TWI702262B - Composition for manufacturing metal nanoparticle - Google Patents

Composition for manufacturing metal nanoparticle Download PDF

Info

Publication number
TWI702262B
TWI702262B TW105118451A TW105118451A TWI702262B TW I702262 B TWI702262 B TW I702262B TW 105118451 A TW105118451 A TW 105118451A TW 105118451 A TW105118451 A TW 105118451A TW I702262 B TWI702262 B TW I702262B
Authority
TW
Taiwan
Prior art keywords
composition
metal nanoparticle
metal
oxalate
acid
Prior art date
Application number
TW105118451A
Other languages
Chinese (zh)
Other versions
TW201710416A (en
Inventor
川村謙輔
森崇充
Original Assignee
日商大阪曹達股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商大阪曹達股份有限公司 filed Critical 日商大阪曹達股份有限公司
Publication of TW201710416A publication Critical patent/TW201710416A/en
Application granted granted Critical
Publication of TWI702262B publication Critical patent/TWI702262B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties

Abstract

本發明係藉由將包含(A)草酸金屬鹽、(B)胺化合物及(C)羥基脂肪酸之金屬奈米微粒子製造用組合物供於加熱反應而獲得金屬奈米微粒子。該金屬奈米微粒子係容易分散於極性溶劑或極性溶劑之比率較高之溶劑混合物中者。 In the present invention, a metal nanoparticle production composition containing (A) a metal oxalate salt, (B) an amine compound, and (C) a hydroxy fatty acid is subjected to a heating reaction to obtain metal nanoparticle. The metal nanoparticle is easily dispersed in a polar solvent or a solvent mixture with a higher ratio of polar solvents.

Description

金屬奈米微粒子製造用組合物 Composition for manufacturing metal nanoparticle

本發明係關於一種用以製造作為電子零件之配線形成等所使用之導電膏或導電性油墨之材料之金屬奈米微粒子的組合物。 The present invention relates to a composition for producing metal nanoparticle as a material for conductive paste or conductive ink used in wiring formation of electronic parts.

近年來,「印刷電子技術」係作為下一代之產業基礎而受到關注,該「印刷電子技術」係代替先前之鍍敷法或蒸鍍-光微影法之新穎之電路形成(圖案化)方法,且係藉由印刷而直接形成電路之技術。該技術係使用導電膏或導電性油墨而於基板形成所需之電路圖案者,可廣泛地應用於自薄膜電晶體、電阻、電感器、電容器等基礎之電路零件直至電池、顯示器、感測器、RFID(Radio Frequency Identification,射頻識別)、太陽電池等多種應用製品。期待藉由採用印刷電子技術,而電子裝置相關製品之製造步驟明顯地變得簡便,時間得到縮短,而促進節約資源及節能。 In recent years, "printed electronic technology" has attracted attention as the next-generation industrial foundation. This "printed electronic technology" is a novel circuit formation (patterning) method that replaces the previous plating method or vapor deposition-photolithography method. , And it is a technology that directly forms circuits by printing. This technology uses conductive paste or conductive ink to form the required circuit pattern on the substrate. It can be widely used from basic circuit parts such as thin film transistors, resistors, inductors, capacitors, to batteries, displays, and sensors. , RFID (Radio Frequency Identification, radio frequency identification), solar cells and other applications. It is expected that by using printed electronic technology, the manufacturing steps of electronic device-related products will be significantly simplified, the time will be shortened, and resources and energy conservation will be promoted.

於印刷電子技術中,可使用玻璃基材及聚合物膜中之任一者,但為了可自廣範圍選擇基板材料,而謀求開發一種可藉由相對低溫下之熱處理而獲得充分之導電性、與基材之密接性之導電膏或導電性油墨。 In printed electronics technology, either glass substrate or polymer film can be used. However, in order to be able to select substrate materials from a wide range, it is sought to develop a method that can obtain sufficient conductivity by heat treatment at a relatively low temperature. Conductive paste or conductive ink for adhesion to the substrate.

包含奈米尺寸之金屬奈米微粒子之導電膏或導電性油墨有望被視為滿足該要求之材料。尤其是貴金屬之奈米微粒子具有較高之導電性,且其熔融溫度因由表面能量之增大引起之奈米尺寸效果而較塊狀金屬明顯降低。 Conductive pastes or conductive inks containing nano-sized metal nano particles are expected to be considered as materials that meet this requirement. In particular, nano-particles of precious metals have higher conductivity, and their melting temperature is significantly lower than that of bulk metals due to the nano-size effect caused by the increase in surface energy.

然而,平均粒徑較小之奈米微粒子會因表面能量之增加而變得不穩定,而容易凝聚,故而存在如下問題,即於製造奈米微粒子時及調配至各種導電性油墨或導電膏中後,奈米微粒子凝聚而產生固液分離。 However, nano-particles with a smaller average particle size become unstable due to the increase in surface energy and are prone to agglomerate. Therefore, there are problems in the production of nano-particles and blending into various conductive inks or conductive pastes. Then, the nano-particles aggregate to cause solid-liquid separation.

為了解決該問題,而提出以各種保護層被覆奈米微粒子。關於保護層,要求其於導電膏或導電性油墨中穩定地與金屬奈米微粒子結合而防止微粒子之凝聚,並且容易藉由電路形成時之燒結而自金屬奈米微粒子表面脫離。 In order to solve this problem, it has been proposed to coat the nano particles with various protective layers. Regarding the protective layer, it is required to stably bond with the metal nanoparticle in a conductive paste or conductive ink to prevent aggregation of the particle, and to be easily detached from the surface of the metal nanoparticle by sintering during circuit formation.

例如,專利文獻1告知有如下情況:藉由使包含草酸銀、沸點為100~250℃之烷基胺、及沸點為100~250℃之烷基二胺之組合物進行加熱反應而獲得之被覆金屬奈米微粒子於保存中難以凝聚,且容易藉由低溫燒結而脫離(段落0022)。 For example, Patent Document 1 discloses the following: a coating obtained by heating a composition containing silver oxalate, an alkylamine with a boiling point of 100 to 250°C, and an alkyl diamine with a boiling point of 100 to 250°C Metal nano particles are difficult to aggregate during storage and are easily detached by low-temperature sintering (paragraph 0022).

又,專利文獻2告知有如下情況:藉由於醇系溶劑中且於碳數8以上之脂肪酸及碳數8以上之脂肪族胺之共存下使不溶於醇系溶劑之金屬鹽還原而獲得的被覆金屬奈米微粒子其燒結後之微粒子表面之脂肪族胺之殘存較少(段落0010)。 In addition, Patent Document 2 reports that a coating obtained by reducing a metal salt insoluble in an alcohol-based solvent in the coexistence of a fatty acid with a carbon number of 8 or more and an aliphatic amine with a carbon number of 8 or more in an alcohol-based solvent The aliphatic amine on the surface of the metal nanoparticle after sintering is less (paragraph 0010).

作為金屬鹽,使用金屬之碳酸鹽、氫氧化鹽、硫酸鹽等(實施例)。 As the metal salt, metal carbonate, hydroxide, sulfate, etc. are used (Examples).

作為碳數8以上之脂肪酸,例示有油酸、辛酸、癸酸、十二酸、硬脂酸等(段落0030)。 Examples of fatty acids having a carbon number of 8 or more include oleic acid, caprylic acid, capric acid, dodecanoic acid, and stearic acid (paragraph 0030).

又,告知有如下情況:於向包含所獲得之被覆金屬奈米微粒子之膏劑中調配羥基脂肪酸之情形時,由於存在羥基脂肪酸之親水基與疏水基,而容易使被覆金屬奈米微粒子分散於膏劑中(段落0046)。 In addition, it is reported that when hydroxy fatty acid is blended into a paste containing the obtained coated metal nanoparticle, the presence of the hydrophilic and hydrophobic groups of the hydroxy fatty acid makes it easy to disperse the coated metal nanoparticle in the paste. Medium (paragraph 0046).

然而,利用該等方法而獲得之金屬奈米微粒子之保護層雖與金屬奈米粒子之結合性優異,但疏水性較強,因此向包含極性溶劑之油墨或膏劑之分散性較差。 However, although the protective layer of the metal nanoparticle obtained by these methods has excellent binding properties to the metal nanoparticle, it is highly hydrophobic, and therefore has poor dispersibility to inks or pastes containing polar solvents.

例如,於導電性油墨或導電膏包含聚合物之情形時,為了可自廣範圍選擇聚合物,而謀求一種亦容易分散於極性溶劑中之金屬奈米微粒子。又,例如噴墨用油墨使用極性較高之溶劑,因此謀求一種亦容易分散於極性溶劑中之金屬奈米微粒子。 For example, when the conductive ink or the conductive paste contains a polymer, in order to be able to select a polymer from a wide range, a metal nanoparticle that can be easily dispersed in a polar solvent is sought. In addition, for example, inkjet inks use solvents with a relatively high polarity, so there is a need for metal nano particles that can be easily dispersed in polar solvents.

關於該方面,專利文獻3揭示有對包含硝酸銀與油胺之組合物進行加熱而獲得被覆銀微粒子後,對包含該被覆銀微粒子與作為羥酸之一種之蓖麻油酸之組合物進行加溫而置換保護層之方法(實施例4),且告知有如下情況:藉由上述方法,可獲得向TEXANOL或松脂醇等極性有機溶劑之分散性良好之被覆銀微粒子(段落0007)。 In this regard, Patent Document 3 discloses heating a composition containing silver nitrate and oleylamine to obtain coated silver microparticles, and then heating a composition containing the coated silver microparticles and ricinoleic acid, which is one of hydroxy acids. The method of replacing the protective layer (Embodiment 4), and it is reported that there are cases where the above method can obtain coated silver particles with good dispersibility to polar organic solvents such as TEXANOL or pinoresinol (paragraph 0007).

然而,利用專利文獻3之方法所獲得之被覆銀微粒子向極性溶劑之分散性於實用上並不充分。 However, the dispersibility of the coated silver particles obtained by the method of Patent Document 3 in the polar solvent is not sufficient for practical use.

[先前技術文獻] [Prior Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]日本專利第5574761號公報 [Patent Document 1] Japanese Patent No. 5574761

[專利文獻2]日本專利特開2012-46779號公報 [Patent Document 2] Japanese Patent Laid-Open No. 2012-46779

[專利文獻3]日本專利特開2013-151753號公報 [Patent Document 3] Japanese Patent Laid-Open No. 2013-151753

本發明之課題在於提供一種可藉由加熱反應而獲得容易分散於極性溶劑或極性溶劑之比率較高之溶劑混合物中之金屬奈米微粒子的組合物。 The subject of the present invention is to provide a composition capable of obtaining metal nanoparticle particles that are easily dispersed in a polar solvent or a solvent mixture with a higher ratio of polar solvents by heating reaction.

為了解決上述課題,本發明者反覆進行研究,發現:藉由使包含(A)草酸金屬鹽、(B)胺化合物及(C)羥基脂肪酸之組合物進行加熱反應而獲得之金屬奈米微粒子亦容易分散於醇系溶劑、酯系溶劑等極性較高之溶劑中。 In order to solve the above-mentioned problems, the inventors of the present invention have repeatedly studied and found that the metal nanoparticle obtained by heating a composition containing (A) oxalate metal salt, (B) amine compound and (C) hydroxy fatty acid is also Easily dispersed in solvents with high polarity such as alcohol solvents and ester solvents.

本發明係基於上述見解而完成者,且提供下述之金屬奈米微粒子製造用組合物、金屬奈米微粒子之製造方法、導電性油墨或導電膏、及配線或電極等。 The present invention has been completed based on the above findings, and provides the following composition for producing metal nanoparticle, a method for producing metal nanoparticle, conductive ink or paste, and wiring or electrode.

項1.一種金屬奈米微粒子製造用組合物,其包含(A)草酸金屬鹽、(B)胺化合物及(C)羥基脂肪酸。 Item 1. A composition for producing metal nanofine particles, comprising (A) a metal oxalate salt, (B) an amine compound, and (C) a hydroxy fatty acid.

項2.如項1記載之組合物,其中(C)羥基脂肪酸為選自由蓖麻油酸及12-羥基硬脂酸所組成之群中之至少1種。 Item 2. The composition according to Item 1, wherein the (C) hydroxy fatty acid is at least one selected from the group consisting of ricinoleic acid and 12-hydroxystearic acid.

項3.如項1或2記載之組合物,其中(A)草酸金屬鹽為草酸銀。 Item 3. The composition according to Item 1 or 2, wherein (A) the metal oxalate is silver oxalate.

項4.如項1至3中任一項記載之組合物,其中(B)胺化合物為一級胺之1種以上、二胺化合物之1種以上、或一級胺之1種以上與二胺化合物之1種以上之組合。 Item 4. The composition according to any one of items 1 to 3, wherein (B) the amine compound is one or more primary amines, one or more diamine compounds, or one or more primary amines and a diamine compound A combination of more than one.

項5.如項1至4中任一項記載之組合物,其中(C)羥基脂肪酸之含量相對於(A)草酸金屬鹽之1mol為0.001~1mol。 Item 5. The composition according to any one of items 1 to 4, wherein the content of (C) hydroxy fatty acid is 0.001 to 1 mol relative to 1 mol of (A) metal oxalate.

項6.如項1至5中任一項記載之組合物,其中(A)草酸金屬鹽之含量相對於組合物之總量為20~70重量%。 Item 6. The composition according to any one of items 1 to 5, wherein the content of (A) the oxalate metal salt is 20 to 70% by weight relative to the total amount of the composition.

項7.如項1至5中任一項記載之組合物,其中(B)胺化合物之含量相對於(A)草酸金屬鹽之1mol為0.4~10mol。 Item 7. The composition according to any one of items 1 to 5, wherein the content of the (B) amine compound is 0.4 to 10 mol relative to 1 mol of the (A) oxalate metal salt.

項8.一種金屬奈米微粒子之製造方法,其包括使如項1至7中任一項記載之組合物進行加熱反應之步驟。 Item 8. A method for producing metal nano-particles, comprising the step of subjecting the composition described in any one of items 1 to 7 to a heating reaction.

項9.如項8記載之方法,其中加熱反應溫度為50~240℃。 Item 9. The method according to Item 8, wherein the heating reaction temperature is 50 to 240°C.

項10.如項8或9記載之方法,其中金屬奈米微粒子之平均粒徑為10~200nm。 Item 10. The method according to Item 8 or 9, wherein the average particle diameter of the metal nanoparticle is 10 to 200 nm.

項11.一種導電性油墨或導電膏,其包含藉由如項8至10中任一項記載之方法而獲得之金屬奈米微粒子。 Item 11. A conductive ink or conductive paste comprising metal nanoparticle obtained by the method described in any one of items 8 to 10.

項12.一種導電性油墨或導電膏之製造方法,其包括:使如項1至7中任一項記載之組合物進行加熱反應而獲得金屬奈米微粒子之步 驟;與使該金屬奈米微粒子分散於包含極性有機溶劑之有機溶劑中之步驟。 Item 12. A method of producing conductive ink or conductive paste, comprising: subjecting the composition according to any one of items 1 to 7 to a heating reaction to obtain metal nanoparticle Step; and the step of dispersing the metal nanoparticle in an organic solvent containing a polar organic solvent.

項13.一種電路或電極,其係使用如項11記載之導電性油墨或導電膏而形成。 Item 13. A circuit or electrode formed by using the conductive ink or conductive paste described in Item 11.

項14.一種電路或電極之形成方法,其包括:使如項1至7中任一項記載之組合物進行加熱反應而獲得金屬奈米微粒子之步驟;使該金屬奈米微粒子分散於包含極性有機溶劑之有機溶劑中而獲得導電性油墨或導電膏之步驟;及使用該導電性油墨或導電膏而於基板上印刷電路或電極之步驟。 Item 14. A method for forming a circuit or an electrode, comprising: subjecting the composition according to any one of items 1 to 7 to a heating reaction to obtain metal nanoparticle; dispersing the metal nanoparticle in a polar The step of obtaining conductive ink or conductive paste in an organic solvent of organic solvent; and the step of using the conductive ink or conductive paste to print circuits or electrodes on a substrate.

項15.一種包含(A)草酸金屬鹽、(B)胺化合物及(C)羥基脂肪酸之組合物之用途,其係用以製造金屬奈米微粒子。 Item 15. Use of a composition comprising (A) oxalate metal salt, (B) amine compound, and (C) hydroxy fatty acid, which is used to produce metal nanoparticle.

項16.一種(A)草酸金屬鹽、(B)胺化合物及(C)羥基脂肪酸之組合用途,其係用以製造金屬奈米微粒子。 Item 16. A combined use of (A) oxalate metal salt, (B) amine compound and (C) hydroxy fatty acid, which is used to produce metal nanoparticle.

根據本發明,可獲得向極性溶劑之分散性優異之金屬奈米微粒子。又,該金屬奈米微粒子向先前通用作導電性油墨或導電膏之材料之疏水性溶劑之分散性亦優異。 According to the present invention, metal nano-particles with excellent dispersibility to polar solvents can be obtained. In addition, the metal nanoparticle has excellent dispersibility to hydrophobic solvents previously used as materials for conductive inks or conductive pastes.

又,該金屬奈米微粒子於導電性油墨或導電膏中保護層難以脫離,即保存性優異。 In addition, the metal nano particles are difficult to detach from the protective layer in the conductive ink or the conductive paste, that is, they have excellent storage properties.

圖1係表示實施例1、比較例4中所獲得之金屬微粒子之Tg(熱重量)測定之重量變化。 Fig. 1 shows the weight change measured by Tg (thermogravimetry) of the metal fine particles obtained in Example 1 and Comparative Example 4.

以下,詳細地說明本發明。 Hereinafter, the present invention will be explained in detail.

(1)金屬奈米微粒子製造用組合物(1) Composition for manufacturing metal nanoparticle

本發明之金屬奈米微粒子製造用組合物包含(A)草酸金屬鹽、(B) 胺化合物及(C)羥基脂肪酸。 The composition for producing metal nanoparticle of the present invention contains (A) metal oxalate, (B) Amine compounds and (C) hydroxy fatty acids.

(A)草酸金屬鹽(A) Metal Oxalate

作為草酸金屬鹽,可例示:草酸金、草酸銀、草酸銅、草酸鉑、草酸鈀、草酸鎳、草酸鋁等。其中,就藉由加熱反應而高效率地產生導電性優異之金屬奈米微粒子之方面而言,較佳為草酸銀、草酸銅,更佳為草酸銀。 Examples of the metal oxalate salt include gold oxalate, silver oxalate, copper oxalate, platinum oxalate, palladium oxalate, nickel oxalate, aluminum oxalate, and the like. Among them, in terms of efficiently producing metal nano-particles with excellent conductivity by the heating reaction, silver oxalate and copper oxalate are preferred, and silver oxalate is more preferred.

草酸金屬鹽可單獨使用1種,或組合2種以上使用。 The metal oxalate can be used singly or in combination of two or more.

組合物中之草酸金屬鹽之含量相對於組合物之總量,較佳為20重量%以上,更佳為25重量%以上,進而更佳為30重量%以上。若為該範圍,則藉由加熱反應而高效率地產生金屬奈米微粒子。 The content of the metal oxalate in the composition relative to the total composition is preferably 20% by weight or more, more preferably 25% by weight or more, and even more preferably 30% by weight or more. If it is in this range, metal nano-particles are efficiently generated by the heating reaction.

又,組合物中之草酸金屬鹽之含量相對於組合物之總量,較佳為70重量%以下,更佳為65重量%以下,進而更佳為60重量%以下。若為該範圍,則藉由加熱反應而高效率地產生金屬奈米微粒子。 Moreover, the content of the metal oxalate in the composition is preferably 70% by weight or less, more preferably 65% by weight or less, and still more preferably 60% by weight or less relative to the total amount of the composition. If it is in this range, metal nano-particles are efficiently generated by the heating reaction.

作為組合物中之草酸金屬鹽之含量,相對於組合物之總量,可列舉:20~70重量%、20~65重量%、20~60重量%、25~70重量%、25~65重量%、25~60重量%、30~70重量%、30~65重量%、30~60重量%等範圍。 As the content of the oxalate metal salt in the composition, relative to the total amount of the composition, it can be enumerated: 20~70% by weight, 20~65% by weight, 20~60% by weight, 25~70% by weight, 25~65% by weight %, 25-60% by weight, 30-70% by weight, 30-65% by weight, 30-60% by weight, etc.

(B)胺化合物(B) Amine compound

胺化合物只要為可與(A)草酸金屬鹽結合,且可於所產生之金屬奈米微粒子之表面上形成保護層者,則可無限制地使用。 The amine compound can be used without limitation as long as it can be combined with (A) the metal oxalate salt and can form a protective layer on the surface of the produced metal nanoparticle.

例如可例示:作為氨之3個氫原子中1個經直鏈、支鏈或環狀之烴取代之化合物的一級胺(b-1);氨之3個氫原子中2個以相同之方式經取代之二級胺(b-2);及氨之3個氫原子以相同之方式經取代之三級胺(b-3)。 For example, the primary amine (b-1) is a compound in which one of the three hydrogen atoms of ammonia is substituted by a linear, branched or cyclic hydrocarbon; two of the three hydrogen atoms of ammonia are in the same manner Substituted secondary amine (b-2); and tertiary amine in which three hydrogen atoms of ammonia are substituted in the same way (b-3).

其中,就與(A)草酸金屬鹽結合之能力較高,又,將使用有所獲得之金屬奈米微粒子之導電性油墨或導電膏塗佈於基板上後,容易藉 由相對低溫(例如,使用PET(polyethylene terephthalate,聚對苯二甲酸乙二酯)基板時所要求之120℃以下之溫度)下之熱處理而自金屬奈米微粒子表面脫離之方面而言,較佳為一級胺(b-1)。 Among them, the ability to bond with (A) oxalate metal salt is relatively high. Moreover, after coating the conductive ink or conductive paste using the obtained metal nanoparticle on the substrate, it is easy to use It is preferable in terms of heat treatment at a relatively low temperature (for example, a temperature below 120°C required when using a PET (polyethylene terephthalate) substrate) to detach from the surface of the metal nanoparticle It is a primary amine (b-1).

作為一級胺(b-1),可例示:乙胺、正丙胺、異丙胺、1,2-二甲基丙胺、正丁胺、異丁胺、第二丁胺、第三丁胺、異戊胺、第三戊胺、3-戊胺、正戊胺、正己胺、正庚胺、正辛胺、2-辛胺、第三辛胺、2-乙基己胺、正壬胺、正胺基癸烷、正胺基十一烷、正十二烷基胺、正十三烷基胺、2-十三烷基胺、正十四烷基胺、正十五烷基胺、正十六烷基胺、正十七烷基胺、正十八烷基胺、正油胺、3-甲氧基丙胺、3-乙氧基丙胺、3-丙氧基丙胺、3-異丙氧基丙胺、3-丁氧基丙胺、3-(2-乙基己氧基)丙胺、N-乙基-1,3-丙二胺、N-月桂基-丙二胺等具有直鏈或支鏈烴基之胺等。 Examples of primary amine (b-1) include ethylamine, n-propylamine, isopropylamine, 1,2-dimethylpropylamine, n-butylamine, isobutylamine, second butylamine, tertiary butylamine, and isoamylamine Amine, third pentylamine, 3-pentylamine, n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, 2-octylamine, third octylamine, 2-ethylhexylamine, n-nonylamine, n-amine Decane, n-aminoundecane, n-dodecylamine, n-tridecylamine, 2-tridecylamine, n-tetradecylamine, n-pentadecylamine, n-hexadecylamine Alkylamine, n-heptadecylamine, n-octadecylamine, n-oleylamine, 3-methoxypropylamine, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine , 3-butoxypropylamine, 3-(2-ethylhexyloxy)propylamine, N-ethyl-1,3-propanediamine, N-lauryl-propanediamine, etc. have straight or branched chain hydrocarbon groups The amine and so on.

又,亦可例示:作為脂環式胺之環丙胺、環丁胺、環丙胺、環己胺、環庚胺、環辛胺;或作為芳香族胺之苯胺等。 In addition, examples of cyclopropylamine, cyclobutylamine, cyclopropylamine, cyclohexylamine, cycloheptylamine, and cyclooctylamine as alicyclic amines; or aniline as aromatic amines.

又,亦可例示:3-異丙氧基丙胺、異丁氧基丙胺等醚胺。 In addition, ether amines such as 3-isopropoxypropylamine and isobutoxypropylamine can also be exemplified.

作為二級胺(b-2),可例示:N,N-二丙胺、N,N-二丁胺、N,N-二戊胺、N,N-二己胺、N,N-二庚胺、N,N-二辛胺、N,N-二壬胺、N,N-二癸胺、N,N-二-十一烷基胺、N,N-二-十二烷基胺、N,N-二硬脂胺、N-甲基-N-丙胺、N-乙基-N-丙胺、N-丙基-N-丁胺等二烷基單胺、及哌啶等環狀胺。 As the secondary amine (b-2), N,N-dipropylamine, N,N-dibutylamine, N,N-dipentylamine, N,N-dihexylamine, N,N-diheptylamine can be exemplified Amine, N,N-dioctylamine, N,N-dinonylamine, N,N-didecylamine, N,N-di-undecylamine, N,N-di-dodecylamine, Dialkyl monoamines such as N,N-distearylamine, N-methyl-N-propylamine, N-ethyl-N-propylamine, N-propyl-N-butylamine, and cyclic amines such as piperidine .

作為三級胺(b-3),可例示:三乙胺、三丁胺、三己胺、二甲基辛胺、二甲基癸胺、二甲基月桂胺、二甲基肉豆蔻胺、二甲基棕櫚胺、二甲基硬脂胺、二月桂基單甲胺等。 Examples of tertiary amines (b-3) include triethylamine, tributylamine, trihexylamine, dimethyloctylamine, dimethyldecylamine, dimethyllaurylamine, dimethylmyristamine, Dimethyl palmitamine, dimethyl stearylamine, dilauryl monomethylamine, etc.

進而,於本發明中,亦可使用於一個化合物中具有2個胺基之二胺化合物(b-4)。作為二胺化合物(b-4),可例示:乙二胺、N,N-二甲基乙二胺、N,N'-二甲基乙二胺、N,N-二乙基乙二胺、N,N'-二乙基乙 二胺、1,3-丙二胺、2,2-二甲基-1,3-丙二胺、N,N-二甲基-1,3-丙二胺、N,N-二丁基-1,3-丙二胺、N,N-二異丁基-1,3-丙二胺、N,N'-二甲基-1,3-丙二胺、N,N-二乙基-1,3-丙二胺、N,N'-二乙基-1,3-丙二胺、1,4-丁二胺、N,N-二甲基-1,4-丁二胺、N,N'-二甲基-1,4-丁二胺、N,N-二乙基-1,4-丁二胺、N,N'-二乙基-1,4-丁二胺、1,5-戊二胺、1,5-二胺基-2-甲基戊烷、1,6-己二胺、N,N-二甲基-1,6-己二胺、N,N'-二甲基-1,6-己二胺、1,7-庚二胺、1,8-辛二胺等。 Furthermore, in the present invention, a diamine compound (b-4) having two amino groups in one compound can also be used. Examples of the diamine compound (b-4) include ethylenediamine, N,N-dimethylethylenediamine, N,N'-dimethylethylenediamine, and N,N-diethylethylenediamine , N,N'-Diethyl B Diamine, 1,3-propanediamine, 2,2-dimethyl-1,3-propanediamine, N,N-dimethyl-1,3-propanediamine, N,N-dibutyl -1,3-propanediamine, N,N-diisobutyl-1,3-propanediamine, N,N'-dimethyl-1,3-propanediamine, N,N-diethyl -1,3-propanediamine, N,N'-diethyl-1,3-propanediamine, 1,4-butanediamine, N,N-dimethyl-1,4-butanediamine, N,N'-dimethyl-1,4-butanediamine, N,N-diethyl-1,4-butanediamine, N,N'-diethyl-1,4-butanediamine, 1,5-pentanediamine, 1,5-diamino-2-methylpentane, 1,6-hexanediamine, N,N-dimethyl-1,6-hexanediamine, N,N '-Dimethyl-1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, etc.

關於二胺化合物(b-4)中其中一個胺為一級胺而另一個胺為三級胺之二胺化合物,其於與(A)草酸金屬鹽之結合能力優異,且於產生金屬奈米微粒子時容易於金屬奈米微粒子之表面上形成保護層之方面上較佳。 Regarding the diamine compound in which one of the amines is a primary amine and the other amine is a tertiary amine in the diamine compound (b-4), it has excellent binding ability with (A) oxalate metal salt, and produces metal nanoparticle It is preferable in that it is easy to form a protective layer on the surface of the metal nanoparticle.

作為其中一個胺為一級胺而另一個胺為三級胺之二胺化合物,可例示:N,N-二甲基乙二胺、N,N-二乙基乙二胺、N,N-二甲基-1,3-丙二胺、N,N-二乙基-1,3-丙二胺、N,N-二甲基-1,4-丁二胺、N,N-二乙基-1,4-丁二胺、N,N-二甲基-1,6-己二胺等。 As a diamine compound in which one amine is a primary amine and the other amine is a tertiary amine, examples include: N,N-dimethylethylenediamine, N,N-diethylethylenediamine, N,N-diamine Methyl-1,3-propanediamine, N,N-diethyl-1,3-propanediamine, N,N-dimethyl-1,4-butanediamine, N,N-diethyl -1,4-Butanediamine, N,N-dimethyl-1,6-hexamethylenediamine, etc.

於上述之胺化合物中,就導電性油墨或導電膏中之金屬奈米微粒子之分散穩定性、及形成電路時可容易藉由低溫之熱處理而脫離之方面而言,較佳為正丙胺、異丙胺、環丙胺、正丁胺、異丁胺、第二丁胺、第三丁胺、環丁胺、正戊胺、正己胺、環己胺、正辛胺、2-乙基己胺、正十二烷基胺、正油胺、3-甲氧基丙胺、3-乙氧基丙胺、3-丙氧基丙胺、3-異丙氧基丙胺、N,N-二甲基-1,3-丙二胺、N,N-二丁基-1,3-胺基丙烷,更佳為正丁胺、正己胺、環己胺、正辛胺、正十二烷基胺、N,N-二甲基-1,3-丙二胺、N,N-二丁基-1,3-胺基丙烷、3-甲氧基丙胺、3-乙氧基丙胺,進而更佳為正丁胺、正己胺、環己胺、正辛胺、正十二烷基胺、3-甲氧基丙胺、3-乙氧基丙胺、N,N-二甲基-1,3-丙二胺。 Among the above-mentioned amine compounds, in terms of the dispersion stability of the metal nanoparticle in the conductive ink or conductive paste, and the ease of being released by low-temperature heat treatment when forming a circuit, n-propylamine and isopropylamine are preferred. Propylamine, cyclopropylamine, n-butylamine, isobutylamine, second butylamine, tertiary butylamine, cyclobutylamine, n-pentylamine, n-hexylamine, cyclohexylamine, n-octylamine, 2-ethylhexylamine, n- Dodecylamine, normal oleylamine, 3-methoxypropylamine, 3-ethoxypropylamine, 3-propoxypropylamine, 3-isopropoxypropylamine, N,N-dimethyl-1,3 -Propylenediamine, N,N-dibutyl-1,3-aminopropane, more preferably n-butylamine, n-hexylamine, cyclohexylamine, n-octylamine, n-dodecylamine, N,N- Dimethyl-1,3-propanediamine, N,N-dibutyl-1,3-aminopropane, 3-methoxypropylamine, 3-ethoxypropylamine, more preferably n-butylamine, N-hexylamine, cyclohexylamine, n-octylamine, n-dodecylamine, 3-methoxypropylamine, 3-ethoxypropylamine, N,N-dimethyl-1,3-propanediamine.

(B)胺化合物可單獨使用1種,或組合2種以上使用。具體而言,可使用(b-1)、(b-2)、(b-3)、(b-4)中之1種以上,尤佳為僅(b-1)、僅(b-4)、及(b-1)與(b-4)之組合。進而,於(b-1)、(b-2)、(b-3)、(b-4)之各群中可使用1種以上。 (B) An amine compound can be used individually by 1 type or in combination of 2 or more types. Specifically, one or more of (b-1), (b-2), (b-3), and (b-4) can be used, especially (b-1), (b-4) only ), and a combination of (b-1) and (b-4). Furthermore, one or more types can be used in each group of (b-1), (b-2), (b-3), (b-4).

組合物中之(B)胺化合物之含量相對於組合物之總量,較佳為5重量%以上,更佳為10重量%以上,進而更佳為20重量%以上。若為該範圍,則可與草酸金屬鹽良好地結合,且於所產生之金屬奈米微粒子之表面上形成保護層。 The content of the (B) amine compound in the composition relative to the total amount of the composition is preferably 5% by weight or more, more preferably 10% by weight or more, and even more preferably 20% by weight or more. If it is in this range, it can bond well with the metal oxalate and form a protective layer on the surface of the produced metal nanoparticle.

又,組合物中之(B)胺化合物之含量相對於組合物之總量,較佳為55重量%以下,更佳為50重量%以下,進而更佳為45重量%以下。若為該範圍,則可與草酸金屬鹽良好地結合,且於所產生之金屬奈米微粒子之表面上形成保護層。 In addition, the content of the (B) amine compound in the composition is preferably 55% by weight or less, more preferably 50% by weight or less, and still more preferably 45% by weight or less relative to the total amount of the composition. If it is in this range, it can bond well with the metal oxalate and form a protective layer on the surface of the produced metal nanoparticle.

作為組合物中之(B)胺化合物之含量,相對於組合物之總量,可列舉:5~55重量%、5~50重量%、5~45重量%、10~55重量%、10~50重量%、10~45重量%、20~55重量%、20~50重量%、20~45重量%等範圍。 As the content of the (B) amine compound in the composition, relative to the total amount of the composition, there can be listed: 5 to 55% by weight, 5 to 50% by weight, 5 to 45% by weight, 10 to 55% by weight, 10 to Ranges such as 50% by weight, 10 to 45% by weight, 20 to 55% by weight, 20 to 50% by weight, and 20 to 45% by weight.

組合物中之(B)胺化合物之含量相對於草酸金屬鹽之1mol,較佳為0.4mol以上,更佳為0.6mol以上,進而更佳為1mol以上。若為該範圍,則可與草酸金屬鹽良好地結合,且於所產生之金屬奈米微粒子之表面上形成保護層。 The content of the (B) amine compound in the composition relative to 1 mol of the metal oxalate salt is preferably 0.4 mol or more, more preferably 0.6 mol or more, and even more preferably 1 mol or more. If it is in this range, it can bond well with the metal oxalate and form a protective layer on the surface of the produced metal nanoparticle.

又,組合物中之(B)胺化合物之含量相對於草酸金屬鹽之1mol,較佳為10mol以下,更佳為8mol以下,進而更佳為6mol以下。若為該範圍,則可與草酸金屬鹽良好地結合,且於所產生之金屬奈米微粒子之表面上形成保護層。 In addition, the content of the (B) amine compound in the composition is preferably 10 mol or less, more preferably 8 mol or less, and still more preferably 6 mol or less relative to 1 mol of the metal oxalate salt. If it is in this range, it can bond well with the metal oxalate and form a protective layer on the surface of the produced metal nanoparticle.

作為(B)胺化合物相對於草酸金屬鹽之1mol之量,可列舉:0.4~10mol、0.4~8mol、0.4~6mol、0.6~10mol、0.6~8mol、0.6~6 mol、1~10mol、1~8mol、1~6mol等範圍。 (B) The amount of the amine compound relative to 1 mol of the metal oxalate salt includes: 0.4~10mol, 0.4~8mol, 0.4~6mol, 0.6~10mol, 0.6~8mol, 0.6~6 mol, 1~10mol, 1~8mol, 1~6mol, etc.

(C)羥基脂肪酸(C) Hydroxy fatty acid

作為羥基脂肪酸,可使用碳數3~24且具有1個以上(例如1個)之羥基之化合物。作為羥基脂肪酸,例如可列舉:2-羥基癸酸、2-羥基十二酸、2-羥基十四酸、2-羥基十六酸、2-羥基十八酸、2-羥基二十酸、2-羥基二十二酸、2-羥基二十三酸、2-羥基二十四酸、3-羥基己酸、3-羥基辛酸、3-羥基壬酸、3-羥基癸酸、3-羥基十一酸、3-羥基十二酸、3-羥基十三酸、3-羥基十四酸、3-羥基十六酸、3-羥基十七酸、3-羥基十八酸、ω-羥基-2-烯酸、ω-羥基十五酸、ω-羥基十七酸、ω-羥基二十酸、ω-羥基二十二酸、6-羥基十八酸、蓖麻油酸、12-羥基硬脂酸、[R-(E)]-12-羥基-9-十八烯酸等。其中,較佳為碳數4~18且於ω位以外(尤其是12位)具有1個羥基之羥基脂肪酸,更佳為蓖麻油酸、12-羥基硬脂酸。 As the hydroxy fatty acid, a compound having 3 to 24 carbon atoms and one or more (for example, one) hydroxyl group can be used. Examples of hydroxy fatty acids include 2-hydroxydecanoic acid, 2-hydroxydodecanoic acid, 2-hydroxytetradecanoic acid, 2-hydroxyhexadecanoic acid, 2-hydroxyoctadecanoic acid, 2-hydroxyeicosanic acid, 2 -Hydroxybehenic acid, 2-hydroxytrichanoic acid, 2-hydroxytrichonic acid, 3-hydroxyhexanoic acid, 3-hydroxyoctanoic acid, 3-hydroxynonanoic acid, 3-hydroxydecanoic acid, 3-hydroxydecanoic acid Monoacid, 3-hydroxylauric acid, 3-hydroxytridecanoic acid, 3-hydroxytetradecanoic acid, 3-hydroxyhexadecanoic acid, 3-hydroxyheptadecanic acid, 3-hydroxyoctadecanoic acid, ω-hydroxy-2 -Enoic acid, ω-hydroxy pentadecanoic acid, ω-hydroxy seventeen acid, ω-hydroxy arachidic acid, ω-hydroxy behenic acid, 6-hydroxy octadecanoic acid, ricinoleic acid, 12-hydroxy stearic acid , [R-(E)]-12-hydroxy-9-octadecenoic acid, etc. Among them, preferred are hydroxy fatty acids having 4 to 18 carbon atoms and one hydroxy group other than the ω position (especially the 12 position), and more preferred are ricinoleic acid and 12-hydroxystearic acid.

羥基脂肪酸可單獨使用1種,或組合2種以上使用。 Hydroxy fatty acid can be used individually by 1 type or in combination of 2 or more types.

組合物中之(C)羥基脂肪酸之含量相對於組合物之總量,較佳為0.01重量%以上,更佳為0.05重量%以上,進而更佳為0.1重量%以上。若為該範圍,則可獲得向極性溶劑之分散性於實用上充分之金屬奈米微粒子。 The content of the (C) hydroxy fatty acid in the composition relative to the total amount of the composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and even more preferably 0.1% by weight or more. If it is in this range, metal nano-particles with practically sufficient dispersibility to a polar solvent can be obtained.

又,組合物中之羥基脂肪酸之含量相對於組合物之總量,較佳為15重量%以下,更佳為10重量%以下,進而更佳為8重量%以下。若為該範圍,則可獲得向極性溶劑之分散性於實用上充分之金屬奈米微粒子。 In addition, the content of the hydroxy fatty acid in the composition is preferably 15% by weight or less, more preferably 10% by weight or less, and still more preferably 8% by weight or less relative to the total amount of the composition. If it is in this range, metal nano-particles with practically sufficient dispersibility to a polar solvent can be obtained.

作為組合物中之羥基脂肪酸之含量,相對於組合物之總量,可列舉:0.01~15重量%、0.01~10重量%、0.01~8重量%、0.05~15重量%、0.05~10重量%、0.05~8重量%、0.1~15重量%、0.1~10重量%、0.1~8重量%等。 As the content of the hydroxy fatty acid in the composition, relative to the total amount of the composition, there can be listed: 0.01 to 15% by weight, 0.01 to 10% by weight, 0.01 to 8% by weight, 0.05 to 15% by weight, and 0.05 to 10% by weight , 0.05 to 8% by weight, 0.1 to 15% by weight, 0.1 to 10% by weight, 0.1 to 8% by weight, etc.

組合物中之(C)羥基脂肪酸之含量相對於草酸金屬鹽之1mol,較佳為0.001mol以上,更佳為0.005mol以上,進而更佳為0.01mol以上。若為該範圍,則可獲得向極性溶劑之分散性於實用上充分之金屬奈米微粒子。 The content of the (C) hydroxy fatty acid in the composition is preferably 0.001 mol or more relative to 1 mol of the metal oxalate salt, more preferably 0.005 mol or more, and even more preferably 0.01 mol or more. If it is in this range, metal nano-particles with practically sufficient dispersibility to a polar solvent can be obtained.

又,組合物中之羥基脂肪酸之含量相對於草酸金屬鹽之1mol,較佳為1mol以下,更佳為0.5mol以下,進而更佳為0.25mol以下。若為該範圍,則可獲得向極性溶劑之分散性於實用上充分之金屬奈米微粒子。 In addition, the content of the hydroxy fatty acid in the composition is preferably 1 mol or less, more preferably 0.5 mol or less, and still more preferably 0.25 mol or less with respect to 1 mol of the metal oxalate salt. If it is in this range, metal nano-particles with practically sufficient dispersibility to a polar solvent can be obtained.

作為羥基脂肪酸相對於草酸金屬鹽之1mol之量,可列舉:0.001~1mol、0.001~0.5mol、0.001~0.25mol、0.005~1mol、0.005~0.5mol、0.005~0.25mol、0.01~1mol、0.01~0.5mol、0.01~0.25mol等。 The amount of hydroxy fatty acid relative to 1 mol of the metal oxalate salt includes: 0.001 to 1 mol, 0.001 to 0.5 mol, 0.001 to 0.25 mol, 0.005 to 1 mol, 0.005 to 0.5 mol, 0.005 to 0.25 mol, 0.01 to 1 mol, 0.01 to 0.5mol, 0.01~0.25mol, etc.

有機溶劑(S)Organic solvent (S)

本發明之組合物可包含有機溶劑。有機溶劑較佳為對20℃之水溶解約1g/L以上者,更佳為溶解約10g/L以上者。其中,可較佳地使用具有醚鍵及羥基之化合物作為有機溶劑。 The composition of the present invention may contain an organic solvent. The organic solvent is preferably one that dissolves more than about 1 g/L in water at 20°C, more preferably one that dissolves more than about 10 g/L. Among them, a compound having an ether bond and a hydroxyl group can be preferably used as an organic solvent.

作為有機溶劑,可例示:苯、苯甲腈等芳香族化合物;丙酮、乙醯丙酮、甲基乙基酮等酮類;乙酸乙酯、乙酸丁酯、丁酸乙酯、甲酸乙酯等脂肪酸酯類;二***、二丙醚、二丁醚、四氫呋喃、1,4-二

Figure 105118451-A0202-12-0011-6
烷等醚類;二氯甲烷、氯仿、二氯乙烷等鹵化烴類;1,2-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、1,2-己二醇、1,6-己二醇、1,2-戊二醇、1,5-戊二醇、2-甲基-2,4-戊二醇、3-甲基-1,5-戊二醇等二醇類;具有碳數1~7之直鏈或支鏈烷基之醇、環己醇、3-甲氧基-3-甲基-1-丁醇、3-甲氧基-1-丁醇、2-(2-乙基己氧基)乙醇等醇類;聚乙二醇、三乙二醇單甲醚、四乙二醇單甲醚、乙二醇單***、二乙二醇單***、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲 醚、乙酸3-甲氧基丁酯、乙二醇單丁醚、乙二醇單丁醚乙酸酯、二乙二醇單甲醚、二乙二醇單甲醚乙酸酯、二乙二醇單***、二乙二醇單***乙酸酯、二乙二醇單丁醚、二乙二醇單丁醚乙酸酯、丙二醇單丙醚、丙二醇單丁醚、二丙二醇單甲醚、二丙二醇單***、二丙二醇單丙醚、二丙二醇單丁醚、三丙二醇單甲醚、三丙二醇單***、三丙二醇單丙醚、三丙二醇單丁醚等二醇或二醇醚類;甲基-正戊基酮、甲基乙基酮肟、甘油三乙酸酯、γ-丁內酯、2-吡咯啶酮、N-甲基吡咯啶酮、乙腈、N,N-二甲基甲醯胺、N-(2-胺基乙基)哌
Figure 105118451-A0202-12-0012-7
、二甲基亞碸及松脂醇等萜烯類等。 Examples of organic solvents include aromatic compounds such as benzene and benzonitrile; ketones such as acetone, acetone, and methyl ethyl ketone; fatty acids such as ethyl acetate, butyl acetate, ethyl butyrate, and ethyl formate Esters; diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, 1,4-di
Figure 105118451-A0202-12-0011-6
Alkanes and other ethers; Dichloromethane, chloroform, dichloroethane and other halogenated hydrocarbons; 1,2-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-Butanediol, 1,2-hexanediol, 1,6-hexanediol, 1,2-pentanediol, 1,5-pentanediol, 2-methyl-2,4-pentane Glycols, 3-methyl-1,5-pentanediol and other diols; alcohols with straight or branched chain alkyl groups with carbon number 1~7, cyclohexanol, 3-methoxy-3-methyl Alcohols such as methyl-1-butanol, 3-methoxy-1-butanol, 2-(2-ethylhexyloxy)ethanol; polyethylene glycol, triethylene glycol monomethyl ether, tetraethylene two Alcohol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, 3-methoxybutyl acetate , Ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether Acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, Dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monopropyl ether, tripropylene glycol monobutyl ether and other glycols or glycol ethers; methyl-n-pentyl ketone, methyl ethyl ketone Oxime, triacetin, γ-butyrolactone, 2-pyrrolidone, N-methylpyrrolidone, acetonitrile, N,N-dimethylformamide, N-(2-aminoethyl ) Piper
Figure 105118451-A0202-12-0012-7
, Terpenes such as dimethyl sulfoxide and pinoresinol.

有機溶劑可單獨使用1種,亦可混合2種以上而使用。 An organic solvent may be used individually by 1 type, and may mix and use 2 or more types.

其中,就由於沸點較高故而容易處理,又,於組合物中可良好地分散各成分之方面而言,較佳為2-(2-乙基己氧基)乙醇、3-甲氧基-1-丁醇、3-甲氧基-3-甲基-1-丁醇之類之具有烷氧基之醇類;乙二醇單***、乙二醇單丁醚、二乙二醇單丁醚、二乙二醇單***、二丙二醇單***、三乙二醇單***等二醇醚類。 Among them, 2-(2-ethylhexyloxy)ethanol and 3-methoxy-ethanol are preferred in terms of easy handling due to high boiling point and good dispersion of various components in the composition. Alcohols with alkoxy groups such as 1-butanol and 3-methoxy-3-methyl-1-butanol; ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl Ether, diethylene glycol monoethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monoethyl ether and other glycol ethers.

於使用有機溶劑之情形時,組合物中之有機溶劑之含量相對於草酸金屬鹽100重量份,較佳為5重量份以上,更佳為10重量份以上,進而更佳為30重量份以上。若為該範圍,則可均勻地混合組合物中之各成分。 When an organic solvent is used, the content of the organic solvent in the composition relative to 100 parts by weight of the metal oxalate salt is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, and even more preferably 30 parts by weight or more. If it is this range, each component in a composition can be mixed uniformly.

又,組合物中之有機溶劑之含量相對於草酸金屬鹽100重量份,較佳為1000重量份以下,較佳為500重量份以下,較佳為300重量份以下。若為該範圍,則可避免如下事態,即反應液變得過稀而反應變長,或者回收成本增大。 In addition, the content of the organic solvent in the composition is preferably 1000 parts by weight or less, preferably 500 parts by weight or less, and preferably 300 parts by weight or less with respect to 100 parts by weight of the metal oxalate. If it is in this range, it is possible to avoid a situation in which the reaction liquid becomes too thin, the reaction becomes longer, or the recovery cost increases.

作為組合物中之有機溶劑之含量,相對於草酸金屬鹽100重量份,可列舉:5~1000重量份、5~500重量份、5~300重量份、10~1000重量份、10~500重量份、10~300重量份、30~1000重量份、30 ~500重量份、30~300重量份等。 As the content of the organic solvent in the composition, relative to 100 parts by weight of the metal oxalate, it can be listed: 5~1000 parts by weight, 5~500 parts by weight, 5~300 parts by weight, 10~1000 parts by weight, 10~500 parts by weight Parts, 10~300 parts by weight, 30~1000 parts by weight, 30 ~500 parts by weight, 30~300 parts by weight, etc.

本發明之組合物可於不會對本發明之效果造成影響之範圍內,含有應用於印刷電子技術之金屬微粒子製造用組合物中所使用之添加劑之1種或2種以上。 The composition of the present invention may contain one or more additives used in the composition for producing metal microparticles applied to printed electronic technology within a range that does not affect the effects of the present invention.

作為此種添加劑,可列舉:脂肪酸(碳數3~18以下之脂肪酸,例如乙酸、丙酸、丁酸、戊酸、己酸、辛酸、2-乙基己酸、癸酸、月桂酸、肉豆蔻酸、棕櫚酸、硬脂酸、油酸、亞麻油酸、α-次亞麻油酸、環己烷羧酸等)、黏度調整劑、導電助劑、防止粉化劑、抗氧化劑、pH值調整劑、防止乾燥劑、密接賦予劑、防腐劑、消泡劑、調平劑、界面活性劑等。 Examples of such additives include: fatty acids (fatty acids with 3 to 18 carbon atoms, such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, meat Myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, α-linolenic acid, cyclohexane carboxylic acid, etc.), viscosity modifiers, conductive additives, anti-chalking agents, antioxidants, pH Adjusting agent, anti-drying agent, adhesion imparting agent, preservative, defoaming agent, leveling agent, surfactant, etc.

組合物之製備方法Preparation method of composition

本發明之組合物可藉由將各成分進行混合而製備。混合可利用機械攪拌器、磁力攪拌器、旋渦混合器、行星研磨機、球磨機、三輥研磨機、管線混合機、行星式混合機、分散攪拌機等通用之裝置而進行。 The composition of the present invention can be prepared by mixing the ingredients. The mixing can be carried out by using common devices such as mechanical stirrer, magnetic stirrer, vortex mixer, planetary mill, ball mill, three-roll mill, pipeline mixer, planetary mixer, dispersive mixer, etc.

為了避免組合物之溫度因混合時之熔解熱、摩擦熱等之影響而上升,從而開始金屬奈米微粒子之熱分解反應之情況,較佳為一面將組合物之溫度抑制為例如60℃以下、尤其是40℃以下一面進行混合。 In order to prevent the temperature of the composition from rising due to the influence of the heat of fusion, frictional heat, etc. during mixing, thereby starting the thermal decomposition reaction of the metal nanoparticle, it is preferable to suppress the temperature of the composition to, for example, 60°C or lower. In particular, it is mixed on one side below 40°C.

(2)金屬奈米微粒子之製造方法(2) Manufacturing method of metal nanoparticle

反應步驟Reaction step

於反應容器內將上述所說明之本發明之金屬奈米微粒子製造用組合物供於反應、通常為利用加熱之反應,藉此引起金屬化合物之熱分解反應而產生金屬奈米微粒子。於反應時,可將組合物導入至經預先加熱之反應容器內,亦可於將組合物導入至反應容器內後進行加熱。 The metal nanoparticle production composition of the present invention described above is supplied to a reaction in a reaction vessel, usually a reaction by heating, thereby causing a thermal decomposition reaction of the metal compound to produce metal nanoparticle. During the reaction, the composition may be introduced into the pre-heated reaction vessel, or the composition may be heated after being introduced into the reaction vessel.

反應溫度只要為熱分解反應進行而產生金屬奈米微粒子之溫度 即可,例如可列舉50℃以上、較佳為100℃以上、更佳為120℃以上。若為該範圍,則高效率地產生金屬奈米微粒子。又,反應溫度只要為250℃以下即可,較佳為240℃以下,更佳為200℃以下。若為該範圍,則可抑制保護層構成成分之揮發,而於金屬奈米微粒子表面高效率地形成保護層。 The reaction temperature only needs to be the temperature at which the thermal decomposition reaction proceeds to produce metal nanoparticles That is, for example, 50°C or higher, preferably 100°C or higher, and more preferably 120°C or higher are mentioned. If it is in this range, metal nano-particles are produced efficiently. Moreover, the reaction temperature should just be 250 degrees C or less, Preferably it is 240 degrees C or less, More preferably, it is 200 degrees C or less. If it is in this range, volatilization of constituent components of the protective layer can be suppressed, and the protective layer can be efficiently formed on the surface of the metal nanoparticle.

作為反應溫度,可列舉:50~250℃、100~250℃、120~250℃、50~240℃、100~240℃、120~240℃、50~200℃、100~200℃、120~200℃等。 Examples of the reaction temperature include: 50 to 250°C, 100 to 250°C, 120 to 250°C, 50 to 240°C, 100 to 240°C, 120 to 240°C, 50 to 200°C, 100 to 200°C, 120 to 200 ℃ etc.

上述溫度係加熱反應開始時之反應液之溫度。 The above temperature is the temperature of the reaction solution at the beginning of the heating reaction.

又,反應時間只要根據所需之平均粒徑之尺寸、或與其對應之組合物之組成而適當進行選擇即可。作為反應時間,例如可列舉1分鐘~100小時、較佳為1分鐘~10小時。 In addition, the reaction time may be appropriately selected according to the desired average particle size or the composition of the composition corresponding to it. As the reaction time, for example, 1 minute to 100 hours, preferably 1 minute to 10 hours.

精製步驟Refining steps

藉由熱分解反應而產生之金屬奈米微粒子由於以包含未反應原料之混合物之形式獲得,故而較佳為對金屬奈米微粒子進行精製。 Since the metal nanoparticle produced by the thermal decomposition reaction is obtained as a mixture containing unreacted raw materials, it is preferable to refine the metal nanoparticle.

作為精製方法,可列舉:固液分離方法;利用金屬奈米微粒子與有機溶劑等未反應原料之比重差之沈澱方法等。作為固液分離方法,可列舉:過濾器過濾、離心分離、旋風分離式、或傾析等方法。為了使精製時之操作變容易,亦可利用丙酮、甲醇等低沸點溶劑稀釋含有金屬奈米微粒子之混合物而調整其黏度。 As the purification method, a solid-liquid separation method; a precipitation method that utilizes the difference in the specific gravity of unreacted raw materials such as metal nanoparticle and organic solvent, etc., can be cited. Examples of solid-liquid separation methods include filter filtration, centrifugal separation, cyclone separation, or decantation. In order to facilitate the operation during refining, it is also possible to dilute the mixture containing metal nanoparticle with a low boiling point solvent such as acetone and methanol to adjust its viscosity.

金屬奈米微粒子之粒徑Particle size of metal nanoparticle

可藉由調整金屬奈米微粒子製造用組合物之組成或反應條件,而調整所獲得之金屬奈米微粒子之平均粒徑。使用上述所說明之組合物,並進行上述所說明之反應,藉此可獲得平均粒徑為10~200nm、尤其是10~150nm、尤其是10~100nm、尤其是10~50nm之金屬奈米微粒子。 The average particle size of the obtained metal nanoparticle can be adjusted by adjusting the composition or reaction conditions of the composition for producing metal nanoparticle. Using the composition described above and performing the reaction described above, metal nanoparticle particles with an average particle size of 10~200nm, especially 10~150nm, especially 10~100nm, especially 10~50nm can be obtained .

於本發明中,平均粒徑係利用掃描式電子顯微鏡所觀察到之圖像中之20個微粒子之長邊之長度的平均值。 In the present invention, the average particle size is the average of the lengths of the long sides of the 20 particles in the image observed by the scanning electron microscope.

(3)導電性油墨或導電膏(3) Conductive ink or conductive paste

本發明之導電性油墨或導電膏包含:金屬奈米微粒子,其係藉由上述所說明之本發明之製造方法而獲得;及有機溶劑,其包含極性有機溶劑。有機溶劑除極性有機溶劑以外,亦可包含非極性或疏水性溶劑。 The conductive ink or conductive paste of the present invention includes: metal nanoparticle, which is obtained by the manufacturing method of the present invention described above; and an organic solvent, which includes a polar organic solvent. In addition to polar organic solvents, organic solvents may also include non-polar or hydrophobic solvents.

作為極性有機溶劑,可列舉:丙酮、乙醯丙酮、甲基乙基酮等酮類;二***、二丙醚、二丁醚、四氫呋喃、1,4-二

Figure 105118451-A0202-12-0015-8
烷等醚類;1,2-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、1,2-己二醇、1,6-己二醇、1,2-戊二醇、1,5-戊二醇、2-甲基-2,4-戊二醇、3-甲基-1,5-戊二醇、1,2-辛二醇、1,8-辛二醇、2-乙基-1,3-己二醇等二醇類;甘油;碳數1~5之直鏈或支鏈之醇、環己醇、3-甲氧基-3-甲基-1-丁醇、3-甲氧基-1-丁醇等醇類;乙酸乙酯、乙酸丁酯、丁酸乙酯、甲酸乙酯等脂肪酸酯類;聚乙二醇、三乙二醇單甲醚、四乙二醇單甲醚、乙二醇單***、二乙二醇單***、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、乙酸3-甲氧基丁酯、乙二醇單丁醚、乙二醇單丁醚乙酸酯、乙二醇單己醚、乙二醇單辛醚、乙二醇單-2-乙基己醚、乙二醇單苄醚、二乙二醇單甲醚、二乙二醇單甲醚乙酸酯、二乙二醇單***、二乙二醇單***乙酸酯、二乙二醇單丁醚、二乙二醇單丁醚乙酸酯、聚丙二醇、丙二醇單丙醚、丙二醇單丁醚、二丙二醇單甲醚、二丙二醇單***、二丙二醇單丙醚、二丙二醇單丁醚、三丙二醇單甲醚、三丙二醇單***、三丙二醇單丙醚、三丙二醇單丁基醚等二醇或二醇醚類;N,N-二甲基甲醯胺;二甲基亞碸;松脂醇等萜烯類;乙腈;γ-丁內酯;2-吡咯啶酮;N-甲基吡咯啶酮;N-(2-胺基乙基)哌
Figure 105118451-A0202-12-0015-9
等。 Examples of polar organic solvents include ketones such as acetone, acetone, and methyl ethyl ketone; diethyl ether, dipropyl ether, dibutyl ether, tetrahydrofuran, 1,4-di
Figure 105118451-A0202-12-0015-8
Alkane and other ethers; 1,2-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,2-hexanediol , 1,6-hexanediol, 1,2-pentanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 3-methyl-1,5-pentanediol , 1,2-octanediol, 1,8-octanediol, 2-ethyl-1,3-hexanediol and other glycols; glycerin; straight or branched chain alcohols with 1 to 5 carbon atoms, Cyclohexanol, 3-methoxy-3-methyl-1-butanol, 3-methoxy-1-butanol and other alcohols; ethyl acetate, butyl acetate, ethyl butyrate, ethyl formate Fatty acid esters; polyethylene glycol, triethylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, triethylene two Ethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, 3-methoxybutyl acetate, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, ethylene glycol monohexyl ether, ethylene glycol mono Octyl ether, ethylene glycol mono-2-ethylhexyl ether, ethylene glycol monobenzyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether, diethyl Glycol monoethyl ether acetate, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, polypropylene glycol, propylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether , Dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monopropyl ether, tripropylene glycol monobutyl ether and other glycols or glycol ethers; N,N-two Methylformamide; Dimethyl sulfide; Terpenes such as pinoresinol; Acetonitrile; γ-butyrolactone; 2-pyrrolidone; N-methylpyrrolidone; N-(2-aminoethyl) ) Piper
Figure 105118451-A0202-12-0015-9
Wait.

其中,較佳為碳數3~5之直鏈或支鏈之醇、3-甲氧基-3-甲基-1-丁醇、3-甲氧基-1-丁醇、二乙二醇單丁醚、二乙二醇單丁醚乙酸酯、松脂醇。 Among them, preferred are straight or branched chain alcohols with 3 to 5 carbon atoms, 3-methoxy-3-methyl-1-butanol, 3-methoxy-1-butanol, diethylene glycol Monobutyl ether, diethylene glycol monobutyl ether acetate, pinoresinol.

作為非極性溶劑,可列舉:己烷、庚烷、辛烷、壬烷、癸烷、2-乙基己烷、環己烷等直鏈、支鏈或環狀之飽和烴;碳數6以上之直鏈或支鏈之醇等醇類;苯、甲苯、苯甲腈等芳香族化合物;二氯甲烷、氯仿、二氯乙烷等鹵化烴類;甲基-正戊基酮;甲基乙基酮肟;甘油三乙酸酯等。 Examples of non-polar solvents include linear, branched or cyclic saturated hydrocarbons such as hexane, heptane, octane, nonane, decane, 2-ethylhexane, and cyclohexane; carbon number 6 or more Alcohols such as straight or branched chain alcohols; aromatic compounds such as benzene, toluene, and benzonitrile; halogenated hydrocarbons such as dichloromethane, chloroform, and dichloroethane; methyl-n-pentyl ketone; methyl ethyl Base ketoxime; triacetin, etc.

其中,較佳為飽和烴及碳數6以上之直鏈或支鏈之醇類,更佳為己烷、辛烷、癸烷、辛醇、癸醇、十二烷醇。 Among them, saturated hydrocarbons and linear or branched alcohols with 6 or more carbon atoms are preferred, and hexane, octane, decane, octanol, decanol, and dodecanol are more preferred.

溶劑可單獨使用1種,或混合2種以上而使用。 A solvent can be used individually by 1 type or in mixture of 2 or more types.

於包含極性溶劑與非極性溶劑兩者之情形時,極性溶劑之比率相對於溶劑之總量,較佳為5體積%以上,更佳為10體積%以上,進而更佳為15體積%以上。又,可設為60體積%以下,亦可設為55體積%以下,亦可設為50體積%以下。 When both a polar solvent and a non-polar solvent are included, the ratio of the polar solvent relative to the total amount of the solvent is preferably 5% by volume or more, more preferably 10% by volume or more, and even more preferably 15% by volume or more. In addition, it may be 60% by volume or less, 55% by volume or less, or 50% by volume or less.

溶劑亦可設為包含極性溶劑者。 The solvent may include a polar solvent.

本發明之導電性油墨或導電膏即便於如上述般包含較多之極性溶劑之情形時,金屬奈米微粒子之分散性亦良好。 Even when the conductive ink or conductive paste of the present invention contains a large amount of polar solvents as described above, the dispersibility of the metal nanoparticle is good.

本發明之導電性油墨或導電膏可包含通常包含於導電性油墨或導電膏中之熱或光硬化性樹脂、硬化劑、調平劑、增黏劑、防止沈澱劑、用以提高密接性之偶合劑、消泡劑、填充劑、pH值調整劑、被膜形成助劑、撥水劑等之1種或2種以上。 The conductive ink or conductive paste of the present invention may include heat or light curable resins, hardeners, leveling agents, tackifiers, anti-precipitating agents, and adhesives that are usually contained in conductive inks or conductive pastes. One or two or more of coupling agents, defoamers, fillers, pH adjusters, film forming aids, water repellents, etc.

(4)電路、電極(4) Circuit, electrode

於使用上述所說明之本發明之導電性油墨或導電膏而形成電路乃至配線或電極時,只要於基板上利用噴墨印刷法、網版印刷法、凸版反轉印刷法、凹版膠版印刷法、膠版印刷法、旋轉塗佈法、噴霧塗 佈法、棒式塗佈法、模嘴塗佈法、狹縫式塗佈法、輥式塗佈法、浸漬塗佈法等方法印刷成為電路或電極之圖案即可。 When the conductive ink or conductive paste of the present invention described above is used to form circuits, wires or electrodes, it is only necessary to use inkjet printing, screen printing, relief printing, gravure offset printing, Offset printing method, spin coating method, spray coating Methods such as cloth method, bar coating method, die nozzle coating method, slit coating method, roll coating method, dip coating method, etc. may be used to print the pattern of the circuit or electrode.

繼而,藉由於例如50℃以上、較佳為80℃以上、更佳為100℃以上、又例如200℃以下、較佳為150℃以下、更佳為120℃以下之溫度下進行焙燒而形成電路或電極。焙燒可使用烘箱、熱風式乾燥爐、紅外線乾燥爐、雷射照射、閃光燈照射、微波等而進行。 Then, the circuit is formed by firing at a temperature of, for example, 50°C or higher, preferably 80°C or higher, more preferably 100°C or higher, or 200°C or lower, preferably 150°C or lower, and more preferably 120°C or lower. Or electrodes. Baking can be performed using an oven, a hot-air drying oven, an infrared drying oven, laser irradiation, flash lamp irradiation, microwaves, and the like.

[實施例] [Example]

於以下列舉實施例而更詳細地說明本發明。但是,本發明並不限定於該等。 The present invention will be explained in more detail by enumerating examples below. However, the present invention is not limited to these.

(1)材料(1) Material

將構成實施例及比較例之金屬奈米微粒子製造用組合物之各成分示於以下。 The components constituting the composition for producing metal nanoparticle of the Examples and Comparative Examples are shown below.

金屬鹽(A)Metal salt (A)

a1:草酸銀((COOAg)2) a1: Silver oxalate ((COOAg) 2 )

再者,草酸銀係利用專利文獻1(專利第5574761號公報)所記載之方法而合成。 In addition, silver oxalate was synthesized by the method described in Patent Document 1 (Patent No. 5,574,761).

a2:硝酸銀(和光純藥工業股份有限公司製造) a2: Silver nitrate (manufactured by Wako Pure Chemical Industry Co., Ltd.)

胺化合物(B)Amine compound (B)

b1:正辛胺(和光純藥工業股份有限公司製造) b1: n-octylamine (manufactured by Wako Pure Chemical Industries Co., Ltd.)

b2:3-甲氧基丙胺(和光純藥工業股份有限公司製造) b2: 3-Methoxypropylamine (manufactured by Wako Pure Chemical Industries, Ltd.)

b3:N,N-二甲基-1,3-丙二胺(和光純藥工業股份有限公司製造) b3: N,N-dimethyl-1,3-propanediamine (manufactured by Wako Pure Chemical Industry Co., Ltd.)

b4:油胺(東京化成工業股份有限公司製造) b4: Oleylamine (manufactured by Tokyo Chemical Industry Co., Ltd.)

羥基脂肪酸(C)、脂肪酸Hydroxy fatty acid (C), fatty acid

c1:蓖麻油酸(東京化成工業股份有限公司製造) c1: Ricinoleic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)

c2:12-羥基硬脂酸(東京化成工業股份有限公司製造) c2: 12-hydroxystearic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)

c3:油酸(和光純藥工業股份有限公司製造) c3: Oleic acid (manufactured by Wako Pure Chemical Industry Co., Ltd.)

有機溶劑(S)Organic solvent (S)

s1:2-(2-乙基己氧基)乙醇(和光純藥工業股份有限公司製造) s1: 2-(2-ethylhexyloxy)ethanol (manufactured by Wako Pure Chemical Industries, Ltd.)

s2:2-辛醇(和光純藥工業股份有限公司製造) s2: 2-octanol (manufactured by Wako Pure Chemical Industries, Ltd.)

使用以上之成分而製備下述之表1、表2所示之組成之各組合物。胺化合物(B)係預先混合複數種胺化合物後與其他成分進行混合。 Using the above components, each composition having the composition shown in Table 1 and Table 2 below was prepared. The amine compound (B) is a mixture of a plurality of amine compounds in advance and then mixed with other components.

(2)使用金屬奈米微粒子製造用組合物之金屬奈米微粒子之製造(2) Manufacturing of metal nanoparticle using a composition for manufacturing metal nanoparticle

(實施例1~7、比較例1~3)(Examples 1 to 7, Comparative Examples 1 to 3)

向裝有磁性攪拌器之50mL玻璃製離心管投入表1所示之量之胺化合物(B)之混合物、羥基脂肪酸(C)及有機溶劑(S),攪拌1分鐘左右後,投入表1所示之量之草酸金屬鹽(a1),攪拌約10分鐘,藉此製備金屬奈米微粒子製造用組合物。其後,於具備鋁塊之加熱攪拌器(小池精密機器製作所製造之HHE-19G-U)上豎立設置該等玻璃製離心管,於130℃下開始加熱。於加熱開始約10分鐘後開始反應,其後以10分鐘左右結束反應。放置冷卻後,取出磁性攪拌器,向各組合物中添加甲醇15g並利用旋渦混合器進行攪拌後,利用離心分離機(日立工機製造之CF7D2)以3000rpm(約1600×G)實施1分鐘離心操作,使離心管傾斜,藉此將上清液去除。反覆進行甲醇15g之添加、攪拌、離心分離及上清液去除之步驟2次,回收所製造之各金屬奈米微粒子。以上述方式獲得實施例1~7之金屬奈米粒子。 Put the mixture of amine compound (B), hydroxy fatty acid (C) and organic solvent (S) in the amount shown in Table 1 into a 50 mL glass centrifuge tube equipped with a magnetic stirrer. After stirring for about 1 minute, put the mixture in Table 1 The metal oxalate (a1) in the indicated amount was stirred for about 10 minutes to prepare a composition for producing metal nanoparticle. After that, the glass centrifuge tubes were erected on a heating stirrer (HHE-19G-U manufactured by Koike Precision Machinery Co., Ltd.) equipped with aluminum blocks, and heating was started at 130°C. The reaction started about 10 minutes after the start of heating, and the reaction was completed in about 10 minutes thereafter. After leaving to cool, take out the magnetic stirrer, add 15 g of methanol to each composition and stir with a vortex mixer, then centrifuge at 3000 rpm (about 1600 × G) for 1 minute using a centrifugal separator (CF7D2 manufactured by Hitachi Koki) Operate, tilt the centrifuge tube, thereby removing the supernatant. The steps of adding 15 g of methanol, stirring, centrifugal separation, and supernatant removal were repeated twice to recover each metal nanoparticle produced. The metal nanoparticles of Examples 1-7 were obtained in the above manner.

又,除使用表2所示之組合物以外,以與上述相同之方式製作比較例1~3之金屬奈米微粒子。 In addition, except for using the composition shown in Table 2, the metal nanofine particles of Comparative Examples 1 to 3 were produced in the same manner as above.

(比較例4)(Comparative Example 4)

將硝酸銀(a2)設為原料,藉由日本專利5441550號公報所記載之方法製作金屬奈米微粒子。具體而言,以成為表2所示之組成之方式混合各成分,而製作硝酸銀完全溶解之溶液,將該溶液100mL移至 具備回流器之容器,一面利用機械攪拌器(東京理化器械製造之Z-2200)進行攪拌(300rpm)一面進行升溫。關於升溫速度,於120℃以下時設為1.0℃/min,於超過120℃且140℃以下時設為0.5℃/min。其後,一面維持上述攪拌狀態,一面於140℃下反應1小時。反應係一面將氮氣以5mL/min之流量向容器之氣相部進行供給一面進行。反應結束後,冷卻至室溫,將反應後之漿料靜置3天後,藉由傾析而去除上清液。此時,以經還原之銀相對於總漿料成為20質量%之方式調整上清液之去除量。去除上清液後,於漿料中添加銀與異丙醇之比率成為銀:異丙醇=1:30(莫耳比)之量之異丙醇並進行混合,以300rpm將銀粒子攪拌清洗1小時。其後,藉由離心分離而回收包含銀粒子之固形物成分。 Using silver nitrate (a2) as a raw material, metal nano-particles were produced by the method described in Japanese Patent No. 5441550. Specifically, the components were mixed so as to have the composition shown in Table 2 to prepare a solution in which silver nitrate was completely dissolved, and 100 mL of the solution was transferred to A container equipped with a reflux device is heated while being stirred (300 rpm) with a mechanical stirrer (Z-2200 manufactured by Tokyo Rikaki Instruments). Regarding the heating rate, it is set to 1.0°C/min when 120°C or less, and 0.5°C/min when it exceeds 120°C and 140°C or less. Thereafter, while maintaining the above-mentioned stirring state, the reaction was carried out at 140°C for 1 hour. The reaction was performed while supplying nitrogen gas to the gas phase part of the container at a flow rate of 5 mL/min. After the reaction was completed, it was cooled to room temperature, and the slurry after the reaction was allowed to stand for 3 days, and then the supernatant was removed by decantation. At this time, the removal amount of the supernatant liquid was adjusted so that the reduced silver became 20% by mass relative to the total slurry. After removing the supernatant, add the ratio of silver to isopropanol to the slurry to become silver: isopropanol=1:30 (molar ratio) of isopropanol and mix, stir and clean the silver particles at 300rpm 1 hour. Thereafter, the solid content including silver particles was recovered by centrifugal separation.

於所回收之固形物成分中加入蓖麻油酸與異丙醇之混合溶劑(蓖麻油酸:異丙醇=0.02:1(莫耳比)),保持為液溫40℃,於40℃下攪拌5小時,將未反應原料去除,藉此自固形物成分回收銀粒子。藉由5分鐘之離心分離以3000rpm將所獲得之漿料進行固液分離。其後,於上述固形物成分中,以固形物成分:甲醇成為1:30(莫耳比)之方式加入甲醇,以300rpm將上述固形物成分攪拌清洗30分鐘。再次進行利用甲醇之該清洗,其後進行固液分離,回收固形物成分,藉此萃取銀奈米微粒子。 Add a mixed solvent of ricinoleic acid and isopropanol (ricinoleic acid: isopropanol = 0.02:1 (molar ratio)) to the recovered solid components, keep the liquid temperature at 40°C, and stir at 40°C After 5 hours, unreacted raw materials were removed, thereby recovering silver particles from the solid content. The obtained slurry was subjected to solid-liquid separation at 3000 rpm by centrifugal separation for 5 minutes. Then, to the solid content, methanol was added so that the solid content: methanol became 1:30 (molar ratio), and the solid content was stirred and washed at 300 rpm for 30 minutes. This washing with methanol is performed again, and then solid-liquid separation is performed to recover the solid content, thereby extracting the silver nanoparticle.

將去除溶劑而獲得之各金屬奈米微粒子以金屬奈米微粒子之最終濃度成為1重量%之方式投入至分散用溶劑(2-丙醇)中,使金屬奈米微粒子分散,藉此獲得分散性評價用油墨。 Each metal nanoparticle obtained by removing the solvent is thrown into a dispersion solvent (2-propanol) so that the final concentration of the metal nanoparticle becomes 1% by weight, and the metal nanoparticle is dispersed to obtain dispersibility. Evaluation ink.

又,將各金屬奈米微粒子以金屬奈米微粒子之最終濃度成為50重量%之方式投入至分散用溶劑(2-丙醇)中,使金屬奈米微粒子分散,藉此獲得導電性評價用及利用SEM(scanning electron microscope,掃描式電子顯微鏡)觀察之平均粒徑評價用油墨。 In addition, each metal nanoparticle is thrown into a dispersion solvent (2-propanol) so that the final concentration of the metal nanoparticle becomes 50% by weight, and the metal nanoparticle is dispersed, thereby obtaining a conductivity evaluation and Ink for evaluating average particle size observed by SEM (scanning electron microscope).

又,實施例1及比較例4之金屬奈米微粒子係減壓乾燥1小時而製備Tg測定用樣本,將該樣本供於Tg測定。 In addition, the metal nano-particles of Example 1 and Comparative Example 4 were dried under reduced pressure for 1 hour to prepare samples for Tg measurement, and the samples were used for Tg measurement.

將各實施例中所使用之組合物之組成示於表1,將各比較例中所使用之組合物之組成示於表2。 The composition of the composition used in each example is shown in Table 1, and the composition of the composition used in each comparative example is shown in Table 2.

Figure 105118451-A0202-12-0020-1
Figure 105118451-A0202-12-0020-1

Figure 105118451-A0202-12-0020-2
Figure 105118451-A0202-12-0020-2

(3)低溫燒結性之評價(3) Evaluation of low temperature sinterability

針對實施例1及比較例4中所獲得之銀粒子,使用Seiko Instruments製造之EXSTAR6000 TG/DTA6300,於大氣下以10℃/分鐘進行升溫,測定70~200℃下之重量變化,藉此測定Tg(熱重量)。將結果示於圖1。圖1之縱軸係表示將70℃下之Tg設為100時之於各溫度下之Tg的比率。 For the silver particles obtained in Example 1 and Comparative Example 4, EXSTAR6000 TG/DTA6300 manufactured by Seiko Instruments was used, and the temperature was raised at 10°C/min in the atmosphere, and the weight change at 70~200°C was measured to determine Tg (Thermal weight). The results are shown in Figure 1. The vertical axis of Fig. 1 represents the ratio of Tg at each temperature when the Tg at 70°C is set to 100.

關於比較例4之銀粒子,即便進行升溫,Tg亦幾乎不發生變化,但實施例1之銀粒子隨著升溫而Tg降低。其表示銀粒子之保護層成分自銀粒子脫離,根據該情況可知,若使用本案發明之組合物,則可獲得可藉由低溫燒結而形成電路等之金屬奈米微粒子。 Regarding the silver particles of Comparative Example 4, even if the temperature was raised, the Tg hardly changed. However, the silver particles of Example 1 decreased the Tg as the temperature was raised. It means that the protective layer component of the silver particles is detached from the silver particles. According to this situation, it is known that the composition of the present invention can be used to obtain metal nano-particles that can be sintered at a low temperature to form circuits and the like.

(4)金屬奈米微粒子之分散性之評價(4) Evaluation of the dispersibility of metal nano particles

使用包含最終濃度1重量%之各實施例及比較例中所獲得之銀粒子之上述評價用油墨,藉由動態光散射法(DLS:Dynamic Light Scattering)(Spectris公司製造之Zetasizer Nano S)求出製備5分鐘後及60分鐘後之Z(平均值之比)。於製備開始後直至測定為止之期間靜置各油墨。將實施例之結果示於表3,將比較例之結果示於表4。 Using the above-mentioned evaluation ink containing the silver particles obtained in each of the Examples and Comparative Examples at a final concentration of 1% by weight, it was determined by the dynamic light scattering method (DLS: Dynamic Light Scattering) (Zetasizer Nano S manufactured by Spectris) Prepare Z (average ratio) after 5 minutes and after 60 minutes. Each ink was allowed to stand still during the period from the start of preparation to the measurement. The results of the examples are shown in Table 3, and the results of the comparative examples are shown in Table 4.

通常,處於分散狀態之粒子欲逐漸返回至原本之成分系統中,於該過程中逐漸凝聚。即,分散性越差,凝聚之速度越快。於DLS中,處於凝聚狀態之粒子係以1個粒子之形式進行計數。因此,表中之「DLS結果」之T1/T0較大係表示凝聚狀態之粗大粒子增加,且意指分散性較差。 Usually, the particles in the dispersed state want to gradually return to the original component system, and gradually agglomerate in the process. That is, the worse the dispersibility, the faster the aggregation speed. In DLS, particles in a condensed state are counted as one particle. Therefore, the larger T1/T0 of the "DLS result" in the table indicates that the coarse particles in the aggregated state increase, and it means that the dispersibility is poor.

(5)導電性之評價(5) Evaluation of conductivity

將包含最終濃度50重量%之各實施例及比較例中所獲得之銀粒子之上述評價用油墨滴加至PET膜(東麗製造之Lumirror U483)上,使用旋轉塗佈機(Actes公司製造之ASC-4000,1500rpm)製作約200nm厚度之金屬薄膜。於旋轉塗佈後迅速地於100℃下對該金屬薄膜熱處理1小時,使用四探針型導電率計(三菱化學Analytech製造之Loresta AX) 測定熱處理金屬薄膜之電阻值。將實施例之結果示於表3,將比較例之結果示於表4。 The above-mentioned evaluation ink containing the silver particles obtained in each of the Examples and Comparative Examples with a final concentration of 50% by weight was dropped onto a PET film (Lumirror U483 manufactured by Toray), and a spin coater (manufactured by Actes) was used. ASC-4000, 1500rpm) to produce a metal film with a thickness of about 200nm. After spin coating, the metal thin film was quickly heat-treated at 100°C for 1 hour, using a four-probe type conductivity meter (Loresta AX manufactured by Mitsubishi Chemical Analytech) Determine the resistance value of the heat-treated metal film. The results of the examples are shown in Table 3, and the results of the comparative examples are shown in Table 4.

(6)平均粒徑之測定(6) Measurement of average particle size

利用掃描式電子顯微鏡(日立高新技術製造之S-4500)觀察(5)中所製作之旋轉塗佈後未實施熱處理之金屬薄膜,觀察表面之粒子形狀,藉此測量圖像之粒子之長邊而設為粒徑。進而,將20個粒子之粒徑之平均值設為平均粒徑。將實施例之結果示於表3,將比較例之結果示於表4。 Use a scanning electron microscope (S-4500 manufactured by Hitachi High-Technologies) to observe the spin-coated metal film produced in (5) without heat treatment, observe the shape of the particles on the surface, and measure the long sides of the particles in the image Instead, set the particle size. Furthermore, let the average of the particle diameters of 20 particles be the average particle diameter. The results of the examples are shown in Table 3, and the results of the comparative examples are shown in Table 4.

Figure 105118451-A0202-12-0022-3
Figure 105118451-A0202-12-0022-3

Figure 105118451-A0202-12-0022-4
Figure 105118451-A0202-12-0022-4

於實施例1及2中,使用蓖麻油酸作為羥基脂肪酸。於實施例2中,與實施例1相比,增加了占保護層整體之比率。又,使用正辛胺及N,N-二甲基-1,3-丙二胺作為胺化合物。 In Examples 1 and 2, ricinoleic acid was used as the hydroxy fatty acid. In Example 2, compared with Example 1, the ratio of the entire protective layer is increased. In addition, n-octylamine and N,N-dimethyl-1,3-propanediamine were used as the amine compound.

基於利用DLS獲得之分散液製備5分鐘後及60分鐘後之測定值之 比的分散性評價係獲得如下結果:實施例1為T1/T0=1.01,幾乎未發生變化,實施例2為T1/T0=0.93,隨著時間經過,凝聚結構反而崩壞而分散性提昇。實施例1、2均獲得實用上充分之導電性。 Based on the measured value after 5 minutes and 60 minutes after the preparation of the dispersion obtained by DLS The ratio of the dispersibility evaluation system obtained the following results: Example 1 was T1/T0=1.01, almost unchanged, and Example 2 was T1/T0=0.93. As time passed, the aggregate structure collapsed and the dispersibility improved. Both Examples 1 and 2 achieved practically sufficient conductivity.

於實施例3、4及5中,使用3-甲氧基丙胺作為胺化合物而不使用實施例1中所使用之N,N-二甲基-1,3-丙二胺。其結果為,分散性、導電性均表現出與實施例1、2相同之傾向。 In Examples 3, 4 and 5, 3-methoxypropylamine was used as the amine compound instead of the N,N-dimethyl-1,3-propanediamine used in Example 1. As a result, both dispersibility and conductivity showed the same tendency as in Examples 1 and 2.

於實施例6及7中,使用12-羥基硬脂酸作為羥基脂肪酸以代替蓖麻油酸。其結果為,分散性、導電性均獲得與使用蓖麻油酸之實施例1~5相同之結果。 In Examples 6 and 7, 12-hydroxystearic acid was used as the hydroxy fatty acid instead of ricinoleic acid. As a result, the dispersibility and conductivity were the same as those of Examples 1 to 5 using ricinoleic acid.

於比較例1中,使用草酸銀作為金屬鹽,但使用作為不具有羥基之脂肪酸之油酸作為脂肪酸。其結果為,導電性係與實施例1及2為同等程度,但利用DLS獲得之分散性評價之結果為,於60分鐘後T1/T0成為3.19,與實施例1、2相比凝聚明顯進行。再者,於靜置約10小時後,銀粒子完全沈澱而分散液變得透明。 In Comparative Example 1, silver oxalate was used as the metal salt, but oleic acid, which is a fatty acid having no hydroxyl group, was used as the fatty acid. As a result, the conductivity is the same level as in Examples 1 and 2, but the result of dispersibility evaluation obtained by DLS is that T1/T0 becomes 3.19 after 60 minutes, and aggregation progresses significantly compared with Examples 1 and 2. . Furthermore, after standing for about 10 hours, the silver particles were completely precipitated and the dispersion liquid became transparent.

於比較例2中,使用草酸銀作為金屬鹽,但使用作為不具有羥基之脂肪酸之油酸作為脂肪酸。其結果為,與實施例3、4、5相比,導電性為同等程度,但利用DLS獲得之分散性評價之結果為,於60分鐘後T1/T0成為1.48,與實施例3、4、5相比凝聚明顯進行。再者,於靜置約10小時後,銀粒子完全沈澱而分散液變得透明。 In Comparative Example 2, silver oxalate was used as the metal salt, but oleic acid, which is a fatty acid having no hydroxyl group, was used as the fatty acid. As a result, compared with Examples 3, 4, and 5, the conductivity is the same level, but the result of the dispersibility evaluation obtained by DLS is that T1/T0 becomes 1.48 after 60 minutes, which is similar to Examples 3, 4, and 4. 5Compared to the condensing progress obviously. Furthermore, after standing for about 10 hours, the silver particles were completely precipitated and the dispersion liquid became transparent.

於比較例3中,使用草酸銀作為金屬鹽,但既不使用羥基脂肪酸亦不使用脂肪酸而製作金屬奈米微粒子。其結果為,導電性與實施例相比較為良好,但利用DLS獲得之分散性評價之結果為,於60分鐘後T1/T0成為5.64,分散穩定性最差。該樣本於3小時後完全沈澱而分散液變得透明。 In Comparative Example 3, silver oxalate was used as the metal salt, but neither hydroxy fatty acid nor fatty acid was used to produce metal nanoparticle. As a result, the electrical conductivity was better than that of the examples, but as a result of dispersibility evaluation by DLS, T1/T0 became 5.64 after 60 minutes, and the dispersion stability was the worst. The sample completely settled after 3 hours and the dispersion became transparent.

根據上述結果可知,極性溶劑中之金屬粒子之分散性係藉由使羥基脂肪酸含於金屬奈米微粒子之保護層中而明顯提昇。 According to the above results, it can be seen that the dispersibility of the metal particles in the polar solvent is significantly improved by containing the hydroxy fatty acid in the protective layer of the metal nanoparticle.

於比較例4中,使用草酸銀以外者作為金屬鹽。即,於比較例4中,使用硝酸銀而製作金屬奈米微粒子。其結果為,任一種金屬奈米微粒子之利用DLS獲得之分散性評價之結果均良好,但無法藉由100℃、1小時之焙燒而獲得充分之導電性。 In Comparative Example 4, a metal salt other than silver oxalate was used. That is, in Comparative Example 4, silver nitrate was used to produce metal nanofine particles. As a result, the dispersibility evaluation results obtained by DLS for any metal nanoparticle were good, but sufficient conductivity could not be obtained by firing at 100°C for 1 hour.

關於該方面,圖1所示之Tg測定結果係表示因低溫下之重量變化、即金屬奈米微粒子表面之保護層之低溫燒結時之脫離性的差異,而所獲得之銀粒子之導電性出現差異。即,圖1係意指對於保護層於更低溫下脫離之金屬奈米微粒子而言,於適度之焙燒條件下金屬奈米微粒子彼此之燒結進行,而可獲得較高之導電性。 Regarding this aspect, the Tg measurement result shown in Fig. 1 shows that the electrical conductivity of the obtained silver particles appears due to the weight change at low temperature, that is, the difference in the release properties of the protective layer on the surface of the metal nanoparticle at low temperature sintering. difference. That is, FIG. 1 means that for the metal nanoparticle whose protective layer is released at a lower temperature, the sintering of the metal nanoparticle with each other under moderate firing conditions can achieve higher conductivity.

[產業上之可利用性] [Industrial availability]

使用本發明之金屬奈米微粒子製造用組合物而製造之金屬奈米微粒子由於在包含較多極性溶劑之導電性油墨或導電膏中的分散性良好,故而可用於廣範圍之用途。 The metal nanoparticle produced by using the composition for producing metal nanoparticle of the present invention has good dispersibility in conductive ink or conductive paste containing more polar solvents, so it can be used for a wide range of applications.

Claims (18)

一種金屬奈米微粒子製造用組合物,其包含(A)草酸金屬鹽、(B)胺化合物及(C)羥基脂肪酸,且(C)羥基脂肪酸之含量相對於(A)草酸金屬鹽之1mol為0.001~1mol(但不包括包含草酸銀6.0g、3-甲氧基丙基胺7.0g、十二烷基胺0.50g及蓖麻油酸0.1g之組合物)。 A composition for the production of metal nanoparticle, comprising (A) metal oxalate, (B) amine compound, and (C) hydroxy fatty acid, and the content of (C) hydroxy fatty acid relative to 1 mol of (A) metal oxalate 0.001~1mol (but not including the composition containing 6.0g silver oxalate, 7.0g 3-methoxypropylamine, 0.50g dodecylamine and 0.1g ricinoleic acid). 如請求項1之組合物,其中(C)羥基脂肪酸為選自由蓖麻油酸及12-羥基硬脂酸所組成之群中之至少1種。 The composition of claim 1, wherein the (C) hydroxy fatty acid is at least one selected from the group consisting of ricinoleic acid and 12-hydroxystearic acid. 如請求項1或2之組合物,其中(A)草酸金屬鹽為草酸銀。 The composition of claim 1 or 2, wherein (A) the metal oxalate is silver oxalate. 如請求項1或2之組合物,其中(B)胺化合物為一級胺之1種以上、二胺化合物之1種以上、或一級胺之1種以上與二胺化合物之1種以上之組合。 The composition of claim 1 or 2, wherein (B) the amine compound is one or more primary amines, one or more diamine compounds, or a combination of one or more primary amines and one or more diamine compounds. 如請求項1或2之組合物,其中(A)草酸金屬鹽之含量相對於組合物之總量為20~70重量%。 The composition of claim 1 or 2, wherein the content of (A) metal oxalate is 20 to 70% by weight relative to the total amount of the composition. 如請求項1或2之組合物,其中(B)胺化合物之含量相對於(A)草酸金屬鹽之1mol為0.4~10mol。 The composition of claim 1 or 2, wherein the content of (B) amine compound is 0.4-10 mol relative to 1 mol of (A) metal oxalate. 一種金屬奈米微粒子之製造方法,其包括使如請求項1至6中任一項之組合物進行加熱反應之步驟。 A method for producing metal nanoparticle, which includes the step of subjecting the composition according to any one of claims 1 to 6 to a heating reaction. 如請求項7之方法,其中加熱反應溫度為50~240℃。 Such as the method of claim 7, wherein the heating reaction temperature is 50 to 240°C. 如請求項7或8之方法,其中金屬奈米微粒子之平均粒徑為10~200nm。 Such as the method of claim 7 or 8, wherein the average particle size of the metal nanoparticle is 10~200nm. 一種導電性油墨,其包含藉由如請求項7至9中任一項之方法而獲得之金屬奈米微粒子。 A conductive ink comprising metal nano particles obtained by the method according to any one of claims 7 to 9. 一種導電膏,其包含藉由如請求項7至9中任一項之方法而獲得之金屬奈米微粒子。 A conductive paste comprising metal nanoparticle obtained by the method according to any one of claims 7 to 9. 一種導電性油墨之製造方法,其包括:使如請求項1至6中任一項之組合物進行加熱反應而獲得金屬奈米微粒子之步驟;與使該金屬奈米微粒子分散於包含極性有機溶劑之有機溶劑中之步驟。 A method of manufacturing conductive ink, comprising: subjecting the composition as claimed in any one of claims 1 to 6 to heating reaction to obtain metal nanoparticle; and dispersing the metal nanoparticle in a polar organic solvent The steps in organic solvents. 一種導電膏之製造方法,其包括:使如請求項1至6中任一項之組合物進行加熱反應而獲得金屬奈米微粒子之步驟;與使該金屬奈米微粒子分散於包含極性有機溶劑之有機溶劑中之步驟。 A method of manufacturing a conductive paste, comprising: subjecting the composition as claimed in any one of claims 1 to 6 to a heating reaction to obtain metal nanoparticle; and dispersing the metal nanoparticle in a polar organic solvent Steps in organic solvents. 一種電路,其係使用如請求項10之導電性油墨或如請求項11之導電膏而形成。 A circuit which is formed using the conductive ink of claim 10 or the conductive paste of claim 11. 一種電極,其係使用如請求項10之導電性油墨或如請求項11之導電膏而形成。 An electrode formed by using the conductive ink of claim 10 or the conductive paste of claim 11. 一種電路之形成方法,其包括:使如請求項1至6中任一項之組合物進行加熱反應而獲得金屬奈米微粒子之步驟;使該金屬奈米微粒子分散於包含極性有機溶劑之有機溶劑中而獲得導電性油墨或導電膏之步驟;及使用該導電性油墨或導電膏於基板上印刷電路之步驟。 A method for forming a circuit, comprising: subjecting the composition of any one of claims 1 to 6 to heating reaction to obtain metal nanoparticle; dispersing the metal nanoparticle in an organic solvent containing a polar organic solvent The step of obtaining conductive ink or conductive paste; and the step of using the conductive ink or conductive paste to print a circuit on a substrate. 一種電極之形成方法,其包括:使如請求項1至6中任一項之組合物進行加熱反應而獲得金屬奈米微粒子之步驟;使該金屬奈米微粒子分散於包含極性有機溶劑之有機溶劑中而獲得導電性油墨或導電膏之步驟;及使用該導電性油墨或導電膏於基板上印刷電極之步驟。 A method for forming an electrode, comprising: subjecting the composition of any one of claims 1 to 6 to a heating reaction to obtain metal nanoparticle; dispersing the metal nanoparticle in an organic solvent containing a polar organic solvent The step of obtaining conductive ink or conductive paste; and the step of using the conductive ink or conductive paste to print electrodes on the substrate. 一種包含(A)草酸金屬鹽、(B)胺化合物及(C)羥基脂肪酸之組合物(但不包括包含草酸銀6.0g、3-甲氧基丙基胺7.0g、十二烷基胺0.50g及蓖麻油酸0.1g之組合物)之用途,其係用以製造金屬奈米微粒子。 A composition containing (A) oxalate metal salt, (B) amine compound and (C) hydroxy fatty acid (but not including silver oxalate 6.0g, 3-methoxypropylamine 7.0g, dodecylamine 0.50 g and 0.1 g of ricinoleic acid), which is used to produce metal nanoparticle.
TW105118451A 2015-06-15 2016-06-13 Composition for manufacturing metal nanoparticle TWI702262B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015120304 2015-06-15
JP2015-120304 2015-06-15

Publications (2)

Publication Number Publication Date
TW201710416A TW201710416A (en) 2017-03-16
TWI702262B true TWI702262B (en) 2020-08-21

Family

ID=57545305

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105118451A TWI702262B (en) 2015-06-15 2016-06-13 Composition for manufacturing metal nanoparticle

Country Status (5)

Country Link
JP (1) JP6673352B2 (en)
KR (1) KR20180018485A (en)
CN (1) CN107614164A (en)
TW (1) TWI702262B (en)
WO (1) WO2016204105A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018154806A (en) * 2017-03-15 2018-10-04 Dic株式会社 Metal fine particle dispersion, conductive ink, and electronic device
WO2018168004A1 (en) * 2017-03-15 2018-09-20 Dic株式会社 Metal fine particle dispersion, conductive ink and electronic device
JP6939015B2 (en) * 2017-03-29 2021-09-22 住友金属鉱山株式会社 Conductive paste for gravure printing for internal electrodes of multilayer ceramic capacitors
JP7257738B2 (en) * 2017-10-10 2023-04-14 Dic株式会社 Fine metal particle ink for offset printing
JP2019108593A (en) * 2017-12-19 2019-07-04 Dic株式会社 Method for producing silver fine particle dispersion
EP3848134A4 (en) * 2018-09-03 2022-02-09 Osaka Soda Co., Ltd. Silver nanoparticles
CN116867873A (en) * 2021-02-18 2023-10-10 学校法人关西大学 Conductive adhesive, sintered body of conductive adhesive, method for producing sintered body, electronic component, and method for producing electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270146A (en) * 2008-05-02 2009-11-19 Shoei Chem Ind Co Method for producing silver hyperfine particle
JP2013151753A (en) * 2013-03-04 2013-08-08 Dowa Electronics Materials Co Ltd Silver micropowder excellent in affinity for polar medium, and silver ink
TW201425520A (en) * 2012-10-12 2014-07-01 Bando Chemical Ind Adhesive composition
TW201637994A (en) * 2015-04-17 2016-11-01 阪東化學股份有限公司 Silver fine particle composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097074A (en) * 2007-09-27 2009-05-07 Mitsuboshi Belting Ltd Metal nanoparticle paste, and pattern forming method
KR101681046B1 (en) * 2009-11-26 2016-11-30 주식회사 동진쎄미켐 Conductive ink composition which does not form a particle and preparation thereof
KR101700615B1 (en) * 2010-03-30 2017-01-31 주식회사 동진쎄미켐 Method for preparing matal nano-particles, matal nano-particles prepared therefrom and metal ink composition comprising same
JP5311147B2 (en) * 2010-08-25 2013-10-09 株式会社豊田中央研究所 Surface-coated metal nanoparticles, production method thereof, and metal nanoparticle paste including the same
JP2012251222A (en) * 2011-06-03 2012-12-20 Tokyo Printing Ink Mfg Co Ltd Method for producing silver nanoparticle, and ink
WO2014084275A1 (en) * 2012-11-30 2014-06-05 ナミックス株式会社 Conductive paste and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270146A (en) * 2008-05-02 2009-11-19 Shoei Chem Ind Co Method for producing silver hyperfine particle
TW201425520A (en) * 2012-10-12 2014-07-01 Bando Chemical Ind Adhesive composition
JP2013151753A (en) * 2013-03-04 2013-08-08 Dowa Electronics Materials Co Ltd Silver micropowder excellent in affinity for polar medium, and silver ink
TW201637994A (en) * 2015-04-17 2016-11-01 阪東化學股份有限公司 Silver fine particle composition

Also Published As

Publication number Publication date
WO2016204105A1 (en) 2016-12-22
JPWO2016204105A1 (en) 2018-03-29
KR20180018485A (en) 2018-02-21
JP6673352B2 (en) 2020-03-25
CN107614164A (en) 2018-01-19
TW201710416A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
TWI702262B (en) Composition for manufacturing metal nanoparticle
CN107921533B (en) Metal paste having excellent low-temperature sinterability and method for producing same
KR101651915B1 (en) A method for preparing water-soluble nanoparticles and their dispersions
CN106573300B (en) Silver powder, method for producing same, and conductive paste
CN109789482B (en) Bonding material and bonding method using the same
CN108699397B (en) Conductive adhesive
TWI661012B (en) Method for manufacturing core-shell type metal fine particle, core-shell type metal fine particle, conductive ink, and method for manufacturing substrate
WO2016185728A1 (en) Method for manufacturing silver nanoparticle dispersion and method for manufacturing silver nanoparticle ink
WO2015087943A1 (en) Silver fine particle dispersion liquid
JP5063003B2 (en) Method for producing copper nanoparticles, copper nanoparticles, conductive composition, and electronic device
TW201402252A (en) Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
TWI682007B (en) Fine silver particle dispersing solution
TWI634165B (en) Method for producing metal nano particle
JP2011195951A (en) Method for producing metal nanoparticle, ink composition using the same, and method for producing the composition
JP5548481B2 (en) Composition for inkjet containing nickel fine particles
TWI819082B (en) Silver nanoparticles, conductive adhesive, sintered body, and device with sintered body between components
WO2019111795A1 (en) Inkjet printing ink
Shankar et al. Rheological optimization and stability study of silver nano-ink for inkjet printing of solar electrodes using industrial printhead
JP2014029017A (en) Method for producing metal fine particle composition
JP7283703B2 (en) Method for producing silver nanoparticles with wide particle size distribution and silver nanoparticles
JP5830265B2 (en) Method for producing dispersion-stable tin fine particles and method for producing tin ink using the same
JP2014162961A (en) Method for manufacturing tin particulate-containing liquid and inkjet tin ink
TWI586762B (en) Fine silver particle dispersing solution