JP2006321948A - Metal particulate dispersion and method for forming metal film by using the same - Google Patents

Metal particulate dispersion and method for forming metal film by using the same Download PDF

Info

Publication number
JP2006321948A
JP2006321948A JP2005148348A JP2005148348A JP2006321948A JP 2006321948 A JP2006321948 A JP 2006321948A JP 2005148348 A JP2005148348 A JP 2005148348A JP 2005148348 A JP2005148348 A JP 2005148348A JP 2006321948 A JP2006321948 A JP 2006321948A
Authority
JP
Japan
Prior art keywords
metal
film
metal fine
particle dispersion
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148348A
Other languages
Japanese (ja)
Other versions
JP4844805B2 (en
Inventor
Kazumasa Okada
一誠 岡田
Kohei Shimoda
浩平 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005148348A priority Critical patent/JP4844805B2/en
Publication of JP2006321948A publication Critical patent/JP2006321948A/en
Application granted granted Critical
Publication of JP4844805B2 publication Critical patent/JP4844805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal particulate dispersion and a formation method for forming such an excellent metal film by using this metal particulate dispersion as has a uniform thickness and besides none of defects such as pinholes and cracks. <P>SOLUTION: The metal particulate dispersion contains a metal particulate, water, a volatile organic solvent, and a nonvolatile organic compound. The metal particulate used is a particulate containing one or more kinds of metal elements selected from the group consisting of Ag, Au, Pt, Pd, Ru, Sn, Cu, Ni, Fe, Co, Ti, In and Ir. The volatile organic solvent used is a 1-5C saturated aliphatic alcohol. The nonvolatile organic compound is contained in a ratio of two or more parts by weight thereof relative to 100 parts by weight of the metal particulate. The formation method of a metal film comprises coating a metal particulate fluid dispersion on the surface of a substrate, and drying, and thereafter baking. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基材の表面に塗布した後、焼成して金属被膜を形成するために用いる、多数の金属微粒子を含む金属微粒子分散液と、それを用いて、基材の表面に金属被膜を形成する方法とに関するものである。   The present invention relates to a metal fine particle dispersion containing a large number of metal fine particles, which is used to form a metal film after being applied to the surface of the substrate, and a metal film on the surface of the substrate using the dispersion. And a method of forming.

特に、エレクトロニクス分野においては、従来、基材の表面に金属被膜を形成するために、湿式めっき法や真空蒸着法等が広く一般に採用されてきたが、より簡便な金属被膜の形成方法として、ナノメーターレベルの微細な金属微粒子を含む金属微粒子分散液を調製し、この金属微粒子分散液を、基材の表面に、均一に塗布して乾燥させた後、焼成して金属被膜を形成する方法が採用されるようになってきた。   In particular, in the electronics field, in order to form a metal film on the surface of a substrate, a wet plating method, a vacuum deposition method, and the like have been widely used. However, as a simpler method for forming a metal film, There is a method in which a metal fine particle dispersion containing fine metal fine particles at a meter level is prepared, and this metal fine particle dispersion is uniformly applied to the surface of a substrate and dried, followed by firing to form a metal film. Has been adopted.

例えば、特許文献1には、室温で蒸発しにくく、かつ乾燥、焼成工程での加熱によって蒸発する有機溶媒中に、銀や酸化銀等のナノメーターレベルの金属微粒子を、個々の金属微粒子の表面が有機溶媒によって覆われて、凝集を生じず、独立した状態となるように分散させた、室温での粘度が1000cP以下である金属微粒子分散液を用いて、上記の工程を経て金属被膜を形成することが記載されている。   For example, in Patent Document 1, nanometer-level metal fine particles such as silver and silver oxide are added to the surface of individual metal fine particles in an organic solvent that hardly evaporates at room temperature and evaporates by heating in a drying and baking process. A metal coating is formed through the above-described steps using a metal fine particle dispersion having a viscosity at room temperature of 1000 cP or less, which is covered with an organic solvent and dispersed so as to be in an independent state without causing aggregation. It is described to do.

また、特許文献1には、上記の有機溶媒として、ミネラルスピリット、トリデカン、ドデシルベンゼンもしくはそれらの混合物、またはそれらにα−テルピネオールまたは炭素数5以上の炭化水素、アルコール、エーテル、エステル、有機窒素化合物、有機ケイ素化合物、有機イオウ化合物を混合したもの等が記載されている。
特開2001−35814号公報(請求項1、3、第0003欄〜第0006欄)
Patent Document 1 discloses, as the organic solvent, mineral spirit, tridecane, dodecylbenzene, or a mixture thereof, or α-terpineol or a hydrocarbon having 5 or more carbon atoms, alcohol, ether, ester, or organic nitrogen compound. , Organic silicon compounds, organic sulfur compounds and the like are described.
JP 2001-35814 A (claims 1, 3, columns 0003 to 0006)

特許文献1において、室温で蒸発しにくく、乾燥、焼成工程での加熱によって蒸発する有機溶媒を使用している理由は、明細書中に具体的に記載されていないため、明らかではないが、焼成の初期の段階まで有機溶媒を残存させることで、当該有機溶媒を、金属微粒子の焼結に伴う急激な体積変化を緩和すると共に、金属微粒子間をつなぎとめるバインダとして機能させて、金属被膜にクラックや縮みが生じるのを防止するためではないかと推測される。   In Patent Document 1, the reason for using an organic solvent that is difficult to evaporate at room temperature and evaporates by heating in the drying and firing processes is not specifically described in the specification, and thus is not clear. By leaving the organic solvent until the initial stage of the above, the organic solvent functions as a binder to relieve rapid volume changes accompanying the sintering of the metal fine particles and to keep the metal fine particles between, so that cracks and It is presumed that the shrinkage may be prevented.

しかし、上記のような、室温で蒸発しにくい有機溶媒を用いた金属微粒子分散液を、基材の表面に塗布すると、その後の乾燥工程で有機溶媒が蒸発する際に、塗膜中の金属微粒子が凝集して、その濃度にムラを生じたり、金属微粒子の濃度のムラが原因となって、塗膜の厚みが不均一になったり、塗膜の厚みの不均一が大きくなって、ピンホール等の欠陥を生じたりしやすい。   However, when a metal fine particle dispersion using an organic solvent that does not easily evaporate at room temperature as described above is applied to the surface of the substrate, the metal fine particles in the coating film are evaporated when the organic solvent evaporates in the subsequent drying step. Aggregates and causes unevenness in the concentration, or unevenness in the concentration of metal fine particles, resulting in a non-uniform coating thickness or a non-uniform coating thickness. It is easy to produce defects such as.

これは、乾燥工程において、有機溶媒の蒸発と、それに伴う金属微粒子分散液の粘度上昇とが、金属微粒子の移動を伴って緩やかに進行することが原因であると考えられる。そのため、上記塗膜を焼成して形成される金属被膜は、塗膜に生じた上記種々の問題点をそのまま有しており、厚みが不均一であったり、ピンホール等の欠陥を有していたりしやすく、良好な金属被膜を形成できないのが現状である。   This is considered to be because, in the drying step, the evaporation of the organic solvent and the accompanying increase in the viscosity of the metal fine particle dispersion proceed slowly with the movement of the metal fine particles. Therefore, the metal film formed by firing the coating film has the above-mentioned various problems generated in the coating film as it is, and has a non-uniform thickness or defects such as pinholes. The current situation is that a good metal film cannot be formed.

本発明の目的は、できるだけ厚みが均一で、しかも、ピンホールやクラック等の欠陥を有しない、良好な金属被膜を形成することができる金属微粒子分散液を提供することにある。また、本発明の他の目的は、上記金属微粒子分散液を用いて、できるだけ厚みが均一で、しかも、ピンホールやクラック等の欠陥を有しない、良好な金属被膜を形成するための形成方法を提供することにある。   An object of the present invention is to provide a metal fine particle dispersion that can form a good metal film that is as uniform as possible and has no defects such as pinholes and cracks. Another object of the present invention is to provide a forming method for forming a good metal film using the above-mentioned metal fine particle dispersion as uniform as possible and having no defects such as pinholes and cracks. It is to provide.

請求項1記載の発明は、基材の表面に塗布した後、焼成して金属被膜を形成するための金属微粒子分散液であって、金属微粒子と、水と、揮発性有機溶媒と、不揮発性の有機化合物とを含むことを特徴とする金属微粒子分散液である。   The invention according to claim 1 is a metal fine particle dispersion for forming a metal film by coating after being applied to the surface of a substrate, the metal fine particles, water, a volatile organic solvent, and a non-volatile And a metal fine particle dispersion containing the organic compound.

請求項2記載の発明は、揮発性有機溶媒が、炭素数1〜5の脂肪族飽和アルコールである請求項1記載の金属微粒子分散液である。   The invention described in claim 2 is the metal fine particle dispersion according to claim 1, wherein the volatile organic solvent is an aliphatic saturated alcohol having 1 to 5 carbon atoms.

請求項3記載の発明は、不揮発性の有機化合物を、金属微粒子100重量部あたり2重量部以上の割合で含有する請求項1記載の金属微粒子分散液である。   The invention according to claim 3 is the metal fine particle dispersion according to claim 1, which contains a nonvolatile organic compound in a proportion of 2 parts by weight or more per 100 parts by weight of the metal fine particles.

請求項4記載の発明は、金属微粒子が、Ag、Au、Pt、Pd、Ru、Sn、Cu、Ni、Fe、Co、Ti、In、およびIrからなる群より選ばれる1種、または2種以上の金属元素を含有する請求項1記載の金属微粒子分散液である。   According to a fourth aspect of the present invention, the metal fine particles are one or two selected from the group consisting of Ag, Au, Pt, Pd, Ru, Sn, Cu, Ni, Fe, Co, Ti, In, and Ir. The metal fine particle dispersion according to claim 1 containing the above metal element.

請求項5記載の発明は、金属微粒子の一次粒子径が、200nm以下である請求項1記載の金属微粒子分散液である。   The invention according to claim 5 is the metal fine particle dispersion according to claim 1, wherein the primary particle diameter of the metal fine particles is 200 nm or less.

請求項6記載の発明は、基材の表面に、請求項1記載の金属微粒子分散液を塗布する工程と、乾燥させて、水と揮発性有機溶媒とを除去して塗膜を形成する工程と、形成した塗膜を焼成して金属被膜を形成する工程とを含むことを特徴とする金属被膜の形成方法である。   The invention according to claim 6 is a step of applying the metal fine particle dispersion according to claim 1 to the surface of the substrate, and a step of drying to remove water and a volatile organic solvent to form a coating film. And a step of baking the formed coating film to form a metal coating film.

請求項7記載の発明は、金属微粒子分散液を、スピンコート法、スプレーコート法、バーコート法、ダイコート法、またはディップコート法によって基材の表面に塗布する請求項6記載の金属被膜の形成方法である。   The invention according to claim 7 is the formation of the metal film according to claim 6, wherein the metal fine particle dispersion is applied to the surface of the substrate by spin coating, spray coating, bar coating, die coating, or dip coating. Is the method.

請求項1記載の発明の金属微粒子分散液を用いれば、当該金属微粒子分散液中に含まれる水、揮発性有機溶媒、および不揮発性の有機化合物の、それぞれの機能の相乗効果によって、基材の表面に、厚みが均一で、しかも、ピンホールやクラック、縮み等の欠陥のない、良好な塗膜を形成することができる。   By using the metal fine particle dispersion according to the first aspect of the present invention, the synergistic effect of the respective functions of water, volatile organic solvent, and nonvolatile organic compound contained in the metal fine particle dispersion allows A good coating film having a uniform thickness and free from defects such as pinholes, cracks and shrinkage can be formed on the surface.

すなわち、水は、金属微粒子分散液の、ガラス、セラミック、プラスチック等の各種基材の表面に対する濡れ性を高める働きをする。そのため、基材の表面に塗布した金属微粒子分散液がはじかれる等してピンホールを生じるのを防止することができる。   That is, water functions to enhance the wettability of the metal fine particle dispersion to the surfaces of various substrates such as glass, ceramics, and plastics. Therefore, it is possible to prevent pinholes from being generated by repelling the metal fine particle dispersion applied to the surface of the substrate.

また、揮発性有機溶媒は、基材の表面に塗布された金属微粒子分散液からごく短時間で揮発することによって、当該金属微粒子分散液の粘度を、金属微粒子の移動を生じさせることなく、急速に上昇させる働きをする。そのため、金属微粒子の濃度にムラを生じたり、このムラが原因となって塗膜の厚みが不均一になったり、塗膜の厚みの不均一が大きくなってピンホールを生じたりするのを防止することができる。   In addition, the volatile organic solvent volatilizes in a very short time from the metal fine particle dispersion applied on the surface of the base material, thereby rapidly changing the viscosity of the metal fine particle dispersion without causing movement of the metal fine particles. It works to raise. This prevents unevenness in the concentration of metal fine particles, uneven coating thickness due to this unevenness, and pinholes due to large uneven coating thickness. can do.

さらに、不揮発性の有機化合物は、焼成の初期の段階まで塗膜中に残存して、金属微粒子の焼結に伴う急激な体積変化を緩和すると共に、金属微粒子間をつなぎとめるバインダとしての働きをする。そのため、金属被膜にクラックや縮みが生じるのを防止することができる。   Furthermore, the non-volatile organic compound remains in the coating film until the early stage of firing, serves to act as a binder to relieve rapid volume changes associated with the sintering of the metal fine particles and to keep the metal fine particles together. . Therefore, it is possible to prevent the metal film from being cracked or shrunk.

よって、請求項1記載の発明によれば、これら各成分の機能の相乗効果によって、基材の表面に、厚みが均一で、しかも、ピンホールやクラック、縮み等の欠陥のない、良好な塗膜を形成することが可能となる。   Therefore, according to the first aspect of the invention, due to the synergistic effect of the functions of these components, the surface of the base material has a uniform thickness and is free from defects such as pinholes, cracks and shrinkage. A film can be formed.

揮発性有機溶媒としては、高い揮発性を有すると共に、水との相溶性に優れたものが好ましく、特に、請求項2に記載したように、炭素数1〜5の脂肪族飽和アルコールが好適に使用される。   As the volatile organic solvent, those having high volatility and excellent compatibility with water are preferable. In particular, as described in claim 2, an aliphatic saturated alcohol having 1 to 5 carbon atoms is preferably used. used.

また、金属微粒子分散液が、請求項3に記載したように、不揮発性の有機化合物を、金属微粒子100重量部あたり2重量部以上の割合で含有している場合には、当該有機化合物の、バインダとしての機能を有効に発揮させて、金属被膜にクラックや縮みが生じるのを、より一層、確実に防止することができる。   Further, as described in claim 3, when the metal fine particle dispersion contains a non-volatile organic compound in a ratio of 2 parts by weight or more per 100 parts by weight of the metal fine particles, By effectively exhibiting the function as a binder, it is possible to more reliably prevent cracks and shrinkage from occurring in the metal film.

特に、エレクトロニクス分野において使用する金属薄膜のもとになる金属微粒子としては、請求項4に記載したように、Ag、Au、Pt、Pd、Ru、Sn、Cu、Ni、Fe、Co、Ti、In、およびIrからなる群より選ばれる1種、または2種以上の金属元素を含有するものが好適に使用される。   In particular, as the metal fine particles used as the basis of the metal thin film used in the electronics field, as described in claim 4, Ag, Au, Pt, Pd, Ru, Sn, Cu, Ni, Fe, Co, Ti, Those containing one or two or more metal elements selected from the group consisting of In and Ir are preferably used.

また、金属微粒子の一次粒子径は、できるだけ緻密な金属被膜を形成することを考慮すると、請求項5に記載したように、200nm以下であるのが好ましい。   In consideration of forming a metal film that is as dense as possible, the primary particle diameter of the metal fine particles is preferably 200 nm or less as described in claim 5.

請求項6記載の発明によれば、上記本発明の金属微粒子分散液を基材の表面に塗布し、乾燥させて、水と揮発性有機溶媒とを除去して塗膜を形成し、焼成して金属被膜を形成しているため、先に説明した水、揮発性有機溶媒、ならびに不揮発性の有機化合物の相乗的な効果によって、基材の表面に、厚みが均一で、しかも、ピンホールやクラック等の欠陥を有しない、良好な金属被膜を形成することができる。   According to the sixth aspect of the present invention, the metal fine particle dispersion of the present invention is applied to the surface of the base material, dried, water and volatile organic solvent are removed to form a coating film, and baking is performed. Since the metal film is formed by the synergistic effect of the water, the volatile organic solvent, and the non-volatile organic compound described above, the surface of the substrate has a uniform thickness, and pinholes and It is possible to form an excellent metal film that does not have defects such as cracks.

金属微粒子分散液を、基材の表面に塗布する方法としては、請求項7に記載したように、スピンコート法、スプレーコート法、バーコート法、ダイコート法、またはディップコート法が好ましい。これらの方法によれば、金属微粒子分散液を、基材の表面に、均一に塗布することができるため、金属被膜の厚みを、より一層、均一化することができる。   As a method for applying the metal fine particle dispersion on the surface of the substrate, as described in claim 7, a spin coating method, a spray coating method, a bar coating method, a die coating method, or a dip coating method is preferable. According to these methods, since the metal fine particle dispersion can be uniformly applied to the surface of the substrate, the thickness of the metal coating can be made even more uniform.

本発明の金属微粒子分散液は、金属微粒子と、水と、揮発性有機溶媒と、不揮発性の有機化合物とを含むことを特徴とするものである。   The metal fine particle dispersion of the present invention is characterized by containing metal fine particles, water, a volatile organic solvent, and a nonvolatile organic compound.

揮発性有機溶媒としては、室温(5〜35℃)で揮発性を有する種々の有機溶媒が、いずれも使用可能である。中でも、常圧での沸点が60〜140℃程度である揮発性の有機溶媒が好ましく、特に、高い揮発性を有すると共に、水との相溶性に優れた、炭素数1〜5の脂肪族飽和アルコールが好ましい。炭素数1〜5の脂肪族飽和アルコールとしては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、イソブチルアルコール、sec−ブチルアルコール、tert−ブチルアルコール、n−アミルアルコール、イソアミルアルコール等の1種または2種以上が挙げられる。   As the volatile organic solvent, any of various organic solvents having volatility at room temperature (5-35 ° C.) can be used. Among them, a volatile organic solvent having a boiling point of about 60 to 140 ° C. at normal pressure is preferable. In particular, aliphatic saturation with 1 to 5 carbon atoms having high volatility and excellent compatibility with water. Alcohol is preferred. Examples of the aliphatic saturated alcohol having 1 to 5 carbon atoms include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, tert-butyl alcohol, n-amyl alcohol, 1 type, or 2 or more types, such as isoamyl alcohol, are mentioned.

揮発性有機溶媒の含有割合は、水と揮発性有機溶媒との総量中の、30〜80重量%、特に、40〜70重量%であるのが好ましい。揮発性有機溶媒の含有割合が、この範囲未満では、当該揮発性有機溶媒が短時間で揮発することによる、基材の表面に塗布された金属微粒子分散液の粘度を、金属微粒子の移動を生じさせることなく、急速に上昇させる働きが不十分になるおそれがある。また、揮発性有機溶媒の含有割合が、上記の範囲を超える場合には、相対的に、水の含有割合が少なくなるため、当該水による、金属微粒子分散液の、ガラス、セラミック、プラスチック等の各種基材の表面に対する濡れ性を高める働きが十分に得られないおそれがある。   The content of the volatile organic solvent is preferably 30 to 80% by weight, particularly 40 to 70% by weight, based on the total amount of water and the volatile organic solvent. When the content ratio of the volatile organic solvent is less than this range, the volatile organic solvent volatilizes in a short time, resulting in the viscosity of the metal fine particle dispersion applied on the surface of the substrate causing the movement of the metal fine particles. Without it, there is a risk that the work of rapidly raising it will be insufficient. In addition, when the content ratio of the volatile organic solvent exceeds the above range, the content ratio of water is relatively reduced, so that the metal fine particle dispersion of the water such as glass, ceramic, plastic, etc. There is a possibility that the function of improving the wettability with respect to the surfaces of various substrates cannot be obtained sufficiently.

不揮発性の有機化合物としては、室温(5〜35℃)で揮発性を有さず、乾燥を経て焼成の初期の段階まで塗膜中に残存して、バインダとしての働きをする種々の有機化合物が挙げられる。中でも、常圧での沸点が140℃を超えるか、または、常圧では沸点を有さない有機化合物が好ましく、特に、水およびアルコールとの相溶性に優れた、ホルムアミド(ギ酸アミド)、N−メチルホルムアミド、N,N−ジメチルホルムアミド等のホルムアミド類、グリセリン、ポリエチレングリコール、ポリプロピレングリコール等の多価アルコール類、およびシュウ酸等が好ましい。   Non-volatile organic compounds that are not volatile at room temperature (5 to 35 ° C.), remain in the coating film through drying to the initial stage of baking, and function as binders Is mentioned. Among them, an organic compound having a boiling point of more than 140 ° C. at normal pressure or having no boiling point at normal pressure is preferable. Particularly, formamide (formic acid amide), N— which has excellent compatibility with water and alcohol. Preferred are formamides such as methylformamide and N, N-dimethylformamide, polyhydric alcohols such as glycerin, polyethylene glycol and polypropylene glycol, and oxalic acid.

不揮発性の有機化合物の含有割合は、金属微粒子100重量部あたり2重量部以上であるのが好ましい。含有割合がこの範囲未満では、当該不揮発性の有機化合物による、バインダとしての働きが十分に得られないため、金属被膜にクラックや縮みを生じるおそれがある。   The content of the nonvolatile organic compound is preferably 2 parts by weight or more per 100 parts by weight of the metal fine particles. If the content ratio is less than this range, the function of the nonvolatile organic compound as a binder cannot be obtained sufficiently, and the metal film may be cracked or shrunk.

また、不揮発性の有機化合物の含有割合は、金属微粒子100重量部あたり40重量部以下であるのが好ましい。含有割合がこの範囲を超える場合には、過剰の有機化合物が金属微粒子の焼結を阻害したり、有機化合物の分解残渣が、金属被膜中に不純物として残存したりして、金属被膜の導電性が低下するおそれがある。なお、クラックや縮みが発生するのを、より一層、確実に防止しつつ、導電性に優れた金属被膜を形成することを考慮すると、不揮発性の有機化合物の含有割合は、上記の範囲内でも、特に、金属微粒子100重量部あたり5〜25重量部であるのがさらに好ましい。   The content of the nonvolatile organic compound is preferably 40 parts by weight or less per 100 parts by weight of the metal fine particles. When the content ratio exceeds this range, the excess organic compound inhibits the sintering of the metal fine particles, or the decomposition residue of the organic compound remains as an impurity in the metal film, and the conductivity of the metal film May decrease. In consideration of forming a metal film having excellent conductivity while further reliably preventing cracks and shrinkage, the content ratio of the nonvolatile organic compound is within the above range. In particular, the amount is more preferably 5 to 25 parts by weight per 100 parts by weight of the metal fine particles.

金属微粒子としては、焼成によって連続的な金属被膜を形成することができる、種々の金属元素の1種または2種以上からなる金属微粒子を、形成する金属被膜の特性等に応じて選択して採用することができるが、特に、エレクトロニクス分野において使用する金属薄膜のもとになる金属微粒子としては、Ag、Au、Pt、Pd、Ru、Sn、Cu、Ni、Fe、Co、Ti、In、およびIrからなる群より選ばれる1種、または2種以上の金属元素を含有するものが好ましい。   As metal fine particles, metal fine particles composed of one or more of various metal elements that can form a continuous metal film by firing are selected and adopted according to the characteristics of the metal film to be formed, etc. In particular, the fine metal particles that form the metal thin film used in the electronics field include Ag, Au, Pt, Pd, Ru, Sn, Cu, Ni, Fe, Co, Ti, In, and Those containing one or more metal elements selected from the group consisting of Ir are preferred.

金属微粒子の粒径は、できるだけ緻密な金属被膜を形成することを考慮すると、一次粒子径が200nm以下であるのが好ましく、150nm以下であるのがさらに好ましい。また、金属微粒子の一次粒子径の下限については、特に限定されないが、実用上は、1nm以上であるのが好ましい。金属微粒子の一次粒子径は、本発明では、レーザードップラー法を応用した粒度分布測定装置を用いて測定される粒度分布のピーク値でもって規定することとする。   In consideration of the formation of a metal coating that is as dense as possible, the primary particle diameter is preferably 200 nm or less, and more preferably 150 nm or less. Further, the lower limit of the primary particle diameter of the metal fine particles is not particularly limited, but is preferably 1 nm or more for practical use. In the present invention, the primary particle diameter of the metal fine particles is defined by the peak value of the particle size distribution measured using a particle size distribution measuring apparatus applying the laser Doppler method.

金属微粒子は、含浸法と呼ばれる高温処理法や、液相還元法、気相法などの、従来公知の種々の方法によって製造することができる。このうち、液相還元法によって金属微粒子を製造するためには、例えば、水に、金属微粒子を形成する金属元素のイオンのもとになる水溶性の金属化合物と、分散剤とを溶解すると共に、還元剤を加えて、好ましくは、かく拌下、一定時間、両金属元素のイオンを還元反応させればよい。かかる液相還元法によって製造される金属微粒子は、形状が球状ないし粒状で揃っていると共に、粒度分布がシャープで、しかも、一次粒子径が小さいという特徴を有している。   The metal fine particles can be produced by various conventionally known methods such as a high temperature treatment method called an impregnation method, a liquid phase reduction method, and a gas phase method. Among these, in order to produce fine metal particles by the liquid phase reduction method, for example, a water-soluble metal compound that is a source of metal element ions forming the fine metal particles and a dispersant are dissolved in water. The reducing agent is added, and preferably, the ions of both metal elements may be subjected to a reduction reaction with stirring for a certain time. The metal fine particles produced by such a liquid phase reduction method are characterized by having a spherical or granular shape, a sharp particle size distribution, and a small primary particle size.

金属元素のイオンのもとになる、水溶性の金属化合物としては、例えば、Agの場合は、硝酸銀(I)〔AgNO3〕、メタンスルホン酸銀〔CH3SO3Ag〕等が挙げられ、Auの場合は、テトラクロロ金(III)酸四水和物〔HAuCl4・4H2O〕等が挙げられる。Ptの場合は、ジニトロジアンミン白金(II)(Pt(NO22(NH32)、ヘキサクロロ白金(IV)酸六水和物(H2[PtCl6]・6H2O)等が挙げられ、Pdの場合は、硝酸パラジウム(II)硝酸溶液〔Pd(NO2)2/H2O〕、塩化パラジウム(II)溶液〔PdCl2〕等が挙げられる。 Examples of water-soluble metal compounds that are the source of metal element ions include silver nitrate (I) [AgNO 3 ] and silver methanesulfonate [CH 3 SO 3 Ag] in the case of Ag. In the case of Au, tetrachloroauric (III) acid tetrahydrate [HAuCl 4 · 4H 2 O] and the like can be mentioned. In the case of Pt, dinitrodiammine platinum (II) (Pt (NO 2 ) 2 (NH 3 ) 2 ), hexachloroplatinum (IV) acid hexahydrate (H 2 [PtCl 6 ] · 6H 2 O) and the like can be mentioned. In the case of Pd, palladium (II) nitrate solution [Pd (NO 2 ) 2 / H 2 O], palladium chloride (II) solution [PdCl 2 ] and the like can be mentioned.

Ruの場合は、硝酸ルテニウム(III)溶液〔Ru(NO3)3〕等が挙げられ、Snの場合は、塩化スズ(IV)五水和物〔SnCl4・5H2O〕等が挙げられる。Cuの場合は、硝酸銅(II)〔Cu(NO3)2〕、硫酸銅(II)五水和物〔CuSO4・5H2O〕等が挙げられ、Niの場合は、塩化ニッケル(II)六水和物〔NiCl2・6H2O〕、硝酸ニッケル(II)六水和物〔Ni(NO3)2・6H2O〕等が挙げられる。 In the case of Ru, a ruthenium (III) nitrate solution [Ru (NO 3 ) 3 ] and the like are mentioned, and in the case of Sn, tin (IV) chloride pentahydrate [SnCl 4 .5H 2 O] and the like are mentioned. . In the case of Cu, copper nitrate (II) [Cu (NO 3 ) 2 ], copper sulfate (II) pentahydrate [CuSO 4 .5H 2 O] and the like can be mentioned. In the case of Ni, nickel chloride (II ) Hexahydrate [NiCl 2 .6H 2 O], nickel nitrate (II) hexahydrate [Ni (NO 3 ) 2 .6H 2 O] and the like.

Coの場合は、塩化コバルト(II)六水和物〔CoCl2・6H2O〕、硝酸コバルト(II)六水和物〔Co(NO32・6H2O〕等が挙げられ、Tiの場合は、塩化チタン(III)〔TiCl3〕等が挙げられる。Inの場合は、塩化インジウム(III)四水和物〔InCl3・4H2O〕、硝酸インジウム(III)三水和物〔In(NO33・3H2O〕等が挙げられ、Irの場合は、塩化イリジウム(III)〔IrCl3〕等が挙げられる。 In the case of Co, cobalt chloride (II) hexahydrate [CoCl 2 · 6H 2 O], cobalt nitrate (II) hexahydrate [Co (NO 3 ) 2 · 6H 2 O] and the like can be mentioned. In this case, titanium chloride (III) [TiCl 3 ] and the like can be mentioned. In the case of In, indium chloride (III) tetrahydrate [InCl 3 · 4H 2 O], indium nitrate (III) trihydrate [In (NO 3 ) 3 · 3H 2 O], and the like can be mentioned. In the case of iridium (III) [IrCl 3 ] and the like.

還元剤としては、液相の反応系中で、金属元素のイオンを還元することで、金属微粒子として析出させることができる種々の還元剤が、いずれも使用可能である。かかる還元剤としては、例えば、水素化ホウ素ナトリウム、次亜リン酸ナトリウム、ヒドラジン、遷移金属元素のイオン(三価のチタンイオン、二価のコバルトイオン等)が挙げられる。ただし、析出させる金属微粒子の一次粒子径をできるだけ小さくするためには、金属のイオンの還元、析出速度を遅くするのが有効であり、還元、析出速度を遅くするためには、できるだけ還元力の弱い還元剤を選択して使用することが好ましい。   As the reducing agent, any of various reducing agents that can be deposited as metal fine particles by reducing metal element ions in a liquid phase reaction system can be used. Examples of the reducing agent include sodium borohydride, sodium hypophosphite, hydrazine, and transition metal element ions (trivalent titanium ions, divalent cobalt ions, and the like). However, in order to reduce the primary particle size of the metal fine particles to be precipitated as much as possible, it is effective to reduce the reduction and precipitation rate of metal ions, and to reduce the reduction and precipitation rate, the reduction power is as low as possible. It is preferable to select and use a weak reducing agent.

還元力の弱い還元剤としては、例えば、メタノール、エタノール、2−プロパノール等のアルコールや、あるいはアスコルビン酸等を挙げることができる他、エチレングリコール、グルタチオン、有機酸類(クエン酸、リンゴ酸、酒石酸等)、還元性糖類(グルコース、ガラクトース、マンノース、フルクトース、スクロース、マルトース、ラフィノース、スタキオース等)、および糖アルコール類(ソルビトール等)等を挙げることができ、中でも、還元性糖類や、その誘導体としての糖アルコール類が好ましい。   Examples of the reducing agent having a weak reducing power include alcohols such as methanol, ethanol and 2-propanol, ascorbic acid, and the like, as well as ethylene glycol, glutathione, organic acids (citric acid, malic acid, tartaric acid, etc.) ), Reducing saccharides (glucose, galactose, mannose, fructose, sucrose, maltose, raffinose, stachyose, etc.) and sugar alcohols (sorbitol, etc.), among others, as reducing saccharides and their derivatives Sugar alcohols are preferred.

分散剤としては、水に対して良好な溶解性を有すると共に、析出した金属微粒子を、水中に良好に分散させることができる種々の分散剤が、いずれも使用可能であるが、特に、水溶性の高分子分散剤が、好適に使用される。   As the dispersant, various dispersants that have good solubility in water and can disperse the deposited metal fine particles in water can be used. These polymer dispersants are preferably used.

高分子分散剤は、反応系中で、析出した金属微粒子の周囲を囲むように存在して、金属微粒子の凝集を防止し、分散を維持する働きをする。また、高分子分散剤は、後述するように、金属微粒子を析出させた液相の反応系を出発原料として、本発明の金属微粒子分散液を調製する場合、不純物の除去工程では殆ど除去されずに残存して、金属微粒子分散液中でも、金属微粒子の凝集を防止し、分散を維持する働きをし続ける。   The polymer dispersant exists in the reaction system so as to surround the periphery of the deposited metal fine particles, and functions to prevent aggregation of the metal fine particles and maintain dispersion. Further, as will be described later, the polymer dispersant is hardly removed in the impurity removal step when the metal fine particle dispersion of the present invention is prepared using a liquid phase reaction system in which metal fine particles are deposited as a starting material. In the metal fine particle dispersion, the metal fine particles are prevented from agglomerating and maintain the dispersion.

そのため、高分子分散剤は、金属被膜を形成する際の焼成工程において、金属微粒子の焼結を阻害したり、高分子分散剤の分解残渣が、金属被膜中に不純物として残存したりして、金属被膜の導電性が低下するのを防止するために、スムースに熱分解できることが好ましい。また、高分子分散剤は、焼成によって形成される金属被膜や、この金属被膜をエレクトロニクス分野に用いる際に、その近傍に配置される電子部品等が劣化するのを防止することを考慮すると、硫黄、リン、ホウ素およびハロゲン原子を含まないことが好ましい。   Therefore, the polymer dispersant inhibits the sintering of the metal fine particles in the firing step when forming the metal coating, or the decomposition residue of the polymer dispersant remains as an impurity in the metal coating, In order to prevent the conductivity of the metal film from being lowered, it is preferable that the metal film can be thermally decomposed smoothly. In addition, the polymer dispersant is sulfur in consideration of preventing deterioration of a metal film formed by firing and an electronic component disposed in the vicinity of the metal film when used in the electronics field. It preferably contains no phosphorus, boron or halogen atoms.

これらの条件を満足する、好適な高分子分散剤としては、例えば、ポリエチレンイミン、ポリビニルピロリドン等のアミン系の高分子分散剤や、ポリアクリル酸、カルボキシメチルセルロース等の、分子中にカルボン酸基を有する炭化水素系の高分子分散剤、ポバール(ポリビニルアルコール)、あるいは、1分子中に、ポリエチレンイミン部分とポリエチレンオキサイド部分とを有する共重合体等の、極性基を有する高分子分散剤が挙げられる。また、その分子量は、100000以下であるのが好ましい。   Suitable polymer dispersants that satisfy these conditions include, for example, amine-based polymer dispersants such as polyethyleneimine and polyvinylpyrrolidone, and carboxylic acid groups in the molecule such as polyacrylic acid and carboxymethylcellulose. Examples thereof include hydrocarbon-based polymer dispersants, poval (polyvinyl alcohol), and polymer dispersants having a polar group, such as a copolymer having a polyethyleneimine moiety and a polyethylene oxide moiety in one molecule. . Moreover, it is preferable that the molecular weight is 100,000 or less.

金属微粒子の一次粒子径を調整するには、金属化合物、分散剤、還元剤の種類と配合割合とを調整すると共に、金属化合物を還元反応させる際に、かく拌速度、温度、時間、pH等を調整すればよい。   In order to adjust the primary particle size of the metal fine particles, the type and blending ratio of the metal compound, dispersant, and reducing agent are adjusted, and when the metal compound is subjected to a reduction reaction, the stirring speed, temperature, time, pH, etc. Can be adjusted.

反応系のpHは、できるだけ一次粒子径の小さい金属微粒子を形成することを考慮すると、7〜13であるのが好ましい。反応系のpHを上記の範囲に調整するためには、pH調整剤が使用される。pH調整剤としては、形成される金属被膜や、この金属被膜をエレクトロニクス分野に用いる際に、その近傍に配置される電子部品等が劣化するのを防止することを考慮すると、アルカリ金属やアルカリ土類金属、塩素等のハロゲン元素、硫黄、リン、ホウ素等の不純物元素を含まない、硝酸やアンモニアが好ましい。   The pH of the reaction system is preferably 7 to 13 in consideration of forming metal fine particles having a primary particle size as small as possible. In order to adjust the pH of the reaction system to the above range, a pH adjusting agent is used. As a pH adjuster, considering the prevention of deterioration of the formed metal film and the electronic parts disposed in the vicinity of the metal film when used in the electronics field, alkali metal and alkaline earth are considered. Nitric acid and ammonia, which do not contain an impurity element such as a metal element, a halogen element such as chlorine, sulfur, phosphorus or boron, are preferred.

液相の反応系中に析出させた金属微粒子は、ロ別、洗浄、乾燥、解砕等の工程を経て、一旦、粉末状とした後、水、揮発性有機溶媒、および不揮発性の有機化合物と、所定の割合で配合して金属微粒子分散液を調製してもよいが、金属微粒子を析出させた液相の反応系を出発原料として用いて、金属微粒子分散液を調製するのが好ましい。   The metal fine particles deposited in the liquid phase reaction system are subjected to processes such as separation, washing, drying, and crushing, and then once powdered, then water, a volatile organic solvent, and a nonvolatile organic compound A metal fine particle dispersion may be prepared by blending at a predetermined ratio, but it is preferable to prepare a metal fine particle dispersion using a liquid phase reaction system in which metal fine particles are deposited as a starting material.

すなわち、金属微粒子を析出させた後の、当該金属微粒子と、反応に使用した水とを含む液相の反応系から、限外ろ過、遠心分離、水洗、電気透析等の処理を行って、不純物を除去すると共に、必要に応じて、濃縮して水を除去するか、逆に水を加えることで、金属微粒子の濃度を調整した後、揮発性有機溶媒と、不揮発性の有機化合物とを、それぞれ、所定の割合で配合することによって、金属微粒子分散液が調製される。この方法では、金属微粒子の凝集による、粗大で不定形な粒子の発生を防止して、より一層、緻密で、かつ均一な金属被膜を形成することができる。   That is, impurities such as ultrafiltration, centrifugation, washing, electrodialysis, etc. are performed from a liquid phase reaction system containing the metal fine particles after precipitation and the water used for the reaction. After removing the water, if necessary, the water is removed by concentration, or the water is added to adjust the concentration of the metal fine particles, and then the volatile organic solvent and the non-volatile organic compound are added. A metal fine particle dispersion is prepared by blending each in a predetermined ratio. According to this method, generation of coarse and irregular particles due to aggregation of metal fine particles can be prevented, and a more dense and uniform metal film can be formed.

本発明の金属微粒子分散液は、基板の表面に塗布する塗布方法に適した粘度を有していることが求められる。そのためには、金属微粒子分散液の総量中に占める、水と揮発性有機溶媒の合計の含有割合を調整したり、高分子分散剤の分子量や含有割合を調整したりすればよい。   The metal fine particle dispersion of the present invention is required to have a viscosity suitable for a coating method for coating on the surface of a substrate. For that purpose, the total content of water and the volatile organic solvent in the total amount of the metal fine particle dispersion may be adjusted, or the molecular weight and content of the polymer dispersant may be adjusted.

本発明の金属被膜の形成方法においては、まず、基材の表面に、上記本発明の金属微粒子分散液を塗布する。塗布する厚みは、塗布後の乾燥および焼成の工程を経て、目的とする厚みの金属被膜を形成できるように調整する。塗布の方法としては、スピンコート法、スプレーコート法、バーコート法、ダイコート法、またはディップコート法が好ましい。これらの方法によれば、金属微粒子分散液を、基材の表面に、均一に塗布することができるため、金属被膜の厚みを、より一層、均一化することができる。   In the metal film forming method of the present invention, first, the metal fine particle dispersion of the present invention is applied to the surface of a substrate. The thickness to apply is adjusted so that the metal film of the target thickness can be formed through the process of drying and baking after application. As a coating method, a spin coating method, a spray coating method, a bar coating method, a die coating method, or a dip coating method is preferable. According to these methods, since the metal fine particle dispersion can be uniformly applied to the surface of the substrate, the thickness of the metal coating can be made even more uniform.

次に、基材の表面に塗布した金属微粒子分散液を乾燥させて塗膜を形成する。乾燥の条件は、揮発性有機溶媒と水のほぼ全量を蒸発させると共に、不揮発性の有機化合物の少なくとも一部を塗膜中に残存させることができるように設定する。   Next, the metal fine particle dispersion applied on the surface of the substrate is dried to form a coating film. The drying conditions are set so that substantially the entire amount of the volatile organic solvent and water is evaporated and at least a part of the nonvolatile organic compound can remain in the coating film.

次に、上記塗膜を、不揮発性の有機化合物や高分子分散剤の熱分解温度以上に加熱して焼成すると、これらの化合物が熱分解して除去されると共に、金属微粒子が焼結されて金属被膜が形成される。焼成は、大気中で行ってもよいし、金属微粒子の酸化を防止するために、大気中で焼成後に、還元性雰囲気中でさらに焼成してもよい。   Next, when the coating film is heated to a temperature higher than the thermal decomposition temperature of the nonvolatile organic compound or polymer dispersant, these compounds are thermally decomposed and removed, and the metal fine particles are sintered. A metal coating is formed. Firing may be performed in the air, or may be further performed in a reducing atmosphere after firing in the air in order to prevent oxidation of the metal fine particles.

上記の工程を経て形成される金属被膜は、従来の、湿式めっき法等によって形成した金属被膜と同様に、フォトリソグラフ法を利用したエッチング法等によって、所定の平面形状にパターン形成することで、例えば、TFT素子の電極層等として使用することができる。また、本発明の金属微粒子分散液は、上記金属被膜の形成方法に使用する以外にも、例えば、インクジェットプリンタの導電性インク組成物として、基材の表面に、直接に、パターン形成するためにも用いることができる。   The metal film formed through the above steps is patterned into a predetermined planar shape by an etching method using a photolithographic method or the like, similarly to a conventional metal film formed by a wet plating method or the like. For example, it can be used as an electrode layer of a TFT element. In addition to using the metal fine particle dispersion of the present invention in the method for forming a metal film, for example, as a conductive ink composition for an ink jet printer, a pattern can be directly formed on the surface of a substrate. Can also be used.

〈実施例1〉
(金属微粒子の作製)
金属化合物としての硝酸銀(I)を純水に溶解させ、アンモニア水を加えて液のpHを11に調整し、次いで、高分子分散剤としてのポリビニルピロリドン(分子量20000)を加えて完全に溶解させた後、還元剤としてのグルコースを純水に溶解した溶液を添加して、液相の反応系を調製した。反応系における、各成分の濃度は、硝酸銀(I):25g/リットル、ポリビニルピロリドン:2g/リットル、グルコース:26g/リットルとした。
<Example 1>
(Preparation of fine metal particles)
Silver nitrate (I) as a metal compound is dissolved in pure water, aqueous ammonia is added to adjust the pH of the solution to 11, and then polyvinylpyrrolidone (molecular weight 20000) as a polymer dispersant is added and completely dissolved. After that, a solution in which glucose as a reducing agent was dissolved in pure water was added to prepare a liquid phase reaction system. The concentration of each component in the reaction system was silver (I) nitrate: 25 g / liter, polyvinylpyrrolidone: 2 g / liter, and glucose: 26 g / liter.

この反応系を、かく拌速度500rpmでかく拌しながら、80℃で180分間、反応させて、Ag微粒子をコロイド状に析出させ、次いで、限外ろ過処理により、純水で希釈を繰り返して不純物を除去した後、Ag微粒子の粒度分布を、レーザードップラー法を応用した粒度分布測定装置〔日機装(株)製のナノトラック(登録商標)粒度分布測定装置UPA−EX150〕を用いて測定したところ、15nmの位置に鋭いピークが見られた。   This reaction system is reacted at 80 ° C. for 180 minutes while stirring at a stirring speed of 500 rpm to precipitate Ag fine particles in a colloidal form, and then, by ultrafiltration, the dilution is repeated with pure water to remove impurities. After the removal, the particle size distribution of the Ag fine particles was measured using a particle size distribution measuring apparatus (Nanotrack (registered trademark) particle size distribution measuring apparatus UPA-EX150 manufactured by Nikkiso Co., Ltd.) using a laser Doppler method. A sharp peak was observed at the position of.

次に、上記の反応系を、ホットバスを用いて加熱して、Ag微粒子の濃度が30重量%になるまで濃縮した後、揮発性有機溶媒としてエチルアルコール(沸点78℃)を加えてかく拌し、さらに、不揮発性の有機化合物としてホルムアミドを加えてかく拌して、金属微粒子分散液を調製した。   Next, the above reaction system is heated using a hot bath and concentrated until the concentration of Ag fine particles is 30% by weight, and then ethyl alcohol (boiling point 78 ° C.) is added as a volatile organic solvent and stirred. Furthermore, formamide was added as a nonvolatile organic compound and stirred to prepare a metal fine particle dispersion.

金属微粒子分散液における、各成分の含有割合は、Ag微粒子100重量部あたり、水が235重量部、エチルアルコールが150重量部、ホルムアミドが5重量部、ポリビニルピロリドンが10重量部であった。また、金属微粒子分散液における、Ag微粒子の濃度は、20重量%であった。   The content of each component in the metal fine particle dispersion was 235 parts by weight of water, 150 parts by weight of ethyl alcohol, 5 parts by weight of formamide, and 10 parts by weight of polyvinyl pyrrolidone per 100 parts by weight of the Ag fine particles. The concentration of Ag fine particles in the metal fine particle dispersion was 20% by weight.

(金属被膜の形成)
上記金属微粒子分散液を、5インチ角の石英ガラス基材の表面に、スピンコート法(基材の回転速度:500rpm)によって塗布した後、100℃で10分間、乾燥させて塗膜を形成し、次いで、大気中で、250℃に加熱して60分間、焼成して金属被膜を形成した。
(Formation of metal coating)
The metal fine particle dispersion is applied to the surface of a 5-inch square quartz glass substrate by spin coating (substrate rotation speed: 500 rpm), and then dried at 100 ° C. for 10 minutes to form a coating film. Then, in the air, it was heated to 250 ° C. and baked for 60 minutes to form a metal film.

形成した金属被膜の表面を、実体顕微鏡を用いて観察したところ、金属被膜は、ピンホールやクラック等の欠陥のない、緻密でかつ均一な膜であって、その表面が鏡面光沢を有していることが確認された。また、金属被膜の厚みを、表面粗さ形状測定機〔(株)東京精密製のサーフコム(登録商標)130A〕を用いて測定したところ、平均膜厚は2μm、膜厚の分布は、平均膜厚に対して±5%以内であって、厚みが均一であると共に、表面が平滑であることが確認された。さらに、金属被膜の抵抗率を、抵抗率計〔(株)ダイアインスツルメンツ製のロレスタ(登録商標)GP MCP−T610型〕を用いて測定したところ、3μΩ・cmであって、金属被膜は、導電性に優れることが確認された。   When the surface of the formed metal film was observed using a stereomicroscope, the metal film was a dense and uniform film without defects such as pinholes and cracks, and the surface had a specular gloss. It was confirmed that Further, when the thickness of the metal film was measured using a surface roughness shape measuring instrument [Surfcom (registered trademark) 130A manufactured by Tokyo Seimitsu Co., Ltd.], the average film thickness was 2 μm, and the film thickness distribution was the average film. Within ± 5% of the thickness, it was confirmed that the thickness was uniform and the surface was smooth. Furthermore, when the resistivity of the metal film was measured using a resistivity meter (Loresta (registered trademark) GP MCP-T610 type manufactured by Dia Instruments Co., Ltd.), the resistivity was 3 μΩ · cm, and the metal film was electrically conductive. It was confirmed that it was excellent in performance.

〈実施例2〉
(金属微粒子の作製)
金属化合物としての硝酸銀(I)と硝酸銅(II)とを純水に溶解させ、アンモニア水を加えて液のpHを12に調整し、次いで、高分子分散剤としてのポリアクリル酸(分子量8000)を加えて完全に溶解させた後、還元剤としてのヒドラジンを純水に溶解した溶液を添加して、液相の反応系を調製した。反応系における、各成分の濃度は、硝酸銀(I):10g/リットル、硝酸銅(II):0.11g/リットル、ポリアクリル酸:5g/リットル、ヒドラジン:5g/リットルとした。
<Example 2>
(Preparation of fine metal particles)
Silver nitrate (I) and copper nitrate (II) as metal compounds are dissolved in pure water, aqueous ammonia is added to adjust the pH of the solution to 12, and then polyacrylic acid (molecular weight 8000 as a polymer dispersant) is added. ) Was added and completely dissolved, and then a solution in which hydrazine as a reducing agent was dissolved in pure water was added to prepare a liquid phase reaction system. The concentration of each component in the reaction system was silver nitrate (I): 10 g / liter, copper nitrate (II): 0.11 g / liter, polyacrylic acid: 5 g / liter, and hydrazine: 5 g / liter.

この反応系を、かく拌速度500rpmでかく拌しながら、10℃で10分間、反応させて、AgとCuの合金からなる合金微粒子をコロイド状に析出させ、次いで、遠心分離処理と水洗とを繰り返して不純物を除去した後、合金微粒子の粒度分布を、実施例1と同様にして測定したところ、150nmの位置に鋭いピークが見られた。   This reaction system is reacted at 10 ° C. for 10 minutes while stirring at a stirring speed of 500 rpm to precipitate the alloy fine particles made of an alloy of Ag and Cu in a colloidal form, and then repeated centrifugal treatment and water washing are repeated. After removing the impurities, the particle size distribution of the alloy fine particles was measured in the same manner as in Example 1. As a result, a sharp peak was observed at a position of 150 nm.

次に、上記の反応系を、ホットバスを用いて加熱して、合金微粒子の濃度が25重量%になるまで濃縮した後、揮発性有機溶媒としてn−プロピルアルコール(沸点97℃)を加えてかく拌し、さらに、不揮発性の有機化合物としてジメチルホルムアミドを加えてかく拌して、金属微粒子分散液を調製した。   Next, the above reaction system is heated using a hot bath and concentrated until the concentration of the alloy fine particles becomes 25% by weight, and then n-propyl alcohol (boiling point 97 ° C.) is added as a volatile organic solvent. The mixture was further stirred, and dimethylformamide was further added as a nonvolatile organic compound, followed by stirring to prepare a metal fine particle dispersion.

金属微粒子分散液における、各成分の含有割合は、合金微粒子100重量部あたり、水が230重量部、n−プロピルアルコールが100重量部、ジメチルホルムアミドが10重量部、ポリアクリル酸が60重量部であった。また、金属微粒子分散液における、合金微粒子の濃度は、20重量%であった。   The content of each component in the metal fine particle dispersion is as follows: water is 230 parts by weight, n-propyl alcohol is 100 parts by weight, dimethylformamide is 10 parts by weight, and polyacrylic acid is 60 parts by weight per 100 parts by weight of the alloy fine particles. there were. Further, the concentration of the alloy fine particles in the metal fine particle dispersion was 20% by weight.

また、前記反応系の一部を、恒温槽中で100℃に加熱して乾燥させて、合金微粒子を得、この合金微粒子を、誘導結合高周波プラズマ発光分析装置〔(株)リガク製のCIROS−120〕を用いて分析したところ、AgとCuとを、原子数比で99:1の割合で含む合金からなることがわかった。   Further, a part of the reaction system was heated to 100 ° C. in a thermostatic bath and dried to obtain alloy fine particles. The alloy fine particles were obtained by inductively coupled high-frequency plasma emission analyzer [CIROS-manufactured by Rigaku Corporation]. 120], it was found to be made of an alloy containing Ag and Cu in an atomic ratio of 99: 1.

(金属被膜の形成)
上記金属微粒子分散液を、SiOx膜付のガラス基材の表面に、スプレーコート法によって塗布した後、100℃で10分間、乾燥させて塗膜を形成し、次いで、大気中で、400℃に加熱して30分間、焼成して金属被膜を形成した。
(Formation of metal coating)
The metal fine particle dispersion is applied to the surface of a glass substrate with a SiO x film by a spray coating method, and then dried at 100 ° C. for 10 minutes to form a coating film. And then baked for 30 minutes to form a metal film.

形成した金属被膜の表面を、実体顕微鏡を用いて観察したところ、金属被膜は、ピンホールやクラック等の欠陥のない、緻密でかつ均一な膜であって、その表面が鏡面光沢を有していることが確認された。また、金属被膜の厚みを、実施例1と同様にして測定したところ、平均膜厚は3μm、膜厚の分布は、平均膜厚に対して±8%以内であって、厚みが均一であると共に、表面が平滑であることが確認された。さらに、金属被膜の抵抗率を、実施例1と同様にして測定したところ、2.5μΩ・cmであって、金属被膜は、導電性に優れることが確認された。   When the surface of the formed metal film was observed using a stereomicroscope, the metal film was a dense and uniform film without defects such as pinholes and cracks, and the surface had a specular gloss. It was confirmed that Further, when the thickness of the metal film was measured in the same manner as in Example 1, the average film thickness was 3 μm, the film thickness distribution was within ± 8% of the average film thickness, and the thickness was uniform. At the same time, it was confirmed that the surface was smooth. Furthermore, when the resistivity of the metal coating was measured in the same manner as in Example 1, it was 2.5 μΩ · cm, and it was confirmed that the metal coating was excellent in conductivity.

〈実施例3〉
(金属微粒子の作製)
金属化合物としての硝酸パラジウム(II)硝酸溶液を純水に溶解させ、アンモニア水を加えて液のpHを9に調整し、次いで、高分子分散剤としてのポリビニルピロリドン(分子量20000)を加えて完全に溶解させた後、還元剤としてのグルコースを純水に溶解した溶液を添加して、液相の反応系を調製した。反応系における、各成分の濃度は、硝酸パラジウム(II):34g/リットル、ポリビニルピロリドン:4g/リットル、グルコース:26g/リットルとした。
<Example 3>
(Preparation of fine metal particles)
Dissolve a palladium (II) nitrate solution as a metal compound in pure water, add ammonia water to adjust the pH of the solution to 9, and then add polyvinylpyrrolidone (molecular weight 20000) as a polymer dispersant to complete the solution. Then, a solution in which glucose as a reducing agent was dissolved in pure water was added to prepare a liquid phase reaction system. The concentration of each component in the reaction system was palladium (II) nitrate: 34 g / liter, polyvinylpyrrolidone: 4 g / liter, and glucose: 26 g / liter.

この反応系を、かく拌速度500rpmでかく拌しながら、80℃で30分間、反応させて、Pd微粒子をコロイド状に析出させ、次いで、電気透析処理によって不純物を除去した後、Pd微粒子の粒度分布を、実施例1と同様にして測定したところ、5nmの位置に鋭いピークが見られた。   This reaction system is reacted at 80 ° C. for 30 minutes while stirring at a stirring speed of 500 rpm to precipitate Pd fine particles in a colloidal form, and then removing impurities by electrodialysis, and then the particle size distribution of the Pd fine particles. Was measured in the same manner as in Example 1, and a sharp peak was observed at a position of 5 nm.

次に、上記の反応系を、ホットバスを用いて加熱して、Pd微粒子の濃度が45重量%になるまで濃縮した後、揮発性有機溶媒としてイソプロピルアルコール(沸点83℃)を加えてかく拌し、さらに、不揮発性の有機化合物としてシュウ酸を加えてかく拌して、金属微粒子分散液を調製した。   Next, the above reaction system is heated using a hot bath and concentrated until the concentration of Pd fine particles reaches 45% by weight, and then isopropyl alcohol (boiling point 83 ° C.) is added as a volatile organic solvent and stirred. Furthermore, oxalic acid was added as a nonvolatile organic compound and stirred to prepare a metal fine particle dispersion.

金属微粒子分散液における、各成分の含有割合は、Pd微粒子100重量部あたり、水が110重量部、イソプロピルアルコールが260重量部、シュウ酸が10重量部、ポリビニルピロリドンが20重量部であった。また、金属微粒子分散液における、Pd微粒子の濃度は、20重量%であった。   The content of each component in the metal fine particle dispersion was 110 parts by weight of water, 260 parts by weight of isopropyl alcohol, 10 parts by weight of oxalic acid, and 20 parts by weight of polyvinylpyrrolidone per 100 parts by weight of Pd fine particles. The concentration of Pd fine particles in the metal fine particle dispersion was 20% by weight.

(金属被膜の形成)
上記金属微粒子分散液を、セラミック基材の表面に、ダイコート法によって塗布した後、100℃で10分間、乾燥させて塗膜を形成し、次いで、大気中で、500℃に加熱して
15分間、引き続いて、3%の水素ガスを含む窒素ガスからなる還元性雰囲気中で、500℃に加熱して15分間、焼成して金属被膜を形成した。
(Formation of metal coating)
The metal fine particle dispersion is applied to the surface of the ceramic substrate by a die coating method, and then dried at 100 ° C. for 10 minutes to form a coating film, and then heated to 500 ° C. in the air for 15 minutes. Subsequently, in a reducing atmosphere composed of nitrogen gas containing 3% hydrogen gas, it was heated to 500 ° C. and baked for 15 minutes to form a metal film.

形成した金属被膜の表面を、実体顕微鏡を用いて観察したところ、金属被膜は、ピンホールやクラック等の欠陥のない、緻密でかつ均一な膜であって、その表面が鏡面光沢を有していることが確認された。また、金属被膜の厚みを、実施例1と同様にして測定したところ、平均膜厚は1.5μm、膜厚の分布は、平均膜厚に対して±2%以内であって、厚みが均一であると共に、表面が平滑であることが確認された。さらに、金属被膜の抵抗率を、実施例1と同様にして測定したところ、Pdのバルクと同等の12μΩ・cmであって、金属被膜は、導電性に優れることが確認された。   When the surface of the formed metal film was observed using a stereomicroscope, the metal film was a dense and uniform film without defects such as pinholes and cracks, and the surface had a specular gloss. It was confirmed that Further, when the thickness of the metal film was measured in the same manner as in Example 1, the average film thickness was 1.5 μm, the film thickness distribution was within ± 2% of the average film thickness, and the thickness was uniform. In addition, it was confirmed that the surface was smooth. Furthermore, the resistivity of the metal film was measured in the same manner as in Example 1. As a result, it was confirmed that the metal film was excellent in electrical conductivity.

〈実施例4〉
不揮発性の有機化合物としてグリセリンを、金属微粒子100重量部あたり12重量部の割合で使用すると共に、大気中、および還元性雰囲気中での焼成温度を300℃としたこと以外は実施例3と同様にして金属被膜を形成した。
<Example 4>
The same as in Example 3 except that glycerin is used as a nonvolatile organic compound in a ratio of 12 parts by weight per 100 parts by weight of the metal fine particles, and the firing temperature in the air and in a reducing atmosphere is 300 ° C. Thus, a metal film was formed.

形成した金属被膜の表面を、実体顕微鏡を用いて観察したところ、金属被膜は、ピンホールやクラック等の欠陥のない、緻密でかつ均一な膜であって、その表面が鏡面光沢を有していることが確認された。また、金属被膜の厚みを、実施例1と同様にして測定したところ、平均膜厚は1.5μm、膜厚の分布は、平均膜厚に対して±1.5%以内であって、厚みが均一であると共に、表面が平滑であることが確認された。さらに、金属被膜の抵抗率を、実施例1と同様にして測定したところ、15μΩ・cmであって、金属被膜は、導電性に優れることが確認された。   When the surface of the formed metal film was observed using a stereomicroscope, the metal film was a dense and uniform film without defects such as pinholes and cracks, and the surface had a specular gloss. It was confirmed that Further, when the thickness of the metal film was measured in the same manner as in Example 1, the average film thickness was 1.5 μm, and the film thickness distribution was within ± 1.5% of the average film thickness. Was uniform and the surface was smooth. Furthermore, when the resistivity of the metal coating was measured in the same manner as in Example 1, it was 15 μΩ · cm, and it was confirmed that the metal coating was excellent in conductivity.

〈実施例5〉
(金属微粒子の作製)
金属化合物としての硝酸銀(I)とテトラクロロ金(III)酸四水和物とを純水に溶解させ、アンモニア水を加えて液のpHを8に調整し、次いで、高分子分散剤としてのポリアクリル酸(分子量12000)を加えて完全に溶解させた後、還元剤としてのフルクトースを純水に溶解した溶液を添加して、液相の反応系を調製した。反応系における、各成分の濃度は、硝酸銀(I):50g/リットル、テトラクロロ金(III)酸四水和物:14g/リットル、ポリアクリル酸:15g/リットル、フルクトース:50g/リットルとした。
<Example 5>
(Preparation of fine metal particles)
Silver (I) nitrate and tetrachloroauric (III) acid tetrahydrate as metal compounds are dissolved in pure water, and ammonia water is added to adjust the pH of the solution to 8, and then as a polymer dispersant. Polyacrylic acid (molecular weight 12000) was added and completely dissolved, and then a solution in which fructose as a reducing agent was dissolved in pure water was added to prepare a liquid phase reaction system. The concentration of each component in the reaction system was silver nitrate (I): 50 g / liter, tetrachloroauric (III) acid tetrahydrate: 14 g / liter, polyacrylic acid: 15 g / liter, fructose: 50 g / liter. .

この反応系を、かく拌速度500rpmでかく拌しながら、80℃で180分間、反応させて、AgとAuの合金からなる合金微粒子をコロイド状に析出させ、次いで、遠心分離処理と水洗とを繰り返して不純物を除去した後、合金微粒子の粒度分布を、実施例1と同様にして測定したところ、20nmの位置に鋭いピークが見られた。   The reaction system is reacted at 80 ° C. for 180 minutes while stirring at a stirring speed of 500 rpm to precipitate the alloy fine particles made of an alloy of Ag and Au in a colloidal form, and then repeated centrifugation and washing with water. After removing impurities, the particle size distribution of the alloy fine particles was measured in the same manner as in Example 1. As a result, a sharp peak was observed at a position of 20 nm.

次に、上記の反応系を、ホットバスを用いて加熱して、合金微粒子の濃度が35重量%になるまで濃縮した後、揮発性有機溶媒としてn−ブチルアルコール(沸点117℃)を加えてかく拌し、さらに、不揮発性の有機化合物としてポリエチレングリコール(分子量200)を加えてかく拌して、金属微粒子分散液を調製した。   Next, the reaction system is heated using a hot bath and concentrated until the concentration of the alloy fine particles becomes 35% by weight, and then n-butyl alcohol (boiling point 117 ° C.) is added as a volatile organic solvent. The mixture was further stirred, and polyethylene glycol (molecular weight 200) was added as a nonvolatile organic compound and stirred to prepare a metal fine particle dispersion.

金属微粒子分散液における、各成分の含有割合は、合金微粒子100重量部あたり、水が147重量部、n−ブチルアルコールが210重量部、ポリエチレングリコールが3重量部、ポリアクリル酸が40重量部であった。また、金属微粒子分散液における、合金微粒子の濃度は、20重量%であった。   The content of each component in the metal fine particle dispersion is 147 parts by weight of water, 210 parts by weight of n-butyl alcohol, 3 parts by weight of polyethylene glycol, and 40 parts by weight of polyacrylic acid per 100 parts by weight of the alloy fine particles. there were. Further, the concentration of the alloy fine particles in the metal fine particle dispersion was 20% by weight.

また、前記反応系の一部を、恒温槽中で100℃に加熱して乾燥させて、合金微粒子を得、この合金微粒子を、実施例2と同様にして分析したところ、AgとAuとを、原子数比で90:10の割合で含む合金からなることがわかった。   Further, a part of the reaction system was heated to 100 ° C. in a constant temperature bath and dried to obtain alloy fine particles. The alloy fine particles were analyzed in the same manner as in Example 2. As a result, Ag and Au were obtained. It was found to be made of an alloy containing 90:10 atomic ratio.

(金属被膜の形成)
上記金属微粒子分散液を、青板ガラス基材の表面に、ディップコート法によって塗布した後、100℃で10分間、乾燥させて塗膜を形成し、次いで、大気中で、400℃に加熱して30分間、引き続いて、3%の水素ガスを含む窒素ガスからなる還元性雰囲気中で、400℃に加熱して30分間、焼成して金属被膜を形成した。
(Formation of metal coating)
The metal fine particle dispersion is applied to the surface of a soda glass substrate by a dip coating method, and then dried at 100 ° C. for 10 minutes to form a coating film, and then heated to 400 ° C. in the air. Subsequently, in a reducing atmosphere composed of nitrogen gas containing 3% hydrogen gas for 30 minutes, it was heated to 400 ° C. and baked for 30 minutes to form a metal film.

形成した金属被膜の表面を、実体顕微鏡を用いて観察したところ、金属被膜は、ピンホールやクラック等の欠陥のない、緻密でかつ均一な膜であって、その表面が鏡面光沢を有していることが確認された。また、金属被膜の厚みを、実施例1と同様にして測定したところ、平均膜厚は2μm、膜厚の分布は、平均膜厚に対して±2%以内であって、厚みが均一であると共に、表面が平滑であることが確認された。さらに、金属被膜の抵抗率を、実施例1と同様にして測定したところ、2.5μΩ・cmであって、金属被膜は、導電性に優れることが確認された。   When the surface of the formed metal film was observed using a stereomicroscope, the metal film was a dense and uniform film without defects such as pinholes and cracks, and the surface had a specular gloss. It was confirmed that Further, when the thickness of the metal film was measured in the same manner as in Example 1, the average film thickness was 2 μm, the film thickness distribution was within ± 2% of the average film thickness, and the thickness was uniform. At the same time, it was confirmed that the surface was smooth. Furthermore, when the resistivity of the metal coating was measured in the same manner as in Example 1, it was 2.5 μΩ · cm, and it was confirmed that the metal coating was excellent in conductivity.

〈実施例6〉
不揮発性の有機化合物としてのポリエチレングリコール(分子量200)を、金属微粒子100重量部あたり25重量部の割合で使用したこと以外は実施例5と同様にして金属被膜を形成した。
<Example 6>
A metal film was formed in the same manner as in Example 5 except that polyethylene glycol (molecular weight 200) as a nonvolatile organic compound was used at a ratio of 25 parts by weight per 100 parts by weight of metal fine particles.

形成した金属被膜の表面を、実体顕微鏡を用いて観察したところ、金属被膜は、ピンホールやクラック等の欠陥のない、緻密でかつ均一な膜であって、その表面が鏡面光沢を有していることが確認された。また、金属被膜の厚みを、実施例1と同様にして測定したところ、平均膜厚は2μm、膜厚の分布は、平均膜厚に対して±1%以内であって、厚みが均一であると共に、表面が平滑であることが確認された。さらに、金属被膜の抵抗率を、実施例1と同様にして測定したところ、4μΩ・cmであって、金属被膜は、導電性に優れることが確認された。   When the surface of the formed metal film was observed using a stereomicroscope, the metal film was a dense and uniform film without defects such as pinholes and cracks, and the surface had a specular gloss. It was confirmed that Further, when the thickness of the metal film was measured in the same manner as in Example 1, the average film thickness was 2 μm, the film thickness distribution was within ± 1% of the average film thickness, and the thickness was uniform. At the same time, it was confirmed that the surface was smooth. Furthermore, when the resistivity of the metal film was measured in the same manner as in Example 1, it was 4 μΩ · cm, and it was confirmed that the metal film was excellent in conductivity.

〈実施例7〉
不揮発性の有機化合物として、ポリエチレングリコール(分子量400)を、金属微粒子100重量部あたり3重量部の割合で使用したこと以外は実施例5と同様にして金属被膜を形成した。
<Example 7>
A metal film was formed in the same manner as in Example 5 except that polyethylene glycol (molecular weight 400) was used as a nonvolatile organic compound at a ratio of 3 parts by weight per 100 parts by weight of metal fine particles.

形成した金属被膜の表面を、実体顕微鏡を用いて観察したところ、金属被膜は、ピンホールやクラック等の欠陥のない、緻密でかつ均一な膜であって、その表面が鏡面光沢を有していることが確認された。また、金属被膜の厚みを、実施例1と同様にして測定したところ、平均膜厚は2μm、膜厚の分布は、平均膜厚に対して±2%以内であって、厚みが均一であると共に、表面が平滑であることが確認された。さらに、金属被膜の抵抗率を、実施例1と同様にして測定したところ、3μΩ・cmであって、金属被膜は、導電性に優れることが確認された。   When the surface of the formed metal film was observed using a stereomicroscope, the metal film was a dense and uniform film without defects such as pinholes and cracks, and the surface had a specular gloss. It was confirmed that Further, when the thickness of the metal film was measured in the same manner as in Example 1, the average film thickness was 2 μm, the film thickness distribution was within ± 2% of the average film thickness, and the thickness was uniform. At the same time, it was confirmed that the surface was smooth. Furthermore, when the resistivity of the metal film was measured in the same manner as in Example 1, it was 3 μΩ · cm, and it was confirmed that the metal film was excellent in conductivity.

〈比較例1〉
揮発性有機溶媒であるエチルアルコールに代えて、同量の、揮発性を有しない有機化合物としての酢酸2−(2−エトキシエトキシ)エチル(沸点217℃)を使用したこと以外は実施例1と同様にして金属被膜を形成した。
<Comparative example 1>
Example 1 except that instead of ethyl alcohol which is a volatile organic solvent, the same amount of 2- (2-ethoxyethoxy) ethyl acetate (boiling point 217 ° C.) as an organic compound having no volatility was used. A metal film was formed in the same manner.

形成した金属被膜の表面を、実体顕微鏡を用いて観察したところ、金属被膜は、ピンホールやクラック等の欠陥のない膜であることが確認された。しかし、金属被膜の厚みを、実施例1と同様にして測定したところ、平均膜厚は2μm、膜厚の分布は、平均膜厚に対して±35%以内であって、厚みが不均一であることが確認された。さらに、金属被膜の抵抗率を、実施例1と同様にして測定したところ、3.5μΩ・cmであって、金属被膜は、導電性に優れることが確認された。   When the surface of the formed metal film was observed using a stereomicroscope, it was confirmed that the metal film was a film free from defects such as pinholes and cracks. However, when the thickness of the metal film was measured in the same manner as in Example 1, the average film thickness was 2 μm, the film thickness distribution was within ± 35% of the average film thickness, and the thickness was not uniform. It was confirmed that there was. Furthermore, when the resistivity of the metal film was measured in the same manner as in Example 1, it was 3.5 μΩ · cm, and it was confirmed that the metal film was excellent in conductivity.

〈比較例2〉
不揮発性の有機化合物としてのシュウ酸を配合しなかったこと以外は実施例3と同様にして金属被膜を形成した。
<Comparative example 2>
A metal film was formed in the same manner as in Example 3 except that oxalic acid as a nonvolatile organic compound was not blended.

形成した金属被膜の表面を、実体顕微鏡を用いて観察したところ、金属被膜にクラックが発生しているのが確認された。また、金属被膜の厚みを、実施例1と同様にして測定したところ、平均膜厚は1.5μm、膜厚の分布は、平均膜厚に対して±20%以内であって、厚みが不均一であることが確認された。さらに、金属被膜の抵抗率を、実施例1と同様にして測定したところ、15μΩ・cmであって、金属被膜は、導電性が低いことが確認された。

When the surface of the formed metal film was observed using a stereomicroscope, it was confirmed that cracks occurred in the metal film. Further, when the thickness of the metal film was measured in the same manner as in Example 1, the average film thickness was 1.5 μm, the film thickness distribution was within ± 20% of the average film thickness, and the thickness was not good. It was confirmed to be uniform. Furthermore, when the resistivity of the metal film was measured in the same manner as in Example 1, it was 15 μΩ · cm, and it was confirmed that the metal film had low conductivity.

Claims (7)

基材の表面に塗布した後、焼成して金属被膜を形成するための金属微粒子分散液であって、金属微粒子と、水と、揮発性有機溶媒と、不揮発性の有機化合物とを含むことを特徴とする金属微粒子分散液。   A fine metal particle dispersion for forming a metal film after being applied to the surface of a substrate, comprising a fine metal particle, water, a volatile organic solvent, and a non-volatile organic compound. Characteristic metal fine particle dispersion. 揮発性有機溶媒が、炭素数1〜5の脂肪族飽和アルコールである請求項1記載の金属微粒子分散液。   The metal fine particle dispersion according to claim 1, wherein the volatile organic solvent is an aliphatic saturated alcohol having 1 to 5 carbon atoms. 不揮発性の有機化合物を、金属微粒子100重量部あたり2重量部以上の割合で含有する請求項1記載の金属微粒子分散液。   The metal fine particle dispersion liquid according to claim 1, comprising a non-volatile organic compound in a proportion of 2 parts by weight or more per 100 parts by weight of the metal fine particles. 金属微粒子が、Ag、Au、Pt、Pd、Ru、Sn、Cu、Ni、Fe、Co、Ti、In、およびIrからなる群より選ばれる1種、または2種以上の金属元素を含有する請求項1記載の金属微粒子分散液。   The metal fine particles contain one or more metal elements selected from the group consisting of Ag, Au, Pt, Pd, Ru, Sn, Cu, Ni, Fe, Co, Ti, In, and Ir. Item 4. A fine metal particle dispersion according to Item 1. 金属微粒子の一次粒子径が、200nm以下である請求項1記載の金属微粒子分散液。   The metal fine particle dispersion according to claim 1, wherein the primary particle diameter of the metal fine particles is 200 nm or less. 基材の表面に、請求項1記載の金属微粒子分散液を塗布する工程と、乾燥させて、水と揮発性有機溶媒とを除去して塗膜を形成する工程と、形成した塗膜を焼成して金属被膜を形成する工程とを含むことを特徴とする金属被膜の形成方法。   A step of applying the metal fine particle dispersion according to claim 1 to the surface of the substrate, a step of drying to remove water and a volatile organic solvent and forming a coating film, and a baking of the formed coating film Forming a metal film, and forming a metal film. 金属微粒子分散液を、スピンコート法、スプレーコート法、バーコート法、ダイコート法、またはディップコート法によって基材の表面に塗布する請求項6記載の金属被膜の形成方法。

The method for forming a metal film according to claim 6, wherein the metal fine particle dispersion is applied to the surface of the substrate by spin coating, spray coating, bar coating, die coating, or dip coating.

JP2005148348A 2005-05-20 2005-05-20 Method for forming metal coating Active JP4844805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148348A JP4844805B2 (en) 2005-05-20 2005-05-20 Method for forming metal coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148348A JP4844805B2 (en) 2005-05-20 2005-05-20 Method for forming metal coating

Publications (2)

Publication Number Publication Date
JP2006321948A true JP2006321948A (en) 2006-11-30
JP4844805B2 JP4844805B2 (en) 2011-12-28

Family

ID=37541852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148348A Active JP4844805B2 (en) 2005-05-20 2005-05-20 Method for forming metal coating

Country Status (1)

Country Link
JP (1) JP4844805B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194174A (en) * 2006-01-23 2007-08-02 Seiko Epson Corp Ink for conductor pattern, conductor pattern, wiring board, electro-optical device and electronic equipment
WO2009008390A1 (en) 2007-07-06 2009-01-15 M.Technique Co., Ltd. Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
WO2009060803A1 (en) * 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. Copper fine particle, method for producing the same, and copper fine particle dispersion
JP2009299162A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Silver nanowire, method for producing the same, water base dispersion product and transparent conductor
JP2011513934A (en) * 2008-03-05 2011-04-28 アプライド・ナノテック・ホールディングス・インコーポレーテッド Additives and modifiers for solvent-based and aqueous conductive metal inks
WO2011114747A1 (en) * 2010-03-18 2011-09-22 古河電気工業株式会社 Electrically conductive paste, and electrically conductive connection member produced using the paste
JP2013504152A (en) * 2009-09-04 2013-02-04 ビーエーエスエフ ソシエタス・ヨーロピア Composition for printing electrodes
JP2013159851A (en) * 2012-02-08 2013-08-19 Ishihara Chem Co Ltd Electroless nickel and nickel alloy plating method, and pretreatment liquid for the nickel alloy plating
JP2014099634A (en) * 2014-01-08 2014-05-29 Denso Corp Method of manufacturing thermoelectric conversion element
WO2015037512A1 (en) * 2013-09-10 2015-03-19 Dic株式会社 Electroconductive pattern and electronic circuit
US9131610B2 (en) 2009-03-27 2015-09-08 Pen Inc. Buffer layer for sintering
JP2015178538A (en) * 2014-03-18 2015-10-08 田中貴金属工業株式会社 Metal-containing composition for spray coating to metal base material
US9598776B2 (en) 2012-07-09 2017-03-21 Pen Inc. Photosintering of micron-sized copper particles
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
JP2020147840A (en) * 2019-03-16 2020-09-17 学校法人智香寺学園埼玉工業大学 Nanocolloid filling rust-proof metal material, nanocolloid mixed rust-proof coating and rust-proof method using nanocolloid particle
CN114206026A (en) * 2021-12-15 2022-03-18 广州天极电子科技股份有限公司 Through hole filling agent, and preparation method and system of thin film circuit

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295361A (en) * 1985-10-22 1987-05-01 Yoshio Ichikawa Coating composition
JPH07149543A (en) * 1993-11-29 1995-06-13 Asahi Glass Co Ltd Coating liquid for forming film
JPH08295513A (en) * 1995-04-21 1996-11-12 Catalysts & Chem Ind Co Ltd Indium oxide organosol, its production and base material with conductive coating film
JPH09263716A (en) * 1996-03-29 1997-10-07 Mitsubishi Materials Corp Overcoat composition for transparent electrically conductive film excellent in electical conductivity
JPH10310406A (en) * 1997-03-12 1998-11-24 Catalysts & Chem Ind Co Ltd Organic compound modified inorganic compound sol
JP2001035814A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Method of forming silver wiring pattern
JP2001262007A (en) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc Titania coating liquid and its production method, and titania film and its formation method
JP2001294446A (en) * 2000-04-07 2001-10-23 Mitsuboshi Belting Ltd Surface coating agent and method for manufacturing surface-coated colored glass
JP2002060651A (en) * 2000-08-23 2002-02-26 Hitachi Chem Co Ltd Metal oxide aqueous sol composition, method for forming membrane by using the same and member
JP2002263498A (en) * 2001-03-13 2002-09-17 Petroleum Energy Center Hydrogenation catalyst bed and method of hydrogenating heavy hydrocarbon oil using catalyst bed.
JP2003020449A (en) * 2001-07-11 2003-01-24 Ishihara Sangyo Kaisha Ltd Electroconductive coating material and method for forming electroconductive coated film using the same
WO2003035674A1 (en) * 2001-10-25 2003-05-01 Kyowa Hakko Kogyo Co., Ltd. Crystal of oxidized glutathione and process for producing the same
JP2003206416A (en) * 2002-01-10 2003-07-22 Inax Corp Stain-resisting coating liquid
JP2003342602A (en) * 2002-05-21 2003-12-03 Catalysts & Chem Ind Co Ltd Indium based metal fine particle and its manufacturing method, and coating liquid for forming transparent and conductive film containing indium based metal fine particle, base material provided with transparent and conductive film and display device
JP2004101891A (en) * 2002-09-10 2004-04-02 Mitsubishi Cable Ind Ltd Method for polarizing optical fiber, and device using polarized optical fiber
JP2004107437A (en) * 2002-09-17 2004-04-08 Nippon Light Metal Co Ltd Photocatalytic coating composition for metal base material, photocatalytic metal material using it and manufacturing process of photocatalytic metal material
JP2004155608A (en) * 2002-11-05 2004-06-03 Hitachi Chem Co Ltd Titanium oxide film, liquid and process for forming the same and photocatalytic member
JP2004307432A (en) * 2003-04-10 2004-11-04 Dainippon Ink & Chem Inc Antibacterial agent for cosmetic, and cosmetic
JP2005113023A (en) * 2003-10-08 2005-04-28 Dainippon Shikizai Kogyo Kk Photocatalyst-containing silicon composition

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295361A (en) * 1985-10-22 1987-05-01 Yoshio Ichikawa Coating composition
JPH07149543A (en) * 1993-11-29 1995-06-13 Asahi Glass Co Ltd Coating liquid for forming film
JPH08295513A (en) * 1995-04-21 1996-11-12 Catalysts & Chem Ind Co Ltd Indium oxide organosol, its production and base material with conductive coating film
JPH09263716A (en) * 1996-03-29 1997-10-07 Mitsubishi Materials Corp Overcoat composition for transparent electrically conductive film excellent in electical conductivity
JPH10310406A (en) * 1997-03-12 1998-11-24 Catalysts & Chem Ind Co Ltd Organic compound modified inorganic compound sol
JP2001035814A (en) * 1999-07-22 2001-02-09 Vacuum Metallurgical Co Ltd Method of forming silver wiring pattern
JP2001262007A (en) * 2000-03-17 2001-09-26 Mitsubishi Gas Chem Co Inc Titania coating liquid and its production method, and titania film and its formation method
JP2001294446A (en) * 2000-04-07 2001-10-23 Mitsuboshi Belting Ltd Surface coating agent and method for manufacturing surface-coated colored glass
JP2002060651A (en) * 2000-08-23 2002-02-26 Hitachi Chem Co Ltd Metal oxide aqueous sol composition, method for forming membrane by using the same and member
JP2002263498A (en) * 2001-03-13 2002-09-17 Petroleum Energy Center Hydrogenation catalyst bed and method of hydrogenating heavy hydrocarbon oil using catalyst bed.
JP2003020449A (en) * 2001-07-11 2003-01-24 Ishihara Sangyo Kaisha Ltd Electroconductive coating material and method for forming electroconductive coated film using the same
WO2003035674A1 (en) * 2001-10-25 2003-05-01 Kyowa Hakko Kogyo Co., Ltd. Crystal of oxidized glutathione and process for producing the same
JP2003206416A (en) * 2002-01-10 2003-07-22 Inax Corp Stain-resisting coating liquid
JP2003342602A (en) * 2002-05-21 2003-12-03 Catalysts & Chem Ind Co Ltd Indium based metal fine particle and its manufacturing method, and coating liquid for forming transparent and conductive film containing indium based metal fine particle, base material provided with transparent and conductive film and display device
JP2004101891A (en) * 2002-09-10 2004-04-02 Mitsubishi Cable Ind Ltd Method for polarizing optical fiber, and device using polarized optical fiber
JP2004107437A (en) * 2002-09-17 2004-04-08 Nippon Light Metal Co Ltd Photocatalytic coating composition for metal base material, photocatalytic metal material using it and manufacturing process of photocatalytic metal material
JP2004155608A (en) * 2002-11-05 2004-06-03 Hitachi Chem Co Ltd Titanium oxide film, liquid and process for forming the same and photocatalytic member
JP2004307432A (en) * 2003-04-10 2004-11-04 Dainippon Ink & Chem Inc Antibacterial agent for cosmetic, and cosmetic
JP2005113023A (en) * 2003-10-08 2005-04-28 Dainippon Shikizai Kogyo Kk Photocatalyst-containing silicon composition

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194174A (en) * 2006-01-23 2007-08-02 Seiko Epson Corp Ink for conductor pattern, conductor pattern, wiring board, electro-optical device and electronic equipment
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
WO2009008390A1 (en) 2007-07-06 2009-01-15 M.Technique Co., Ltd. Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
US8747699B2 (en) 2007-07-06 2014-06-10 M. Technique Co., Ltd. Method for producing metal microparticles, and metal colloidal solution containing the metal microparticles
WO2009060803A1 (en) * 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. Copper fine particle, method for producing the same, and copper fine particle dispersion
JP2011513934A (en) * 2008-03-05 2011-04-28 アプライド・ナノテック・ホールディングス・インコーポレーテッド Additives and modifiers for solvent-based and aqueous conductive metal inks
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
JP2009299162A (en) * 2008-06-16 2009-12-24 Fujifilm Corp Silver nanowire, method for producing the same, water base dispersion product and transparent conductor
US9131610B2 (en) 2009-03-27 2015-09-08 Pen Inc. Buffer layer for sintering
JP2013504152A (en) * 2009-09-04 2013-02-04 ビーエーエスエフ ソシエタス・ヨーロピア Composition for printing electrodes
JPWO2011114747A1 (en) * 2010-03-18 2013-06-27 古河電気工業株式会社 Conductive connection member
US10046418B2 (en) 2010-03-18 2018-08-14 Furukawa Electric Co., Ltd. Electrically conductive paste, and electrically conducive connection member produced using the paste
CN102812520A (en) * 2010-03-18 2012-12-05 古河电气工业株式会社 Electrically conductive paste, and electrically conductive connection member produced using the paste
WO2011114747A1 (en) * 2010-03-18 2011-09-22 古河電気工業株式会社 Electrically conductive paste, and electrically conductive connection member produced using the paste
JP2013159851A (en) * 2012-02-08 2013-08-19 Ishihara Chem Co Ltd Electroless nickel and nickel alloy plating method, and pretreatment liquid for the nickel alloy plating
CN104105818A (en) * 2012-02-08 2014-10-15 石原化学株式会社 Pretreatment solution for electroless nickel plating or electroless nickel alloy plating, and plating method
US9598776B2 (en) 2012-07-09 2017-03-21 Pen Inc. Photosintering of micron-sized copper particles
WO2015037512A1 (en) * 2013-09-10 2015-03-19 Dic株式会社 Electroconductive pattern and electronic circuit
JP2014099634A (en) * 2014-01-08 2014-05-29 Denso Corp Method of manufacturing thermoelectric conversion element
JP2015178538A (en) * 2014-03-18 2015-10-08 田中貴金属工業株式会社 Metal-containing composition for spray coating to metal base material
JP2020147840A (en) * 2019-03-16 2020-09-17 学校法人智香寺学園埼玉工業大学 Nanocolloid filling rust-proof metal material, nanocolloid mixed rust-proof coating and rust-proof method using nanocolloid particle
CN114206026A (en) * 2021-12-15 2022-03-18 广州天极电子科技股份有限公司 Through hole filling agent, and preparation method and system of thin film circuit
CN114206026B (en) * 2021-12-15 2023-11-10 广州天极电子科技股份有限公司 Preparation method and system of through hole filler and thin film circuit

Also Published As

Publication number Publication date
JP4844805B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4844805B2 (en) Method for forming metal coating
JP4918994B2 (en) Method for forming metal coating and metal wiring
JP5623861B2 (en) Metal nanoparticle dispersion composition
TWI433365B (en) Method for manufacturing electronic circuit component
US20050189520A1 (en) Metallic colloidal solution and inkjet-use metallic ink
JP6536581B2 (en) Fine metal particle dispersion
JP5358877B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JP2005247905A (en) Metallic inkjet ink
JP4254313B2 (en) Conductive ink and method for producing the same
KR100911439B1 (en) Aqueous conductive ink composition for inkjet printer using nano-silver colloidal solution and method forming electrode pattern by inkjet printing
KR20190031418A (en) Molecular organic reactive inks for conductive metal printing using photoinitiators
JP5809918B2 (en) Metal fine particle dispersion
JP4735939B2 (en) Method for producing alloy fine particles and alloy fine particles and metal colloid solution produced thereby
JP2009062611A (en) Metal fine particle material, dispersion liquid of metal fine particle material, conductive ink containing the dispersion liquid, and their manufacturing methods
JP5765455B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JP4761110B2 (en) Metal coating and method for forming the same
JP5370784B2 (en) Metal wiring
JP5582164B2 (en) Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
JP5311148B2 (en) Manufacturing method of conductive film, conductive film manufactured by the same, and manufacturing method of conductive wiring and conductive wiring manufactured by the same
JP4788961B2 (en) Method for forming metal wiring
JP2006322052A (en) Method for producing metal powder
RU2765126C1 (en) Method for obtaining solution functional ink for the formation of films based on silver
JP2003328001A (en) Metal powder and production method therefor
JP5239700B2 (en) Coating film forming method using metal fine particle dispersion and coating film using the same
JP5445659B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250