KR20050121426A - Method for preparing catalyst for manufacturing carbon nano tubes - Google Patents

Method for preparing catalyst for manufacturing carbon nano tubes Download PDF

Info

Publication number
KR20050121426A
KR20050121426A KR1020040046552A KR20040046552A KR20050121426A KR 20050121426 A KR20050121426 A KR 20050121426A KR 1020040046552 A KR1020040046552 A KR 1020040046552A KR 20040046552 A KR20040046552 A KR 20040046552A KR 20050121426 A KR20050121426 A KR 20050121426A
Authority
KR
South Korea
Prior art keywords
catalyst
metal precursor
catalyst metal
substrate
precursor solution
Prior art date
Application number
KR1020040046552A
Other languages
Korean (ko)
Inventor
한인택
김하진
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020040046552A priority Critical patent/KR20050121426A/en
Priority to CNA2005100794134A priority patent/CN1883807A/en
Priority to JP2005180590A priority patent/JP2006007213A/en
Priority to US11/158,047 priority patent/US20070020167A1/en
Publication of KR20050121426A publication Critical patent/KR20050121426A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass

Abstract

본 발명에서는, 탄소나노튜브 성장의 기초가 되는 촉매 미립자를 기판 위에 더욱 균일하게 형성시킬 수 있는 새로운 방법과, 균일도가 향상된 카본나노튜브 합성 방법을 제공한다. 본 발명에서 제공하는 촉매 미립자 형성 방법은, 촉매금속 전구체 용액을 기판 위에 도포하는 단계; 상기 기판 위에 도포된 촉매금속 전구체 용액을 냉동건조하는 단계; 및 냉동건조된 촉매금속 전구체를 촉매금속으로 환원시키는 단계를 포함한다. 본 발명의 촉매 미립자 형성 방법은, 촉매금속 전구체 용액을 냉동건조하므로써, 촉매 미립자 형성 과정에서의 촉매 미립자의 응집 및/또는 재결정을 최소화시킬 수 있다. 그리하여, 본 발명의 방법으로 형성된 촉매 미립자는, 매우 균일한 입자크기를 가지며, 또한 기판 위에 매우 균일하게 분포된다. The present invention provides a novel method for more uniformly forming catalyst fine particles, which are the basis of carbon nanotube growth, on a substrate, and a method for synthesizing carbon nanotubes with improved uniformity. The catalyst fine particle forming method provided by the present invention comprises the steps of applying a catalyst metal precursor solution on a substrate; Freeze-drying the catalyst metal precursor solution applied on the substrate; And reducing the lyophilized catalyst metal precursor to the catalyst metal. The catalyst fine particle formation method of the present invention can minimize the aggregation and / or recrystallization of the catalyst fine particles in the catalyst fine particle formation process by freeze-drying the catalyst metal precursor solution. Thus, the catalyst fine particles formed by the method of the present invention have a very uniform particle size and are distributed very uniformly on the substrate.

Description

탄소나노튜브 제조용 촉매의 제조 방법{Method for preparing catalyst for manufacturing carbon nano tubes}Method for preparing catalyst for manufacturing carbon nanotubes

본 발명은 탄소나노튜브 제조용 촉매의 제조 방법과, 이를 이용한 탄소나노튜브 제조 방법에 관한 것이다.The present invention relates to a method for producing a carbon nanotube catalyst and a method for producing carbon nanotubes using the same.

탄소나노튜브는 보통 수 nm 정도의 매우 미세한 직경과 약 10 내지 약 1,000 정도의 매우 큰 종횡비를 갖는 원통형 재료이다. 탄소나노튜브에 있어서, 일반적으로, 탄소원자들은 육각형 벌집구조로 배열되어 있으며, 각각의 탄소원자는 인접하는 3 개의 탄소원자와 결합하고 있다. 탄소나노튜브는, 그 구조에 따라서, 도체의 성질 또는 반도체의 성질을 가질 수 있다. 도체의 성질을 띠는 탄소나노튜브의 전기전도도는 매우 우수한 것으로 알려져 있다. 또한, 탄소나노튜브는 매우 강한 기계적 강도, 테라 단위의 영률(Young's modulus), 우수한 열전도도 등의 특성을 갖는다. 이러한 우수한 특성을 갖는 탄소나노튜브는, 예를 들면, FED의 에미터, 2차전지용 음극 재료, 연료 전지의 촉매 담지체, 고강도 복합소자, 등과 같은 다양한 기술분야에 매우 유리하게 사용될 수 있다. Carbon nanotubes are usually cylindrical materials having very fine diameters on the order of several nm and very large aspect ratios on the order of about 10 to about 1,000. In carbon nanotubes, in general, carbon atoms are arranged in a hexagonal honeycomb structure, and each carbon atom is bonded to three adjacent carbon atoms. Carbon nanotubes may have properties of a conductor or properties of a semiconductor, depending on their structure. It is known that the electrical conductivity of carbon nanotubes having a conductor property is very excellent. In addition, carbon nanotubes have very strong mechanical strength, Young's modulus in tera units, and excellent thermal conductivity. Carbon nanotubes having such excellent properties can be very advantageously used in various technical fields such as, for example, emitters of FEDs, anode materials for secondary batteries, catalyst carriers for fuel cells, high strength composite devices, and the like.

탄소나노튜브의 제조 방법으로서는, 전기방전법, 레이저증착법, 플라즈마 화학기상증착법, 화학기상증착법, 기상합성법, 전기분해법 등이 알려져 있다. As a method of producing carbon nanotubes, an electric discharge method, a laser deposition method, a plasma chemical vapor deposition method, a chemical vapor deposition method, a gas phase synthesis method, an electrolysis method and the like are known.

기상합성법은, 기판을 사용하지 않고, 반응로 안에 반응가스와 촉매금속을 직접 공급하여 기상에서 합성하는 방법으로서 탄소나노튜브를 벌크 형태로 합성하기에 적합한 방법이다. 전기방전법과 레이저증착법은 탄소나노튜브의 합성 수율이 비교적 낮다. 전기방전법과 레이저증착법으로는, 탄소나노튜브의 직경과 길이를 조절하는 것이 용이하지 않다. 또한, 전기방전법과 레이저증착법을 사용하면, 탄소나노튜브 뿐만아니라 비정질 탄소 덩어리가 다량으로 생성되기 때문에, 반드시 복잡한 정제과정이 수반되어야 한다. The gas phase synthesis method is a method for synthesizing carbon nanotubes in bulk form by directly supplying a reaction gas and a catalyst metal into a reactor without using a substrate and synthesizing it in the gas phase. Electro discharge and laser deposition have relatively low yields of carbon nanotubes. In the electric discharge method and the laser deposition method, it is not easy to control the diameter and length of the carbon nanotubes. In addition, when the electric discharge method and the laser deposition method are used, since a large amount of amorphous carbon as well as carbon nanotubes are generated, a complicated purification process must be accompanied.

기판 위에 탄소나노튜브를 형성시키기 위해서는 일반적으로, 예를 들면, 열화학기상증착법, 저압 화학기상증착법 및 플라즈마 화학기상증착법과 같은 화학기상증착법이 이용된다. 플라즈마 화학기상증착법의 경우, 플라즈마를 이용하여 가스를 활성화시키기 때문에, 저온에서 탄소나노튜브를 합성할 수 있다. 또한, 플라즈마 화학기상증착법은 탄소나노튜브의 직경, 길이, 밀도 등을 비교적 용이하게 조절할 수 있다. In order to form carbon nanotubes on a substrate, chemical vapor deposition methods such as, for example, thermochemical vapor deposition, low pressure chemical vapor deposition, and plasma chemical vapor deposition are generally used. In the case of the plasma chemical vapor deposition method, since the gas is activated by using plasma, carbon nanotubes can be synthesized at a low temperature. In addition, the plasma chemical vapor deposition method can relatively easily control the diameter, length, density and the like of the carbon nanotubes.

화학기상증착법의 경우에, 기판 위에 형성되는 탄소나노튜브의 밀도를 균일하게 하기 위하여, 미리, 기판 위에, 탄소나노튜브 성장의 기초가 되는 촉매 미립자를 분산시킨다. In the case of the chemical vapor deposition method, in order to make the density of the carbon nanotubes formed on the substrate uniform, catalyst fine particles, which are the basis of carbon nanotube growth, are dispersed on the substrate in advance.

예를 들면, 대한민국 공개특허공보 2001-0049398호에는, 기판 위에 촉매금속막을 형성한 후, 상기 촉매금속막을 식각 가스로 식각하여 복수의 촉매 미립자를 형성시키는 방법이 개시되어 있다. For example, Korean Patent Laid-Open Publication No. 2001-0049398 discloses a method of forming a plurality of catalyst fine particles by forming a catalyst metal film on a substrate and then etching the catalyst metal film with an etching gas.

다른 예를 들면, "Chemical physics letter, vol.377 p. 49, 2003"에는, 촉매금속 전구체 용액을 기판 위에 도포하고 건조시킨 후 열처리하므로써, 촉매 미립자를 기판위에 형성시키는 방법이 개시되어 있다. 그러나, 이 경우에, 건조 및 열처리 과정에서, 촉매금속의 재결정 및 응집이 발생하여, 기판 위에 형성되는 촉매금속 미립자의 균일도가 저하되는 문제점이 발생할 수 있다. 기판 위에 형성되는 촉매 미립자의 균일도가 저하되면, 그것을 기초로 하여 성장되는 카본나노튜브의 직경과 생성밀도의 균일성도 저하된다. In another example, "Chemical physics letter, vol. 377 p. 49, 2003" discloses a method of forming catalyst fine particles on a substrate by applying a catalyst metal precursor solution onto a substrate, drying and heat treatment. In this case, however, recrystallization and agglomeration of the catalyst metal may occur during drying and heat treatment, thereby causing a problem that the uniformity of the catalyst metal fine particles formed on the substrate is lowered. When the uniformity of the catalyst fine particles formed on the substrate is lowered, the uniformity of the diameter and the production density of the carbon nanotubes grown on the basis of the lowered particles is also reduced.

기판 위에 형성되는 촉매 미립자의 균일도는 촉매 미립자의 입자크기의 균일성과 촉매 미립자의 생성밀도의 균일성으로 평가될 수 있다. 지금 까지 알려진 방법들에 의하여 형성된 촉매 미립자의 균일도는 그다지 만족스럽지 않은 것으로 알려져 있다. 그리하여, 기판 위에 형성되는 촉매 미립자의 균일도를 향상기키기 위한 촉매 미립자의 새로운 형성 방법이 여전히 요구되고 있다.The uniformity of the catalyst fine particles formed on the substrate can be evaluated by the uniformity of the particle size of the catalyst fine particles and the uniformity of the production density of the catalyst fine particles. It is known that the uniformity of the catalyst fine particles formed by the methods known to date is not very satisfactory. Thus, there is still a need for a new method of forming catalyst fine particles for improving the uniformity of the catalyst fine particles formed on the substrate.

본 발명에서는, 탄소나노튜브 성장의 기초가 되는 촉매 미립자를 기판 위에 더욱 균일하게 형성시킬 수 있는 새로운 방법을 제공한다.The present invention provides a novel method for forming the catalyst fine particles, which are the basis for carbon nanotube growth, to be more uniformly formed on a substrate.

본 발명에서는 또한, 균일도가 향상된 카본나노튜브 합성 방법을 제공한다.The present invention also provides a method for synthesizing carbon nanotubes having improved uniformity.

본 발명에서 제공하는 촉매 미립자 형성 방법은, 촉매금속 전구체 용액을 기판 위에 도포하는 단계; 상기 기판 위에 도포된 촉매금속 전구체 용액을 냉동건조하는 단계; 및 냉동건조된 촉매금속 전구체를 촉매금속으로 환원시키는 단계를 포함한다.The catalyst fine particle forming method provided by the present invention comprises the steps of applying a catalyst metal precursor solution on a substrate; Freeze-drying the catalyst metal precursor solution applied on the substrate; And reducing the lyophilized catalyst metal precursor to the catalyst metal.

본 발명의 촉매 미립자 형성 방법은, 촉매금속 전구체 용액을 냉동건조하므로써, 촉매금속 미립자 형성 과정에서의 촉매금속 미립자의 응집 및/또는 재결정을 최소화시킬 수 있다. 그리하여, 본 발명의 방법으로 형성된 촉매금속 미립자는, 매우 균일한 입자크기를 가지며, 또한 기판 위에 매우 균일하게 분포된다. The catalyst fine particle formation method of the present invention can minimize the aggregation and / or recrystallization of the catalyst metal fine particles in the catalyst metal fine particle formation process by freeze-drying the catalyst metal precursor solution. Thus, the catalytic metal fine particles formed by the method of the present invention have a very uniform particle size and are distributed very uniformly on the substrate.

본 발명의 탄소나노튜브 제조 방법은, 촉매금속 전구체 용액을 기판 위에 도포한 후, 상기 기판 위에 도포된 촉매금속 전구체 용액을 냉동건조한 다음 냉동건조된 촉매금속 전구체를 촉매금속으로 환원시켜서, 탄소나노튜브 성장의 기초가 되는 촉매 미립자를 기판 위에 형성시키는 단계; 및 상기 촉매 미립자에 탄소원천을 공급하여, 상기 촉매 미립자 위에 탄소나노튜브를 성장시키는 단계를 포함한다. In the carbon nanotube manufacturing method of the present invention, the catalyst metal precursor solution is coated on a substrate, and the catalyst metal precursor solution applied on the substrate is lyophilized, and then the lyophilized catalyst metal precursor is reduced to the catalyst metal. Forming catalyst fine particles on the substrate on which growth is based; And supplying a carbon source to the catalyst fine particles to grow carbon nanotubes on the catalyst fine particles.

이하에서는, 탄소나노튜브 성장의 기초가 되는 촉매 미립자를 기판 위에 형성시키기 위한 본 발명의 방법을 상세히 설명한다. 본 발명의 촉매 미립자 형성 방법은, 촉매금속 전구체 용액을 기판 위에 도포하는 단계; 상기 기판 위에 도포된 촉매금속 전구체 용액을 냉동건조하는 단계; 및 냉동건조된 촉매금속 전구체를 촉매금속으로 환원시키는 단계를 포함한다.Hereinafter, the method of the present invention for forming catalyst fine particles, which are the basis of carbon nanotube growth, on a substrate will be described in detail. The catalyst fine particle forming method of the present invention comprises the steps of applying a catalyst metal precursor solution on a substrate; Freeze-drying the catalyst metal precursor solution applied on the substrate; And reducing the lyophilized catalyst metal precursor to the catalyst metal.

상기 촉매금속 전구체 용액은 촉매금속 전구체;와 촉매금속 전구체를 용해시킬 수 있는 용매를 포함한다. The catalyst metal precursor solution includes a catalyst metal precursor; and a solvent capable of dissolving the catalyst metal precursor.

상기 촉매금속 전구체로서는, 탄소나노튜브 성장의 기초가 될 수 있는 미립자의 금속 형태로 전환될 수 있는 임의의 재료가 사용될 수 있다. 상기 촉매금속 전구체로서는, 예를 들면, 유기금속화합물(organo-metallic compound)이 사용될 수 있다. 상기 유기금속화합물은, 예를 들면, Fe, Co, Ni, Y, Mo, Cu, Pt, V 및 Ti 중에서 선택되는 적어도 하나의 금속원자를 함유할 수 있다. 상기 유기금속화합물의 구체적인 예로서는, 아세트산철(iron acetate), 옥살산철(iron oxalate), 아세트산코발트(cobalt acetate), 아세트산니켈(nickel acetate), 페로센(ferrocene), 또는 이들의 혼합물이 있다.As the catalyst metal precursor, any material that can be converted into a metal form of particulates which can be the basis of carbon nanotube growth can be used. As the catalyst metal precursor, for example, an organo-metallic compound may be used. The organometallic compound may contain, for example, at least one metal atom selected from Fe, Co, Ni, Y, Mo, Cu, Pt, V, and Ti. Specific examples of the organometallic compound include iron acetate, iron oxalate, cobalt acetate, nickel acetate, ferrocene, or mixtures thereof.

상기 용매로서는, 상기 촉매금속 전구체를 용해할 수 있는 임의의 액상 물질이 사용될 수 있다. 예를 들면, 상기 용매로서는, 에탄올(ethanol), 에틸렌글리콜(ethylene glycol), 폴리에틸렌글리콜(polyethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 이들의 혼합물 등이 사용될 수 있다.As the solvent, any liquid substance capable of dissolving the catalyst metal precursor may be used. For example, ethanol, ethylene glycol, polyethylene glycol, polyvinyl alcohol, mixtures thereof, and the like may be used as the solvent.

상기 촉매금속 전구체 용액 중의 상기 촉매금속 전구체의 함량은 특별히 제한되지 않는다. 상기 촉매금속 전구체 용액 중의 상기 촉매금속 전구체의 함량이 너무 작으면, 추후의 탄소나노튜브 제조 공정에서, 탄소나노튜브가 생성되지 않을 수 있고, 너무 많으면, 추후의 탄소나노튜브 제조 공정에서, 생성되는 탄소나노튜브의 직경이 매우 굵어지거나, 생성되는 탄소나노튜브 또는 탄소나노파이버의 결정성이 저하될 수 있다. 상기 촉매금속 전구체 용액 중의 상기 촉매금속 전구체의 농도는 전형적으로 약 10 mM 내지 약 200 mM 일 수 있다.The content of the catalyst metal precursor in the catalyst metal precursor solution is not particularly limited. If the content of the catalyst metal precursor in the catalyst metal precursor solution is too small, carbon nanotubes may not be produced in a subsequent carbon nanotube manufacturing process, and if too much, in a subsequent carbon nanotube manufacturing process, The diameter of the carbon nanotubes may be very thick, or the crystallinity of the resulting carbon nanotubes or carbon nanofibers may be reduced. The concentration of the catalyst metal precursor in the catalyst metal precursor solution may typically be about 10 mM to about 200 mM.

상기 기판은 촉매 미립자가 그 표면 위에 부착될 수 있는 임의의 재료가 사용될 수 있다. 예를 들면, 상기 기판으로서는, 예를 들면, Mo, Cr 및 W 와 같이 높은 융점을 갖는 금속, 실리콘, 유리, 플라스틱, 석영, 등이 사용될 수 있다. The substrate may be any material to which the catalyst fine particles can be attached on its surface. For example, as the substrate, for example, metal having high melting point such as Mo, Cr and W, silicon, glass, plastic, quartz, or the like can be used.

상기 촉매금속 전구체 용액을 상기 기판 위에 도포하는 방법으로서는, 기판의 표면에 용액을 고르게 코팅할 수 있는 임의의 방법이 사용될 수 있다. 예를 들면, 상기 촉매금속 전구체 용액을 상기 기판 위에 도포하는 방법으로서, 침지법(dip coating), 증발법(evaporation coating), 스크린프린팅(screen printing), 스핀코팅(spin coating) 등이 사용될 수 있다. 또한, 이러한 방법들을 조합한 방법이 사용될 수도 있다.As a method of applying the catalyst metal precursor solution on the substrate, any method capable of evenly coating the solution on the surface of the substrate may be used. For example, a dip coating, evaporation coating, screen printing, spin coating, or the like may be used as a method of coating the catalyst metal precursor solution on the substrate. . Also, a method combining these methods may be used.

촉매금속 전구체 용액은 기판의 전표면에 도포될 수도 있고, 기판의 일부 표면에만 도포될 수도 있다. The catalyst metal precursor solution may be applied to the entire surface of the substrate, or may be applied only to some surfaces of the substrate.

이와 같이 기판 위에 도포된 촉매금속 전구체 용액은 냉동건조 과정을 거치게 된다. 냉동건조라 함은, 기판 위에 도포된 촉매금속 전구체 용액을, 상기 촉매금속 전구체 용액의 어는점 이하로 냉각한 후, 감압조건 하에서 상기 촉매금속 전구체 용액 중의 용매를 기화시키는 과정을 의미한다.The catalyst metal precursor solution applied on the substrate is subjected to a freeze drying process. Freeze-drying refers to a process of vaporizing a solvent in the catalyst metal precursor solution under reduced pressure after cooling the catalyst metal precursor solution applied on the substrate to below the freezing point of the catalyst metal precursor solution.

촉매금속 전구체 용액의 어는점은 촉매금속 전구체 용액의 조성에 따라 달라질 수 있다. 즉, 촉매금속 전구체의 성분, 용매의 성분, 촉매금속 전구체의 함량 등과 같은 조건에 의하여 촉매금속 전구체 용액의 어는점이 결정될 수 있다. 이러한 촉매금속 전구체 용액의 어는점은 열역학적 계산 또는 시행착오법에 의하여 당업자에 의하여 용이하게 측정될 수 있다. 또한, 촉매금속 전구체 용액의 조성을 조절하므로써 촉매금속 전구체 용액의 어는점을 선택할 수도 있다.The freezing point of the catalyst metal precursor solution may vary depending on the composition of the catalyst metal precursor solution. That is, the freezing point of the catalyst metal precursor solution may be determined by conditions such as the component of the catalyst metal precursor, the component of the solvent, and the content of the catalyst metal precursor. The freezing point of such catalyst metal precursor solutions can be readily determined by those skilled in the art by thermodynamic calculation or trial and error. It is also possible to select the freezing point of the catalyst metal precursor solution by adjusting the composition of the catalyst metal precursor solution.

기판 위에 도포된 촉매금속 전구체 용액을 촉매 용액의 어는점 이하로 냉각하는 과정은 촉매금속 전구체 용액의 어는점에 적합한 냉각방법을 사용하므로써 수행될 수 있다. 예를 들면, 냉동기, 액체질소, 등이 사용될 수 있다. 액체질소를 사용하는 경우에, 촉매금속 전구체 용액으로 도포된 기판을 액체질소에 담그므로써, 기판 위에 도포된 촉매금속 전구체 용액을 촉매금속 전구체 용액의 어는점 이하로 냉각할 수 있다.The cooling of the catalyst metal precursor solution applied on the substrate below the freezing point of the catalyst solution may be performed by using a cooling method suitable for the freezing point of the catalyst metal precursor solution. For example, freezers, liquid nitrogen, and the like can be used. In the case of using liquid nitrogen, the catalyst metal precursor solution applied on the substrate can be cooled below the freezing point of the catalyst metal precursor solution by immersing the substrate coated with the catalyst metal precursor solution in liquid nitrogen.

이와 같이, 기판 위에 도포된 촉매금속 전구체 용액을 냉동시킨 후 냉동된 촉매금속 전구체 용액 중의 용매 성분을 기화시키기 위하여, 냉동된 촉매금속 전구체 용액이 도포되어 있는 기판을 감압환경으로 보낸다. 예를 들면, 냉동된 촉매금속 전구체 용액이 도포되어 있는 기판을 진공챔버에 넣은 후, 진공챔버의 내부를 감압시킨다. As described above, in order to freeze the catalyst metal precursor solution applied on the substrate and to vaporize the solvent component in the frozen catalyst metal precursor solution, the substrate on which the frozen catalyst metal precursor solution is applied is sent to a reduced pressure environment. For example, the substrate on which the frozen catalyst metal precursor solution is applied is put in a vacuum chamber, and the inside of the vacuum chamber is depressurized.

감압은 냉동된 촉매금속 전구체 용액 중의 용매 성분이 기화되기에 충분한 정도이어야 한다. 이하에서는, 냉동된 촉매금속 전구체 용액 중의 용매 성분이 기화되기에 충분한 정도로 감압된 압력을 간단하게 "기화압력(evaporation pressure)"이라 부른다. 기화압력은 사용된 촉매금속 전구체 용액의 조성에 따라 달라질 수 있다. 즉, 촉매금속 전구체의 성분, 용매의 성분, 촉매금속 전구체의 함량, 냉동온도 등과 같은 조건에 의하여 촉매금속 전구체 용액의 기화압력이 결정될 수 있다. 이러한 촉매금속 전구체 용액의 기화압력은 열역학적 계산 또는 시행착오법에 의하여 당업자에 의하여 용이하게 측정될 수 있다. 또한, 촉매금속 전구체 용액의 조성, 냉동온도 등을 조절하므로써 촉매금속 전구체 용액 중의 용매의 기화압력을 선택할 수도 있다.The reduced pressure should be sufficient to allow the solvent component in the frozen catalyst metal precursor solution to vaporize. Hereinafter, the pressure reduced to a degree sufficient for the solvent component in the frozen catalyst metal precursor solution to vaporize is simply referred to as "evaporation pressure". The vaporization pressure may vary depending on the composition of the catalyst metal precursor solution used. That is, the vaporization pressure of the catalyst metal precursor solution may be determined by conditions such as the component of the catalyst metal precursor, the component of the solvent, the content of the catalyst metal precursor, and the freezing temperature. The vaporization pressure of the catalyst metal precursor solution can be easily measured by those skilled in the art by thermodynamic calculation or trial and error. In addition, the vaporization pressure of the solvent in the catalyst metal precursor solution may be selected by adjusting the composition, the freezing temperature, and the like of the catalyst metal precursor solution.

이러한 기화를 통하여 냉동된 촉매금속 전구체 용액 중의 용매 성분이 제거된다. 그 결과, 기판의 표면에는 촉매금속 전구체 성분이 미립자 형태로 형성된다. 주목할 점은, 본 발명의 방법으로 형성된 촉매금속 전구체 미립자는, 비교적 균일한 입자크기를 가지며, 또한 기판 위에 균일하게 분포된다는 점이다. This vaporization removes the solvent components in the frozen catalyst metal precursor solution. As a result, the catalyst metal precursor component is formed in the form of fine particles on the surface of the substrate. Note that the catalyst metal precursor fine particles formed by the method of the present invention have a relatively uniform particle size and are uniformly distributed on the substrate.

그 다음에, 기판의 표면에 형성된 촉매금속 전구체 미립자를 촉매금속 미립자로 환원시킨다. 촉매금속 전구체 미립자를 촉매금속 미립자로 환원시키는 과정은 예를 들면, 다음과 같이 수행될 수 있다. 먼저, 산화분위기 내에서의 열처리를 통하여 촉매금속 전구체를 산화물로 전환시킨 다음, 이렇게 형성된 산화물을, 환원분위기에서 열처리 또는 플라즈마 처리하여, 금속으로 환원시킨다. 촉매금속 전구체의 환원과정은 당업계에 알려진 다양한 방법에 의하여 수행될 수 있으므로, 여기에서는 더 이상 자세히 설명하지 않는다.Then, the catalytic metal precursor fine particles formed on the surface of the substrate are reduced to the catalytic metal fine particles. The process of reducing the catalytic metal precursor fine particles to the catalytic metal fine particles may be performed, for example, as follows. First, the catalytic metal precursor is converted to an oxide through heat treatment in an oxidizing atmosphere, and the oxide thus formed is heat-treated or plasma-treated in a reducing atmosphere to reduce the metal. The reduction of the catalytic metal precursor may be carried out by various methods known in the art, and thus will not be described in further detail here.

도 1은, 본 발명의 일 실시예에 따라 제조된 촉매금속 미립자의 전자현미경 사진이다. 도 1을 보면, 촉매금속 미립자가 기판 위에 고르게 분포되어 있을 뿐만아니라, 촉매금속 미립자의 입자크기가 비교적 균일하다는 것을 알 수 있다. 1 is an electron micrograph of catalyst metal particles prepared according to an embodiment of the present invention. 1, it can be seen that the catalyst metal fine particles are not only uniformly distributed on the substrate, but also the particle size of the catalyst metal fine particles is relatively uniform.

이하에서는, 본 발명의 탄소나노튜브 제조 방법을 상세히 설명한다.Hereinafter, the carbon nanotube manufacturing method of the present invention will be described in detail.

본 발명의 탄소나노튜브 제조 방법은, 촉매금속 전구체 용액을 기판 위에 도포한 후, 상기 기판 위에 도포된 촉매금속 전구체 용액을 냉동건조한 다음 냉동건조된 촉매금속 전구체를 촉매금속으로 환원시켜서, 탄소나노튜브 성장의 기초가 되는 촉매 미립자를 기판 위에 형성시키는 단계; 및 상기 촉매 미립자에 탄소원천을 공급하여, 상기 촉매 미립자 위에 탄소나노튜브를 성장시키는 단계를 포함한다.In the carbon nanotube manufacturing method of the present invention, the catalyst metal precursor solution is coated on a substrate, and the catalyst metal precursor solution applied on the substrate is lyophilized, and then the lyophilized catalyst metal precursor is reduced to the catalyst metal. Forming catalyst fine particles on the substrate on which growth is based; And supplying a carbon source to the catalyst fine particles to grow carbon nanotubes on the catalyst fine particles.

기판 위에 촉매 미립자를 형성시키는 단계는 앞에서 설명한 본 발명의 촉매 미립자 형성 방법과 같다.Forming the catalyst fine particles on the substrate is the same as the catalyst fine particle formation method of the present invention described above.

촉매 미립자에 탄소원천을 공급하여, 상기 촉매 미립자 위에 탄소나노튜브를 성장시키는 단계는, 탄소나노튜브의 제조에 사용될 수 있는 다양한 방법에 의하여수행될 수 있다. Supplying a carbon source to the catalyst fine particles to grow carbon nanotubes on the catalyst fine particles may be performed by various methods that may be used to prepare carbon nanotubes.

예를 들면, 상기 탄소나노튜브 성장 단계에서는, 반응챔버 내에, 탄소나노튜브 성장의 기초가 되는 촉매 미립자가 부착되어 있는 기판을 위치시키고, 상기 반응챔버 내에 탄소전구체가스를 공급한 후, 상기 반응챔버 내에서 상기 탄소전구체가스를 분해하여 상기 촉매 미립자에 탄소를 공급하므로써, 상기 촉매 미립자 위에서 탄소나노튜브가 성장하게 된다.For example, in the carbon nanotube growth step, a substrate on which a catalyst fine particle, which is the basis of carbon nanotube growth, is attached is placed in the reaction chamber, and the carbon precursor gas is supplied into the reaction chamber, followed by the reaction chamber. The carbon nanotubes are grown on the catalyst fine particles by decomposing the carbon precursor gas and supplying carbon to the catalyst fine particles.

더욱 구체적인 예를 들면, 상기 탄소나노튜브 성장 단계는, 저압 화학기상증착법, 열화학기상증착법, 플라즈마 화학기상증착법에 의하여 수행될 수 있으며, 또는 이들 방법을 조합한 방법에 의해서도 수행될 수 있다.More specifically, the carbon nanotube growth step may be performed by low pressure chemical vapor deposition, thermochemical vapor deposition, plasma chemical vapor deposition, or by a combination of these methods.

탄소전구체가스로서는, 예를 들면, 아세틸렌, 메탄, 프로판, 에틸렌, 일산화 탄소, 이산화탄소, 알코올, 벤젠 등과 같은 탄소함유화합물이 사용될 수 있다. As the carbon precursor gas, for example, carbon-containing compounds such as acetylene, methane, propane, ethylene, carbon monoxide, carbon dioxide, alcohols, benzene and the like can be used.

상기 반응챔버 내의 온도가 너무 낮으면 생성되는 탄소나노튜브의 결정성이 저하될 수 있고, 너무 높으면 탄소나노튜브가 잘 형성되지 않을 수 있다. 이러한 점을 고려하여, 상기 반응챔버 내의 온도는 전형적으로 약 450 내지 약 1100 ℃ 일 수 있다.If the temperature in the reaction chamber is too low, the crystallinity of the resulting carbon nanotubes may be lowered. If the temperature is too high, the carbon nanotubes may not be well formed. In view of this, the temperature in the reaction chamber may typically be about 450 to about 1100 ° C.

상기 탄소나노튜브 성장 단계에서의 다른 공정 조건은, 탄소나노튜브의 성장에 적합한 통상적인 것들이 사용될 수 있으며, 또한, 당업자에 의하여 구체적인 적용목적에 따라 용이하게 선택될 수 있다. 그리하여, 여기에서는, 상기 탄소나노튜브 성장 단계에서의 다른 공정 조건에 대하여 더 이상 자세히 설명하지 않는다.Other process conditions in the carbon nanotube growth step, conventional ones suitable for the growth of carbon nanotubes can be used, and can also be easily selected by those skilled in the art according to a specific application. Therefore, here, no other process conditions in the carbon nanotube growth step will be described in detail any further.

본 발명의 탄소나노튜브 제조 방법에서는, 앞에서 설명한 바와 같이, 균일한 입자크기를 가지며 또한 기판 위에 균일하게 분포되어 있는 촉매 미립자를 기초로 하여 탄소나노튜브를 성장시키므로, 그 결과 합성된 탄소나노튜브의 균일도 역시 매우 향상된다. 탄소나노튜브의 균일도는, 탄소나노튜브의 길이와 직경의 균일도에 의해 평가된다. 탄소나노튜브의 길이는 전자 현미경에 의해 측정될 수 있으며, 직경은 투과 전자 현미경에 의해 측정될 수 있다.In the method for producing carbon nanotubes of the present invention, as described above, carbon nanotubes are grown on the basis of catalyst particles having a uniform particle size and uniformly distributed on a substrate. Uniformity is also greatly improved. The uniformity of the carbon nanotubes is evaluated by the uniformity of the length and diameter of the carbon nanotubes. The length of the carbon nanotubes can be measured by an electron microscope, and the diameter can be measured by a transmission electron microscope.

더우기, 본 발명의 방법으로 제조된 탄소나노튜브의 수직배향성도 매우 우수하다. 이는 도 2의 전자현미경 사진으로부터 확인될 수 있다. 도 2는 본 발명의 일 실시예에서 제조된 탄소나노튜브 군집의 측면을 보여주는 사진이다. 도 2에 나타난 바와 같이, 본 발명의 방법으로 제조된 탄소나노튜브는 엉킴현상을 보이지 않으며,수직방향으로 잘 배열되어 있다. Moreover, the vertical orientation of the carbon nanotubes produced by the method of the present invention is also very excellent. This can be confirmed from the electron micrograph of FIG. 2. Figure 2 is a photograph showing the side of the carbon nanotube community prepared in one embodiment of the present invention. As shown in FIG. 2, the carbon nanotubes prepared by the method of the present invention do not exhibit entanglement and are well arranged in the vertical direction.

도 3은 본 발명의 일 실시예에서 제조된 탄소나노튜브 군집의 표면을 보여주는 사진이다. 도 3으로부터, 본 발명의 방법으로 제조된 탄소나노튜브의 생성밀도는 매우 균일하다. Figure 3 is a photograph showing the surface of the carbon nanotube community prepared in one embodiment of the present invention. 3, the production density of the carbon nanotubes produced by the method of the present invention is very uniform.

<실시예><Example>

에탄올을 용매로 사용한 40 mM 농도의 아세트산철 용액을 제조하였다. 아세트산철 분말 0.1 g에 에탄올 20 ml 및 에틸렌글리콜 20 ml 를 첨가하여 적절한 점도의 용액을 얻었다. 이렇게 얻은 용액을 직경 8 인치의 실리콘 기판 위에 침지법을 이용하여 도포하였다. 코팅된 기판을 즉시 액체질소로 냉각한 후 진공 챔버로 옮긴 다음, 0.1 mmHg 이하의 진공을 가하여 용매를 증발시켰다. 용매의 잔류량을 최소화하기 위하여, 추가적으로, 100℃ 에서 상기 기판을 가열하였다. An iron acetate solution having a concentration of 40 mM was prepared using ethanol as a solvent. 20 ml of ethanol and 20 ml of ethylene glycol were added to 0.1 g of iron acetate powder to obtain a solution having an appropriate viscosity. The solution thus obtained was applied on a silicon substrate of 8 inches in diameter by dipping. The coated substrate was immediately cooled with liquid nitrogen and then transferred to a vacuum chamber, and then a vacuum of 0.1 mmHg or less was added to evaporate the solvent. In order to minimize the residual amount of solvent, the substrate was additionally heated at 100 ° C.

이와 같이 냉동건조된 기판을, 300 ℃의 공기 분위기에서 10 분간 열처리하여, 아세트산철 성분을 산화시켰다. 그 다음에, 600 ℃ 의 수소 분위기에서 기판을 환원처리하였다. The freeze-dried substrate was heat-treated for 10 minutes in an air atmosphere of 300 ° C to oxidize the iron acetate component. Next, the substrate was reduced in a hydrogen atmosphere at 600 ° C.

결과적으로, 기판에는 철(iron) 입자들이 균일하게 형성되었다. 도 1은, 본 실시예에 따라, 실리콘 기판위에 형성된 철 미립자의 전자현미경 사진이다. 도 1을 보면, 철 미립자가 기판 위에 고르게 분포되어 있을 뿐만아니라, 철 미립자의 입자크기가 비교적 균일하다는 것을 알 수 있다. As a result, iron particles were uniformly formed on the substrate. 1 is an electron micrograph of iron fine particles formed on a silicon substrate according to this embodiment. 1, it can be seen that the iron particles are not only uniformly distributed on the substrate, but also the particle size of the iron particles is relatively uniform.

이와 같은 철 미립자가 형성되어 있는 기판을, 600 ℃의 내부온도를 갖는 화학기상증착용 반응챔버에 넣은 후, 상기 반응챔버에 일산화탄소와 수소의 중량비가 1:2 인 혼합기체를 20분간 공급하여, 철 미립자를 기초로한 탄소나노튜브를 합성하였다. The substrate on which such iron fine particles were formed was placed in a chemical vapor deposition reaction chamber having an internal temperature of 600 ° C., and then a mixed gas having a weight ratio of carbon monoxide and hydrogen of 1: 2 was supplied to the reaction chamber for 20 minutes. Carbon nanotubes based on iron fine particles were synthesized.

도 2는 본 실시예에서 제조된 탄소나노튜브 군집의 측면을 보여주는 사진이다. 도 2에 나타난 바와 같이, 본 실시예에서 제조된 탄소나노튜브는 엉킴현상을 보이지 않으며, 수직방향으로 잘 배열되어 있다. 도 3은 본 실시예에서 제조된 탄소나노튜브 군집의 표면을 보여주는 사진이다. 도 3으로부터, 본 실시예에서 제조된 탄소나노튜브의 생성밀도가 매우 균일하다는 것을 알 수 있다. Figure 2 is a photograph showing the side of the carbon nanotube community prepared in this embodiment. As shown in FIG. 2, the carbon nanotubes prepared in this example do not show entanglement and are well arranged in the vertical direction. Figure 3 is a photograph showing the surface of the carbon nanotube community prepared in this embodiment. From Figure 3, it can be seen that the production density of the carbon nanotubes produced in this example is very uniform.

이와 같이 형성된 탄소나노튜브의 균일도를 평가하기 위해, 9 등분된 기판 각각에 대하여, 전자현미경을 이용한 탄소나노튜브의 길이 측정 및, 투과전자현미경을 이용한 탄소나노튜브의 직경 측정을 수행하였다. 그 결과, 9 등분된 기판의 탄소나노튜브는 +/- 5% 이내의 균일도를 갖는다는 것을 확인하였다. In order to evaluate the uniformity of the carbon nanotubes formed as described above, the length of the carbon nanotubes using the electron microscope and the diameter of the carbon nanotubes using the transmission electron microscope were measured on each of the nine equal substrates. As a result, it was confirmed that the carbon nanotubes of the nine equal substrates had a uniformity within +/- 5%.

<비교예>Comparative Example

기판 위에 도포된 아세트산철 용액을 냉동건조시키는 대신에 대기 중에서 자연 건조시킨 것을 제외하고는, 상기 실시예와 동일한 방법으로 탄소나노튜브를 합성하였다. Carbon nanotubes were synthesized in the same manner as in the above example, except that the iron acetate solution applied on the substrate was freeze-dried and air-dried.

도 4는 비교예에서 제조된 철 미립자를 보여주는 광학현미경 사진이다. 도 5는 도 4의 일부분을 확대한 도면이다. 도 4 및 도 5로부터, 비교예에서 형성된 철 미립자는 매우 불균일하다는 것을 알 수 있다.4 is an optical micrograph showing the iron fine particles prepared in the comparative example. 5 is an enlarged view of a portion of FIG. 4. 4 and 5, it can be seen that the iron fine particles formed in the comparative example is very nonuniform.

도 6은 비교예에서 합성된 탄소나노튜브 군집의 성상을 보여주는 전자현미경 사진이다. 도 6 에 나타난 바와 같이, 비교예에서 합성된 탄소나노튜브는 기판 위에 부분적으로 뭉쳐있으며, 수직으로 배향되지 않고 엉켜있다.6 is an electron micrograph showing the properties of the carbon nanotube community synthesized in the comparative example. As shown in FIG. 6, the carbon nanotubes synthesized in the comparative example are partially agglomerated on the substrate and entangled without being vertically oriented.

본 발명의 촉매 미립자 형성 방법은, 촉매금속 전구체 용액을 냉동건조하므로써, 촉매 미립자 형성 과정에서의 촉매 미립자의 응집 및/또는 재결정을 최소화시킬 수 있다. 그리하여, 본 발명의 방법으로 형성된 촉매 미립자는, 매우 균일한 입자크기를 가지며, 또한 기판 위에 매우 균일하게 분포된다. The catalyst fine particle formation method of the present invention can minimize the aggregation and / or recrystallization of the catalyst fine particles in the catalyst fine particle formation process by freeze-drying the catalyst metal precursor solution. Thus, the catalyst fine particles formed by the method of the present invention have a very uniform particle size and are distributed very uniformly on the substrate.

본 발명의 탄소나노튜브 제조 방법에서는, 앞에서 설명한 바와 같이, 균일한 입자크기를 가지며 또한 기판 위에 균일하게 분포되어 있는 촉매 미립자를 기초로 하여 탄소나노튜브를 성장시키므로, 그 결과 합성된 탄소나노튜브의 균일도 역시 매우 향상된다.In the method for producing carbon nanotubes of the present invention, as described above, carbon nanotubes are grown on the basis of catalyst particles having a uniform particle size and uniformly distributed on a substrate. Uniformity is also greatly improved.

도 1은 본 발명의 실시예에 따라 제조된 탄소나노튜브 제조용 촉매 미립자를 보여주는 광학현미경 사진이다.1 is an optical micrograph showing the catalyst fine particles for producing carbon nanotubes prepared according to an embodiment of the present invention.

도 2는 본 발명의 실시예에 따라 제조된 탄소나노튜브 군집의 측면을 보여주는 전자현미경 사진이다.Figure 2 is an electron micrograph showing the side of the carbon nanotube community prepared in accordance with an embodiment of the present invention.

도 3은 본 발명의 실시예에 따라 제조된 탄소나노튜브 군집의 표면을 보여주는 전자현미경 사진이다.3 is an electron micrograph showing the surface of the carbon nanotube community prepared according to an embodiment of the present invention.

도 4는 비교예에 따라 제조된 탄소나노튜브 제조용 촉매 미립자를 보여주는 광학현미경 사진이다.Figure 4 is an optical micrograph showing the catalyst fine particles for producing carbon nanotubes prepared according to a comparative example.

도 5는 도 4의 일부분을 확대한 도면이다.5 is an enlarged view of a portion of FIG. 4.

도 6은 비교예에 따라 제조된 탄소나노튜브 군집의 성상을 보여주는 전자현미경 사진이다.Figure 6 is an electron micrograph showing the appearance of the carbon nanotube community prepared according to the comparative example.

Claims (6)

촉매금속 전구체 용액을 기판 위에 도포하는 단계; Applying a catalyst metal precursor solution onto the substrate; 상기 기판 위에 도포된 촉매금속 전구체 용액을 냉동건조하는 단계; 및 Freeze-drying the catalyst metal precursor solution applied on the substrate; And 냉동건조된 촉매금속 전구체를 촉매금속으로 환원시키는 단계를 포함하는, 탄소나노튜브 성장의 기초가 되는 촉매 미립자제조 방법.A method for producing catalyst particulates, which is the basis of carbon nanotube growth, comprising reducing a lyophilized catalyst metal precursor to a catalyst metal. 제 1 항에 있어서, 상기 촉매금속 전구체는 유기금속화합물인 것을 특징으로 하는 방법.The method of claim 1, wherein the catalytic metal precursor is an organometallic compound. 제 2 항에 있어서, 상기 촉매금속 전구체는 Fe, Co, Ni, Y, Mo, Cu, Pt, V 및 Ti 중에서 선택되는 적어도 하나의 금속원자를 함유하는 유기금속화합물인 것을 특징으로 하는 방법.The method of claim 2, wherein the catalyst metal precursor is an organometallic compound containing at least one metal atom selected from Fe, Co, Ni, Y, Mo, Cu, Pt, V, and Ti. 제 1 항에 있어서, 상기 용매는 에탄올, 에틸렌글리콜, 폴리에틸렌글리콜, 폴리비닐알콜, 또는 이들의 혼합물인 것을 특징으로 하는 방법.The method of claim 1, wherein the solvent is ethanol, ethylene glycol, polyethylene glycol, polyvinyl alcohol, or a mixture thereof. 제 1 항에 있어서, 상기 촉매금속 전구체 용액 중의 상기 촉매금속 전구체의 농도는 10 mM 내지 200 mM 인 것을 특징으로 하는 방법.The method of claim 1, wherein the concentration of the catalyst metal precursor in the catalyst metal precursor solution is 10 mM to 200 mM. 촉매금속 전구체 용액을 기판 위에 도포한 후, 상기 기판 위에 도포된 촉매금속 전구체 용액을 냉동건조한 다음 냉동건조된 촉매금속 전구체를 촉매금속으로 환원시켜서, 탄소나노튜브 성장의 기초가 되는 촉매 미립자를 기판 위에 형성시키는 단계; 및 After the catalyst metal precursor solution is applied onto the substrate, the catalyst metal precursor solution applied on the substrate is lyophilized, and then the lyophilized catalyst metal precursor is reduced to the catalyst metal so that the catalyst fine particles, which are the basis of carbon nanotube growth, are deposited on the substrate. Forming; And 상기 촉매 미립자에 탄소원천을 공급하여, 상기 촉매 미립자 위에 탄소나노튜브를 성장시키는 단계를 포함하는, 탄소나노튜브 제조 방법.Supplying a carbon source to the catalyst microparticles, and growing carbon nanotubes on the catalyst microparticles.
KR1020040046552A 2004-06-22 2004-06-22 Method for preparing catalyst for manufacturing carbon nano tubes KR20050121426A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020040046552A KR20050121426A (en) 2004-06-22 2004-06-22 Method for preparing catalyst for manufacturing carbon nano tubes
CNA2005100794134A CN1883807A (en) 2004-06-22 2005-06-21 Method of preparing catalyst for manufacturing carbon nanotubes
JP2005180590A JP2006007213A (en) 2004-06-22 2005-06-21 Production method of catalyst for producing carbon nanotube
US11/158,047 US20070020167A1 (en) 2004-06-22 2005-06-22 Method of preparing catalyst for manufacturing carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040046552A KR20050121426A (en) 2004-06-22 2004-06-22 Method for preparing catalyst for manufacturing carbon nano tubes

Publications (1)

Publication Number Publication Date
KR20050121426A true KR20050121426A (en) 2005-12-27

Family

ID=35775022

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040046552A KR20050121426A (en) 2004-06-22 2004-06-22 Method for preparing catalyst for manufacturing carbon nano tubes

Country Status (4)

Country Link
US (1) US20070020167A1 (en)
JP (1) JP2006007213A (en)
KR (1) KR20050121426A (en)
CN (1) CN1883807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550618B2 (en) 2007-10-18 2009-06-23 Korea Institute Of Geoscience & Mineral Resources Preparation of iron(II) acetate powder from a low grade magnetite
WO2020141649A1 (en) * 2019-01-03 2020-07-09 한국해양대학교 산학협력단 Method for mass synthesis of carbon nanotubes and carbon nanotubes synthesized thereby

Families Citing this family (326)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120189846A1 (en) * 2007-01-03 2012-07-26 Lockheed Martin Corporation Cnt-infused ceramic fiber materials and process therefor
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US20100279569A1 (en) * 2007-01-03 2010-11-04 Lockheed Martin Corporation Cnt-infused glass fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
US8158217B2 (en) * 2007-01-03 2012-04-17 Applied Nanostructured Solutions, Llc CNT-infused fiber and method therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
KR101281168B1 (en) 2007-01-05 2013-07-02 삼성전자주식회사 Field emission electrode, method for preparing the same and field emission device comprising the same
CN101185904B (en) * 2007-01-18 2011-01-19 江苏工业学院 Selectivity liquid phase hydrogenation catalyst and preparation method and use thereof
WO2008140784A1 (en) 2007-05-11 2008-11-20 Sdc Materials, Inc. Nano-skeletal catalyst
US20090081383A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Carbon Nanotube Infused Composites via Plasma Processing
US20090081441A1 (en) * 2007-09-20 2009-03-26 Lockheed Martin Corporation Fiber Tow Comprising Carbon-Nanotube-Infused Fibers
WO2009038172A1 (en) * 2007-09-21 2009-03-26 Taiyo Nippon Sanso Corporation Method for forming catalyst layer for carbon nanostructure growth, liquid for catalyst layer formation, and process for producing carbon nanostructure
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
CN101447802A (en) * 2007-11-27 2009-06-03 杰脉通信技术(上海)有限公司 Method for catching the terminal of a mobile subscriber
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US8585934B2 (en) * 2009-02-17 2013-11-19 Applied Nanostructured Solutions, Llc Composites comprising carbon nanotubes on fiber
WO2010141130A1 (en) * 2009-02-27 2010-12-09 Lockheed Martin Corporation Low temperature cnt growth using gas-preheat method
US20100224129A1 (en) * 2009-03-03 2010-09-09 Lockheed Martin Corporation System and method for surface treatment and barrier coating of fibers for in situ cnt growth
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
CN102388171B (en) * 2009-04-10 2015-02-11 应用纳米结构方案公司 Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
US20100272891A1 (en) * 2009-04-10 2010-10-28 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
CN102388172B (en) * 2009-04-10 2015-02-11 应用纳米结构方案公司 Method and apparatus for using a vertical furnace to infuse carbon nanotubes to fiber
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
JP2012525012A (en) * 2009-04-24 2012-10-18 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT leaching EMI shielding composite and coating
WO2010129234A2 (en) * 2009-04-27 2010-11-11 Lockheed Martin Corporation Cnt-based resistive heating for deicing composite structures
AU2010241850B2 (en) * 2009-04-30 2015-03-19 Applied Nanostructured Solutions, Llc. Method and system for close proximity catalysis for carbon nanotube synthesis
CA2765460A1 (en) * 2009-08-03 2011-02-10 Applied Nanostructured Solutions, Llc Incorporation of nanoparticles in composite fibers
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
JP2011068509A (en) * 2009-09-25 2011-04-07 Aisin Seiki Co Ltd Carbon nanotube composite and method for producing the same
US20110171469A1 (en) * 2009-11-02 2011-07-14 Applied Nanostructured Solutions, Llc Cnt-infused aramid fiber materials and process therefor
US20110123735A1 (en) * 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Cnt-infused fibers in thermoset matrices
AU2010321534B2 (en) * 2009-11-23 2015-03-26 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
AU2010321536A1 (en) * 2009-11-23 2012-04-19 Applied Nanostructured Solutions, Llc CNT-tailored composite space-based structures
EP2513250A4 (en) * 2009-12-14 2015-05-27 Applied Nanostructured Sols Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
US9149797B2 (en) * 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9090475B1 (en) 2009-12-15 2015-07-28 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for silicon SiO2
US9167736B2 (en) * 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
WO2011146151A2 (en) * 2010-02-02 2011-11-24 Applied Nanostructured Solutions, Llc Fiber containing parallel-aligned carbon nanotubes
EP2543052B1 (en) * 2010-03-02 2019-11-27 Applied NanoStructured Solutions, LLC Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
WO2011109480A2 (en) 2010-03-02 2011-09-09 Applied Nanostructed Solution, Llc Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof
JP5571994B2 (en) * 2010-03-30 2014-08-13 株式会社東芝 Carbon nanotube aggregate, solar cell, and substrate with waveguide and carbon nanotube aggregate
CN101816956B (en) * 2010-04-20 2011-10-19 武汉理工大学 Method for improving dispersion of nano metal grains on surface of graphitized carbon carrier
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
US20120058352A1 (en) * 2010-09-02 2012-03-08 Applied Nanostructured Solutions, Llc Metal substrates having carbon nanotubes grown thereon and methods for production thereof
CN104475313B (en) 2010-09-14 2017-05-17 应用奈米结构公司 Glass substrates having carbon nanotubes grown thereon and methods for production thereof
AU2011305809A1 (en) 2010-09-22 2013-02-28 Applied Nanostructured Solutions, Llc Carbon fiber substrates having carbon nanotubes grown thereon and processes for production thereof
JP2014508370A (en) 2010-09-23 2014-04-03 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー CNT-infused fibers as self-shielding wires for reinforced transmission lines
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
MX2014001718A (en) 2011-08-19 2014-03-26 Sdcmaterials Inc Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions.
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
JP2014136167A (en) * 2013-01-15 2014-07-28 Toyota Motor Corp Method for supporting catalyst
EP3024571B1 (en) 2013-07-25 2020-05-27 Umicore AG & Co. KG Washcoats and coated substrates for catalytic converters
KR20160074566A (en) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 Catalyst design for heavy-duty diesel combustion engines
CA2926135A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Compositions of lean nox trap
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
KR102263121B1 (en) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10343920B2 (en) * 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
KR102633318B1 (en) 2017-11-27 2024-02-05 에이에스엠 아이피 홀딩 비.브이. Devices with clean compact zones
WO2019103613A1 (en) 2017-11-27 2019-05-31 Asm Ip Holding B.V. A storage device for storing wafer cassettes for use with a batch furnace
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
CN111630203A (en) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 Method for depositing gap filling layer by plasma auxiliary deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
WO2019158960A1 (en) 2018-02-14 2019-08-22 Asm Ip Holding B.V. A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
KR20190128558A (en) 2018-05-08 2019-11-18 에이에스엠 아이피 홀딩 비.브이. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
TWI816783B (en) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TW202013553A (en) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
TWI819010B (en) 2018-06-27 2023-10-21 荷蘭商Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
JP2021529880A (en) 2018-06-27 2021-11-04 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (en) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming device structure using selective deposition of gallium nitride, and system for the same
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
JP2020136677A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic accumulation method for filing concave part formed inside front surface of base material, and device
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
KR102638425B1 (en) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for filling a recess formed within a substrate surface
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
JP2021019198A (en) 2019-07-19 2021-02-15 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming topology-controlled amorphous carbon polymer film
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (en) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 Liquid level sensor for chemical source container
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
CN112992667A (en) 2019-12-17 2021-06-18 Asm Ip私人控股有限公司 Method of forming vanadium nitride layer and structure including vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
KR20210100010A (en) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
TW202146831A (en) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Vertical batch furnace assembly, and method for cooling vertical batch furnace
CN113555279A (en) 2020-04-24 2021-10-26 Asm Ip私人控股有限公司 Method of forming vanadium nitride-containing layers and structures including the same
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
TW202147383A (en) 2020-05-19 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
TW202219628A (en) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
KR20220027026A (en) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. Method and system for forming metal silicon oxide and metal silicon oxynitride
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
KR20220053482A (en) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049019B2 (en) * 1998-09-11 2000-06-05 双葉電子工業株式会社 Method of forming single-walled carbon nanotube coating and single-walled carbon nanotube coated by the method
US20030012722A1 (en) * 2002-07-02 2003-01-16 Jie Liu High yiel vapor phase deposition method for large scale sing walled carbon nanotube preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7550618B2 (en) 2007-10-18 2009-06-23 Korea Institute Of Geoscience & Mineral Resources Preparation of iron(II) acetate powder from a low grade magnetite
WO2020141649A1 (en) * 2019-01-03 2020-07-09 한국해양대학교 산학협력단 Method for mass synthesis of carbon nanotubes and carbon nanotubes synthesized thereby

Also Published As

Publication number Publication date
US20070020167A1 (en) 2007-01-25
JP2006007213A (en) 2006-01-12
CN1883807A (en) 2006-12-27

Similar Documents

Publication Publication Date Title
KR20050121426A (en) Method for preparing catalyst for manufacturing carbon nano tubes
EP2543632B1 (en) Method for producing aligned carbon nanotube aggregate
JP3850380B2 (en) Carbon nanotube matrix growth method
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
US7157068B2 (en) Varied morphology carbon nanotubes and method for their manufacture
JP3363759B2 (en) Carbon nanotube device and method of manufacturing the same
EP1061043A1 (en) Low-temperature synthesis of carbon nanotubes using metal catalyst layer for decomposing carbon source gas
JP4730707B2 (en) Catalyst for carbon nanotube synthesis and method for producing the same, catalyst dispersion, and method for producing carbon nanotube
US20100227058A1 (en) Method for fabricating carbon nanotube array
US20060067872A1 (en) Method of preparing catalyst base for manufacturing carbon nanotubes and method of manufacturing carbon nanotubes employing the same
Amadi et al. Nanoscale self-assembly: concepts, applications and challenges
US7771698B2 (en) Laser-based method for growing an array of carbon nanotubes
US20070110660A1 (en) Apparatus and method for synthesizing carbon nanotubes
JP5622278B2 (en) Base material for manufacturing aligned carbon nanotube aggregate, method for manufacturing aligned carbon nanotube assembly, and method for manufacturing base material for manufacturing aligned carbon nanotube assembly
KR101425376B1 (en) Large-area carbon nanomesh from polymer and method of preparing the same
WO2012057229A1 (en) Process for production of carbon nanotubes
JP2012526720A (en) New adjustable gas storage and gas sensing materials
US20080220182A1 (en) Laser-based method for growing array of carbon nanotubes
JP2004051432A (en) Substrate for manufacturing carbon nanotube and method of manufacturing carbon nanotube using the same
JP4798340B2 (en) Catalyst for growing carbon nanotube and method for producing the same
KR101415228B1 (en) Synthesizing method of 1-dimensional carbon nano fiber
Hiramatsu et al. Fabrication of dense carbon nanotube films using microwave plasma-enhanced chemical vapor deposition
Park et al. Effect of catalytic layer thickness on growth and field emission characteristics of carbon nanotubes synthesized at low temperatures using thermal chemical vapor deposition
JP6950939B2 (en) Catalyst support for synthesizing carbon nanotube aggregates and members for synthesizing carbon nanotube aggregates
KR20080006899A (en) Surface modifying method of natural graphite by carbon nanofiber

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid