JP2006007213A - Production method of catalyst for producing carbon nanotube - Google Patents
Production method of catalyst for producing carbon nanotube Download PDFInfo
- Publication number
- JP2006007213A JP2006007213A JP2005180590A JP2005180590A JP2006007213A JP 2006007213 A JP2006007213 A JP 2006007213A JP 2005180590 A JP2005180590 A JP 2005180590A JP 2005180590 A JP2005180590 A JP 2005180590A JP 2006007213 A JP2006007213 A JP 2006007213A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- metal precursor
- substrate
- catalyst metal
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、炭素ナノチューブ(CNT)製造用触媒の製造方法と、これを利用したCNTの製造方法に関する。 The present invention relates to a method for producing a catalyst for producing carbon nanotubes (CNT) and a method for producing CNTs using the same.
CNTは、普通数nmほどの非常に微細な直径と、10ないし1,000ほどの非常に大きい縦横比とを有する円筒形の材料である。CNTにおいて、一般的に炭素原子は、六角形の蜂の巣状に配列しており、それぞれの炭素原子は、隣接する3つの炭素原子と結合している。CNTは、その構造により、導体の性質または半導体の性質を有しうる。導体の性質を帯びるCNTの電導度は、非常に優れていることが知られている。また、CNTは、非常に強い機械的強度、テラ(tera)単位のヤング率(Young’s modulus)、優れた熱伝導度などの特性を有する。かかる優れた特性を有するCNTは、例えばフィールドエミッションディスプレイ(FED)のエミッタ、二次電池用の負極材料、燃料電池の触媒担持体、高強度複合素子などの多様な技術分野に有利に使われる。 CNTs are cylindrical materials that have a very fine diameter, usually on the order of a few nm, and a very large aspect ratio, on the order of 10 to 1,000. In the CNT, carbon atoms are generally arranged in a hexagonal honeycomb shape, and each carbon atom is bonded to three adjacent carbon atoms. Depending on its structure, the CNT may have a conductor property or a semiconductor property. It is known that the conductivity of CNTs having the properties of a conductor is very excellent. In addition, CNT has characteristics such as very high mechanical strength, Young's modulus in tera units, and excellent thermal conductivity. CNTs having such excellent characteristics are advantageously used in various technical fields such as field emission display (FED) emitters, anode materials for secondary batteries, catalyst supports for fuel cells, and high-strength composite elements.
CNTの製造方法としては、電気放電法、レーザ蒸着法、プラズマ化学気相蒸着法、化学気相蒸着法、気相合成法、電気分解法などが知られている。 As a method for producing CNT, an electric discharge method, a laser vapor deposition method, a plasma chemical vapor deposition method, a chemical vapor deposition method, a vapor phase synthesis method, an electrolysis method, and the like are known.
気相合成法は、基板を使用せずに、反応炉内に反応ガスと触媒金属とを直接供給して気相で合成する方法であり、CNTをバルク状で合成するのに適した方法である。電気放電法とレーザ蒸着法は、CNTの合成収率が比較的低い。電気放電法とレーザ蒸着法では、CNTの直径と長さとを調節することが容易でない。また、電気放電法とレーザ蒸着法とを使用すれば、CNTだけでなく、非晶質炭素塊が多量に生成するため、複雑な精製過程が必要となる。 The gas phase synthesis method is a method for synthesizing in a gas phase by directly supplying a reaction gas and a catalytic metal into a reaction furnace without using a substrate, and is a method suitable for synthesizing CNTs in a bulk state. is there. The electrical discharge method and the laser vapor deposition method have a relatively low synthesis yield of CNT. In the electric discharge method and the laser vapor deposition method, it is not easy to adjust the diameter and length of the CNT. In addition, if an electric discharge method and a laser deposition method are used, not only CNT but also a large amount of amorphous carbon mass is generated, so that a complicated purification process is required.
基板上にCNTを形成させるためには、一般的に、熱化学気相蒸着法、低圧化学気相蒸着法及びプラズマ化学気相蒸着法などの化学気相蒸着法が利用される。プラズマ化学気相蒸着法の場合、プラズマを利用してガスを活性化させるため、低温でCNTを合成できる。また、プラズマ化学気相蒸着法は、CNTの直径、長さ、密度などを比較的容易に調節できる。 In order to form CNTs on a substrate, chemical vapor deposition methods such as thermal chemical vapor deposition, low pressure chemical vapor deposition, and plasma chemical vapor deposition are generally used. In the case of plasma chemical vapor deposition, the gas is activated using plasma, so that CNT can be synthesized at a low temperature. In addition, the plasma chemical vapor deposition method can adjust the diameter, length, density, and the like of CNTs relatively easily.
化学気相蒸着法の場合に、基板上に形成されるCNTの密度を均一にするために、前もって基板上に、CNT成長の基になる触媒微粒子を分散させる。 In the case of chemical vapor deposition, in order to make the density of the CNTs formed on the substrate uniform, catalyst fine particles serving as a basis for CNT growth are dispersed on the substrate in advance.
例えば、特許文献1には、基板上に触媒金属膜を形成した後、前記触媒金属膜をエッチングガスでエッチングし、複数の触媒微粒子を形成させる方法が開示されている。 For example, Patent Document 1 discloses a method of forming a plurality of catalyst fine particles by forming a catalyst metal film on a substrate and then etching the catalyst metal film with an etching gas.
他の例として、非特許文献1には、触媒金属前駆体の溶液を基板上に塗布して乾燥させた後に熱処理することにより、触媒微粒子を基板上に形成させる方法が開示されている。しかし、この場合、乾燥及び熱処理過程で、触媒金属の再結晶及び凝集が発生し、基板上に形成した触媒金属微粒子の均一度が低下するという問題点が発生しうる。基板上に形成された触媒微粒子の均一度が低下すれば、それを基にして成長したCNTの直径と生成密度の均一性が低下する。 As another example, Non-Patent Document 1 discloses a method of forming catalyst fine particles on a substrate by applying a solution of a catalyst metal precursor on the substrate and drying it, followed by heat treatment. However, in this case, the catalyst metal may be recrystallized and aggregated during the drying and heat treatment processes, and the uniformity of the catalyst metal fine particles formed on the substrate may be reduced. If the uniformity of the catalyst fine particles formed on the substrate decreases, the uniformity of the diameter and generation density of the CNT grown based on the catalyst particle decreases.
基板上に形成された触媒微粒子の均一度は、触媒微粒子の粒子サイズの均一性と触媒微粒子の生成密度の均一性とで評価できる。今まで、公知の方法によって形成された触媒微粒子の均一度は、それほど満足できるものではないことが知られている。それにより、基板上に形成された触媒微粒子の均一度を向上させるための触媒微粒子の新しい形成方法が要求されている。
本発明は、CNT成長の基になる触媒微粒子を基板上にさらに均一に形成させることができる新しい方法を提供することを目的とする。 An object of this invention is to provide the new method which can form the catalyst fine particle used as the basis of CNT growth more uniformly on a board | substrate.
本発明はまた、均一度の向上したCNT合成方法を提供することを目的とする。 Another object of the present invention is to provide a CNT synthesis method with improved uniformity.
本発明で提供する触媒微粒子の形成方法は、触媒金属前駆体の溶液を基板上に塗布するステップと、前記基板上に塗布された触媒金属前駆体の溶液を凍結乾燥するステップと、前記凍結乾燥した触媒金属前駆体を触媒金属に還元させるステップとを含む。 The method for forming catalyst fine particles provided in the present invention includes a step of applying a catalyst metal precursor solution onto a substrate, a step of freeze-drying the catalyst metal precursor solution applied onto the substrate, and the freeze-drying step. Reducing the catalytic metal precursor to a catalytic metal.
本発明の触媒微粒子の形成方法は、触媒金属前駆体の溶液を凍結乾燥することにより、触媒金属微粒子の形成過程での触媒金属微粒子の凝集及び/または再結晶を最小化させることができる。それにより、本発明の方法で形成された触媒金属微粒子は、非常に均一な粒子サイズを有し、また基板上に非常に均一に分布する。 The method for forming catalyst fine particles of the present invention can minimize aggregation and / or recrystallization of the catalyst metal fine particles in the process of forming the catalyst metal fine particles by freeze-drying the catalyst metal precursor solution. Thereby, the catalytic metal fine particles formed by the method of the present invention have a very uniform particle size and are very uniformly distributed on the substrate.
本発明のCNTの製造方法は、触媒金属前駆体の溶液を基板上に塗布した後、前記基板上に塗布された触媒金属前駆体の溶液を凍結乾燥した後、前記凍結乾燥した触媒金属前駆体を触媒金属に還元させ、CNT成長の基になる触媒微粒子を基板上に形成させるステップと、前記触媒微粒子に炭素源を供給し、前記触媒微粒子上にCNTを成長させるステップとを含む。 The method for producing CNTs of the present invention comprises: applying a catalyst metal precursor solution on a substrate; lyophilizing the catalyst metal precursor solution applied on the substrate; and then lyophilizing the catalyst metal precursor. Reducing catalyst to a catalytic metal to form catalyst fine particles on which a CNT is grown on a substrate, and supplying a carbon source to the catalyst fine particles to grow CNTs on the catalyst fine particles.
本発明の触媒微粒子の形成方法は、触媒金属前駆体の溶液を凍結乾燥することにより、触媒微粒子形成過程での触媒微粒子の凝集及び/または再結晶を最小化させることができる。それにより、本発明の方法で形成された触媒微粒子は、非常に均一な粒子サイズを有し、また基板上に非常に均一に分布する。 The method for forming catalyst fine particles of the present invention can minimize the aggregation and / or recrystallization of the catalyst fine particles in the process of forming the catalyst fine particles by freeze-drying the catalyst metal precursor solution. Thereby, the catalyst fine particles formed by the method of the present invention have a very uniform particle size and are very uniformly distributed on the substrate.
本発明のCNTの製造方法では、前述のように、均一な粒子サイズを有し、また基板上に均一に分布する触媒微粒子を基にしてCNTを成長させるので、その結果として合成されたCNTの均一度やはり非常に向上する。 In the CNT manufacturing method of the present invention, as described above, CNT is grown based on catalyst fine particles having a uniform particle size and uniformly distributed on the substrate. The uniformity is also greatly improved.
以下では、CNT成長の基になる触媒微粒子を基板上に形成させるための本発明の方法を詳細に説明する。 Below, the method of this invention for forming the catalyst fine particle used as the base of CNT growth on a board | substrate is demonstrated in detail.
本発明の触媒微粒子の形成方法は、触媒金属前駆体の溶液を基板上に塗布するステップと、前記基板上に塗布された触媒金属前駆体の溶液を凍結乾燥(freeze−dry)するステップと、前記凍結乾燥した触媒金属前駆体を触媒金属に還元させるステップとを含む。 The method for forming catalyst fine particles of the present invention includes a step of applying a catalyst metal precursor solution on a substrate, a step of freeze-drying the catalyst metal precursor solution applied on the substrate, Reducing the lyophilized catalyst metal precursor to a catalyst metal.
前記触媒金属前駆体の溶液は、触媒金属前駆体と、触媒金属前駆体を溶解させることができる溶媒とを含む。 The catalyst metal precursor solution includes a catalyst metal precursor and a solvent capable of dissolving the catalyst metal precursor.
前記触媒金属前駆体としては、CNT成長の基になりうる微粒子の金属形態に転換可能な任意の材料が使われうる。前記触媒金属前駆体としては、例えば有機金属化合物が使われうる。前記有機金属化合物は、例えばFe、Co、Ni、Y、Mo、Cu、Pt、V、及びTiのうちから選択される少なくとも1つの金属原子を含有できる。前記有機金属化合物の具体的な例としては、酢酸鉄、シュウ酸鉄(iron oxalate)、酢酸コバルト、酢酸ニッケル、フェロセン、またはそれらの混合物が挙げられる。 As the catalyst metal precursor, any material that can be converted into a fine-particle metal form that can be a basis for CNT growth can be used. For example, an organometallic compound may be used as the catalyst metal precursor. The organometallic compound can contain at least one metal atom selected from, for example, Fe, Co, Ni, Y, Mo, Cu, Pt, V, and Ti. Specific examples of the organometallic compound include iron acetate, iron oxalate, cobalt acetate, nickel acetate, ferrocene, or a mixture thereof.
前記溶媒としては、前記触媒金属前駆体を溶解できる任意の液状物質が使われうる。例えば、前記溶媒としては、エタノール、エチレングリコール、ポリエチレングリコール、ポリビニルアルコール、それらの混合物などが挙げられる。 As the solvent, any liquid material capable of dissolving the catalytic metal precursor may be used. For example, examples of the solvent include ethanol, ethylene glycol, polyethylene glycol, polyvinyl alcohol, and mixtures thereof.
前記触媒金属前駆体の溶液中の前記触媒金属前駆体の含有量は、特別に制限されない。前記触媒金属前駆体の溶液中の前記触媒金属前駆体の含有量が少なすぎれば、以後のCNT製造工程で、CNTが生成せず、多すぎれば、以後のCNT製造工程で、生成したCNTの直径が非常に大きくなったり、または生成したCNTまたは炭素ナノファイバの結晶性が低下したりする。前記触媒金属前駆体の溶液中の前記触媒金属前駆体の濃度は、通常、10mMないし200mMの範囲にある。 The content of the catalyst metal precursor in the catalyst metal precursor solution is not particularly limited. If the content of the catalyst metal precursor in the solution of the catalyst metal precursor is too small, CNT is not generated in the subsequent CNT manufacturing process, and if it is too much, the CNT generated in the subsequent CNT manufacturing process is not generated. The diameter becomes very large, or the crystallinity of the produced CNT or carbon nanofiber decreases. The concentration of the catalytic metal precursor in the catalytic metal precursor solution is usually in the range of 10 mM to 200 mM.
前記基板は、触媒微粒子がその表面上に付着可能な任意の材料が使われうる。例えば、前記基板としては、Mo、Cr及びWなどの高融点を有する金属、シリコン、ガラス、プラスチック、石英などが挙げられる。 The substrate may be made of any material that allows catalyst fine particles to adhere to the surface. For example, examples of the substrate include metals having a high melting point such as Mo, Cr, and W, silicon, glass, plastic, and quartz.
前記触媒金属前駆体の溶液を前記基板上に塗布する方法としては、基板の表面に溶液を等しくコーティングできる任意の方法が使われうる。例えば、前記触媒金属前駆体の溶液を前記基板上に塗布する方法として、浸漬法、蒸発法、スクリーンプリンティング、またはスピンコーティングなどが挙げられる。また、かかる方法を組み合わせた方法が使われることもある。 As a method of applying the catalyst metal precursor solution onto the substrate, any method that can equally coat the solution on the surface of the substrate may be used. For example, examples of the method for applying the catalyst metal precursor solution onto the substrate include dipping, evaporation, screen printing, and spin coating. In addition, a method combining such methods may be used.
触媒金属前駆体の溶液は、基板の全表面に塗布され、または、基板の一部表面にだけ塗布されもする。 The catalyst metal precursor solution may be applied to the entire surface of the substrate, or may be applied only to a partial surface of the substrate.
このように基板上に塗布された触媒金属前駆体の溶液は、凍結乾燥過程を経る。凍結乾燥というのは、基板上に塗布された触媒金属前駆体の溶液を、前記触媒金属前駆体の溶液の氷結点以下に冷却した後、減圧条件下で前記触媒金属前駆体の溶液中の溶媒を気化(evaporate)させる過程を意味する。 The solution of the catalytic metal precursor applied on the substrate in this manner undergoes a freeze-drying process. Freeze-drying means that the catalyst metal precursor solution applied on the substrate is cooled to below the freezing point of the catalyst metal precursor solution and then the solvent in the catalyst metal precursor solution under reduced pressure. Is a process of vaporizing.
触媒金属前駆体の溶液の氷結点は、触媒金属前駆体の溶液の組成によって変わりうる。すなわち、触媒金属前駆体の成分、溶媒の成分、触媒金属前駆体の含有量などの条件により、触媒金属前駆体の溶液の氷結点が決定されうる。かかる触媒金属前駆体の溶液の氷結点は、熱力学的計算または試行錯誤法により、当業者によって容易に測定可能である。また、触媒金属前駆体の溶液の組成を調節することにより、触媒金属前駆体の溶液の氷結点を選択することもできる。 The freezing point of the catalyst metal precursor solution may vary depending on the composition of the catalyst metal precursor solution. That is, the freezing point of the solution of the catalyst metal precursor can be determined by conditions such as the components of the catalyst metal precursor, the components of the solvent, and the content of the catalyst metal precursor. The freezing point of such catalytic metal precursor solutions can be readily measured by those skilled in the art by thermodynamic calculations or trial and error methods. Moreover, the freezing point of the catalyst metal precursor solution can also be selected by adjusting the composition of the catalyst metal precursor solution.
基板上に塗布された触媒金属前駆体の溶液を触媒溶液の氷結点以下に冷却する過程は、触媒金属前駆体の溶液の氷結点に適した冷却方法を使用することにより行われうる。例えば、冷凍機、液体窒素などが使われうる。液体窒素を使用する場合に、触媒金属前駆体の溶液で塗布された基板を液体窒素に浸すことにより、基板上に塗布された触媒金属前駆体の溶液を触媒金属前駆体の溶液の氷結点以下に冷却できる。 The process of cooling the catalyst metal precursor solution coated on the substrate to below the freezing point of the catalyst solution may be performed by using a cooling method suitable for the freezing point of the catalyst metal precursor solution. For example, a refrigerator or liquid nitrogen can be used. When liquid nitrogen is used, the substrate coated with the catalyst metal precursor solution is immersed in liquid nitrogen so that the catalyst metal precursor solution coated on the substrate is below the freezing point of the catalyst metal precursor solution. Can be cooled.
このように基板上に塗布された触媒金属前駆体の溶液を凍結させた後、凍結した触媒金属前駆体の溶液中の溶媒成分を気化させるために、凍結した触媒金属前駆体の溶液が塗布されている基板を減圧環境に送る。例えば、凍結された触媒金属前駆体の溶液が塗布されている基板を真空チャンバに入れた後、真空チャンバの内部を減圧させる。 After freezing the catalyst metal precursor solution applied on the substrate in this way, the frozen catalyst metal precursor solution is applied to vaporize the solvent component in the frozen catalyst metal precursor solution. Send the substrate to the decompression environment. For example, after the substrate on which the frozen catalyst metal precursor solution is applied is placed in a vacuum chamber, the inside of the vacuum chamber is depressurized.
減圧は、凍結した触媒金属前駆体の溶液中の溶媒成分が気化されるのに十分なほどにせねばならない。以下では、凍結した触媒金属前駆体の溶液中の溶媒成分が気化されるのに十分なほどに減圧された圧力を、簡単に「気化圧力」とする。気化圧力は、使われた触媒金属前駆体の溶液の組成により変わりうる。すなわち、触媒金属前駆体の成分、溶媒の成分、触媒金属前駆体の含有量、凍結温度などの条件により、触媒金属前駆体の溶液の気化圧力が決定されうる。かかる触媒金属前駆体の溶液の気化圧力は、熱力学的計算または試行錯誤法により当業者によって容易に測定可能である。また、触媒金属前駆体の溶液の組成、凍結温度などを調節することにより、触媒金属前駆体の溶液中の溶媒の気化圧力を選択することもできる。 The reduced pressure must be sufficient to evaporate the solvent component in the solution of the frozen catalytic metal precursor. Hereinafter, the pressure reduced to a degree sufficient to vaporize the solvent component in the solution of the frozen catalyst metal precursor is simply referred to as “vaporization pressure”. The vaporization pressure can vary depending on the composition of the catalyst metal precursor solution used. That is, the vaporization pressure of the catalyst metal precursor solution can be determined by conditions such as the components of the catalyst metal precursor, the components of the solvent, the content of the catalyst metal precursor, and the freezing temperature. The vaporization pressure of such catalytic metal precursor solutions can be readily measured by those skilled in the art by thermodynamic calculations or trial and error methods. In addition, the vaporization pressure of the solvent in the catalyst metal precursor solution can be selected by adjusting the composition of the catalyst metal precursor solution, the freezing temperature, and the like.
かかる気化を通じて凍結された触媒金属前駆体の溶液中の溶媒成分が除去される。その結果、基板の表面には、触媒金属前駆体の成分が微粒子状に形成される。注目する点は、本発明の方法で形成された触媒金属前駆体の微粒子は、比較的均一な粒子サイズを有し、また基板上に均一に分布されるという点である。 The solvent component in the solution of the catalyst metal precursor frozen through the vaporization is removed. As a result, the catalyst metal precursor component is formed in the form of fine particles on the surface of the substrate. It should be noted that the fine particles of the catalytic metal precursor formed by the method of the present invention have a relatively uniform particle size and are uniformly distributed on the substrate.
次に、基板の表面に形成された触媒金属前駆体の微粒子を触媒金属微粒子に還元させる。触媒金属前駆体の微粒子を触媒金属微粒子に還元させる過程は、例えば次の通り行う。まず、酸化雰囲気内での熱処理を通じ、触媒金属前駆体を酸化物に転換させた後、そのように形成された酸化物を、還元雰囲気で熱処理またはプラズマ処理し、金属に還元させる。触媒金属前駆体の還元過程は、当業界に公知の多様な方法によって行われうるので、ここではそれ以上詳細に説明しない。 Next, the catalytic metal precursor fine particles formed on the surface of the substrate are reduced to catalytic metal fine particles. The process of reducing the fine particles of the catalyst metal precursor to the catalyst metal fine particles is performed, for example, as follows. First, after the catalytic metal precursor is converted into an oxide through a heat treatment in an oxidizing atmosphere, the oxide thus formed is subjected to a heat treatment or a plasma treatment in a reducing atmosphere to be reduced to a metal. The reduction process of the catalytic metal precursor may be performed by various methods known in the art and will not be described in further detail here.
図1は、本発明の一実施例により製造された触媒金属微粒子の電子顕微鏡写真である。図1を見れば、触媒金属微粒子が基板上に等しく分布しているだけではなく、触媒金属微粒子の粒子サイズが比較的均一であるということが分かる。 FIG. 1 is an electron micrograph of catalytic metal fine particles produced according to an embodiment of the present invention. FIG. 1 shows that the catalyst metal fine particles are not only equally distributed on the substrate, but also the catalyst metal fine particles have a relatively uniform particle size.
以下では、本発明のCNTの製造方法を詳細に説明する。 Below, the manufacturing method of CNT of this invention is demonstrated in detail.
本発明のCNTの製造方法は、触媒金属前駆体の溶液を基板上に塗布した後、前記基板上に塗布された触媒金属前駆体の溶液を凍結乾燥した後、凍結乾燥した触媒金属前駆体を触媒金属に還元させ、CNT成長の基になる触媒微粒子を基板上に形成させるステップと、前記触媒微粒子に炭素源を供給し、前記触媒微粒子上にCNTを成長させるステップとを含む。 In the method for producing CNTs of the present invention, after a catalyst metal precursor solution is applied on a substrate, the catalyst metal precursor solution applied on the substrate is lyophilized, and then the lyophilized catalyst metal precursor is applied. Reducing the catalyst metal to form catalyst fine particles on the substrate that are the basis for CNT growth; and supplying a carbon source to the catalyst fine particles to grow CNTs on the catalyst fine particles.
基板上に触媒微粒子を形成させるステップは、前述の本発明の触媒微粒子の形成方法の通りである。 The step of forming the catalyst fine particles on the substrate is the same as the method for forming the catalyst fine particles of the present invention described above.
触媒微粒子に炭素源を供給し、前記触媒微粒子上にCNTを成長させるステップは、CNTの製造に使われうる多様な方法により行われうる。 The step of supplying a carbon source to the catalyst fine particles and growing the CNTs on the catalyst fine particles may be performed by various methods that can be used for manufacturing the CNTs.
例えば、前記CNT成長ステップでは、反応チャンバ内に、CNT成長の基になる触媒微粒子が付着する基板を位置させ、前記反応チャンバ内に炭素前駆体のガスを供給した後、前記反応チャンバ内で前記炭素前駆体のガスを分解し、前記触媒微粒子に炭素を供給することにより、前記触媒微粒子上でCNTを成長させる。 For example, in the CNT growth step, a substrate to which catalyst fine particles to be a base for CNT growth are located is placed in the reaction chamber, and a carbon precursor gas is supplied into the reaction chamber. By decomposing the carbon precursor gas and supplying carbon to the catalyst fine particles, CNTs are grown on the catalyst fine particles.
さらに具体的な例としては、前記CNT成長ステップは、低圧化学気相蒸着法、熱化学気相蒸着法、プラズマ化学気相蒸着法により行われ、またはそれらの方法を組み合わせた方法によっても行われうる。 As a more specific example, the CNT growth step is performed by a low pressure chemical vapor deposition method, a thermal chemical vapor deposition method, a plasma chemical vapor deposition method, or a method combining these methods. sell.
炭素前駆体のガスとしては、例えばアセチレン、メタン、プロパン、エチレン、一酸化炭素、二酸化炭素、アルコール、ベンゼンなどの炭素含有化合物が使われうる。 As the carbon precursor gas, for example, carbon-containing compounds such as acetylene, methane, propane, ethylene, carbon monoxide, carbon dioxide, alcohol, and benzene can be used.
前記反応チャンバ内の温度が低すぎれば、生成したCNTの結晶性が低下し、高すぎければ、CNTが良好に形成されない。かかる点を考慮し、前記反応チャンバ内の温度は、通常、450ないし1,100℃ほどでありうる。 If the temperature in the reaction chamber is too low, the crystallinity of the produced CNTs is lowered, and if it is too high, CNTs are not formed well. Considering this point, the temperature in the reaction chamber may be about 450 to 1,100 ° C.
前記CNT成長ステップでの他の工程条件は、CNTの成長に適した一般的なものが使われ、また当業者により具体的な適用目的により容易に選択可能である。それにより、ここでは、前記CNT成長ステップでの他の工程条件について、それ以上の詳細は控える。
本発明のCNTの製造方法では、前述のように、均一な粒子サイズを有し、また基板上に均一に分布する触媒微粒子を基にしてCNTを成長させるので、その結果として合成されたCNTの均一度もやはり非常に向上する。CNTの均一度は、CNTの長さと直径の均一度とにより評価される。CNTの長さは、電子顕微鏡により測定され、直径は、透過電子顕微鏡により測定可能である。
Other process conditions in the CNT growth step may be general ones suitable for CNT growth, and can be easily selected by a person skilled in the art according to specific application purposes. Thereby, further details are refrained here for other process conditions in the CNT growth step.
In the CNT manufacturing method of the present invention, as described above, CNTs are grown on the basis of catalyst fine particles having a uniform particle size and uniformly distributed on the substrate. The uniformity is also greatly improved. The uniformity of CNT is evaluated by the length and diameter uniformity of CNT. The length of the CNT can be measured with an electron microscope, and the diameter can be measured with a transmission electron microscope.
さらに、本発明の方法で製造されたCNTの垂直配向性も非常に優れている。これは、図2の電子顕微鏡写真から確認されうる。図2は、本発明の一実施例で製造されたCNT群の側面を示す写真である。図2に示されるように、本発明の方法で製造されたCNTは、絡みつき現象を示さず、垂直方向に良好に配列している。 Furthermore, the vertical alignment of the CNTs produced by the method of the present invention is very excellent. This can be confirmed from the electron micrograph of FIG. FIG. 2 is a photograph showing a side view of the CNT group manufactured in one embodiment of the present invention. As shown in FIG. 2, the CNTs produced by the method of the present invention do not show an entanglement phenomenon and are well arranged in the vertical direction.
図3は、本発明の一実施例で製造されたCNT群の表面を示す写真である。図3から、本発明の方法で製造されたCNTの生成密度は、非常に均一である。 FIG. 3 is a photograph showing the surface of the CNT group manufactured in one embodiment of the present invention. From FIG. 3, the production density of the CNT produced by the method of the present invention is very uniform.
<実施例>
エタノール及びエチレングリコールを溶媒として使用した40mM濃度の酢酸鉄の溶液を製造した。酢酸鉄の粉末0.1gにエタノール20ml及びエチレングリコール20mlを添加し、適切な粘度の溶液を得た。このようにして得た溶液を、直径20.32cmのシリコン基板上に浸漬法を利用して塗布した。コーティングされた基板をすぐに液体窒素で冷却した後、真空チャンバに移し、0.1mmHg以下の真空状態で溶媒を蒸発させた。溶媒の残留量を最少化するため、追加的に100℃で前記基板を加熱した。
<Example>
A 40 mM iron acetate solution was prepared using ethanol and ethylene glycol as solvents. 20 ml of ethanol and 20 ml of ethylene glycol were added to 0.1 g of iron acetate powder to obtain a solution having an appropriate viscosity. The solution thus obtained was applied on a silicon substrate having a diameter of 20.32 cm using an immersion method. The coated substrate was immediately cooled with liquid nitrogen, then transferred to a vacuum chamber, and the solvent was evaporated in a vacuum state of 0.1 mmHg or less. In order to minimize the residual amount of solvent, the substrate was additionally heated at 100 ° C.
このように凍結乾燥した基板を、300℃の空気雰囲気で10分間熱処理し、酢酸鉄の成分を酸化させた。次に、600℃の水素雰囲気で基板を還元処理した。 The substrate freeze-dried in this way was heat-treated in an air atmosphere at 300 ° C. for 10 minutes to oxidize the iron acetate component. Next, the substrate was reduced in a hydrogen atmosphere at 600 ° C.
結果的に、基板には、鉄粒子が均一に形成された。図1は、実施例により、シリコン基板上に形成された鉄微粒子の電子顕微鏡写真である。図1を見れば、鉄微粒子が基板上に等しく分布しているだけではなく、鉄微粒子の粒子サイズが比較的均一であることが分かる。 As a result, iron particles were uniformly formed on the substrate. FIG. 1 is an electron micrograph of iron fine particles formed on a silicon substrate according to an example. FIG. 1 shows that not only the iron fine particles are evenly distributed on the substrate, but also the iron fine particles have a relatively uniform particle size.
このように、鉄微粒子が形成した基板を、600℃の内部温度を有する化学気相蒸着用の反応チャンバに入れた後、前記反応チャンバの一酸化炭素と水素との質量比が1:2である混合気体を20分間供給し、鉄微粒子を基にCNTを合成した。 Thus, after the substrate on which the iron fine particles are formed is placed in a reaction chamber for chemical vapor deposition having an internal temperature of 600 ° C., the mass ratio of carbon monoxide to hydrogen in the reaction chamber is 1: 2. A mixed gas was supplied for 20 minutes, and CNT was synthesized based on iron fine particles.
図2は、実施例で製造されたCNT群の側面を示す写真である。図2に示されるように、実施例で製造されたCNTは、絡みつき現象が見られず、垂直方向に良好に配列されている。図3は、実施例で製造されたCNT群の表面を示す写真である。図3から、実施例で製造されたCNTの生成密度が非常に均一であることが分かる。 FIG. 2 is a photograph showing a side view of the CNT group produced in the example. As shown in FIG. 2, the CNTs manufactured in the examples are not entangled and are well arranged in the vertical direction. FIG. 3 is a photograph showing the surface of the CNT group produced in the example. From FIG. 3, it can be seen that the production density of the CNTs produced in the example is very uniform.
このように形成されたCNTの均一度を評価するために、9等分された基板それぞれに対し、電子顕微鏡を利用したCNTの長さの測定、及び透過電子顕微鏡を利用したCNTの直径の測定を行った。その結果、9等分された基板のCNTは、+/−5%以内の均一度を有することを確認した。 In order to evaluate the uniformity of the CNTs thus formed, for each of the nine equally divided substrates, measurement of the CNT length using an electron microscope and measurement of the CNT diameter using a transmission electron microscope Went. As a result, it was confirmed that the CNT of the substrate divided into nine equal parts had a uniformity within +/− 5%.
<比較例>
基板上に塗布された酢酸鉄の溶液を凍結乾燥させる代わりに、大気中で自然乾燥させたことを除いては、実施例と同じ方法でCNTを合成した。
<Comparative example>
CNTs were synthesized in the same manner as in Example, except that the iron acetate solution applied on the substrate was naturally dried in the air instead of freeze drying.
図4は、比較例で製造された鉄微粒子を示す光学顕微鏡写真である。図5は、図4の一部分を拡大した図面である。図4及び図5から、比較例で形成された鉄微粒子は、非常に不均一であるということが分かる。 FIG. 4 is an optical micrograph showing the iron fine particles produced in the comparative example. FIG. 5 is an enlarged view of a part of FIG. 4 and 5 that the iron fine particles formed in the comparative example are very uneven.
図6は、比較例で合成されたCNT群の性状を示す電子顕微鏡写真である。図6に示されるように、比較例で合成されたCNTは、基板上に部分的に絡んでおり、垂直に配向されておらず、絡み合っている。 FIG. 6 is an electron micrograph showing the properties of the CNT group synthesized in the comparative example. As shown in FIG. 6, the CNTs synthesized in the comparative example are partially entangled on the substrate, are not vertically oriented, and are entangled.
本発明のCNT製造用触媒の製造方法は、CNT関連の技術分野、例えばFEDのエミッタ、二次電池用の負極材料、燃料電池の触媒担持体、高強度複合素子などの多様な技術分野に効果的に適用可能である。 The method for producing a catalyst for producing CNTs according to the present invention is effective in various technical fields such as CNT-related technical fields such as FED emitters, negative electrode materials for secondary batteries, catalyst supports for fuel cells, and high-strength composite elements. Can be applied.
Claims (6)
前記基板上に塗布された触媒金属前駆体の溶液を凍結乾燥するステップと、
前記凍結乾燥した触媒金属前駆体を触媒金属に還元させるステップとを含む、炭素ナノチューブ成長の基になる触媒微粒子の製造方法。 Applying a solution of a catalytic metal precursor onto a substrate;
Freeze-drying a solution of the catalytic metal precursor applied on the substrate;
Reducing the lyophilized catalyst metal precursor to a catalyst metal.
前記触媒微粒子に炭素源を供給し、前記触媒微粒子上に炭素ナノチューブを成長させるステップとを含む、炭素ナノチューブの製造方法。 After the catalyst metal precursor solution is applied onto the substrate, the catalyst metal precursor solution applied onto the substrate is freeze-dried, and then the freeze-dried catalyst metal precursor is reduced to a catalyst metal to obtain carbon nanotubes. Forming fine catalyst particles on which the growth is based on the substrate;
Supplying a carbon source to the catalyst fine particles, and growing carbon nanotubes on the catalyst fine particles.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040046552A KR20050121426A (en) | 2004-06-22 | 2004-06-22 | Method for preparing catalyst for manufacturing carbon nano tubes |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006007213A true JP2006007213A (en) | 2006-01-12 |
Family
ID=35775022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005180590A Pending JP2006007213A (en) | 2004-06-22 | 2005-06-21 | Production method of catalyst for producing carbon nanotube |
Country Status (4)
Country | Link |
---|---|
US (1) | US20070020167A1 (en) |
JP (1) | JP2006007213A (en) |
KR (1) | KR20050121426A (en) |
CN (1) | CN1883807A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009038172A1 (en) * | 2007-09-21 | 2009-03-26 | Taiyo Nippon Sanso Corporation | Method for forming catalyst layer for carbon nanostructure growth, liquid for catalyst layer formation, and process for producing carbon nanostructure |
JP2011068509A (en) * | 2009-09-25 | 2011-04-07 | Aisin Seiki Co Ltd | Carbon nanotube composite and method for producing the same |
JP2011207733A (en) * | 2010-03-30 | 2011-10-20 | Toshiba Corp | Carbon nanotube assembly, solar cell, waveguide and substrate with the same carbon nanotube assembly |
JP2013536796A (en) * | 2010-09-02 | 2013-09-26 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | Metal substrate on which carbon nanotubes grow on the surface and manufacturing process thereof |
JP2014136167A (en) * | 2013-01-15 | 2014-07-28 | Toyota Motor Corp | Method for supporting catalyst |
US9573812B2 (en) | 2007-01-03 | 2017-02-21 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US9574300B2 (en) | 2007-01-03 | 2017-02-21 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US10138128B2 (en) | 2009-03-03 | 2018-11-27 | Applied Nanostructured Solutions, Llc | System and method for surface treatment and barrier coating of fibers for in situ CNT growth |
Families Citing this family (353)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8158217B2 (en) * | 2007-01-03 | 2012-04-17 | Applied Nanostructured Solutions, Llc | CNT-infused fiber and method therefor |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
US20100279569A1 (en) * | 2007-01-03 | 2010-11-04 | Lockheed Martin Corporation | Cnt-infused glass fiber materials and process therefor |
US20120189846A1 (en) * | 2007-01-03 | 2012-07-26 | Lockheed Martin Corporation | Cnt-infused ceramic fiber materials and process therefor |
KR101281168B1 (en) * | 2007-01-05 | 2013-07-02 | 삼성전자주식회사 | Field emission electrode, method for preparing the same and field emission device comprising the same |
CN101185904B (en) * | 2007-01-18 | 2011-01-19 | 江苏工业学院 | Selectivity liquid phase hydrogenation catalyst and preparation method and use thereof |
US7678419B2 (en) | 2007-05-11 | 2010-03-16 | Sdc Materials, Inc. | Formation of catalytic regions within porous structures using supercritical phase processing |
US20090081383A1 (en) * | 2007-09-20 | 2009-03-26 | Lockheed Martin Corporation | Carbon Nanotube Infused Composites via Plasma Processing |
US20090081441A1 (en) * | 2007-09-20 | 2009-03-26 | Lockheed Martin Corporation | Fiber Tow Comprising Carbon-Nanotube-Infused Fibers |
US8481449B1 (en) | 2007-10-15 | 2013-07-09 | SDCmaterials, Inc. | Method and system for forming plug and play oxide catalysts |
KR100905403B1 (en) | 2007-10-18 | 2009-06-30 | 한국지질자원연구원 | Preparation of IronII Acetate Powder from a Low Grade Magnetite |
CN101447802A (en) * | 2007-11-27 | 2009-06-03 | 杰脉通信技术(上海)有限公司 | Method for catching the terminal of a mobile subscriber |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
CA2750484A1 (en) * | 2009-02-17 | 2010-12-16 | Applied Nanostructured Solutions, Llc | Composites comprising carbon nanotubes on fiber |
KR101703340B1 (en) * | 2009-02-27 | 2017-02-06 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Low temperature cnt growth using gas-preheat method |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US20100272891A1 (en) * | 2009-04-10 | 2010-10-28 | Lockheed Martin Corporation | Apparatus and method for the production of carbon nanotubes on a continuously moving substrate |
US20100260933A1 (en) * | 2009-04-10 | 2010-10-14 | Lockheed Martin Corporation | Apparatus and method for the production of carbon nanotubes on a continuously moving substrate |
WO2010118381A1 (en) * | 2009-04-10 | 2010-10-14 | Lockheed Martin Corporation | Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber |
BRPI1016242A2 (en) * | 2009-04-24 | 2016-04-26 | Applied Nanostructured Sols | cnt-based signature control material. |
US9111658B2 (en) | 2009-04-24 | 2015-08-18 | Applied Nanostructured Solutions, Llc | CNS-shielded wires |
WO2010129234A2 (en) * | 2009-04-27 | 2010-11-11 | Lockheed Martin Corporation | Cnt-based resistive heating for deicing composite structures |
US20100279010A1 (en) * | 2009-04-30 | 2010-11-04 | Lockheed Martin Corporation | Method and system for close proximity catalysis for carbon nanotube synthesis |
BR112012002216A2 (en) * | 2009-08-03 | 2016-05-31 | Applied Nanostructured Sols | method of incorporating nanoparticles into composite fibers, fiberglass and chopped or composite fiber mat |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
EP2496739A4 (en) * | 2009-11-02 | 2014-07-02 | Applied Nanostructured Sols | Cnt-infused aramid fiber materials and process therefor |
BR112012010907A2 (en) * | 2009-11-23 | 2019-09-24 | Applied Nanostructured Sols | "Ceramic composite materials containing carbon nanotube infused fiber materials and methods for their production" |
BR112012012260A2 (en) * | 2009-11-23 | 2016-04-26 | Applied Nanostructured Sols | cnt-adapted air-based composite structures |
US20110123735A1 (en) * | 2009-11-23 | 2011-05-26 | Applied Nanostructured Solutions, Llc | Cnt-infused fibers in thermoset matrices |
AU2010353294B2 (en) * | 2009-12-14 | 2015-01-29 | Applied Nanostructured Solutions, Llc | Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials |
US9126191B2 (en) | 2009-12-15 | 2015-09-08 | SDCmaterials, Inc. | Advanced catalysts for automotive applications |
US8652992B2 (en) | 2009-12-15 | 2014-02-18 | SDCmaterials, Inc. | Pinning and affixing nano-active material |
US9090475B1 (en) | 2009-12-15 | 2015-07-28 | SDCmaterials, Inc. | In situ oxide removal, dispersal and drying for silicon SiO2 |
US9149797B2 (en) * | 2009-12-15 | 2015-10-06 | SDCmaterials, Inc. | Catalyst production method and system |
US9167736B2 (en) * | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
CA2785803A1 (en) * | 2010-02-02 | 2011-11-24 | Applied Nanostructured Solutions, Llc | Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom |
CN102918612A (en) * | 2010-03-02 | 2013-02-06 | 应用奈米结构公司 | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
CA2790205A1 (en) | 2010-03-02 | 2011-09-09 | Applied Nanostructured Solutions, Llc | Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof |
CN101816956B (en) * | 2010-04-20 | 2011-10-19 | 武汉理工大学 | Method for improving dispersion of nano metal grains on surface of graphitized carbon carrier |
US8780526B2 (en) | 2010-06-15 | 2014-07-15 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
JP2013540683A (en) | 2010-09-14 | 2013-11-07 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | Glass substrate having grown carbon nanotube and method for producing the same |
CN104591123A (en) | 2010-09-22 | 2015-05-06 | 应用奈米结构公司 | Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof |
CN103443870A (en) | 2010-09-23 | 2013-12-11 | 应用纳米结构方案公司 | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
US8669202B2 (en) | 2011-02-23 | 2014-03-11 | SDCmaterials, Inc. | Wet chemical and plasma methods of forming stable PtPd catalysts |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
JP2014524352A (en) | 2011-08-19 | 2014-09-22 | エスディーシーマテリアルズ, インコーポレイテッド | Coated substrate for use in catalysis and catalytic converters and method for coating a substrate with a washcoat composition |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US9085464B2 (en) | 2012-03-07 | 2015-07-21 | Applied Nanostructured Solutions, Llc | Resistance measurement system and method of using the same |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US9156025B2 (en) | 2012-11-21 | 2015-10-13 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US9511352B2 (en) | 2012-11-21 | 2016-12-06 | SDCmaterials, Inc. | Three-way catalytic converter using nanoparticles |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
WO2015013545A1 (en) | 2013-07-25 | 2015-01-29 | SDCmaterials, Inc. | Washcoats and coated substrates for catalytic converters |
CA2926133A1 (en) | 2013-10-22 | 2015-04-30 | SDCmaterials, Inc. | Catalyst design for heavy-duty diesel combustion engines |
KR20160074574A (en) | 2013-10-22 | 2016-06-28 | 에스디씨머티리얼스, 인코포레이티드 | COMPOSITIONS OF LEAN NOx TRAP |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US9687811B2 (en) | 2014-03-21 | 2017-06-27 | SDCmaterials, Inc. | Compositions for passive NOx adsorption (PNA) systems and methods of making and using same |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
KR102263121B1 (en) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | Semiconductor device and manufacuring method thereof |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10343920B2 (en) * | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102532607B1 (en) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and method of operating the same |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR20180068582A (en) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
KR102700194B1 (en) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
KR102457289B1 (en) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10605530B2 (en) | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR102491945B1 (en) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
KR102401446B1 (en) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (en) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
KR102443047B1 (en) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
WO2019103610A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
TWI779134B (en) | 2017-11-27 | 2022-10-01 | 荷蘭商Asm智慧財產控股私人有限公司 | A storage device for storing wafer cassettes and a batch furnace assembly |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
WO2019142055A2 (en) | 2018-01-19 | 2019-07-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
TWI852426B (en) | 2018-01-19 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Deposition method |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
EP3737779A1 (en) | 2018-02-14 | 2020-11-18 | ASM IP Holding B.V. | A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102501472B1 (en) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method |
TWI843623B (en) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TWI816783B (en) | 2018-05-11 | 2023-10-01 | 荷蘭商Asm 智慧財產控股公司 | Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures |
KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
TWI840362B (en) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Wafer handling chamber with moisture reduction |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
TW202405221A (en) | 2018-06-27 | 2024-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
TW202409324A (en) | 2018-06-27 | 2024-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition processes for forming metal-containing material |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (en) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a thin film and manufacturing a semiconductor device |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
CN110970344B (en) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | Substrate holding apparatus, system comprising the same and method of using the same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
KR102605121B1 (en) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (en) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
TW202037745A (en) | 2018-12-14 | 2020-10-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming device structure, structure formed by the method and system for performing the method |
KR102190543B1 (en) * | 2019-01-03 | 2020-12-14 | 한국해양대학교 산학협력단 | Method for mass synthesis of carbon nanotube and carbon nanotube synthesized from it |
TWI819180B (en) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
TWI756590B (en) | 2019-01-22 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
CN111524788B (en) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | Method for topologically selective film formation of silicon oxide |
TWI845607B (en) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
KR102626263B1 (en) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | Cyclical deposition method including treatment step and apparatus for same |
TWI838458B (en) | 2019-02-20 | 2024-04-11 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for plug fill deposition in 3-d nand applications |
JP2020136678A (en) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | Method for filing concave part formed inside front surface of base material, and device |
TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200108243A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Structure Including SiOC Layer and Method of Forming Same |
KR20200108242A (en) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
KR20200116033A (en) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | Door opener and substrate processing apparatus provided therewith |
KR20200116855A (en) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
KR20200130118A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Method for Reforming Amorphous Carbon Polymer Film |
KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
JP2020188254A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
JP2020188255A (en) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | Wafer boat handling device, vertical batch furnace, and method |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system including a gas detector |
KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
KR20210010820A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
TWI839544B (en) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming topology-controlled amorphous carbon polymer film |
TWI851767B (en) | 2019-07-29 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
KR20210018759A (en) | 2019-08-05 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | Liquid level sensor for a chemical source vessel |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210029090A (en) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
KR20210029663A (en) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
KR20210043460A (en) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (en) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (en) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
KR20210065848A (en) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112951697A (en) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885693A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
CN112885692A (en) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
KR20210078405A (en) | 2019-12-17 | 2021-06-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
KR20210080214A (en) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate and related semiconductor structures |
JP2021109175A (en) | 2020-01-06 | 2021-08-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | Gas supply assembly, components thereof, and reactor system including the same |
KR20210089079A (en) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | Channeled lift pin |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR20210093163A (en) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming high aspect ratio features |
KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
TW202130846A (en) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures including a vanadium or indium layer |
KR20210100010A (en) | 2020-02-04 | 2021-08-13 | 에이에스엠 아이피 홀딩 비.브이. | Method and apparatus for transmittance measurements of large articles |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (en) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | System dedicated for parts cleaning |
KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
CN113394086A (en) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | Method for producing a layer structure having a target topological profile |
KR20210124042A (en) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
TW202146689A (en) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | Method for forming barrier layer and method for manufacturing semiconductor device |
TW202145344A (en) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
TW202140831A (en) | 2020-04-24 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming vanadium nitride–containing layer and structure comprising the same |
TW202146831A (en) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Vertical batch furnace assembly, and method for cooling vertical batch furnace |
KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
KR20210134226A (en) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
TW202147543A (en) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing system |
KR20210141379A (en) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
TW202147383A (en) | 2020-05-19 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus |
KR20210145078A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Structures including multiple carbon layers and methods of forming and using same |
TW202200837A (en) | 2020-05-22 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Reaction system for forming thin film on substrate |
TW202201602A (en) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
TW202217953A (en) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
TW202202649A (en) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
KR20220010438A (en) | 2020-07-17 | 2022-01-25 | 에이에스엠 아이피 홀딩 비.브이. | Structures and methods for use in photolithography |
TW202204662A (en) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | Method and system for depositing molybdenum layers |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
KR20220053482A (en) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing vanadium metal, structure, device and a deposition assembly |
TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
KR20220076343A (en) | 2020-11-30 | 2022-06-08 | 에이에스엠 아이피 홀딩 비.브이. | an injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202226899A (en) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Plasma treatment device having matching box |
TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
TW202242184A (en) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3049019B2 (en) * | 1998-09-11 | 2000-06-05 | 双葉電子工業株式会社 | Method of forming single-walled carbon nanotube coating and single-walled carbon nanotube coated by the method |
US20030012722A1 (en) * | 2002-07-02 | 2003-01-16 | Jie Liu | High yiel vapor phase deposition method for large scale sing walled carbon nanotube preparation |
-
2004
- 2004-06-22 KR KR1020040046552A patent/KR20050121426A/en not_active Application Discontinuation
-
2005
- 2005-06-21 JP JP2005180590A patent/JP2006007213A/en active Pending
- 2005-06-21 CN CNA2005100794134A patent/CN1883807A/en active Pending
- 2005-06-22 US US11/158,047 patent/US20070020167A1/en not_active Abandoned
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9573812B2 (en) | 2007-01-03 | 2017-02-21 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US9574300B2 (en) | 2007-01-03 | 2017-02-21 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
WO2009038172A1 (en) * | 2007-09-21 | 2009-03-26 | Taiyo Nippon Sanso Corporation | Method for forming catalyst layer for carbon nanostructure growth, liquid for catalyst layer formation, and process for producing carbon nanostructure |
JP5629868B2 (en) * | 2007-09-21 | 2014-11-26 | 大陽日酸株式会社 | Catalyst layer forming method for carbon nanostructure growth, catalyst layer forming liquid, and carbon nanostructure manufacturing method |
US9309123B2 (en) | 2007-09-21 | 2016-04-12 | Taiyo Nippon Sanso Corporation | Process for producing a carbon nanostructure |
US10138128B2 (en) | 2009-03-03 | 2018-11-27 | Applied Nanostructured Solutions, Llc | System and method for surface treatment and barrier coating of fibers for in situ CNT growth |
JP2011068509A (en) * | 2009-09-25 | 2011-04-07 | Aisin Seiki Co Ltd | Carbon nanotube composite and method for producing the same |
JP2011207733A (en) * | 2010-03-30 | 2011-10-20 | Toshiba Corp | Carbon nanotube assembly, solar cell, waveguide and substrate with the same carbon nanotube assembly |
JP2013536796A (en) * | 2010-09-02 | 2013-09-26 | アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー | Metal substrate on which carbon nanotubes grow on the surface and manufacturing process thereof |
JP2014136167A (en) * | 2013-01-15 | 2014-07-28 | Toyota Motor Corp | Method for supporting catalyst |
Also Published As
Publication number | Publication date |
---|---|
KR20050121426A (en) | 2005-12-27 |
CN1883807A (en) | 2006-12-27 |
US20070020167A1 (en) | 2007-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006007213A (en) | Production method of catalyst for producing carbon nanotube | |
US9045344B2 (en) | Method for producing aligned carbon nanotube aggregate | |
US20100227058A1 (en) | Method for fabricating carbon nanotube array | |
JP4730707B2 (en) | Catalyst for carbon nanotube synthesis and method for producing the same, catalyst dispersion, and method for producing carbon nanotube | |
US20070020168A1 (en) | Synthesis of long and well-aligned carbon nanotubes | |
Guerra-Nuñez et al. | Morphology and crystallinity control of ultrathin TiO 2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition | |
JP2004250306A (en) | Method of growing matrix of carbon nanotube | |
JP4642658B2 (en) | Method for producing single-walled carbon nanotubes with uniform diameter | |
JP2017019718A (en) | Manufacturing method of carbon nano-tube | |
Cao et al. | Template-catalyst-free growth of highly ordered boron nanowire arrays | |
KR101425376B1 (en) | Large-area carbon nanomesh from polymer and method of preparing the same | |
JP2006015342A (en) | Method for manufacturing catalyst base for carbon nanotubes production, and method for manufacturing carbon nanotubes using this catalyst base formation method | |
Cui et al. | Optimizing reaction condition for synthesizing spinnable carbon nanotube arrays by chemical vapor deposition | |
JP2007182374A (en) | Method for manufacturing single-walled carbon nanotube | |
JP2003277029A (en) | Carbon nanotube and method for manufacturing the same | |
JP2004051432A (en) | Substrate for manufacturing carbon nanotube and method of manufacturing carbon nanotube using the same | |
Ghosh et al. | Bamboo-shaped aligned CNx nanotubes synthesized using single feedstock at different temperatures and study of their field electron emission | |
JP6623512B2 (en) | Carbon nanostructure aggregate and method for producing the same | |
JP6476759B2 (en) | Method of manufacturing aligned carbon nanotube assembly | |
JP4798340B2 (en) | Catalyst for growing carbon nanotube and method for producing the same | |
JP2007320810A (en) | Method and apparatus for producing carbon nanotube | |
JP2006298684A (en) | Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element | |
US7799307B2 (en) | Method of growing single-walled carbon nanotubes | |
JP6950939B2 (en) | Catalyst support for synthesizing carbon nanotube aggregates and members for synthesizing carbon nanotube aggregates | |
KR101557198B1 (en) | Method of Manufacturing Carbon Nanotube Aggregate |