銀超微粒子が得られると考えられる。また各種の溶媒に対する分散性が向上し、極めて安定な銀超微粒子分散液を製造することができる。このため例えば導電性被膜の形成に用いた場合、さらに導電性の高い導電性被膜を形成することが可能になる。
脂肪酸としては特に制限はなく、飽和脂肪酸、不飽和脂肪酸のいずれも使用することができる。特に炭素数が6〜18のものが好ましい。このような脂肪酸としては例えばヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、ミリスチン酸、ペンタデカン酸、パルミチン酸、ヘプタデカン酸、ステアリン酸、オレイン酸、リノール酸、パルミトレイン酸、エライジン酸などが挙げられる。
脂肪酸の量は、好ましくは反応に使用されるオレイルアミンと飽和脂肪族アミンの総量に対して0.5〜20重量%程度である。この範囲で、粒径のばらつきが極めて小さく、分散性が極めて高い微細な銀超微粒子を安定して製造することができ、かつ得られた銀超微粒子の低温焼結性が優れている。
(fatty acid)
In the present invention, when a complex compound is formed by reacting silver oxalate with the amine, a fatty acid is preferably present. When silver oxalate is thermally decomposed directly in the presence of a fatty acid without using oleylamine, the fatty acid silver is formed as an intermediate as described above, resulting in an increase in the particle size or variation of the resulting particles. However, when the fatty acid is used together with oleylamine in the present invention, there is no such problem. Fine silver ultrafine particles having a uniform particle size and shape can be obtained, and aggregation is unlikely to occur.
Although the action of fatty acid is not necessarily clear, it is thought that it forms a complex compound with amine, and the fatty acid adheres to amine ultrafine particles produced by thermal decomposition of this complex compound and acts as a protective agent. It is considered that ultrafine silver particles having high stability and excellent low-temperature sinterability can be obtained. Moreover, the dispersibility with respect to various solvents improves, and an extremely stable silver ultrafine particle dispersion can be produced. For this reason, for example, when used for forming a conductive film, it is possible to form a conductive film having higher conductivity.
There is no restriction | limiting in particular as a fatty acid, Both saturated fatty acid and unsaturated fatty acid can be used. Particularly those having 6 to 18 carbon atoms are preferred. Such fatty acids include, for example, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, myristic acid, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, oleic acid, linol Examples include acids, palmitoleic acid, and elaidic acid.
The amount of fatty acid is preferably about 0.5 to 20% by weight based on the total amount of oleylamine and saturated aliphatic amine used in the reaction. Within this range, fine silver ultrafine particles with extremely small dispersion in particle diameter and extremely high dispersibility can be stably produced, and the low-temperature sinterability of the obtained silver ultrafine particles is excellent.

次に、上述した化合物を用いて本発明に係る銀超微粒子の製造方法について説明する。
まず、シュウ酸銀もしくはシュウ酸銀のシュウ酸イオンの一部を炭酸イオン、硝酸イオン、酸化物イオンの1種以上で置換したシュウ酸銀(以下「シュウ酸銀等」という)と、オレイルアミンもしくはオレイルアミンと飽和脂肪族アミン(以下「オレイルアミン等」という)とを混合し、攪拌して錯化合物を形成する。脂肪酸を使用する場合は、前記シュウ酸銀等とオレイルアミン等の混合物に混合し、同時に反応させて錯化合物を形成する。このとき、例えばメタノール、エタノール、水等の溶媒を添加してもよい。シュウ酸銀は固体であり、オレイルアミンと単に混合しただけではアミンや溶媒には溶けないが、錯化合物が形成されると溶解する。
シュウ酸銀等とオレイルアミン等の混合比率はモル比で1:1〜1:15の範囲とすることが好ましい。混合する際の温度は0℃〜90℃の範囲であればよく、好ましくは10〜40℃とする。温度が低すぎると、前記錯化合物の形成が不十分になる場合がある。また高すぎると、生成した錯化合物がすぐに分解してしまうため、錯化合物の形成が不十分なまま銀粒子が生成する。また錯化合物を十分に形成させるためには、混合時間は通常30分以上必要であり、好ましくは1時間〜12時間程度である。なお12時間を超えても差し支えないが、工業的には不利である。
Next, the manufacturing method of the silver ultrafine particle which concerns on this invention using the compound mentioned above is demonstrated.
First, silver oxalate or a part of the oxalate ion of silver oxalate substituted with one or more of carbonate ion, nitrate ion, oxide ion (hereinafter referred to as “silver oxalate etc.”) and oleylamine or An oleylamine and a saturated aliphatic amine (hereinafter referred to as “oleylamine etc.”) are mixed and stirred to form a complex compound. When using a fatty acid, it mixes with the mixture of the said silver oxalate etc. and oleylamine etc., and it is made to react simultaneously, and forms a complex compound. At this time, for example, a solvent such as methanol, ethanol, or water may be added. Silver oxalate is a solid and does not dissolve in amines or solvents when simply mixed with oleylamine, but dissolves when complex compounds are formed.
The mixing ratio of silver oxalate and the like to oleylamine is preferably in the range of 1: 1 to 1:15 in terms of molar ratio. The temperature at the time of mixing should just be the range of 0 to 90 degreeC, Preferably it shall be 10 to 40 degreeC. If the temperature is too low, the formation of the complex compound may be insufficient. On the other hand, if it is too high, the generated complex compound is immediately decomposed, so that silver particles are generated with insufficient formation of the complex compound. Further, in order to sufficiently form a complex compound, the mixing time is usually 30 minutes or more, and preferably about 1 to 12 hours. Although it may be longer than 12 hours, it is industrially disadvantageous.

次いで、必要により溶媒及び未反応物を分離した後、生成した錯化合物を、加熱して分解させる。加熱によりシュウ酸イオンが分解、脱離し、自己還元により銀を析出するが、析出した銀はオレイルアミン等、またはオレイルアミン等と脂肪酸とで保護されるため、凝集を起こさず、平均粒径1nm〜50nm、特に5nm〜20nm程度で粒径の揃った、アミンが被着した銀超微粒子の高分散体が得られる。
加熱は100〜180℃程度の温度で行うことが好ましく、特に120〜160℃程度が好ましい。100℃より低いと反応が遅く、また熱分解反応が不十分になる恐れがある。180℃を超えるとオレイルアミンが揮発または分解して失われる恐れがあり、また生成した銀超微粒子が融着を起こす恐れがある。加熱時間は30分〜6時間程度が好ましい。
Next, after separating the solvent and unreacted substances as necessary, the produced complex compound is decomposed by heating. Oxalate ions are decomposed and eliminated by heating, and silver is precipitated by self-reduction, but the precipitated silver is protected by oleylamine or the like, or oleylamine and the like and a fatty acid, so that aggregation does not occur and the average particle diameter is 1 nm to 50 nm. In particular, a high dispersion of ultrafine silver particles coated with an amine having a uniform particle size of about 5 nm to 20 nm can be obtained.
Heating is preferably performed at a temperature of about 100 to 180 ° C, particularly preferably about 120 to 160 ° C. If it is lower than 100 ° C., the reaction is slow and the thermal decomposition reaction may be insufficient. If it exceeds 180 ° C., oleylamine may be volatilized or decomposed and lost, and the produced silver ultrafine particles may be fused. The heating time is preferably about 30 minutes to 6 hours.

得られた銀超微粒子を反応溶液から回収する場合には、通常の濾過装置や遠心分離機等を用いて濾過、又は分離して捕集する。捕集して得られた銀超微粒子は、微粒子同士の凝集が起こりにくく、取り扱いが容易で、再分散性も極めて優れている。必要により濾過、分離に先立って精製、洗浄を行う。例えば、ヘキサン等を用いて未反応物を除去することができる。洗浄には例えば水やメタノール等のアルコールを用いる。捕集した銀超微粒子は、所望により、減圧乾燥して粉末状とすることができる。   When the obtained ultrafine silver particles are recovered from the reaction solution, they are collected by filtration or separation using a normal filtration device or a centrifuge. The ultrafine silver particles obtained by collection are less likely to aggregate with each other, are easy to handle, and have excellent redispersibility. If necessary, purify and wash prior to filtration and separation. For example, unreacted substances can be removed using hexane or the like. For example, water or alcohol such as methanol is used for washing. The collected silver ultrafine particles can be dried under reduced pressure to form a powder, if desired.

捕集して得られた銀粉末は、別の分散媒に分散させて使用することができる。分散媒としては、限定されるものではなく、通常使用される水や、アルコール系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、テルペン系溶剤、石油系溶剤、炭化水素系溶剤などの溶剤類、熱可塑性樹脂、熱硬化性樹脂などの樹脂類、これらの混合物などが使用される。用途に応じて適切な分散媒を用いることにより、分散性、安定性、塗布性等諸特性の極めて優れたペースト状、塗装状又はインク状分散液を得ることができる。必要により樹脂や可塑剤等により粘土特性を調整したり、他の金属粉末や、ガラス粉末、界面活性剤、その他この種の分散液に通常使用される添加剤を配合しても良い。   The silver powder obtained by collection can be used by being dispersed in another dispersion medium. The dispersion medium is not limited and is usually a solvent such as water, alcohol solvents, ketone solvents, ether solvents, ester solvents, terpene solvents, petroleum solvents, hydrocarbon solvents. Resins such as thermoplastic resins and thermosetting resins, and mixtures thereof. By using an appropriate dispersion medium according to the application, it is possible to obtain a paste-like, paint-like or ink-like dispersion having extremely excellent properties such as dispersibility, stability, and coatability. If necessary, the clay characteristics may be adjusted by a resin, a plasticizer or the like, or other metal powders, glass powders, surfactants, and other additives usually used in this type of dispersion may be blended.

このような分散液を用いて導電被膜を形成するには、基板にスピンコート、ディッピング、スクリーン印刷、インクジェット印刷、転写印刷法、その他種々の方法で前記銀超微粒子分散液を塗布し、加熱して銀超微粒子を焼結させる。本発明により得られる銀超微粒子は極めて焼結し易いので、500℃以下の低温、例えば100〜300℃程度で加熱して保護剤のアミンや脂肪酸を除去することにより、緻密で導電性が高く、しかも微粒子が微細であるために極めて薄い電極、配線、透明導電膜、カラーフィルタ等を形成することができる。また低温焼成が可能なため、基板としてガラス、樹脂、ITOなどの耐熱性の低い基板に適用することもでき、しかもポリマー系導体ペーストの硬化温度と同程度の低温で、高温焼成タイプの導体ペーストに匹敵する高い導電性を得ることができる。
また、この銀超微粒子は、通常の導電性粉末を用いた厚膜導体ペーストや、導電性接着剤に、導電性向上剤あるいは焼結促進剤として添加することもできる。また、この銀超微粒子を分散媒に分散させた本発明の銀超微粒子分散液を用いると、セラミック、カーボン、有機ポリマー等の担体の表面に、均一に銀超微粒子を担持させることができ、触媒、吸着剤、吸収剤、抗菌剤、医薬品の製造にも有用である。
In order to form a conductive film using such a dispersion, the silver ultrafine particle dispersion is applied to a substrate by spin coating, dipping, screen printing, ink jet printing, transfer printing, and other various methods, and heated. To sinter silver ultrafine particles. Since the ultrafine silver particles obtained by the present invention are extremely easy to sinter, heating at a low temperature of 500 ° C. or lower, for example, about 100 to 300 ° C. to remove amines and fatty acids as a protective agent, it is dense and highly conductive. Moreover, since the fine particles are fine, extremely thin electrodes, wirings, transparent conductive films, color filters, and the like can be formed. In addition, since it can be fired at a low temperature, it can be applied to substrates with low heat resistance such as glass, resin, ITO, etc., and at a low temperature comparable to the curing temperature of polymer-based conductor paste, it is a high-temperature fired type conductor paste. High electrical conductivity comparable to the above can be obtained.
The ultrafine silver particles can be added as a conductivity improver or a sintering accelerator to a thick film conductor paste using a normal conductive powder or a conductive adhesive. Further, when using the silver ultrafine particle dispersion of the present invention in which the silver ultrafine particles are dispersed in a dispersion medium, the ultrafine silver particles can be uniformly supported on the surface of a carrier such as ceramic, carbon, or organic polymer, It is also useful for the production of catalysts, adsorbents, absorbents, antibacterial agents, and pharmaceuticals.

以上のように、本発明の製造方法では、シュウ酸銀とオレイルアミンとを反応させて錯化合物を生成した後、この錯化合物を加熱分解させることによって、アミンで保護された平均粒径1nm〜50nm、特に5nm〜20nmのオーダーで、粒径の揃った高分散性の銀超微粒子を高収率で得ることができる。また、極めて単純なプロセスで生成することができる。   As described above, in the production method of the present invention, a complex compound is formed by reacting silver oxalate and oleylamine, and then the complex compound is thermally decomposed to thereby have an average particle size of 1 nm to 50 nm protected with amine. In particular, highly dispersible silver ultrafine particles having a uniform particle diameter can be obtained in a high yield on the order of 5 nm to 20 nm. Further, it can be generated by a very simple process.

以下に、実施例として銀超微粒子の製造方法及びその評価を示すが、本発明はこれに限定されるものではない。
[実施例1]
オレイルアミン21.40g(80mmol)をメタノール10mlと混合し、この混合溶液にシュウ酸銀3.038g(10mmol)を添加し、さらに水2mlを添加し室温で12時間攪拌してシュウ酸銀を溶解させた。このとき得られた生成物はFT-IRを用いた解析により、銀とシュウ酸イオンとオレイルアミンとを含む錯化合物であることを確認した。その後、エバポレータを使用して40℃下でメタノールを除去し、次いで、150℃に加熱して1時間攪拌させると、褐色の液体が得られた。これにヘキサン30mlを加えて約30分攪拌し、遠心分離機で分離させ上澄みを濾過した。この操作を3回繰り返した。さらに、エバポレータを使用して45℃でヘキサンを除去した後、メタノール20mlを加えて遠心分離機で分離させ上澄みを除去した。この操作も3回繰り返し、その後、減圧乾燥により生成物として粉末を得た。得られた粉末について以下のような解析及び評価を行った。
In the following, production methods of silver ultrafine particles and evaluation thereof will be shown as examples, but the present invention is not limited thereto.
[Example 1]
21.40 g (80 mmol) of oleylamine was mixed with 10 ml of methanol, 3.038 g (10 mmol) of silver oxalate was added to this mixed solution, 2 ml of water was further added, and the mixture was stirred at room temperature for 12 hours to dissolve the silver oxalate. The product obtained at this time was confirmed to be a complex compound containing silver, oxalate ion and oleylamine by analysis using FT-IR. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour to obtain a brown liquid. 30 ml of hexane was added thereto, and the mixture was stirred for about 30 minutes, separated by a centrifuge, and the supernatant was filtered. This operation was repeated three times. Furthermore, after removing hexane at 45 ° C. using an evaporator, 20 ml of methanol was added and separated by a centrifuge to remove the supernatant. This operation was also repeated three times, and then powder was obtained as a product by drying under reduced pressure. The obtained powder was analyzed and evaluated as follows.

[解析及び評価]
得られた粉末について、X線回折計((株)リガク製ミニフレックス)により解析を行ったところ、X線回折パターンから金属銀が生成されていることを確認した。また、走査透過電子顕微鏡(日本電子(株)製STEM)による観察を行い、SEM像を図1(a)に示した。
図1(a)から明らかなように得られた粉末は球状で平均粒径が11.4nmの粒度の揃った単分散超微粒子からなるものであった。収率は66.7%であった。また、IR分析によりオレイルアミンが被着していることを確認した。
[Analysis and evaluation]
The obtained powder was analyzed with an X-ray diffractometer (Miniflex, manufactured by Rigaku Corporation), and it was confirmed that metallic silver was generated from the X-ray diffraction pattern. Further, observation with a scanning transmission electron microscope (STEM manufactured by JEOL Ltd.) was performed, and an SEM image was shown in FIG.
As apparent from FIG. 1 (a), the obtained powder was composed of monodispersed ultrafine particles having a spherical shape and an average particle size of 11.4 nm. The yield was 66.7%. Further, it was confirmed by IR analysis that oleylamine was deposited.

[実施例2]
オレイルアミン5.35g(20mmol)とオクチルアミン2.58g(20mmol)をメタノール5mlと混合し、この混合溶液にシュウ酸銀1.519g(5mmol)を添加し、さらに水1mlを添加して室温で2時間攪拌して銀、シュウ酸イオン、オレイルアミン及びオクチルアミンを含む錯化合物を生成させ完全に溶解させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が12.0nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は93.2%であった。
[Example 2]
5.35 g (20 mmol) of oleylamine and 2.58 g (20 mmol) of octylamine are mixed with 5 ml of methanol. To this mixed solution is added 1.519 g (5 mmol) of silver oxalate, and 1 ml of water is further added, followed by stirring at room temperature for 2 hours. Thus, a complex compound containing silver, oxalate ion, oleylamine and octylamine was produced and completely dissolved. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 12.0 nm and protected with an amine. The yield was 93.2%.

[実施例3]
オレイルアミン3.57g(13.3mmol)とオクチルアミン3.45g(26.7mmol)をメタノール5mlと混合し、この混合溶液にシュウ酸銀1.519g(5mmol)を添加し、さらに水1mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が12.7nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は82.1%であった。
[Example 3]
3.57 g (13.3 mmol) of oleylamine and 3.45 g (26.7 mmol) of octylamine are mixed with 5 ml of methanol, 1.519 g (5 mmol) of silver oxalate is added to this mixed solution, and 1 ml of water is further added for 2 hours at room temperature. Stirring to form a complex compound. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 12.7 nm and protected with an amine. The yield was 82.1%.

[実施例4]
オレイルアミン5.35g(20mmol)とヘキシルアミン2.02g(20mmol)をメタノール5mlと混合し、この混合溶液にシュウ酸銀1.519g(5mmol)を添加し、さらに水1mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が12.5nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は87.8%であった。
[Example 4]
5.35 g (20 mmol) of oleylamine and 2.02 g (20 mmol) of hexylamine are mixed with 5 ml of methanol. To this mixed solution is added 1.519 g (5 mmol) of silver oxalate, and 1 ml of water is further added, followed by stirring at room temperature for 2 hours. A complex compound was formed. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 12.5 nm and protected with an amine. The yield was 87.8%.

以上の実施例1〜実施例4の結果から、シュウ酸銀と、オレイルアミンを用いることによって粒径の小さなナノメートルオーダーの銀超微粒子を得ることができ、また、粒度分布も狭いことがわかる。また、実施例1〜実施例4のいずれの製造方法においても66〜93%の高い収率でシュウ酸銀から銀超微粒子が得られることが認められる。特に、実施例2〜実施例4に示すように、オレイルアミンに加えて飽和脂肪族アミンを用いることによって、短時間で容易に錯化合物を生成することができ、実施例1よりも収率の高い銀超微粒子を得られることが明らかである。   From the results of Examples 1 to 4 described above, it can be seen that by using silver oxalate and oleylamine, nanometer-order silver ultrafine particles having a small particle size can be obtained, and the particle size distribution is also narrow. In any of the production methods of Examples 1 to 4, it is recognized that silver ultrafine particles can be obtained from silver oxalate with a high yield of 66 to 93%. In particular, as shown in Examples 2 to 4, by using a saturated aliphatic amine in addition to oleylamine, a complex compound can be easily formed in a short time, and the yield is higher than that of Example 1. It is clear that silver ultrafine particles can be obtained.

[実施例5]
シュウ酸銀3.038g(10mmol)に対してメタノールに溶解した0.08gのオクチルアミンを混合し45℃で乾燥して、オクチルアミンを被着したシュウ酸銀を得た。次いで、このオクチルアミンを被着したシュウ酸銀をオレイルアミン16.1g(60mmol)とメタノール10mlの混合溶液に添加し、さらに水2mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が10.7nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は81.8%であった。
[Example 5]
0.038 g octylamine dissolved in methanol was mixed with 3.038 g (10 mmol) of silver oxalate and dried at 45 ° C. to obtain silver oxalate coated with octylamine. Next, silver oxalate coated with octylamine was added to a mixed solution of 16.1 g (60 mmol) of oleylamine and 10 ml of methanol, and 2 ml of water was further added and stirred at room temperature for 2 hours to form a complex compound. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 10.7 nm and protected with an amine. The yield was 81.8%.

[実施例6]
シュウ酸アンモニウム一水和物1.34g(9.6mmol)と炭酸アンモニウム0.04g(0.4mmol)を50mlの水に溶かした水溶液に、硝酸銀3.38g(20mmol)を50mlの水に溶かした水溶液を添加して反応させた後、乾燥してシュウ酸イオンの一部(約4mol%)が、炭酸イオンで置換されたシュウ酸銀を得た。その後、オレイルアミン21.4g(80mmol)とメタノール5mlの混合溶液に上述のシュウ酸イオンの一部が炭酸イオンで置換されたシュウ酸銀を添加し、さらに水2mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。
その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が10.3nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は82.3%であった。
[Example 6]
To an aqueous solution in which 1.34 g (9.6 mmol) of ammonium oxalate monohydrate and 0.04 g (0.4 mmol) of ammonium carbonate were dissolved in 50 ml of water, an aqueous solution in which 3.38 g (20 mmol) of silver nitrate was dissolved in 50 ml of water was added. After the reaction, drying was performed to obtain silver oxalate in which a part of oxalate ions (about 4 mol%) was substituted with carbonate ions. Thereafter, silver oxalate in which a part of the oxalate ion is replaced with carbonate ion is added to a mixed solution of 21.4 g (80 mmol) of oleylamine and 5 ml of methanol, and further 2 ml of water is added and stirred at room temperature for 2 hours. A complex compound was formed. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour.
The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 10.3 nm and protected with an amine. The yield was 82.3%.

[実施例7]
上記実施例6のシュウ酸イオンの一部が炭酸イオンで置換されたシュウ酸銀に、オクチルアミン0.08gのメタノール溶液を混合し45℃で乾燥してオクチルアミンを被着したシュウ酸銀を得た。次いで、このオクチルアミンを被着したシュウ酸銀をオレイルアミン21.4g(80mmol)とメタノール10mlの混合溶液に添加し、さらに水2mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌させた。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンで保護された粒径が11.2nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は83.4%であった。
[Example 7]
Silver oxalate in which 0.08 g of octylamine was mixed with a silver oxalate in which a part of the oxalate ion in Example 6 was substituted with carbonate ion was dried at 45 ° C. to obtain silver oxalate coated with octylamine. It was. Next, silver oxalate coated with octylamine was added to a mixed solution of 21.4 g (80 mmol) of oleylamine and 10 ml of methanol, and 2 ml of water was further added and stirred at room temperature for 2 hours to form a complex compound. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 11.2 nm and protected with an amine. The yield was 83.4%.

[実施例8]
オレイルアミン3.57g(13.3mmol)とオクチルアミン3.45g(26.7mmol)及びオレイン酸0.38g(オレイルアミンとオクチルアミンの総量に対して5.4重量%)をメタノール5mlと混合し、この混合溶液にシュウ酸銀1.519g(5mmol)を添加し、さらに水1mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンと脂肪酸とで保護された、粒径が12.9nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は92.3%であった。
[Example 8]
3.57 g (13.3 mmol) of oleylamine, 3.45 g (26.7 mmol) of octylamine and 0.38 g of oleic acid (5.4% by weight based on the total amount of oleylamine and octylamine) were mixed with 5 ml of methanol, and 1.519 silver oxalate was added to this mixed solution. g (5 mmol) was added, 1 ml of water was further added, and the mixture was stirred at room temperature for 2 hours to form a complex compound. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 12.9 nm and protected with an amine and a fatty acid. . The yield was 92.3%.

[実施例9]
オレイルアミン3.57g(13.3mmol)とオクチルアミン3.45g(26.7mmol)及びノナン酸0.38g(オレイルアミンとオクチルアミンの総量に対して5.4重量%)をメタノール5mlと混合し、この混合溶液にシュウ酸銀1.519g(5mmol)を添加し、さらに水1mlを添加して室温で2時間攪拌し、錯化合物を生成させた。その後、エバポレータを使用して40℃でメタノールを除去し、次いで、150℃に加熱して1時間攪拌した。その後の精製工程は上記実施例1と同様に行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、アミンと脂肪酸とで保護された、粒径が13.5nmの粒度の揃った球状の単分散超微粒子からなるものであった。収率は91.2%であった。
[Example 9]
3.57 g (13.3 mmol) of oleylamine, 3.45 g (26.7 mmol) of octylamine and 0.38 g of nonanoic acid (5.4% by weight based on the total amount of oleylamine and octylamine) were mixed with 5 ml of methanol, and 1.519 silver oxalate was added to this mixed solution. g (5 mmol) was added, 1 ml of water was further added, and the mixture was stirred at room temperature for 2 hours to form a complex compound. Thereafter, methanol was removed at 40 ° C. using an evaporator, and then the mixture was heated to 150 ° C. and stirred for 1 hour. The subsequent purification step was performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was composed of spherical monodispersed ultrafine particles having a particle size of 13.5 nm and protected with an amine and a fatty acid. . The yield was 91.2%.

[比較例1]
オクチルアミン13.4g(80mmol)とメタノール10mlの混合溶液にシュウ酸銀3.038g(10mmol)を添加し、さらに水2mlを添加し2時間攪拌した。その後、実施例1と同様にして加熱攪拌及び精製工程を行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行った。
図1(b)に得られた粉末のSEM像を示した。また、得られた粉末は、平均一次粒径12.8nmの粒度にばらつきのある微粒子の凝集体であり、収率は91.4%であった。
[Comparative Example 1]
To a mixed solution of 13.4 g (80 mmol) of octylamine and 10 ml of methanol, 3.038 g (10 mmol) of silver oxalate was added, and further 2 ml of water was added and stirred for 2 hours. Thereafter, heating and stirring and purification steps were performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1.
FIG. 1 (b) shows the SEM image of the obtained powder. Further, the obtained powder was an aggregate of fine particles having an average primary particle diameter of 12.8 nm and varied in particle size, and the yield was 91.4%.

[比較例2]
ヘキシルアミン8.08g(80mmol)とメタノール10mlの混合溶液にシュウ酸銀3.038g(10mmol)を添加し、さらに水2mlを添加し2時間攪拌した。その後、実施例1と同様にして加熱攪拌及び精製工程を行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、平均一次粒径24.6nmの粒度にばらつきのある微粒子の凝集体であり、収率は92.8%であった。
[Comparative Example 2]
To a mixed solution of hexylamine 8.08 g (80 mmol) and methanol 10 ml, 3.038 g (10 mmol) of silver oxalate was added, and further 2 ml of water was added and stirred for 2 hours. Thereafter, heating and stirring and purification steps were performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was an aggregate of fine particles having an average primary particle size of 24.6 nm and a variation in particle size, and the yield was 92.8%.

[比較例3]
150℃に加熱したオレイルアミン21.4g(80mmol)にシュウ酸銀3.038g(10mmol)を添加し混合した。このとき実施例1〜実施例7のように攪拌による溶解処理を行わなかった。FT-IRにより、錯化合物を形成していないことを確認した。その後、実施例1と同様にして加熱攪拌及び精製工程を行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行った。図1(c)に得られた粉末のSEM像を示した。また、得られた粉末は、平均一次粒径20.1nmで粒度にばらつきのある微粒子の凝集体であり、収率は60.2%であった。
[Comparative Example 3]
To 21.4 g (80 mmol) of oleylamine heated to 150 ° C., 3.038 g (10 mmol) of silver oxalate was added and mixed. At this time, the dissolution treatment by stirring was not performed as in Examples 1 to 7. It was confirmed by FT-IR that no complex compound was formed. Thereafter, heating and stirring and purification steps were performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. FIG. 1 (c) shows the SEM image of the obtained powder. Further, the obtained powder was an aggregate of fine particles having an average primary particle size of 20.1 nm and varying in particle size, and the yield was 60.2%.

[比較例4]
オレイン酸22.5g(80mmol)とメタノール10mlの混合溶液にシュウ酸銀3.038g(10mmol)を添加し、さらに水2mlを添加し2時間攪拌した。その後、実施例1と同様にして加熱攪拌及び精製工程を行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、平均一次粒径16.8nmで粒度にばらつきのある微粒子の凝集体であり、収率は94.8%であった。
[Comparative Example 4]
To a mixed solution of 22.5 g (80 mmol) of oleic acid and 10 ml of methanol, 3.038 g (10 mmol) of silver oxalate was added, and further 2 ml of water was added and stirred for 2 hours. Thereafter, heating and stirring and purification steps were performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was an aggregate of fine particles having an average primary particle size of 16.8 nm and a variation in particle size, and the yield was 94.8%.

[比較例5]
ステアリン酸22.8g(80mmol)とメタノール10mlの混合溶液にシュウ酸銀3.038g(10mmol)を添加し、さらに水2mlを添加し2時間攪拌した。その後、実施例1と同様にして加熱攪拌及び精製工程を行い、生成物として粉末を得た。得られた粉末について実施例1と同様の解析及び評価を行ったところ、平均一次粒径19.8nmで粒度にばらつきのある微粒子の凝集体であり、収率は95.2%であった。
[Comparative Example 5]
To a mixed solution of 22.8 g (80 mmol) of stearic acid and 10 ml of methanol, 3.038 g (10 mmol) of silver oxalate was added, and further 2 ml of water was added and stirred for 2 hours. Thereafter, heating and stirring and purification steps were performed in the same manner as in Example 1 to obtain a powder as a product. The obtained powder was analyzed and evaluated in the same manner as in Example 1. As a result, it was an aggregate of fine particles having an average primary particle size of 19.8 nm and a variation in particle size, and the yield was 95.2%.

(a)〜(c)は、それぞれ実施例1、比較例1及び比較例3において得られた銀超微粒子のSEM像である。(a)-(c) are the SEM images of the ultrafine silver particles obtained in Example 1, Comparative Example 1 and Comparative Example 3, respectively.

Claims (6)

シュウ酸銀と、オレイルアミンとを反応させて少なくとも銀とオレイルアミンとシュウ酸イオンとを含む錯化合物を生成し、
生成した前記錯化合物を加熱分解させて銀超微粒子を生成することを特徴とする銀超微粒子の製造方法。
Silver oxalate and oleylamine are reacted to form a complex compound containing at least silver, oleylamine and oxalate ion,
A method of producing ultrafine silver particles, wherein the complex compound thus produced is thermally decomposed to produce ultrafine silver particles.
前記シュウ酸銀と、前記オレイルアミンに加えて飽和脂肪族アミンを反応させて前記錯化合物を生成することを特徴とする請求項1に記載の銀超微粒子の製造方法。   The method for producing ultrafine silver particles according to claim 1, wherein the complex compound is produced by reacting the silver oxalate with a saturated aliphatic amine in addition to the oleylamine. 前記飽和脂肪族アミンの総炭素数は、1〜18であることを特徴とする請求項2に記載の銀超微粒子の製造方法。   The method for producing ultrafine silver particles according to claim 2, wherein the saturated aliphatic amine has 1 to 18 total carbon atoms. 前記飽和脂肪族アミンの少なくとも一部が前記シュウ酸銀に被着していることを特徴とする請求項2又は3に記載の銀超微粒子の製造方法。   The method for producing ultrafine silver particles according to claim 2 or 3, wherein at least a part of the saturated aliphatic amine is deposited on the silver oxalate. 前記シュウ酸銀と前記オレイルアミン、または前記シュウ酸銀と前記オレイルアミンと前記飽和脂肪族アミンを、脂肪酸の存在下で反応させて前記錯化合物を生成することを特徴とする請求項1〜4のいずれか一項に記載の銀超微粒子の製造方法。 5. The complex compound is produced by reacting the silver oxalate and the oleylamine, or the silver oxalate, the oleylamine, and the saturated aliphatic amine in the presence of a fatty acid. The method for producing ultrafine silver particles according to claim 1. 前記シュウ酸銀のシュウ酸イオンの20モル%以下が、炭酸イオン、硝酸イオン、酸化物イオンの少なくともいずれか一種以上で置換されていることを特徴とする請求項1〜5のいずれか一項に記載の銀超微粒子の製造方法。   The oxalate ion of 20 mol% or less of the silver oxalate is substituted with at least one of carbonate ion, nitrate ion, and oxide ion. A method for producing the ultrafine silver particles described in 1.
JP2008120363A 2008-05-02 2008-05-02 Method for producing silver hyperfine particle Pending JP2009270146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120363A JP2009270146A (en) 2008-05-02 2008-05-02 Method for producing silver hyperfine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120363A JP2009270146A (en) 2008-05-02 2008-05-02 Method for producing silver hyperfine particle

Publications (1)

Publication Number Publication Date
JP2009270146A true JP2009270146A (en) 2009-11-19

Family

ID=41436964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120363A Pending JP2009270146A (en) 2008-05-02 2008-05-02 Method for producing silver hyperfine particle

Country Status (1)

Country Link
JP (1) JP2009270146A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115213A1 (en) * 2010-03-17 2011-09-22 新日鐵化学株式会社 Process for production of nickel nanoparticles
WO2011115214A1 (en) * 2010-03-17 2011-09-22 新日鐵化学株式会社 Nickel-cobalt nanoparticle and manufacturing method therefor
WO2011126706A2 (en) * 2010-04-09 2011-10-13 Henkel Corporation Printable materials and methods of manufacture thereof
JP2012069273A (en) * 2010-09-21 2012-04-05 Hitachi Chem Co Ltd Material for forming conductive film and method for forming conductive film using the same
WO2012105682A1 (en) * 2011-02-04 2012-08-09 国立大学法人山形大学 Coated metal microparticle and manufacturing method thereof
JP2013524021A (en) * 2010-04-12 2013-06-17 ソウルテハクサンハクヒョリョクタン Mass production method of silver nanoparticles having uniform size
WO2013115300A1 (en) * 2012-02-03 2013-08-08 国立大学法人山形大学 Method for inducing conductivity in films including metal microparticles
WO2013157514A1 (en) * 2012-04-16 2013-10-24 ダイソー株式会社 Electroconductive ink composition
WO2014021461A1 (en) * 2012-08-02 2014-02-06 国立大学法人山形大学 Process for producing covered silver fine particles and covered silver fine particles produced by said process
JP2014031542A (en) * 2012-08-02 2014-02-20 Yamagata Univ Method for manufacturing coated silver particulates and coated silver particulates manufactured by the same manufacturing method
JP2014034690A (en) * 2012-08-07 2014-02-24 Daicel Corp Method for manufacturing silver nano particle, and silver nano particle
JP2014040630A (en) * 2012-08-21 2014-03-06 Yamagata Univ Method for manufacturing coated silver particulates and coated silver particulates manufactured by the same manufacturing method
JP2014118587A (en) * 2012-12-14 2014-06-30 Tanaka Kikinzoku Kogyo Kk Silver precursor for manufacturing silver compound and its manufacturing method, and manufacturing method of silver compound
JP2014194057A (en) * 2013-03-29 2014-10-09 Kyocera Chemical Corp Method for producing silver fine grain, and silver fine grain
WO2015025837A1 (en) * 2013-08-21 2015-02-26 ダイソー株式会社 Method for continuously producing metal nanoparticles
WO2015122430A1 (en) * 2014-02-13 2015-08-20 ダイソー株式会社 Method for producing metal nanoparticles
WO2016204105A1 (en) * 2015-06-15 2016-12-22 株式会社大阪ソーダ Composition for manufacturing metal nanoparticles
JP2017101330A (en) * 2017-01-25 2017-06-08 株式会社ダイセル Method for producing silver nanoparticles, and silver nanoparticles
US20180168037A1 (en) * 2012-01-11 2018-06-14 National University Corporation Yamagata University Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635664B1 (en) * 2010-03-17 2016-07-01 신닛테츠 수미킨 가가쿠 가부시키가이샤 Process for production of nickel nanoparticles
WO2011115214A1 (en) * 2010-03-17 2011-09-22 新日鐵化学株式会社 Nickel-cobalt nanoparticle and manufacturing method therefor
US8986422B2 (en) 2010-03-17 2015-03-24 Nippon Steel & Sumikin Chemical Co., Ltd. Method for producing nickel nanoparticles
JP5706881B2 (en) * 2010-03-17 2015-04-22 新日鉄住金化学株式会社 Method for producing nickel nanoparticles
CN102811829B (en) * 2010-03-17 2015-08-05 新日铁住金化学株式会社 Nickel-cobalt nanometer particle and manufacture method thereof
CN102811829A (en) * 2010-03-17 2012-12-05 新日铁化学株式会社 Nickel-cobalt nanoparticle and manufacturing method therefor
KR20120135403A (en) * 2010-03-17 2012-12-13 신닛테츠 수미킨 가가쿠 가부시키가이샤 Process for production of nickel nanoparticles
CN102892533A (en) * 2010-03-17 2013-01-23 新日铁化学株式会社 Process for production of nickel nanoparticles
WO2011115213A1 (en) * 2010-03-17 2011-09-22 新日鐵化学株式会社 Process for production of nickel nanoparticles
WO2011126706A2 (en) * 2010-04-09 2011-10-13 Henkel Corporation Printable materials and methods of manufacture thereof
WO2011126706A3 (en) * 2010-04-09 2012-02-23 Henkel Corporation Printable materials and methods of manufacture thereof
JP2013524021A (en) * 2010-04-12 2013-06-17 ソウルテハクサンハクヒョリョクタン Mass production method of silver nanoparticles having uniform size
JP2012069273A (en) * 2010-09-21 2012-04-05 Hitachi Chem Co Ltd Material for forming conductive film and method for forming conductive film using the same
US9490044B2 (en) 2011-02-04 2016-11-08 Yamagata University Coated metal fine particle and manufacturing method thereof
US10071426B2 (en) 2011-02-04 2018-09-11 Yamagata University Coated metal fine particle and manufacturing method thereof
JP2012162767A (en) * 2011-02-04 2012-08-30 Yamagata Univ Coated metal microparticle and manufacturing method thereof
WO2012105682A1 (en) * 2011-02-04 2012-08-09 国立大学法人山形大学 Coated metal microparticle and manufacturing method thereof
US20180168037A1 (en) * 2012-01-11 2018-06-14 National University Corporation Yamagata University Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
WO2013115300A1 (en) * 2012-02-03 2013-08-08 国立大学法人山形大学 Method for inducing conductivity in films including metal microparticles
JPWO2013157514A1 (en) * 2012-04-16 2015-12-21 ダイソー株式会社 Conductive ink composition
WO2013157514A1 (en) * 2012-04-16 2013-10-24 ダイソー株式会社 Electroconductive ink composition
US9481804B2 (en) 2012-04-16 2016-11-01 Osaka Soda Co., Ltd. Electroconductive ink composition
JP2014031542A (en) * 2012-08-02 2014-02-20 Yamagata Univ Method for manufacturing coated silver particulates and coated silver particulates manufactured by the same manufacturing method
WO2014021461A1 (en) * 2012-08-02 2014-02-06 国立大学法人山形大学 Process for producing covered silver fine particles and covered silver fine particles produced by said process
KR102098424B1 (en) * 2012-08-02 2020-04-07 국립대학법인 야마가타대학 Process for producing covered silver fine particles and covered silver fine particles produced by said process
EP2881198A4 (en) * 2012-08-02 2016-08-03 Nat Univ Corp Yamagata Univ Process for producing covered silver fine particles and covered silver fine particles produced by said process
KR20150038340A (en) * 2012-08-02 2015-04-08 국립대학법인 야마가타대학 Process for producing covered silver fine particles and covered silver fine particles produced by said process
JP2014034690A (en) * 2012-08-07 2014-02-24 Daicel Corp Method for manufacturing silver nano particle, and silver nano particle
JP2014040630A (en) * 2012-08-21 2014-03-06 Yamagata Univ Method for manufacturing coated silver particulates and coated silver particulates manufactured by the same manufacturing method
JP2014118587A (en) * 2012-12-14 2014-06-30 Tanaka Kikinzoku Kogyo Kk Silver precursor for manufacturing silver compound and its manufacturing method, and manufacturing method of silver compound
JP2014194057A (en) * 2013-03-29 2014-10-09 Kyocera Chemical Corp Method for producing silver fine grain, and silver fine grain
TWI635511B (en) * 2013-08-21 2018-09-11 日商大阪曹達股份有限公司 Method for continuously making metallic nano particles, metallic nano particles, and manufacturing device
WO2015025837A1 (en) * 2013-08-21 2015-02-26 ダイソー株式会社 Method for continuously producing metal nanoparticles
JPWO2015025837A1 (en) * 2013-08-21 2017-03-02 株式会社大阪ソーダ Continuous production method of metal nanoparticles
CN105992663A (en) * 2014-02-13 2016-10-05 株式会社大阪曹达 Method for producing metal nanoparticles
JPWO2015122430A1 (en) * 2014-02-13 2017-03-30 株式会社大阪ソーダ Method for producing metal nanoparticles
TWI634165B (en) * 2014-02-13 2018-09-01 日商大阪曹達股份有限公司 Method for producing metal nano particle
KR20160120716A (en) * 2014-02-13 2016-10-18 가부시키가이샤 오사카소다 Method for producing metal nanoparticles
WO2015122430A1 (en) * 2014-02-13 2015-08-20 ダイソー株式会社 Method for producing metal nanoparticles
KR102260398B1 (en) * 2014-02-13 2021-06-02 가부시키가이샤 오사카소다 Method for producing metal nanoparticles
CN107614164A (en) * 2015-06-15 2018-01-19 株式会社大阪曹达 Metallic nano-particle manufacture composition
WO2016204105A1 (en) * 2015-06-15 2016-12-22 株式会社大阪ソーダ Composition for manufacturing metal nanoparticles
TWI702262B (en) * 2015-06-15 2020-08-21 日商大阪曹達股份有限公司 Composition for manufacturing metal nanoparticle
JP2017101330A (en) * 2017-01-25 2017-06-08 株式会社ダイセル Method for producing silver nanoparticles, and silver nanoparticles

Similar Documents

Publication Publication Date Title
JP4978242B2 (en) Method for producing silver ultrafine particles
JP2009270146A (en) Method for producing silver hyperfine particle
JP6241908B2 (en) Coated fine metal particles and production method thereof
JP6297135B2 (en) Copper nanoparticles and method for producing the same, copper nanoparticle dispersion, copper nanoink, method for storing copper nanoparticles, and method for sintering copper nanoparticles
KR100956505B1 (en) Method of fabricating carbon particle/copper composites
JP2008198595A (en) Metal particulate ink paste and organic acid treated metal particulate
JP5975440B2 (en) Method for producing coated silver fine particles and coated silver fine particles produced by the production method
JP5712635B2 (en) Silver-containing composition
KR20150006091A (en) Inks containing metal precursors nanoparticles
JP2008176951A (en) Silver-based particulate ink paste
TWI716526B (en) Nickel powder
TWI702262B (en) Composition for manufacturing metal nanoparticle
JP4839689B2 (en) Silver ultrafine particle production method, silver powder, and silver ultrafine particle dispersion
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
WO2014013557A1 (en) Silver-containing composition, and base for use in formation of silver element
TWI701683B (en) Nickel powder and nickel paste
WO2012053456A1 (en) Process for manufacturing copper hydride fine particle dispersion, electroconductive ink, and process for manufaturing substrate equipped with conductor
JP2005281781A (en) Method for producing copper nanoparticle
JP6414085B2 (en) Method for producing metal nanoparticles
TWI813559B (en) Nickel powder and nickel paste
JP5957187B2 (en) Method for producing metal fine particles
KR101096059B1 (en) Method for manufacturing of copper nanopowders
JP2009062611A (en) Metal fine particle material, dispersion liquid of metal fine particle material, conductive ink containing the dispersion liquid, and their manufacturing methods
JP2013001954A (en) Method for producing metal fine particle