JP2003020449A - Electroconductive coating material and method for forming electroconductive coated film using the same - Google Patents

Electroconductive coating material and method for forming electroconductive coated film using the same

Info

Publication number
JP2003020449A
JP2003020449A JP2001210397A JP2001210397A JP2003020449A JP 2003020449 A JP2003020449 A JP 2003020449A JP 2001210397 A JP2001210397 A JP 2001210397A JP 2001210397 A JP2001210397 A JP 2001210397A JP 2003020449 A JP2003020449 A JP 2003020449A
Authority
JP
Japan
Prior art keywords
conductive
liquid
oxide
electroconductive
curable component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001210397A
Other languages
Japanese (ja)
Inventor
Masanori Tomonari
雅則 友成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2001210397A priority Critical patent/JP2003020449A/en
Publication of JP2003020449A publication Critical patent/JP2003020449A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for industrially and economically advantageously forming a coated film having excellent electroconductivity, and further to provide an electroconductive coating material usable in the method. SOLUTION: This electroconductive coating material is constituted of a first liquid containing an electroconductive oxide, and substantially free from a curing component, and a second liquid containing the curing component. The first liquid is obtained by formulating water as a disperser, and a nonaqueous solvent such as N-methylformide, dimethylsulfoxide, ethylene glycol, 4-butyrolactone, acetamide and 1,3-dimethyl-2-imidazolidinone, with the oxide. The electroconductive coated film is formed by coating the first liquid on a base material to form a layer containing the electroconductive oxide, and coating the second liquid on the resultant layer to cure the curable component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電性塗料及びそ
れを用いた導電性塗膜の形成方法に関し、特に、導電性
と透明性が高く、帯電防止効果を有する導電性塗膜を形
成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive coating material and a method for forming a conductive coating film using the same, and particularly to forming a conductive coating film having high conductivity and transparency and having an antistatic effect. Regarding the method.

【0002】[0002]

【従来の技術】ブラウン管、液晶ディスプレイ等の表示
機器の表示面、クリーンルームの窓材、電子部品の包装
材として用いられるプラスチックスやガラス、あるいは
オーバーヘッドディスプレイや写真に用いられるフィル
ムのような各種の透明性基材は、一般的に絶縁体であり
静電気を帯び易い。このため、表面に埃やゴミが付着し
易く、電子機器等は誤作動を引き起こす場合もある。
2. Description of the Prior Art Plastics and glass used for display surfaces of display devices such as cathode ray tubes and liquid crystal displays, window materials in clean rooms, packaging materials for electronic parts, and various transparent materials such as films used for overhead displays and photographs. The conductive substrate is generally an insulator and is easily charged with static electricity. For this reason, dust or dirt is likely to adhere to the surface, and the electronic device or the like may malfunction.

【0003】そこで、帯電防止のために、酸化スズ、酸
化インジウム、酸化亜鉛等の導電性酸化物をスパッタリ
ング等により蒸着したり、コーティング剤や塗料に配合
して塗布したりすることが通常行われている。これらの
導電性酸化物の中でも微粒子のもの、例えば球状粒子で
あれば平均粒子径が0.1μm以下のものは、可視光線
を透過する性質を有しているので、前述のような透明性
基材に用いるのに適している。しかし、蒸着は大掛かり
な装置を要し、大量生産には不向きで、高コストの方法
であり、コーティング剤や塗料を塗布する方法では、そ
れに配合される硬化性成分が絶縁性であるため、高い導
電性が得られないという問題があった。
Therefore, in order to prevent electrification, it is usual to deposit a conductive oxide such as tin oxide, indium oxide or zinc oxide by sputtering or to mix it with a coating agent or paint and apply it. ing. Among these conductive oxides, fine particles, for example, spherical particles having an average particle diameter of 0.1 μm or less have a property of transmitting visible light, and therefore, the transparent group as described above is used. Suitable for use in wood. However, vapor deposition requires a large-scale device, is not suitable for mass production, and is a high-cost method. In the method of applying a coating agent or paint, since the curable component blended with it is insulative, it is expensive. There is a problem that conductivity cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は以上に述べた
従来技術の問題点を解決し、優れた導電性を有する塗膜
を工業的、経済的有利に形成する方法並びにその方法に
用いる導電性塗料を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the problems of the prior art described above, and industrially and economically forms a coating film having excellent electroconductivity and the electroconductivity used for the method. The present invention provides a conductive paint.

【0005】[0005]

【課題を解決するための手段】本発明者は鋭意研究を重
ねた結果、第一液が導電性酸化物と分散媒としての水と
高比誘電率且つ高沸点の非水溶媒を含み、実質的に硬化
性成分を含まず、一方、第二液に硬化性成分を含む二液
性導電性塗料とし、導電性酸化物を配合した第一液を塗
布した後、硬化性成分を配合した第二液を塗布して硬化
させると、優れた導電性を有する塗膜が簡便に得られる
ことを見出し、本発明を完成した。
Means for Solving the Problems As a result of intensive studies by the present inventors, the first liquid contains a conductive oxide, water as a dispersion medium, a non-aqueous solvent having a high relative dielectric constant and a high boiling point, and The second liquid is a two-component conductive paint that does not contain a curable component, and the second liquid contains a curable component. The present invention has been completed by finding that a coating film having excellent conductivity can be easily obtained by applying and curing two liquids.

【0006】すなわち、本発明は導電性酸化物、水及び
35以上の比誘電率と100℃以上の沸点とを有する非
水溶媒を含む第一液、硬化性成分を含む第二液からなる
導電性塗料である。また、本発明は、前記の導電性塗料
の第一液を基材に塗布し導電性酸化物を含む層を形成さ
せた後、第二液を塗布し硬化性成分を硬化させる導電性
塗膜の形成方法である。更に、本発明は、前記の導電性
塗料の第一液を物品の表面に塗布し導電性酸化物を含む
層を形成させた後、その上に第二液を塗布し硬化性成分
を硬化させる、導電性塗膜を有する物品の製造方法であ
る。
That is, the present invention is a conductive liquid comprising a conductive oxide, a first liquid containing water and a non-aqueous solvent having a relative dielectric constant of 35 or more and a boiling point of 100 ° C. or more, and a second liquid containing a curable component. It is a paint. In addition, the present invention is a conductive coating film in which the first liquid of the conductive coating material is applied to a substrate to form a layer containing a conductive oxide, and then the second liquid is applied to cure the curable component. Is a method of forming. Furthermore, the present invention applies the first liquid of the above-mentioned conductive paint to the surface of an article to form a layer containing a conductive oxide, and then applies the second liquid thereon to cure the curable component. A method for producing an article having a conductive coating film.

【0007】[0007]

【発明の実施の形態】本発明の導電性塗料は、導電性酸
化物を配合し、硬化性成分を実質的に含まない第一液
と、硬化性成分を配合した第二液から構成される。第一
液に配合する導電性酸化物は一般的に親水性であるた
め、硬化性成分を含まない第一液の組成において、分散
媒として有機溶剤を用いると、導電性酸化物を分散安定
化させるには、界面活性剤を配合したり、カップリング
剤を処理する必要がある。しかし、界面活性剤やカップ
リング剤は絶縁性であるので、導電性を低下させる要因
となる。一方、第一液の分散媒に水を用いると、特定の
pHに調整することで分散安定化できるが、水は表面張
力が大きいので、蒸発する際に導電性酸化物が凝集し易
く、所望の導電性や透明性が得られない。このため、本
発明では、導電性酸化物を配合する第一液の分散媒に水
と、35以上の比誘電率と100℃以上の沸点とを有す
る非水溶媒を用いることによって、液中での導電性酸化
物の分散安定化と導電性酸化物を配合した第一液を塗布
した際の凝集を防止しようとするものである。このよう
な第一液を後述の方法に従って基材に塗布し導電性酸化
物を含む層を形成させた後、第二液を塗布し硬化性成分
を硬化させて塗膜を形成させると、優れた導電性を有す
る塗膜が得られる。これは、導電性酸化物と基材との接
点に絶縁性の硬化性成分が介在し難く、導電経路が形成
され易いためであると推測される。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive coating material of the present invention comprises a first liquid containing a conductive oxide and containing substantially no curable component, and a second liquid containing a curable component. . Since the conductive oxide compounded in the first liquid is generally hydrophilic, when an organic solvent is used as a dispersion medium in the composition of the first liquid containing no curable component, the conductive oxide is dispersed and stabilized. To do so, it is necessary to add a surfactant or treat the coupling agent. However, since the surface active agent and the coupling agent are insulative, they become a factor to reduce the conductivity. On the other hand, when water is used as the dispersion medium of the first liquid, the dispersion can be stabilized by adjusting it to a specific pH. However, since the surface tension of water is large, the conductive oxide easily aggregates when evaporated, which is desirable. The conductivity and transparency of can not be obtained. For this reason, in the present invention, by using water and a non-aqueous solvent having a relative dielectric constant of 35 or more and a boiling point of 100 ° C. or more as a dispersion medium of the first liquid in which the conductive oxide is mixed, The present invention is intended to stabilize the dispersion of the conductive oxide and prevent aggregation when the first liquid containing the conductive oxide is applied. When such a first liquid is applied to a substrate according to the method described below to form a layer containing a conductive oxide, a second liquid is applied to cure a curable component to form a coating film, which is excellent. A coating film having excellent conductivity is obtained. It is presumed that this is because it is difficult for an insulative curable component to intervene at the contact point between the conductive oxide and the base material, and a conductive path is easily formed.

【0008】第一液に配合する非水溶媒としては、比誘
電率は前記のように35以上であれば良いが、35〜2
00の範囲のものがより好ましく、沸点は100℃以上
であれば良いが、100〜250℃の範囲のものがより
好ましい。このような非水溶媒としては、N−メチルホ
ルムアミド(比誘電率190、沸点197℃)、ジメチ
ルスルホキシド(比誘電率45、沸点189℃)、エチ
レングリコール(比誘電率38、沸点226℃)、4−
ブチロラクトン(比誘電率39、沸点204℃)、アセ
トアミド(比誘電率65、沸点222℃)、1,3−ジ
メチル−2−イミダゾリジノン(比誘電率38、沸点2
26℃)、ホルムアミド(比誘電率111、沸点210
℃)、N−メチルアセトアミド(比誘電率175、沸点
205℃)、フルフラール(比誘電率40、沸点161
℃)等が挙げられ、これらの1種または2種以上を用い
ることができる。非水溶媒の含有量は、第一液に含まれ
る水1重量部に対して0.15〜20重量部の範囲が好
ましく、0.15〜15重量部がより好ましい。
As the non-aqueous solvent to be mixed with the first liquid, the relative dielectric constant may be 35 or more as described above, but 35 to 2
The range of 00 is more preferable, and the boiling point may be 100 ° C. or higher, but the range of 100 to 250 ° C. is more preferable. Such non-aqueous solvents include N-methylformamide (relative permittivity 190, boiling point 197 ° C.), dimethyl sulfoxide (relative permittivity 45, boiling point 189 ° C.), ethylene glycol (relative permittivity 38, boiling point 226 ° C.), 4-
Butyrolactone (dielectric constant 39, boiling point 204 ° C), acetamide (dielectric constant 65, boiling point 222 ° C), 1,3-dimethyl-2-imidazolidinone (dielectric constant 38, boiling point 2)
26 ° C), formamide (relative dielectric constant 111, boiling point 210)
C), N-methylacetamide (relative permittivity 175, boiling point 205 ° C.), furfural (relative permittivity 40, boiling point 161)
C.) and the like, and one or more of these may be used. The content of the non-aqueous solvent is preferably 0.15 to 20 parts by weight, and more preferably 0.15 to 15 parts by weight, with respect to 1 part by weight of water contained in the first liquid.

【0009】また、前記非水溶媒の表面張力が小さけれ
ば、塗膜にムラが生じ難く、シワやチヂミの少ない平滑
性が優れたものとなるので好ましく、50×10−3
/m以下の表面張力を有するものが更に好ましく、10
×10−3〜50×10−3N/mの範囲のものが特に
好ましい。このようなものとしては、N−メチルホルム
アミド(表面張力38×10−3N/m)、ジメチルス
ルホキシド(表面張力43×10−3N/m)、エチレ
ングリコール(表面張力48×10−3N/m)、4−
ブチロラクトン(表面張力44×10−3N/m)、ア
セトアミド(表面張力39×10−3N/m)、1,3
−ジメチル−2−イミダゾリジノン(表面張力41×1
−3N/m)等が挙げられる。
When the surface tension of the non-aqueous solvent is small, unevenness is less likely to occur in the coating film and the smoothness with less wrinkles and creases is excellent, which is preferable. 50 × 10 −3 N
It is more preferable that the surface tension is less than 10 m / m.
In the range of × 10 -3 ~50 × 10 -3 N / m are particularly preferred. Examples thereof include N-methylformamide (surface tension 38 × 10 −3 N / m), dimethyl sulfoxide (surface tension 43 × 10 −3 N / m), ethylene glycol (surface tension 48 × 10 −3 N). / M), 4-
Butyrolactone (surface tension 44 × 10 −3 N / m), acetamide (surface tension 39 × 10 −3 N / m), 1,3
-Dimethyl-2-imidazolidinone (surface tension 41 x 1
0 -3 N / m), and the like.

【0010】第一液に配合する導電性酸化物は公知のも
のを用いることができ、例えば酸化スズ、酸化インジウ
ム、酸化亜鉛等が挙げられ、これらの1種または2種以
上を用いることができる。導電性酸化物には導電性を更
に高める目的で、Sb、F、W、Ga、Sn、In、A
l等の異種の元素を、1種または2種以上をドープして
も良く、中でも酸化スズとSb、FまたはW、酸化イン
ジウムとSn、酸化亜鉛とF、Al、Ga、Inまたは
Sbとの組み合わせが特に好ましい。更に、分散性向上
等の目的で、Si、W、Zr、Al等の酸化物または水
和酸化物を、導電性酸化物の表面に被覆することもでき
る。導電性酸化物の形状は球状、針状、樹脂状、板状等
特に制限は無い。20〜150m/gの範囲、好まし
くは30〜130m/gの範囲の比表面積を有する導
電性酸化物は透明性が優れ、また表面エネルギーが大き
過ぎず分散が比較的容易であるので、これを用いるのが
好ましい。導電性酸化物の配合量は適宜設定できるが、
第一液に0.5〜50重量%の範囲で含まれているのが
好ましく、0.5〜20重量%がより好ましい。
Known conductive oxides can be used in the first liquid, and examples thereof include tin oxide, indium oxide and zinc oxide, and one or more of these can be used. . The conductive oxide may be Sb, F, W, Ga, Sn, In, A for the purpose of further increasing the conductivity.
One or two or more different elements such as l may be doped, and among them, tin oxide and Sb, F or W, indium oxide and Sn, zinc oxide and F, Al, Ga, In or Sb. Combinations are especially preferred. Further, for the purpose of improving dispersibility, the surface of the conductive oxide can be coated with an oxide or hydrated oxide of Si, W, Zr, Al or the like. The shape of the conductive oxide is not particularly limited, such as spherical shape, needle shape, resin shape, and plate shape. Range 20~150m 2 / g, since preferably conductive oxide having a specific surface area in the range of 30~130m 2 / g is excellent in transparency, and the surface energy is not too dispersion is relatively easy, It is preferable to use this. The blending amount of the conductive oxide can be appropriately set,
The first liquid is preferably contained in the range of 0.5 to 50% by weight, more preferably 0.5 to 20% by weight.

【0011】導電性酸化物は等電点が酸性域にあるもの
はアルカリ性の水に、等電点がアルカリ性域にあるもの
は酸性の水に分散安定化する性質を有している。従っ
て、本発明の導電性塗料の第一液は、用いる導電性酸化
物の等電点に応じて水のpHを調整し、この水に導電性
酸化物を分散させるのが好ましく、導電性酸化物を分散
させた液に、前記非水溶媒を添加して第一液を調製す
る。この第一液には、その他の添加剤、溶媒等を適宜添
加しても良い。導電性酸化物の分散には、必要に応じて
サンドミル、ラインミル、コロイドミル等の分散機を用
いても良い。pH調整に用いる塩基性化合物としては、
例えば水酸化ナトリウム、水酸化カリウム、水酸化カル
シウム等のアルカリ金属またはアルカリ土類金属の水酸
化物、アンモニア等のアンモニウム化合物、アミン類等
が、酸性化合物としては例えば塩酸、硫酸、硝酸等の無
機酸やギ酸、酢酸、プロピオン酸等の有機酸が挙げられ
る。
The conductive oxide has a property of stabilizing dispersion in alkaline water when the isoelectric point is in the acidic region, and in acidic water when the isoelectric point is in the alkaline region. Therefore, it is preferable that the first liquid of the conductive coating material of the present invention adjusts the pH of water according to the isoelectric point of the conductive oxide used and disperses the conductive oxide in this water. The first liquid is prepared by adding the non-aqueous solvent to the liquid in which the substance is dispersed. Other additives, solvents and the like may be added to the first liquid as appropriate. A dispersing machine such as a sand mill, a line mill or a colloid mill may be used for dispersing the conductive oxide, if necessary. As the basic compound used for pH adjustment,
For example, alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonium compounds such as ammonia, amines, etc., and acidic compounds such as hydrochloric acid, sulfuric acid, nitric acid, etc. Examples thereof include acids and organic acids such as formic acid, acetic acid, and propionic acid.

【0012】第二液に配合する硬化性成分としてはアル
キルシリケート、アルキルチタネート等の無機系や、ア
クリル、アルキド、ポリエステル、ウレタン、エポキシ
等の有機系のものを用いることができ、常温硬化型、焼
付硬化型、紫外線硬化型等いずれでも良い。硬化性成分
の配合量は適宜設定することができる。
As the curable component to be added to the second liquid, an inorganic type such as alkyl silicate or alkyl titanate or an organic type such as acrylic, alkyd, polyester, urethane or epoxy can be used. Any of bake-curing type and ultraviolet-curing type may be used. The compounding amount of the curable component can be set appropriately.

【0013】前記の第一液や第二液には、前記の成分以
外に導電性や透明性を阻害しない範囲でコロイダルシリ
カ、微粒子酸化チタン等の充填剤、種々の添加剤、着色
剤が含まれていても良く、またアルコール類、ケトン
類、エステル類、芳香族類、脂肪族類等の溶媒が含まれ
ていても良い。
In addition to the above-mentioned components, the above-mentioned first and second liquids contain a filler such as colloidal silica and fine particles of titanium oxide, various additives, and a coloring agent as long as the conductivity and the transparency are not impaired. It may be contained, and may also contain solvents such as alcohols, ketones, esters, aromatics and aliphatics.

【0014】本発明の二液性導電性塗料を用いて導電性
塗膜を形成するには、まず、導電性酸化物を配合した第
一液を基材にスピンコート、ディップコート、バーコー
ト、スプレーコート等の方法で塗布し、基材の表面に導
電性酸化物を含む層を形成させた後、第二液を同様の方
法で塗布し、加熱・乾燥するなどして硬化性成分を硬化
させ導電性酸化物を固定して、基材の表面に導電性塗膜
を形成する。このようにして得られた導電性塗膜は、例
えば表面抵抗が1×107Ω/□以下のものである。第一
液及び第二液の塗布時の膜厚には特に制限は無いが、作
業性やレベリング性を考慮すると、いずれも0.01〜
10μmの範囲とするのが好ましい。このような形成方
法を用いて、表面に導電性塗膜を有する物品を製造する
ことができる。物品としては種々のものを対象とするこ
とができ、例えば、プラスチック製品、フィルム状製
品、紙製品、ガラス製品、セラミック製品などであり、
具体的には、ブラウン管、液晶ディスプレイ等の表示機
器、クリーンルーム等の窓材、電子部品等の包装材、オ
ーバーヘッドディスプレイや写真等に用いられるフィル
ムなどが挙げられる。
In order to form a conductive coating film using the two-component conductive coating material of the present invention, first, a first liquid containing a conductive oxide is spin-coated, dip-coated, bar-coated, on a substrate. After applying a method such as spray coating to form a layer containing a conductive oxide on the surface of the base material, apply the second liquid in the same way and heat and dry to cure the curable component. Then, the conductive oxide is fixed and a conductive coating film is formed on the surface of the base material. The conductive coating film thus obtained has a surface resistance of 1 × 10 7 Ω / □ or less, for example. There is no particular limitation on the film thickness of the first liquid and the second liquid when applied, but in consideration of workability and leveling property, both are 0.01 to
The range is preferably 10 μm. By using such a forming method, an article having a conductive coating film on its surface can be manufactured. As the article, various things can be targeted, for example, plastic products, film products, paper products, glass products, ceramic products, etc.,
Specific examples include cathode ray tubes, display devices such as liquid crystal displays, window materials for clean rooms, packaging materials for electronic components, films used for overhead displays and photographs, and the like.

【0015】[0015]

【実施例】以下に実施例を挙げて本発明を更に詳細に説
明するが、本発明はこれらの実施例によって制限される
ものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0016】実施例1 アンチモンをドープした球状酸化スズ微粉末SN−10
0P(石原産業社製:比表面積70m/g)を、濃度
が30重量%になるように水に添加し、水酸化ナトリウ
ム水溶液でpHを8に調整した後、サンドミルにて3時
間粉砕することで、SN−100Pの水分散体を得た。
この水分散体を用い、以下の処方をディスパーにて混合
して、第一液と第二液からなる本発明の二液性導電性塗
料(試料A)を得た。尚、第一液にはSN−100Pが
3重量%配合され、第一液中の水1重量部に対し、アセ
トアミドの配合量は0.24重量部である。
Example 1 Spherical tin oxide fine powder SN-10 doped with antimony
0P (manufactured by Ishihara Sangyo Co., Ltd .: specific surface area 70 m 2 / g) was added to water so that the concentration was 30% by weight, and the pH was adjusted to 8 with an aqueous sodium hydroxide solution, followed by grinding with a sand mill for 3 hours. Thus, an aqueous dispersion of SN-100P was obtained.
Using this aqueous dispersion, the following formulation was mixed with a disper to obtain a two-component conductive coating material (Sample A) of the present invention consisting of a first liquid and a second liquid. 3% by weight of SN-100P was mixed in the first liquid, and the amount of acetamide was 0.24 parts by weight with respect to 1 part by weight of water in the first liquid.

【0017】 第一液 SN−100P水分散体 4.0 g 水 25.0 g エチレングリコールモノブチルエーテル 5.0 g アセトアミド 6.0 g[0017] First liquid SN-100P aqueous dispersion 4.0 g Water 25.0 g Ethylene glycol monobutyl ether 5.0 g Acetamide 6.0 g

【0018】 第二液 メチルシリケート51(コルコート社製) 4.6 g エタノール 9.0 g 2−プロパノール 46.8 g 1−メトキシ−2−プロパノール 173.0 g 水 1.0 g 20%塩酸 0.03g[0018] Second liquid Methyl silicate 51 (made by Colcoat) 4.6 g Ethanol 9.0 g 2-propanol 46.8 g 1-methoxy-2-propanol 173.0 g Water 1.0 g 20% hydrochloric acid 0.03 g

【0019】実施例2 実施例1において、アセトアミドをジメチルスルホキシ
ドに代えたこと以外は実施例1と同様にして本発明の二
液性導電性塗料(試料B)を得た。
Example 2 A two-component conductive coating material of the present invention (Sample B) was obtained in the same manner as in Example 1 except that dimethyl sulfoxide was used instead of acetamide.

【0020】実施例3 実施例1において、アセトアミドをN−メチルホルムア
ミドに代えたこと以外は実施例1と同様にして本発明の
二液性導電性塗料(試料C)を得た。
Example 3 A two-component conductive coating material of the present invention (Sample C) was obtained in the same manner as in Example 1 except that N-methylformamide was used instead of acetamide.

【0021】実施例4 実施例1において、アセトアミドをエチレングリコール
に代えたこと以外は実施例1と同様にして本発明の二液
性導電性塗料(試料D)を得た。
Example 4 A two-component conductive coating material (Sample D) of the present invention was obtained in the same manner as in Example 1 except that ethylene glycol was used instead of acetamide.

【0022】実施例5 実施例1において、アセトアミドを1,3−ジメチル−
2−イミダゾリジノンに代えたこと以外は実施例1と同
様にして本発明の二液性導電性塗料(試料E)を得た。
Example 5 In Example 1, acetamide was replaced with 1,3-dimethyl-
A two-component conductive coating material of the present invention (Sample E) was obtained in the same manner as in Example 1 except that 2-imidazolidinone was used.

【0023】実施例6 実施例1において、アセトアミドを4−ブチロラクトン
に代えたこと以外は実施例1と同様にして本発明の二液
性導電性塗料(試料F)を得た。
Example 6 A two-component conductive coating material (Sample F) of the present invention was obtained in the same manner as in Example 1 except that acetamide was replaced with 4-butyrolactone.

【0024】実施例7 実施例1において、第一液の処方を以下のものに代えた
こと以外は実施例1と同様にして、本発明の二液性導電
性塗料(試料G)を得た。尚、第一液にはSN−100
Pが3重量%配合され、第一液中の水1重量部に対し、
アセトアミドの配合量は11重量部である。
Example 7 A two-component conductive coating material of the present invention (Sample G) was obtained in the same manner as in Example 1 except that the formulation of the first liquid was changed to the following. . SN-100 was used as the first liquid.
3% by weight of P is added to 1 part by weight of water in the first liquid,
The compounding amount of acetamide is 11 parts by weight.

【0025】 第一液 SN−100P水分散体 4.0 g 水 1.0 g アセトアミド 12.0 g N,N−ジメチルホルムアミド 12.0 g 2−プロパノール 11.0 g[0025] First liquid SN-100P aqueous dispersion 4.0 g Water 1.0 g Acetamide 12.0 g N, N-dimethylformamide 12.0 g 2-propanol 11.0 g

【0026】比較例1 実施例1において、アセトアミドを1−ブタノール(比
誘電率18、表面張力25×10−3N/m)に代えた
こと以外は実施例1と同様にしたところ、第一液にSN
−100Pの凝集物が生成し、導電性塗料は得られなか
った。
Comparative Example 1 The same procedure as in Example 1 was repeated except that the acetamide was replaced with 1-butanol (relative permittivity: 18, surface tension: 25 × 10 −3 N / m). SN for liquid
Aggregates of -100P were formed, and a conductive paint could not be obtained.

【0027】比較例2 実施例1のSN−100Pの水分散体を用い、以下の処
方をディスパーにて混合して一液性導電性塗料(試料
H)を得た。
Comparative Example 2 Using the aqueous dispersion of SN-100P of Example 1, the following formulation was mixed with a disper to obtain a one-component conductive paint (Sample H).

【0028】 SN−100P水分散体 31.0 g メチルシリケート51(コルコート社製) 4.6 g エタノール 17.3 g 2−プロパノール 3.3 g 1−メトキシ−2−プロパノール 4.7 g 水 1.0 g 20%塩酸 0.03g[0028] SN-100P aqueous dispersion 31.0 g Methyl silicate 51 (made by Colcoat) 4.6 g Ethanol 17.3 g 2-propanol 3.3 g 1-methoxy-2-propanol 4.7 g Water 1.0 g 20% hydrochloric acid 0.03 g

【0029】比較例3 アンチモンをドープした球状酸化スズ微粉末SN−10
0P(石原産業社製:比表面積70m/g)を、濃度
が20重量%になるようにエタノールに添加し、更に分
散剤としてディスパービック180(ビックケミー社
製)を加えた後、サンドミルにて3時間粉砕すること
で、SN−100Pのエタノール分散体を得た。このエ
タノール分散体を用い、以下の処方をディスパーにて混
合して一液性導電性塗料(試料I)を得た。尚、ディス
パービック180の添加量は、SN−100P100重
量部に対し8重量部である。
Comparative Example 3 Spherical tin oxide fine powder SN-10 doped with antimony
0P (manufactured by Ishihara Sangyo Co., Ltd .: specific surface area 70 m 2 / g) was added to ethanol so that the concentration became 20% by weight, and Disperbic 180 (manufactured by Big Chemie) was further added as a dispersant, followed by a sand mill. By crushing for 3 hours, an ethanol dispersion of SN-100P was obtained. Using this ethanol dispersion, the following formulations were mixed with a disper to obtain a one-component conductive paint (Sample I). In addition, the addition amount of Disperbic 180 is 8 parts by weight with respect to 100 parts by weight of SN-100P.

【0030】 SN−100Pエタノール分散体 47.0 g メチルシリケート51(コルコート社製) 4.6 g エタノール 1.0 g 2−プロパノール 3.3 g 1−メトキシ−2−プロパノール 4.7 g 水 1.0 g 20%塩酸 0.03g[0030] SN-100P ethanol dispersion 47.0 g Methyl silicate 51 (made by Colcoat) 4.6 g Ethanol 1.0 g 2-propanol 3.3 g 1-methoxy-2-propanol 4.7 g Water 1.0 g 20% hydrochloric acid 0.03 g

【0031】評価1 一片75mm、厚さ3mmの正方形のガラス基板を、5
0℃の大気中にてスピンコーターにセットし、実施例1
〜7で得られた二液性導電性塗料(試料A〜G)の第一
液1ミリリットルを滴下した後、120rpmで100
秒間回転させることで、導電層を塗工した。その後、第
二液を同じ条件でスピンコートし、オーブンで120
℃、30分間で加熱して透明導電性塗膜を得た。また、
比較例2、3で得られた一液性塗料(試料H、I)は、
前記ガラス基板に滴下した後、二液性塗料と同様にして
透明性導電性塗膜を得た。得られた塗膜の表面抵抗を表
面抵抗計(ロレスタGP型、三菱化学社製)を用い、ヘ
ーズをヘーズメーター(DH−300A型、日本電色工
業製)を用いて計測した。また塗膜の鉛筆硬度を日本工
業規格(JIS K5400)に準拠して測定した。
Evaluation 1 A square glass substrate with a piece of 75 mm and a thickness of 3 mm was set to 5
Example 1 was set in a spin coater in the atmosphere of 0 ° C.
After dropping 1 ml of the first liquid of the two-component conductive coating material (Samples A to G) obtained in Nos. 7 to 100 at 120 rpm.
The conductive layer was applied by rotating for 2 seconds. After that, spin coat the second liquid under the same conditions, and place in an oven for 120
A transparent conductive coating film was obtained by heating at 30 ° C. for 30 minutes. Also,
The one-pack paints (Samples H and I) obtained in Comparative Examples 2 and 3 were
After dropping onto the glass substrate, a transparent conductive coating film was obtained in the same manner as the two-component coating material. The surface resistance of the obtained coating film was measured using a surface resistance meter (Loresta GP type, manufactured by Mitsubishi Chemical Co., Ltd.), and the haze was measured using a haze meter (DH-300A type, manufactured by Nippon Denshoku Industries Co., Ltd.). The pencil hardness of the coating film was measured according to Japanese Industrial Standards (JIS K5400).

【0032】表面抵抗、ヘーズ、鉛筆硬度の結果を表1
に示す。本発明の二液性導電性塗料は、導電性酸化物と
硬化性成分とを分散媒に分散させた従来の一液性塗料と
比較して、導電性が非常に優れ、また、透明性にも優れ
た塗膜が得られることが判る。また、本発明の二液性導
電性塗料を用いて形成した導電性塗膜は塗膜硬度が高
く、実用に耐えられるレベルであることも判った。
The results of surface resistance, haze and pencil hardness are shown in Table 1.
Shown in. The two-component conductive coating material of the present invention is very excellent in conductivity as compared with a conventional one-component coating material in which a conductive oxide and a curable component are dispersed in a dispersion medium, and also has transparency. It can be seen that an excellent coating film can be obtained. It was also found that the conductive coating film formed using the two-component conductive coating material of the present invention has a high coating hardness and is at a level that can be practically used.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明は、導電性酸化物、水及び35以
上の比誘電率と100℃以上の沸点とを有する非水溶媒
を含む第一液、硬化性成分を含む第二液からなる二液性
の導電性塗料であり、導電性酸化物を配合した第一液を
塗布した後、硬化性成分を配合した第二液を塗布して硬
化させると、導電性酸化物と基材との接点に絶縁性の硬
化性成分が介在し難くなると推測され、導電性酸化物の
凝集が防止できるため、基材に優れた導電性を簡便に付
与することができる。この塗布方法は、蒸着方法に比べ
て工業的、経済的に有利であり、また、塗膜硬度も高い
ため、本発明の二液性導電性塗料は種々の基材に導電性
を付与することができ、導電性塗膜を有する物品を製造
する工業用途のほか、一般家庭用の導電性付与剤として
も用いることができる。さらに、導電性酸化物微粒子を
用いると、優れた透明性と導電性とを備えた塗膜が得ら
れるため、特に、ガラス、プラスチックス、フィルム等
の透明基材の帯電防止材として有用である。
The present invention comprises a conductive oxide, a first liquid containing water and a non-aqueous solvent having a relative dielectric constant of 35 or more and a boiling point of 100 ° C. or more, and a second liquid containing a curable component. It is a two-component conductive paint, and after applying the first liquid containing a conductive oxide, and then curing by applying a second liquid containing a curable component, a conductive oxide and a base material are obtained. It is presumed that the insulative curable component is unlikely to intervene at the contact point, and the conductive oxide can be prevented from aggregating, so that excellent conductivity can be easily imparted to the base material. This coating method is industrially and economically advantageous as compared with the vapor deposition method, and since the coating film hardness is high, the two-component conductive coating material of the present invention can impart conductivity to various base materials. In addition to industrial use for producing an article having a conductive coating film, it can also be used as a general household electrical conductivity imparting agent. Furthermore, when conductive oxide fine particles are used, a coating film having excellent transparency and conductivity can be obtained, so that it is particularly useful as an antistatic material for transparent base materials such as glass, plastics and films. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 13/00 503 H01B 13/00 503Z Fターム(参考) 4D075 AE03 BB26Z CA02 CA13 CA22 CB06 DA04 DA06 DA23 DB13 DB14 DB18 DB31 DC01 DC24 DC36 EA06 EA07 EA10 EB22 EB33 EB35 EB36 EB38 EB43 EC02 EC30 EC51 EC52 EC60 4J038 CG001 DB001 DD001 DD121 DG001 DL021 DM021 HA066 KA06 NA20 PA07 5G301 DA13 DA15 DA25 DA53 DA57 DA59 DA60 DD02 5G323 AA03 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01B 13/00 503 H01B 13/00 503Z F term (reference) 4D075 AE03 BB26Z CA02 CA13 CA22 CB06 DA04 DA06 DA23 DB13 DB14 DB18 DB31 DC01 DC24 DC36 EA06 EA07 EA10 EB22 EB33 EB35 EB36 EB38 EB43 EC02 EC30 EC51 EC52 EC60 4J038 CG001 DB001 DD001 DD121 DG001 DL021 DM021 HA066 KA06 NA20 PA07 5G301 DA02 DA15 DA25 DA53 DA57 DA59 A60 DD02 5

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】導電性酸化物、水及び35以上の比誘電率
と100℃以上の沸点とを有する非水溶媒を含む第一
液、硬化性成分を含む第二液からなることを特徴とする
導電性塗料。
1. A first liquid containing a conductive oxide, water, a non-aqueous solvent having a relative dielectric constant of 35 or more and a boiling point of 100 ° C. or more, and a second liquid containing a curable component. Conductive paint that does.
【請求項2】非水溶媒が50×10−3N/m以下の表
面張力を有する請求項1記載の導電性塗料。
2. The conductive paint according to claim 1, wherein the non-aqueous solvent has a surface tension of 50 × 10 −3 N / m or less.
【請求項3】非水溶媒がN−メチルホルムアミド、ジメ
チルスルホキシド、エチレングリコール、4−ブチロラ
クトン、アセトアミド、1,3−ジメチル−2−イミダ
ゾリジノンから選ばれる少なくとも1種である請求項1
記載の導電性塗料。
3. The non-aqueous solvent is at least one selected from N-methylformamide, dimethylsulfoxide, ethylene glycol, 4-butyrolactone, acetamide, and 1,3-dimethyl-2-imidazolidinone.
The conductive paint described.
【請求項4】第一液に含まれる水1重量部に対して0.
15〜20重量部の範囲の非水溶媒を含む請求項1記載
の導電性塗料。
4. One part by weight of water contained in the first liquid is 0.
The conductive paint according to claim 1, which contains a non-aqueous solvent in the range of 15 to 20 parts by weight.
【請求項5】導電性酸化物が20〜150m/gの範
囲の比表面積を有する請求項1記載の導電性塗料。
5. The conductive paint according to claim 1, wherein the conductive oxide has a specific surface area in the range of 20 to 150 m 2 / g.
【請求項6】導電性酸化物が酸化スズ、酸化インジウ
ム、酸化亜鉛から選ばれる少なくとも1種である請求項
1記載の導電性塗料。
6. The conductive paint according to claim 1, wherein the conductive oxide is at least one selected from tin oxide, indium oxide and zinc oxide.
【請求項7】導電性酸化物がSb、F、W、Ga、S
n、In、Alから選ばれる少なくとも1種の元素をド
ープしたものである請求項6記載の導電性塗料。
7. The conductive oxide is Sb, F, W, Ga, S
The conductive paint according to claim 6, which is doped with at least one element selected from n, In and Al.
【請求項8】硬化性成分がアルキルシリケート、アルキ
ルチタネート、アクリル樹脂、アルキド樹脂、ポリエス
テル樹脂、ウレタン樹脂、エポキシ樹脂から選ばれる少
なくとも1種である請求項1記載の導電性塗料。
8. The conductive paint according to claim 1, wherein the curable component is at least one selected from alkyl silicates, alkyl titanates, acrylic resins, alkyd resins, polyester resins, urethane resins and epoxy resins.
【請求項9】請求項1〜8のいずれか1項に記載の導電
性塗料の第一液を基材に塗布し導電性酸化物を含む層を
形成させた後、第二液を塗布し硬化性成分を硬化させる
導電性塗膜の形成方法。
9. A first liquid of the conductive paint according to claim 1 is applied to a substrate to form a layer containing a conductive oxide, and then a second liquid is applied. A method for forming a conductive coating film, which cures a curable component.
【請求項10】請求項1〜8のいずれか1項に記載の導
電性塗料の第一液を物品の表面に塗布し導電性酸化物を
含む層を形成させた後、その上に第二液を塗布し硬化性
成分を硬化させる、導電性塗膜を有する物品の製造方
法。
10. The first liquid of the conductive coating composition according to claim 1 is applied to the surface of an article to form a layer containing a conductive oxide, and then a second layer is formed thereon. A method for producing an article having a conductive coating film, which comprises applying a liquid to cure a curable component.
JP2001210397A 2001-07-11 2001-07-11 Electroconductive coating material and method for forming electroconductive coated film using the same Pending JP2003020449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210397A JP2003020449A (en) 2001-07-11 2001-07-11 Electroconductive coating material and method for forming electroconductive coated film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001210397A JP2003020449A (en) 2001-07-11 2001-07-11 Electroconductive coating material and method for forming electroconductive coated film using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011163197A Division JP5352638B2 (en) 2011-07-26 2011-07-26 Method for producing conductive paint and method for forming conductive coating film using the conductive paint

Publications (1)

Publication Number Publication Date
JP2003020449A true JP2003020449A (en) 2003-01-24

Family

ID=19045872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210397A Pending JP2003020449A (en) 2001-07-11 2001-07-11 Electroconductive coating material and method for forming electroconductive coated film using the same

Country Status (1)

Country Link
JP (1) JP2003020449A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114396A (en) * 2004-10-15 2006-04-27 Sumitomo Metal Mining Co Ltd Coating liquid for forming transparent conductive film, and transparent conductive film
JP2006321948A (en) * 2005-05-20 2006-11-30 Sumitomo Electric Ind Ltd Metal particulate dispersion and method for forming metal film by using the same
JP2009123396A (en) * 2007-11-12 2009-06-04 Dowa Electronics Materials Co Ltd Ito application liquid and method of manufacturing the same
JP2009249193A (en) * 2008-04-01 2009-10-29 Kyushu Refract Co Ltd Manufacturing method of refractory
WO2020124358A1 (en) * 2018-12-18 2020-06-25 张维维 Novel conductive paint
WO2020124366A1 (en) * 2018-12-18 2020-06-25 张维维 Efficient conductive paint
WO2020124367A1 (en) * 2018-12-18 2020-06-25 张维维 New conductive paint formula
WO2020124364A1 (en) * 2018-12-18 2020-06-25 张维维 Electrically conductive paint formulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072758A (en) * 1998-08-31 2000-03-07 Sanyo Chem Ind Ltd Polyamide compound containing heterocyclic group and its production, curing agent for epoxy resin, epoxy rein composition and its cured product
JP2000230127A (en) * 1999-02-12 2000-08-22 Nippon Paint Co Ltd Non-aqueous dispersion of non-spherical porous crosslinked resin, its production and matte coating composition
JP2001181568A (en) * 1999-12-23 2001-07-03 Solutia Austria Gmbh Water-based coating
JP2003527454A (en) * 1998-08-17 2003-09-16 ナノフェイズ テクノロジーズ コーポレイション Composition for forming transparent conductive nanoparticle coating and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527454A (en) * 1998-08-17 2003-09-16 ナノフェイズ テクノロジーズ コーポレイション Composition for forming transparent conductive nanoparticle coating and method for producing the same
JP2000072758A (en) * 1998-08-31 2000-03-07 Sanyo Chem Ind Ltd Polyamide compound containing heterocyclic group and its production, curing agent for epoxy resin, epoxy rein composition and its cured product
JP2000230127A (en) * 1999-02-12 2000-08-22 Nippon Paint Co Ltd Non-aqueous dispersion of non-spherical porous crosslinked resin, its production and matte coating composition
JP2001181568A (en) * 1999-12-23 2001-07-03 Solutia Austria Gmbh Water-based coating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114396A (en) * 2004-10-15 2006-04-27 Sumitomo Metal Mining Co Ltd Coating liquid for forming transparent conductive film, and transparent conductive film
JP4591672B2 (en) * 2004-10-15 2010-12-01 住友金属鉱山株式会社 Coating liquid for forming transparent conductive film and transparent conductive film
JP2006321948A (en) * 2005-05-20 2006-11-30 Sumitomo Electric Ind Ltd Metal particulate dispersion and method for forming metal film by using the same
JP2009123396A (en) * 2007-11-12 2009-06-04 Dowa Electronics Materials Co Ltd Ito application liquid and method of manufacturing the same
JP2009249193A (en) * 2008-04-01 2009-10-29 Kyushu Refract Co Ltd Manufacturing method of refractory
WO2020124358A1 (en) * 2018-12-18 2020-06-25 张维维 Novel conductive paint
WO2020124366A1 (en) * 2018-12-18 2020-06-25 张维维 Efficient conductive paint
WO2020124367A1 (en) * 2018-12-18 2020-06-25 张维维 New conductive paint formula
WO2020124364A1 (en) * 2018-12-18 2020-06-25 张维维 Electrically conductive paint formulation

Similar Documents

Publication Publication Date Title
JP5596609B2 (en) Metal colloid solution and paint using the same
EP0514557B1 (en) Coating solution for forming transparent electrically conductive film, method of preparation thereof, electrically conductive substrate, method of preparation thereof, and display device having transparent electrically conductive substrate
EP1109741B1 (en) Compositions for forming transparent conductive nanoparticle coatings and process of preparation therefor
KR100236154B1 (en) Coating solution for forming a transparent and electrically conductive film
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JP2003020449A (en) Electroconductive coating material and method for forming electroconductive coated film using the same
JP2004182812A (en) Electrically conductive coating and method for forming electrically conductive coating film using the same
JPH09263716A (en) Overcoat composition for transparent electrically conductive film excellent in electical conductivity
JP5352638B2 (en) Method for producing conductive paint and method for forming conductive coating film using the conductive paint
JP3002327B2 (en) Paint for forming conductive / high refractive index film and transparent material laminate with conductive / high refractive index film
JP3976484B2 (en) Conductive powder organic solvent dispersion and conductive paint
TWI247784B (en) Organic solvent based dispersion of conductive powder and conductive coating material
JP2017168211A (en) Method for manufacturing transparent conductive substrate and in-plane switching type liquid crystal display panel including touch panel function
JPH09217055A (en) Production of transparent electroconductive solution
JP3606772B2 (en) Paint for forming transparent antistatic film and substrate with transparent antistatic film
JPH06107849A (en) Fibrous conductive filler and its production
JPH0277473A (en) Inorganic electrically conductive coating
KR100231790B1 (en) Transparent conductive coating composition and its applications
JPH03167739A (en) Antistatic film
JP5046267B2 (en) Transparent conductive film, coating liquid for forming transparent conductive film, and method for producing transparent conductive film
JP2021161380A (en) Coating liquid for forming conductive film
JP3161431B2 (en) Corrosion-resistant and antibacterial conductive film and treatment liquid therefor
KR0183429B1 (en) Surface treatment liquid and the preparation process thereof
CN110105872A (en) A kind of hydrophobic transparent conductive nano coating composition and its coating of preparation
JPH04184839A (en) Anti-static film and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830