JP2005178116A - 液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法 - Google Patents

液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法 Download PDF

Info

Publication number
JP2005178116A
JP2005178116A JP2003420847A JP2003420847A JP2005178116A JP 2005178116 A JP2005178116 A JP 2005178116A JP 2003420847 A JP2003420847 A JP 2003420847A JP 2003420847 A JP2003420847 A JP 2003420847A JP 2005178116 A JP2005178116 A JP 2005178116A
Authority
JP
Japan
Prior art keywords
oxide film
substrate
driving
transistor
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003420847A
Other languages
English (en)
Inventor
Takaaki Miyamoto
孝章 宮本
Minoru Kono
稔 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003420847A priority Critical patent/JP2005178116A/ja
Publication of JP2005178116A publication Critical patent/JP2005178116A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】 本発明は、液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法に関し、例えばサーマル方式によるインクジェットプリンタに適用して、高耐圧の駆動用のトランジスタとこのトランジスタを駆動する論理回路とを一体に基板上に形成するようにして、チップ面積の増大、動作速度の低下を防止することができるようにする。
【解決手段】 本発明は、高耐圧の駆動用のトランジスタをオフセットLOCOS構造により形成し、該トランジスタのゲート酸化膜を形成する前に犠牲酸化膜を形成して除去する。
【選択図】 図1

Description

本発明は、液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法に関し、例えばサーマル方式によるインクジェットプリンタに適用することができる。本発明は、高耐圧の駆動用のトランジスタをオフセットLOCOS構造により形成し、該トランジスタのゲート酸化膜を形成する前に犠牲酸化膜を形成して除去することにより、高耐圧の駆動用のトランジスタとこのトランジスタを駆動する論理回路とを一体に基板上に形成するようにして、チップ面積の増大、動作速度の低下を防止することができるようにする。
近年、画像処理等の分野において、ハードコピーのカラー化に対するニーズが高まってきている。このニーズに対して、従来、昇華型熱転写方式、溶融熱転写方式、インクジェット方式、電子写真方式及び熱現像銀塩方式等のカラーコピー方式が提案されている。
これらの方式のうちインクジェット方式は、液体吐出ヘッドであるプリンタヘッドに設けられたノズルから記録液(インク)の液滴を飛翔させ、記録対象に付着してドットを形成するものであり、簡易な構成により高画質の画像を出力することができる。このインクジェット方式は、ノズルからインク液滴を飛翔させる方法の相違により、静電引力方式、連続振動発生方式(ピエゾ方式)及びサーマル方式に分類される。
これらの方式のうちサーマル方式は、インクの局所的な加熱により気泡を発生し、この気泡によりインクをノズルから押し出して印刷対象に飛翔させる方式であり、簡易な構成によりカラー画像を印刷することができるようになされている。
このようなサーマル方式によるプリンタヘッドは、インクを加熱する発熱素子が発熱素子を駆動するロジック集積回路による駆動回路と共に一体に半導体基板上に形成される。これによりこの種のプリンタヘッドにおいては、発熱素子を高密度に配置して確実に駆動できるようになされている。
すなわちこのサーマル方式のプリンタにおいて、高画質の印刷結果を得るためには、発熱素子を高密度で配置する必要がある。具体的に、例えば600〔DPI〕相当の印刷結果を得るためには、発熱素子を42.333〔μm〕間隔で配置することが必要になるが、このように高密度で配置した発熱素子に個別の駆動素子を配置することは極めて困難である。これによりプリンタヘッドでは、半導体基板上に駆動素子であるスイッチングトランジスタ等を作成して集積回路技術により対応する発熱素子と接続し、さらには同様に半導体基板上に作成した論理回路により各スイッチングトランジスタを駆動することにより、簡易かつ確実に各発熱素子を駆動できるようになされている。
プリンタヘッドにおいては、この種のスイッチングトランジスタ、スイッチングトランジスタを駆動する駆動回路が例えばMOS(Metal Oxide Semiconductor )型電界効果型トランジスタ(金属酸化物電界効果型トランジスタ)により作成され、発熱素子が例えばタンタル(Ta)、窒化タンタル(TaNX )、タンタルアルミ(TaAl)、ポリシリコン(Poly-Silicon)等により作成されるようになされている。また矩形形状によるパルス状の電圧を発熱素子に印加して発熱素子を駆動し、この発熱素子の駆動による熱をインクに伝搬してインク液滴を飛び出させるようになされている。
このようなプリンタヘッドに関して、発熱素子上に設けてなるノズルから垂直方向にインク液滴を押し出すトップシューター(フェイスシューター)方式によるプリンタヘッドにおいては、タンタルを主材料に用いた窒化タンタル、タンタルアルミ等により発熱素子が作成される。これらの材料においては、270〜300〔μΩ−cm〕の比抵抗を有し、プリンタヘッドにおいては、これらの材料による発熱素子の駆動により0.8〜1.1〔W〕程度の電力を発生するように、10〜15〔V〕程度に電源電圧が設定されるようになされている。なおこのような電源電圧にあっては、発熱素子の駆動に係るトランジスタのオン抵抗、配線抵抗等の寄生抵抗による電圧降下をも考慮して設定される。
このようなプリンタヘッドにおいては、発熱素子を駆動する際に、この発熱素子の駆動に供するMOSトランジスタのゲート・ドレイン間においても、電源電圧と同等の電圧が印加されることになる。これに対してMOSトランジスタにおいては、通常、5〔V〕以下のゲート入力電圧により動作するようになされている。このような5〔V〕以下のゲート入力電圧により動作するMOSトランジスタにおいては、ゲート・ドレイン間へ5〔V〕以上の電圧が印加されると、ソースより流れ出した電子がチャネル形成領域を通過してドレイン近傍の高電界領域で加速され、この加速した電子同士の衝突電離により生じた電子及び正孔(ホール)がゲート酸化膜中に注入され、これによりしきい値電圧が劣化し、オンオフ制御が困難になる。
このため従来、この種のプリンタヘッドのMOSトランジスタにおいては、図9に示すように、LDD(Lightly Doped Drain )構造によるMOSトランジスタが適用されるようになされている。なおここでこのLDD構造によるMOSトランジスタは、低濃度の不純物層による拡散層ARをドレインDのゲートG側端近傍に作成し、ゲートG下のチャネル形成領域とドレインDとの間の高電圧による電界をこの拡散層ARにより緩和することにより、耐圧を増大させるものである。
これに対して例えば特開2002−319631号公報においては、DDD(Double Diffused Drain)構造によるMOSトランジスタを用いるプリンタヘッドが提案されるようになされている。ここでDDD構造によるMOSトランジスタは、図10に示すように、ドレインDを囲むように低濃度の拡散層ARが作成され、これにより電界を緩和して耐圧を確保するようになされている。
また特開平10−71713号公報においては、オフセット・ドレイン構造によるMOSトランジスタがプリンタヘッドに適用されるようになされている。ここでオフセットドレイン構造によるMOSトランジスタは、図11に示すように、LDD構造に基づくものであり、拡散層ARの領域を水平方向に増大させることにより、LDD構造に比してゲートGとドレインDとの間が離されて作成され、これにより電界を緩和して耐圧を確保するようになされている。なおこのオフセット・ドレイン構造は、LD(Lateral Diffusion )構造とも呼ばれる。
オフセット・ドレイン構造のMOSトランジスタよりもさらに高耐圧が要求されるトランジスタにおいては、オフセットLOCOS(LOCOS: Local Oxidation Of Silicon )構造によるMOSトランジスタが適用されるようになされている。
ここでオフセットLOCOS構造によるMOSトランジスタは、図12に示すように、拡散層に加えて、さらにゲート電極下部のゲート酸化膜の一部に絶縁層が形成される。
具体的にこのトランジスタ1は、シリコン基板2上に拡散層であるNウェル及びPウェルが形成され、少なくとも絶縁層を形成する部位を除くシリコン基板2上にシリコン窒化膜(Si34 )が堆積される。トランジスタ1は、続いてこのシリコン窒化膜をマスクに用いた熱酸化処理により、素子分離用のLOCOS膜による絶縁層3が形成される。トランジスタ1は、続いてゲート酸化膜4、ポリシリコン5の積層構造によりゲートGが作成される。また続いてイオン注入工程、熱処理工程によりシリコン基板2が処理され、これによりソースS、ドレインDが形成され、さらにゲートGの両端にサイドウォール6が形成される。これによりトランジスタ1では、ゲート酸化膜4のドレインD側の一部に設けられた絶縁層3によりドレインDとゲートGの電極との間の距離を広げ、これにより電界を緩和して耐圧を確保するようになされている。
このようなトランジスタ1では、図12において矢印Aにより示すゲート電極近傍を図13に拡大して示すように、熱酸化処理時にマスクとして用いるシリコン窒化膜を燐酸により除去する際に、このシリコン窒化膜を完全に除去し得ずに残渣7が残る。トランジスタ1は、このような残渣7上にゲート酸化膜4が作成され、シリコン窒化膜においては、シリコンに比して酸化速度が2桁以上低いことにより、残渣7上のゲート酸化膜4中に多数のピンホールが発生する。このようなピンホールが発生すると、トランジスタ1では、このピンホールより電子が容易に通過し、通過した電子のゲート酸化膜4への注入によりしきい値電圧が劣化し、これによりオンオフ制御が困難になる。
また熱酸化処理により絶縁層3を作成する場合に、絶縁層3とゲート酸化膜4の作成領域との境界面付近でフィールド酸化膜の裾引き部が発生する。このようなフィールド酸化膜の裾引き部直下においては、×により示すように、シリコンによる結晶欠陥が発生し易く、トランジスタ1では、このような裾引き部上にゲート酸化膜4が作成されることによりこの裾引き部においても電子が通過し、これによってもしきい値電圧の劣化によりオンオフ制御が困難になる。
これらによりトランジスタ1では、このようなしきい値電圧の劣化を抑制し得る膜厚によりゲート酸化膜4が形成され、これによりゲート酸化膜4の絶縁耐性を確保するようになされている。
しかしてトランジスタ1は、ゲート酸化膜4の膜厚が厚くなり、その分、通常の5〔V〕ゲート入力動作ではオン抵抗値が増大する。このようなオン抵抗の増大を解消する方法として、ゲート入力電圧部に昇圧回路を設置し、この昇圧回路によりゲート入力電圧を昇圧させ、MOSトランジスタのドレイン電流を増大させることで、オン抵抗を低減させるようになされている。
ところで近年、この種のプリンタヘッドにおいては、発熱素子を効率良く駆動することが望まれている。具体的にMOSトランジスタによる発熱素子の駆動によりインク液滴を飛び出せる場合に、MOSトランジスタのオン抵抗値、配線パターンの抵抗値によっても、電力が消費される。これによりこのような発熱素子の駆動に係る効率は、発熱素子の抵抗値/(発熱素子の抵抗値+MOSトランジスタのオン抵抗値+配線抵抗)により表され、プリンタヘッドにおいては、発熱素子の抵抗値を高くすれば、発熱素子を効率良く駆動することができる。
しかしながらこのように発熱素子の抵抗値を高くすると、発熱素子の駆動に係る電力は、(電圧)2 /抵抗値により表されることにより、発熱素子の駆動に供するMOSトランジスタではさらにゲート・ドレイン間の耐圧を増大させることが必要になる。
これに対して図9〜図11に示すトランジスタのように、単に拡散層ARを設ける場合にあっては、拡散層ARの領域を増大させれば、耐圧を増大させることができるものの、その分、トランジスタの占有面積が増大する。これによりプリンタヘッドでは、高耐圧の駆動用のトランジスタにこの種のMOSトランジスタを適用すると、ヘッドチップの面積が増大する問題がある。またLDD構造にあっては、半導体基板に対して垂直方向に深く拡散層ARを作成してからドレインDを作成することにより、長時間に渡って熱拡散させる必要もある。またオフセットドレイン構造にあっては、拡散層ARの領域が水平方向に増大することにより、動作速度が低下し、さらにはオン抵抗が増大する問題もある。
これに対して図12に示すトランジスタ1のように、拡散層に加えてさらに絶縁層3を設ける場合にあっては、この絶縁層3により電界を緩和した分、拡散層ARの領域を増大させずに耐圧を増大させることができ、これによりプリンタヘッドでは、高耐圧の駆動用のトランジスタにこのトランジスタ1を適用すれば、耐圧を増大させてもチップ面積の増大を防止することができると考えられる。
しかしながらこのトランジスタ1を駆動用のトランジスタに適用すると、プリンタヘッドでは、高耐圧の駆動用のトランジスタとこのトランジスタを駆動する論理回路を構成するトランジスタとを異なるゲート入力電圧によりオンオフ制御することになる。これによりプリンタヘッドでは、これらのトランジスタが一体に基板上に形成されることにより、発熱素子の駆動に係る構成が煩雑になり、またゲート入力電圧部に昇圧回路を設置する分、チップ面積が増大する問題もある。
特開平2002−319631号公報 特開平10−71713号公報
本発明は以上の点を考慮してなされたもので、高耐圧の駆動用のトランジスタとこのトランジスタを駆動する論理回路とを一体に基板上に形成するようにして、チップ面積の増大、動作速度の低下を防止することができる液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法を提案しようとするものである。
かかる課題を解決するため請求項1の発明においては、発熱素子と、発熱素子を駆動する電界効果型トランジスタと、電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成し、電界効果型トランジスタによる発熱素子の駆動により液室に保持した液体を加熱して液体の液滴をノズルから飛び出させる液体吐出ヘッドに適用して、少なくとも電界効果型トランジスタは、ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成され、絶縁層は、少なくとも絶縁層を形成する部位を除く基板上にシリコン窒化膜を堆積した後、基板の熱酸化により形成され、ゲート酸化膜は、シリコン窒化膜をエッチングにより除去した後、基板の熱酸化により犠牲酸化膜が形成され、犠牲酸化膜をエッチングにより除去した後、基板の熱酸化により形成されてなるようにする。
また請求項2の発明においては、液体吐出ヘッドから飛び出す液滴を対象物に供給する液体吐出装置に適用して、液体吐出ヘッドが、発熱素子と、発熱素子を駆動する電界効果型トランジスタと、電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成し、電界効果型トランジスタによる発熱素子の駆動により液室に保持した液体を加熱して液体の液滴をノズルから飛び出させ、少なくとも電界効果型トランジスタは、ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成され、絶縁層は、少なくとも絶縁層を形成する部位を除く基板上にシリコン窒化膜を堆積した後、基板の熱酸化により形成され、ゲート酸化膜は、シリコン窒化膜をエッチングにより除去した後、基板の熱酸化により犠牲酸化膜が形成され、犠牲酸化膜をエッチングにより除去した後、基板の熱酸化により形成されてなるようにする。
また請求項3の発明においては、発熱素子と、発熱素子を駆動する電界効果型トランジスタと、電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成し、電界効果型トランジスタによる発熱素子の駆動により液室に保持した液体を加熱して液体の液滴をノズルから飛び出させる液体吐出ヘッドの製造方法に適用して、少なくとも電界効果型トランジスタは、ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成され、液体吐出ヘッドの製造方法は、少なくとも絶縁層を形成する部位を除く基板上にシリコン窒化膜を堆積した後、基板の熱酸化により絶縁層を形成し、シリコン窒化膜をエッチングにより除去した後、基板の熱酸化により犠牲酸化膜を形成し、犠牲酸化膜をエッチングにより除去した後、基板の熱酸化によりゲート酸化膜を形成する。
また請求項4の発明においては、電界効果型トランジスタと、電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成してなる集積回路に適用して、少なくとも電界効果型トランジスタは、ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成され、絶縁層は、少なくとも絶縁層を形成する部位を除く基板上にシリコン窒化膜を堆積した後、基板の熱酸化により形成され、ゲート酸化膜は、シリコン窒化膜をエッチングにより除去した後、基板の熱酸化により犠牲酸化膜が形成され、犠牲酸化膜をエッチングにより除去した後、基板の熱酸化により形成されてなるようにする。
また請求項5の発明においては、電界効果型トランジスタと、電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成してなる集積回路の製造方法に適用して、少なくとも電界効果型トランジスタは、ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成され、集積回路の製造方法は、少なくとも絶縁層を形成する部位を除く基板上にシリコン窒化膜を堆積した後、基板の熱酸化により絶縁層を形成し、シリコン窒化膜をエッチングにより除去した後、基板の熱酸化により犠牲酸化膜を形成し、犠牲酸化膜をエッチングにより除去した後、基板の熱酸化によりゲート酸化膜を形成する。
請求項1の構成により、発熱素子と、発熱素子を駆動する電界効果型トランジスタと、電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成し、電界効果型トランジスタによる発熱素子の駆動により液室に保持した液体を加熱して液体の液滴をノズルから飛び出させる液体吐出ヘッドに適用して、少なくとも電界効果型トランジスタは、ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成されてなるようにすれば、電界効果型トランジスタにおけるドレインとゲート電極との間の耐圧を増大させることができる。また請求項1の構成において、絶縁層は、少なくとも絶縁層を形成する部位を除く基板上にシリコン窒化膜を堆積した後、基板の熱酸化により形成され、ゲート酸化膜は、シリコン窒化膜をエッチングにより除去した後、基板の熱酸化により犠牲酸化膜が形成され、犠牲酸化膜をエッチングにより除去した後、基板の熱酸化により形成されてなるようにすれば、論理回路と同等のゲート入力電圧に対応する膜厚により電界効果型トランジスタのゲート酸化膜を形成して、このゲート酸化膜の絶縁性を確保することができる。これにより高耐圧の駆動用のトランジスタとこのトランジスタを駆動する論理回路とを一体に基板上に形成するようにして、チップ面積の増大、動作速度の低下を防止することができる。
これにより請求項2及び請求項3の構成によれば、高耐圧の駆動用のトランジスタとこのトランジスタを駆動する論理回路とを一体に基板上に形成するようにして、チップ面積の増大、動作速度の低下を防止することができる液体吐出装置及び液体吐出ヘッドの製造方法を提供することができる。
また請求項4及び請求項5の構成によれば、高耐圧の駆動用のトランジスタとこのトランジスタを駆動する論理回路とを一体に基板上に形成するようにして、チップ面積の増大、動作速度の低下を防止することができる集積回路及び集積回路の製造方法を提供することができる。
本発明によれば、高耐圧の駆動用のトランジスタとこのトランジスタを駆動する論理回路とを一体に基板上に形成するようにして、チップ面積の増大、動作速度の低下を防止することができる。
以下、適宜図面を参照しながら本発明の実施例を詳述する。
(1)実施例の構成
図2は、本発明に係るラインプリンタを示す斜視図である。このラインプリンタ11は、フルラインタイプのラインプリンタであり、略長方形形状によりプリンタ本体12が形成される。このラインプリンタ11は、印刷対象である用紙13を収納した用紙トレイ14をこのプリンタ本体12の正面に形成されたトレイ出入口より装着することにより、用紙13を給紙できるようになされている。
ラインプリンタ11は、このようにトレイ出入口よりプリンタ本体12に用紙トレイ14が装着されると、このプリンタ本体12に設けられた給紙ローラの回転によりプリンタ本体12の背面側に向かって用紙トレイ14から用紙13が送り出され、プリンタ本体12の背面側に設けられた反転ローラによりこの用紙13の送り方向が正面方向に切り換えられる。ラインプリンタ11は、このようにして用紙送り方向が正面方向に切り換えられてなる用紙13が用紙トレイ14上を横切るように搬送され、ラインプリンタ11の正面側に配置された排出口よりトレイ15に排出される。
ラインプリンタ11は、上側端面に上蓋16が設けられ、この上蓋16の内側、正面方向への用紙搬送途中に、矢印Aにより示すように、ヘッドカートリッジ18が交換可能に配置される。
ここでヘッドカートリッジ18は、イエロー、マゼンタ、シアン、ブラックの4色によるフルラインタイプのプリンタヘッドであり、上側に各色のインクタンク19Y、19M、19C、19Kが設けられるようになされている。ヘッドカートリッジ18は、これらインクタンク19Y、19M、19C、19Kに係るプリンタヘッドのアッセンブリーであるヘッドアッセンブリー20と、このヘッドアッセンブリー20の用紙13側に設けられて、不使用時、ヘッドアッセンブリー20に設けられたノズル列を塞いでインクの乾燥を防止するヘッドキャップ21とにより構成される。これによりラインプリンタ11においては、このヘッドカートリッジ18に設けられたヘッドアッセンブリー20の駆動により、各色のインク液滴を用紙13に付着させて所望の画像等をカラーにより印刷することができるようになされている。
図3は、このヘッドアッセンブリー20を用紙13側より見てインク液滴Dの吐出に係る部分を拡大し、一部断面を取って示す斜視図である。ヘッドアッセンブリー20は、インク液室22の隔壁23等を作成したヘッドチップ24を順次ヘッドフレームに貼り付けた後、ボンディング端子26を介してヘッドチップ24を配線して形成される。
ここでヘッドチップ24は、複数の発熱素子27、この複数の発熱素子27を駆動する駆動回路、この駆動回路の駆動に供する電源等を入力するパッド28等が形成されたものであり、ノズルシート25側から見て全体が長方形形状により形成され、この長方形形状の長辺の一辺に沿って複数の発熱素子27が所定ピッチにより配置される。
ヘッドチップ24は、この一辺側が開いてなるように、櫛の歯形状によりインク液室22の隔壁23が形成され、これによりこの一辺側にインク流路を形成して、このインク流路からそれぞれ対応するインクタンク19Y、19M、19C、19Kのインクを各インク液室22に導き得るようになされ、またこのようにしてインク液室22に導かれたインクを発熱素子27の駆動により加熱できるようになされている。
ヘッドチップ24は、半導体ウエハの段階で、露光硬化型のドライフィルムレジストを発熱素子27側面に積層した後、フォトリソプロセスによってこのドライフィルムレジストからインク液室の部位等を取り除くことにより、隔壁23が形成されるようになされている。
これに対してノズルシート25は、イエロー、マゼンタ、シアン、ブラックのインクにそれぞれ対応する用紙幅によるノズル29の列が並設されたシート状部材であり、電鋳技術により形成される。ノズルシート25は、各ノズル29の列を間に挟んで千鳥に、各ヘッドチップ24をそれぞれボンディング端子26にワイヤボンディングする際の作業用の開口30が形成されるようになされている。
図4は、このヘッドアッセンブリー20に配置されるヘッドチップ近傍の構成を示す断面図である。ヘッドチップ24は、半導体製造工程により、複数チップ分がシリコン基板による半導体ウエハ上にまとめて形成された後、各チップにスクライビングされて形成される。
この実施例においては、発熱素子の駆動に供する高耐圧の駆動用のスイッチングトランジスタ32がオフセットLOCOS構造によるNチャンネルMOS型のトランジスタにより作成され、このスイッチングトランジスタ32を駆動する論理回路を構成する論理回路用のスイッチングトランジスタ33等がNチャンネルMOS型及びPチャンネルMOS型のトランジスタにより作成される。またこれらのトランジスタ32及び33等が同等のゲート入力電圧により動作するように作成される。
すなわち図5(A)に示すように、ヘッドチップ24は、ウエハによるP型シリコン基板34が洗浄された後、フォトリソグラフィー工程、イオン注入工程、熱拡散工程によりシリコン基板34が処理され、これによりシリコン基板34中にNウェル領域及びPウェル領域が形成される。
続いてヘッドチップ24は、膜厚100〔nm〕によりシリコン窒化膜(Si34 )が堆積された後、フォトリソグラフィー工程、リアクティブイオンエッチング工程によりシリコン基板34が処理され、これによりトランジスタ32、33を形成する所定領域以外の領域よりシリコン窒化膜が取り除かれる。これらによりヘッドチップ24は、シリコン基板34上のトランジスタを作成する領域にシリコン窒化膜が堆積される。またこのときトランジスタ32を作成する領域においては、続く工程でオフセットLOCOS構造に係る絶縁層が併せて形成されるように、この絶縁層を形成する領域よりシリコン窒化膜が取り除かれる。
続いてヘッドチップ24は、熱酸化工程によりシリコン窒化膜が除去されている領域に熱シリコン酸化膜が膜厚770〔nm〕により形成され、この熱シリコン酸化膜によりトランジスタを分離するための素子分離領域(LOCOS)35及び長さ4.0〔μm〕による絶縁層36が形成される。これによりヘッドチップ24は、素子分離領域35を作成する際に併せてオフセットLOCOS構造に係る絶縁層36を作成し、工程数の増大を防止するようになされている。
ヘッドチップ24は、続いて加熱された燐酸溶液中にシリコン基板34が浸漬され、この燐酸を用いたエッチングによりシリコン窒化膜が除去される。これらによりトランジスタ32のゲート作成領域においては、図1(A)により示すように、シリコン窒化膜が完全に除去されずに残る残渣37が発生し、また×により示すように、絶縁層36による裾引き部近傍でシリコン基板34の結晶欠陥38が発生することになる。
続いてヘッドチップ24は、イオン注入工程によりシリコン基板34が処理され、これによりトランジスタ32、33のしきい値電圧が調整される。さらに続いて図5(B)に示すように、熱処理炉において、水素と酸素とによる混合ガス(H2 /O2 )の雰囲気中で、950度により熱処理が実施され、膜厚100〜200〔nm〕による熱酸化膜39(以下、犠牲酸化膜と呼ぶ)が形成される。このときトランジスタ32のゲート作成領域においては、犠牲酸化膜39中に残渣37が吸収されると共に、絶縁層36の裾引き部での結晶欠陥38が修復される(図1(B))。
続いてヘッドチップ24は、フォトリソグラフィー工程により素子分離領域35及び絶縁層36がレジスト層によりマスクされた後、さらに続いて図6(C)に示すように、100〜150秒間、100:1程度に希釈してなる希フッ酸溶液中にシリコン基板34が浸漬され、この希フッ酸を用いたエッチングにより犠牲酸化膜39が除去される。ヘッドチップ24は、その後流水により洗浄され、これによりトランジスタ32のゲート作成領域にあっては、残渣37も併せて除去されてシリコン基板34の清浄な表面が露出される(図1(C))。
このようにしてトランジスタ32、33のゲート作成領域の表面が清浄にされると、続いて図6(D)に示すように、再び、熱処理炉において、水素と酸素とによる混合ガス(H2 /O2 )の雰囲気中で、900度により熱処理が実施され、これらの領域においては、トランジスタ32のゲート酸化膜となる熱酸化膜40が所望の膜厚により形成される(図1(D))。
ここでこのようなゲート酸化膜の膜厚においては、ゲート入力電圧及びゲート長に基づいて設定され、具体的に例えばゲート入力電圧5〔V〕、ゲート長2.0〔μm〕によるトランジスタの場合、膜厚34〔nm〕程度に設定される。またゲート入力電圧5〔V〕、ゲート長1.0〔μm〕によるトランジスタの場合には膜厚20〔nm〕程度に設定され、ゲート入力電圧5〔V〕、ゲート長0.7〔μm〕によるトランジスタの場合には膜厚16〔nm〕程度に設定される。因みに、近年、トランジスタのゲート入力電圧においては、MOS型ロジック回路の微細化に伴い、5.0〔V〕から3.3〔V〕さらには2.5〔V〕へと遷移する傾向があり、このような低電圧化に対応する場合、ゲート酸化膜の膜厚においては、ゲート入力電圧3.3〔V〕、ゲート長0.7〔μm〕によるトランジスタの場合には膜厚8〔nm〕程度に設定され、またゲート入力電圧2.5〔V〕、ゲート長0.7〔μm〕によるトランジスタの場合には膜厚6〔nm〕程度に設定される。
この実施例では、ゲート長2.0〔μm〕による高耐圧の駆動用のトランジスタ32がゲート入力電圧5〔V〕により動作するように、ゲート酸化膜が膜厚34〔nm〕程度により形成されるのに対し、ゲート長1.0〔μm〕による論理回路用のトランジスタ33がゲート入力電圧5〔V〕により動作するように、トランジスタ33のゲート酸化膜が膜厚20〔nm〕程度により形成される。
このためヘッドチップ24は、続いて論理回路用のトランジスタ33のゲート酸化膜が対応する膜厚により形成される。すなわち図7(E)に示すように、フォトリソグラフィー工程により、素子分離領域35、絶縁層36及びトランジスタ32の作成領域がレジスト層によりマスクされた後、図6(C)と同様に希フッ酸を用いた洗浄処理が実施される。さらに続いて図7(F)に示すように、熱処理炉において、水素と酸素とによる混合ガス(H2 /O2 )の雰囲気中で、850度により熱処理が実施され、論理回路用のトランジスタ33のゲート酸化膜となる熱酸化膜41が膜厚20〔nm〕程度により形成される。
続いてヘッドチップ24は、シリコン基板34が洗浄された後、図8(G)に示すように、CVD(Chemical Vapor Deposition )法により膜厚100〔nm〕によりポリシリコンが堆積される。また続いてWF6 +SiH4 系のガスを用いたCVD法によりタングステンシリサイド膜が膜厚100〔nm〕により堆積される。さらにリソグラフィー工程によりゲート領域が露光処理された後、SF6 +HBr系の混合ガスを用いたドライエッチングにより、余剰な熱酸化膜40及び41、ポリシリコン膜、タングステンシリサイド膜が除去される。これによりスイッチングトランジスタ32の作成領域においては、ゲート酸化膜42、ポリシリコン膜44、タングステンシリサイド膜45によるポリサイド構造によりゲートGの電極がゲート長2〔μm〕により形成され、スイッチングトランジスタ33の作成領域においては、ゲート酸化膜43、ポリシリコン膜44、タングステンシリサイド膜45によるポリサイド構造によりゲートGの電極がゲート長1〔μm〕により形成される。
続いてヘッドチップ24は、イオン注入工程、熱処理工程によりシリコン基板34が処理されてソースS及びドレインDが形成され、さらに続いてCVD法を用いたシリコン酸化膜(SiO2 )の堆積とリアクティブイオンエッチング法とによりゲートGの両端にサイドウォール46が形成される。
このようにしてMOS型によるトランジスタ32、33を作成するにつき、ヘッドチップ24は、オフセットLOCOS構造による高耐圧の駆動用のトランジスタと、このトランジスタを駆動する論理回路用のトランジスタとが一体にシリコン基板34上に形成されるようになされている。これによりヘッドチップ24では、トランジスタ32のゲート・ドレイン間の耐圧を増大し得、また単に拡散層を設ける構造によるトランジスタに比してこの耐圧の増大によるチップ面積の増大を防止できるようになされている。
さらにこの実施例においては、このトランジスタ32のゲート酸化膜42がトランジスタ33と同等のゲート入力電圧に対応する膜厚により作成され、このゲート酸化膜42を形成する前に犠牲酸化膜39を形成して除去することにより、ゲート酸化膜42の絶縁性が確保される。これによりヘッドチップ24では、論理回路用のトランジスタ33と同等のゲート入力電圧により高耐圧の駆動用のトランジスタ32をオンオフ制御するようにして、ゲート酸化膜の厚膜化により絶縁性を確保しない分、チップ面積の増大、動作速度の低下を防止するようになされている。
なおこの実施例において、スイッチングトランジスタ32は、ゲート・ドレイン間の耐圧を40〔V〕程度まで増大させた。また残渣37の除去に供する犠牲酸化膜39の膜厚においてはシリコン窒化膜の膜厚100〔nm〕より厚い180〔nm〕程度により形成し、これによりゲート作成領域から残渣37を確実に除去するようにした。
このようにしてトランジスタ32、33が作成されると、ヘッドチップ24は、続いて図8(H)に示すように、CVD法によりシリコン酸化膜であるNSG(Non-doped Silicate Glass)膜、ボロンとリンが添加されたシリコン酸化膜であるBPSG(Boron Phosphorus Silicate Glass)膜が順次膜厚100〔nm〕、500〔nm〕により作成され、これにより全体として膜厚が600〔nm〕による1層目の層間絶縁膜47が作成される。
続いてフォトリソグラフィー工程の後、C48 /CO/O2 /Ar系ガスを用いたリアクティブイオンエッチング法によりシリコン半導体拡散層(ソース・ドレイン)上にコンタクトホール48が作成される。
さらにヘッドチップ24は、スパッタリング法により、膜厚30〔nm〕によるチタン、膜厚70〔nm〕による窒化酸化チタンバリアメタル、膜厚30〔nm〕によるチタン、シリコンが1〔at%〕添加されたアルミニューム、または銅が0.5〔at%〕添加されたアルミニュームが膜厚500〔nm〕により順次堆積される。続いてヘッドチップ24は、反射防止膜である窒化酸化チタンが膜厚25〔nm〕により堆積され、これらにより配線パターン材料層が成膜される。
さらに続いてフォトリソグラフィー工程、ドライエッチング工程により、成膜された配線パターン材料層が選択的に除去され、1層目の配線パターン49が作成される。ヘッドチップ24は、このようにして作成された1層目の配線パターン49により、論理回路用のトランジスタ33を接続してロジック集積回路が形成されるようになされている。
ヘッドチップ24は、続いてTEOS(テトラエトキシシラン:Si(OC254 )を原料ガスとしたCVD法により層間絶縁膜であるシリコン酸化膜が堆積される。続いてヘッドチップ24は、SOG(Spin On Glass )を含む塗布型シリコン酸化膜の塗布とエッチバックとにより、シリコン酸化膜が平坦化され、これらの工程が2回繰り返されて1層目の配線パターン49と続く2層目の配線パターンとを絶縁する膜厚440〔nm〕のシリコン酸化膜による2層目の層間絶縁膜50が形成される。
ヘッドチップ24は、続いてスパッタリング装置により膜厚50〜100〔nm〕によるβ−タンタル膜が堆積され、これによりシリコン基板34上に抵抗体膜が成膜される。なおスパッタリングの条件は、ウエハ加熱温度200〜400度、直流印加電力2〜4〔kW〕、アルゴンガス流量25〜40〔sccm〕に設定した。さらに続いてヘッドチップ24は、フォトリソグラフィー工程、BCl3 /Cl2 ガスを用いたドライエッチング工程により、正方形形状により、又は一端を配線パターンにより接続する折り返し形状により抵抗体膜が選択的に除去され、40〜100〔Ω〕の抵抗値を有する発熱素子27が形成される。
このようにして発熱素子27が形成されると、ヘッドチップ24は、CVD法により膜厚300〔nm〕によるシリコン窒化膜が堆積され、発熱素子27の絶縁保護層52が形成される。続いてフォトレジスト工程、CHF3 /CF4 /Arガスを用いたドライエッチング工程により、所定箇所のシリコン窒化膜が除去され、これにより発熱素子27を配線パターンに接続する部位が露出される。さらにCHF3 /CF4 /Arガスを用いたドライエッチング工程により、層間絶縁膜50に開口を形成してビアホール53が作成される。
さらにヘッドチップ24は、スパッタリング法により、膜厚200〔nm〕によるチタン、シリコンを1〔at%〕添加したアルミニューム、または銅を0.5〔at%〕添加したアルミニュームが膜厚600〔nm〕により順次堆積される。続いてヘッドチップ24は、膜厚25〔nm〕による窒化酸化チタンが堆積され、これにより反射防止膜が形成される。これらによりヘッドチップ24は、シリコン又は銅を添加したアルミニュームによる配線パターン材料層が形成される。
続いてフォトリソグラフィー工程、BCl3 /Cl2 ガスを用いたドライエッチング工程により配線パターン材料層が選択的に除去され、2層目の配線パターン54が作成される。ヘッドチップ24は、この2層目の配線パターン54により、電源用の配線パターン、アース用の配線パターンが作成され、またドライバートランジスタ32を発熱素子27に接続する配線パターンが作成される。なお発熱素子27の上層に取り残されたシリコン窒化膜52にあっては、この配線パターン作成の際のエッチング工程において、エッチングに供する塩素ラジカルから発熱素子27を保護する保護層として機能する。またこのシリコン窒化膜52においては、このエッチング工程において、塩素ラジカルに曝される部位が膜厚300〔nm〕から膜厚100〔nm〕に減少する。
続いてヘッドチップ24は、インク保護層、絶縁層として機能するシリコン窒化膜55がプラズマCVD法により膜厚400〔nm〕により堆積される。さらに熱処理炉において、4〔%〕の水素を添加した窒素ガスの雰囲気中で、又は100〔%〕の窒素ガス雰囲気中で、400度、60分間の熱処理が実施される。これによりヘッドチップ24は、トランジスタ32、33の動作が安定化され、さらに1層目の配線パターン49と2層目の配線パターン54との接続が安定化されてコンタクト抵抗が低減される。
ヘッドチップ24は、続いて耐キャビテーション材料層が膜厚200〔nm〕により堆積された後、BCl3 /Cl2 ガスを用いたパターニングにより耐キャビテーション層56が形成される。この実施例では、タンタルをターゲットに用いたDCマグネトロン・スパッタリング装置によりβ−タンタルによる耐キャビテーション層56が形成される。なおここで耐キャビテーション層56は、発熱素子27の駆動によりインク液室22に発生した気泡が消滅する際の物理的ダメージ(キャビテーション)を吸収して発熱素子27を保護し、また発熱素子27の駆動により高温となったインクの化学作用から発熱素子27を保護する保護層である。
ヘッドチップ24は、続いて図4に示すように、感光性有機系樹脂が塗布された後、露光現像工程によりインク液室22及びインク流路に対応する部位が取り除かれ、その後硬化され、これによりインク液室22の隔壁23、インク流路の隔壁23等が作成される。ヘッドチップ24は、このようにしてシリコン基板34上に作成された複数ヘッドチップ分がスクライビングされて作成される。
(2)実施例の動作
以上の構成において、このラインプリンタ11においては(図2)、印刷に供する画像データ、テキストデータ等によるヘッドカートリッジ18の駆動により、印刷対象である用紙13を所定の用紙送り機構により搬送しながら、ヘッドカートリッジ18に設けられたヘッドアッセンブリー20からインク液滴が吐出され、このインク液滴が搬送中の用紙13に付着して画像、テキスト等が印刷される。これに対応してヘッドカートリッジ18のヘッドアッセンブリー20においては(図2、図3)、インクタンク19Y、19M、19C、19Kのインクが各ヘッドチップ24に形成されたインク液室22に導かれ、発熱素子27の駆動によるこのインク液室22のインクの加熱により、ノズルシート25に設けられたノズル29からインク液滴Lが吐出される。これらによりこのラインプリンタ11においては、所望の画像等を印刷することができるようになされている。
しかしてこのヘッドアッセンブリー20においては、複数の発熱素子27、この複数の発熱素子27を駆動するトランジスタ32、このトランジスタ32を駆動する論理回路を構成するトランジスタ33等を一体に形成してなるヘッドチップ24(図4〜図8)と、インク液滴を吐出するノズル29によるノズル列、開口30を電鋳処理により作成してなるシート状の部材であるノズルシート25とを配置して形成される(図3)。またこのようなノズル29によるノズル列が、印刷対象の用紙幅により形成され、これによりフルラインタイプのラインヘッドが構成され、シリアルヘッドのプリンタヘッドによる場合に比して高速度に所望の画像等を印刷することができる。
このようなヘッドアッセンブリー20においては、高耐圧の駆動用のトランジスタ32がオフセットLOCOS構造により作成され、これにより発熱素子27の駆動に係るゲート・ドレイン間の耐圧が増大される。このようなオフセットLOCOS構造によるトランジスタ32においては、絶縁層36の作成時に、シリコン窒化膜による残渣37と結晶欠陥38とがゲート酸化膜42の作成領域に発生する(図1(A))。通常、この種のトランジスタにおいては、これら残渣37及び結晶欠陥38によるしきい値電圧の劣化を抑制する膜厚によりゲート酸化膜が形成され、これによりゲート酸化膜の絶縁性が確保される。
しかしてこのようにしてゲート酸化膜42の絶縁性を確保した場合にあっては、トランジスタ32のゲート入力電圧部に設けた昇圧回路によりゲート入力電圧を昇圧することになり、これによりヘッドアッセンブリー20では、異なるゲート入力電圧によりトランジスタ32及び33をオンオフ制御することにより、発熱素子27の駆動に係る構成が煩雑になり、また昇圧回路を設けた分、ヘッドチップの面積が増大する。
しかしながらこの実施例では、論理回路用のトランジスタ33と同等のゲート入力電圧に対応する膜厚によりゲート酸化膜42が形成され、このゲート酸化膜42を形成する前に犠牲酸化膜39を形成して除去することにより、このゲート酸化膜42の絶縁性が確保される。
すなわちゲート酸化膜42の作成領域においては、基板34の熱酸化により結晶欠陥38が修復されると共に犠牲酸化膜39中に残渣37が吸収され(図1(B))、エッチングによる犠牲酸化膜39の除去により併せて残渣37が除去される(図1(C))。これによりシリコン基板34の清浄な表面が露出され、その後、この清浄な表面の熱酸化によりゲート酸化膜42が形成される(図1(D))。
これによりヘッドアッセンブリー20では、トランジスタ32及び33を同一のゲート入力電圧によりオンオフ制御するようにして、トランジスタ32のゲート酸化膜42の厚膜化により絶縁性を確保しない分、ヘッドチップの面積増大、動作速度の低下、オン抵抗値の増大を防止することができる。
実際上、従来の単に拡散層を設ける構造によりゲート・ドレイン間が20〔V〕程度の耐圧を有するトランジスタを作成したところ、チップ面積の増大が著しく、さらに動作速度の低下、オン抵抗値の増大が見られたのに対し、本実施例に係る構成によりゲート・ドレイン間が40〔V〕程度の耐圧を有するトランジスタを作成したところ、チップ面積の増大、動作速度の低下、オン抵抗値の増大は何ら見られなかった。
またこのようなゲート酸化膜42の絶縁性の確保に供する犠牲酸化膜39においては、絶縁層36の作成に供するシリコン窒化膜の膜厚に比して厚い膜厚により形成されることにより、確実にゲートの作成領域より残渣37を除去することができる。
(3)実施例の効果
以上の構成によれば、高耐圧の駆動用のトランジスタをオフセットLOCOS構造により形成し、該トランジスタのゲート酸化膜を形成する前に犠牲酸化膜を形成して除去することにより、高耐圧の駆動用のトランジスタとこのトランジスタを駆動する論理回路とを一体に基板上に形成するようにして、チップ面積の増大、動作速度の低下を防止することができる。
なお上述の実施例においては、高耐圧の駆動用のトランジスタとこのトランジスタを駆動するトランジスタとを異なるゲート長により作成することにより、それぞれ対応する膜厚によりゲート酸化膜を形成する場合について述べたが、本発明はこれに限らず、これらのトランジスタを同一ゲート長により作成する場合にも広く適用することができる。なおこの場合、ゲート酸化膜の作成工程を簡略化することができる。
また上述の実施例においては、カラー印刷用のフルラインタイプのプリンタヘッドに本発明を適用して4本のノズル列を作成する場合について述べたが、本発明はこれに限らず、例えば白黒印刷用のフルラインタイプのプリンタヘッドに本発明を適用してノズル列を1本により作成する場合等、種々の本数によりノズル列を作成する場合に広く適用することができる。
また上述の実施例においては、本発明をプリンタヘッドに適用してインク液滴を飛び出させる場合について述べたが、本発明はこれに限らず、インク液滴に代えて液滴が各種染料の液滴、保護層形成用の液滴等である液体吐出ヘッド、さらには液滴が試薬等であるマイクロディスペンサー、各種測定装置、各種試験装置、液滴がエッチングより部材を保護する薬剤である各種のパターン描画装置等に広く適用することができる。
また上述の実施例においては、サーマル方式によるプリンタヘッドに本発明を適用する場合について述べたが、サーマル方式によるプリンタヘッドに限らず、例えば周波数制御に係るモーターの駆動用の集積回路、各種アクチュエータを駆動する駆動用の集積回路等にも広く適用することができる。
本発明は、液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法に関し、例えばサーマル方式によるインクジェットプリンタに適用することができる。
本発明の実施例1に係るラインプリンタに適用されるヘッドアッセンブリーのヘッドチップの作成工程によるトランジスタの説明に供する断面図である。 本発明の実施例1に係るラインプリンタを示す斜視図である。 図2のヘッドアッセンブリーのインク液滴の吐出に係る部分を拡大して示す斜視図である。 図2のヘッドアッセンブリーのインク液滴の吐出に係る部分を示す断面図である。 図4のヘッドアッセンブリーにおけるヘッドチップの作成工程の説明に供する断面図である。 図5の続きを示す断面図である。 図6の続きを示す断面図である。 図7の続きを示す断面図である。 従来のプリンタヘッドに適用されるトランジスタを示す断面図である。 DDD構造によるトランジスタを示す断面図である。 オフセットドレイン構造によるトランジスタを示す断面図である。 オフセットLOCOS構造によるトランジスタを示す断面図である。 図12のトランジスタのゲート電極近傍の説明に供する断面図である。
符号の説明
1、32、33……トランジスタ、2、34……基板、3、36……絶縁層、4、42、43……ゲート酸化膜、7、37……残渣、11……ラインプリンタ、20……ヘッドアッセンブリー、24……ヘッドチップ、27……発熱素子

Claims (5)

  1. 発熱素子と、前記発熱素子を駆動する電界効果型トランジスタと、前記電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成し、前記電界効果型トランジスタによる前記発熱素子の駆動により液室に保持した液体を加熱して前記液体の液滴をノズルから飛び出させる液体吐出ヘッドにおいて、
    少なくとも前記電界効果型トランジスタは、
    ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成され、
    前記絶縁層は、
    少なくとも前記絶縁層を形成する部位を除く前記基板上にシリコン窒化膜を堆積した後、前記基板の熱酸化により形成され、
    前記ゲート酸化膜は、
    前記シリコン窒化膜をエッチングにより除去した後、前記基板の熱酸化により犠牲酸化膜が形成され、
    前記犠牲酸化膜をエッチングにより除去した後、前記基板の熱酸化により形成された
    ことを特徴とする液体吐出ヘッド。
  2. 液体吐出ヘッドから飛び出す液滴を対象物に供給する液体吐出装置において、
    前記液体吐出ヘッドが、
    発熱素子と、前記発熱素子を駆動する電界効果型トランジスタと、前記電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成し、前記電界効果型トランジスタによる前記発熱素子の駆動により液室に保持した液体を加熱して前記液体の液滴をノズルから飛び出させ、
    少なくとも前記電界効果型トランジスタは、
    ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成され、
    前記絶縁層は、
    少なくとも前記絶縁層を形成する部位を除く前記基板上にシリコン窒化膜を堆積した後、前記基板の熱酸化により形成され、
    前記ゲート酸化膜は、
    前記シリコン窒化膜をエッチングにより除去した後、前記基板の熱酸化により犠牲酸化膜が形成され、
    前記犠牲酸化膜をエッチングにより除去した後、前記基板の熱酸化により形成された
    ことを特徴とする液体吐出装置。
  3. 発熱素子と、前記発熱素子を駆動する電界効果型トランジスタと、前記電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成し、前記電界効果型トランジスタによる前記発熱素子の駆動により液室に保持した液体を加熱して前記液体の液滴をノズルから飛び出させる液体吐出ヘッドの製造方法において、
    少なくとも前記電界効果型トランジスタは、
    ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成され、
    前記液体吐出ヘッドの製造方法は、
    少なくとも前記絶縁層を形成する部位を除く前記基板上にシリコン窒化膜を堆積した後、前記基板の熱酸化により前記絶縁層を形成し、
    前記シリコン窒化膜をエッチングにより除去した後、前記基板の熱酸化により犠牲酸化膜を形成し、
    前記犠牲酸化膜をエッチングにより除去した後、前記基板の熱酸化により前記ゲート酸化膜を形成する
    ことを特徴とする液体吐出ヘッドの製造方法。
  4. 電界効果型トランジスタと、前記電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成してなる集積回路において、
    少なくとも前記電界効果型トランジスタは、
    ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成され、
    前記絶縁層は、
    少なくとも前記絶縁層を形成する部位を除く前記基板上にシリコン窒化膜を堆積した後、前記基板の熱酸化により形成され、
    前記ゲート酸化膜は、
    前記シリコン窒化膜をエッチングにより除去した後、前記基板の熱酸化により犠牲酸化膜が形成され、
    前記犠牲酸化膜をエッチングにより除去した後、前記基板の熱酸化により形成された
    ことを特徴とする集積回路。
  5. 電界効果型トランジスタと、前記電界効果型トランジスタを駆動する論理回路とを一体に基板上に形成してなる集積回路の製造方法において、
    少なくとも前記電界効果型トランジスタは、
    ゲート電極下部のゲート酸化膜のドレイン側の一部に、ドレインとゲート電極との間の電界を緩和する絶縁層が形成され、
    前記集積回路の製造方法は、
    少なくとも前記絶縁層を形成する部位を除く前記基板上にシリコン窒化膜を堆積した後、前記基板の熱酸化により前記絶縁層を形成し、
    前記シリコン窒化膜をエッチングにより除去した後、前記基板の熱酸化により犠牲酸化膜を形成し、
    前記犠牲酸化膜をエッチングにより除去した後、前記基板の熱酸化により前記ゲート酸化膜を形成する
    ことを特徴とする集積回路の製造方法。
JP2003420847A 2003-12-18 2003-12-18 液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法 Pending JP2005178116A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003420847A JP2005178116A (ja) 2003-12-18 2003-12-18 液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003420847A JP2005178116A (ja) 2003-12-18 2003-12-18 液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法

Publications (1)

Publication Number Publication Date
JP2005178116A true JP2005178116A (ja) 2005-07-07

Family

ID=34782253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003420847A Pending JP2005178116A (ja) 2003-12-18 2003-12-18 液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法

Country Status (1)

Country Link
JP (1) JP2005178116A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018134A (ja) * 2011-07-07 2013-01-31 Canon Inc 駆動回路、液体吐出用基板、及びインクジェット記録ヘッド
JP2015214069A (ja) * 2014-05-09 2015-12-03 キヤノン株式会社 液体吐出用基板、液体吐出用ヘッド、および、記録装置
JP2016179696A (ja) * 2016-07-13 2016-10-13 キヤノン株式会社 記録ヘッド用基板及び記録装置
US10226921B2 (en) 2012-09-18 2019-03-12 Canon Kabushika Kaisha Printhead substrate and printing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370363A (ja) * 2001-06-15 2002-12-24 Canon Inc インクジェット記録ヘッド用基板、インクジェット記録ヘッド、インクジェット記録装置
JP2003237089A (ja) * 2002-02-19 2003-08-26 Sony Corp プリンタの駆動条件の設定方法及びプリンタ
JP2003531755A (ja) * 2000-05-03 2003-10-28 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー 2次元ノズル配置を有するインクジェットプリントヘッド及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531755A (ja) * 2000-05-03 2003-10-28 コリア アドバンスト インスティテュート オブ サイエンス アンド テクノロジー 2次元ノズル配置を有するインクジェットプリントヘッド及びその製造方法
JP2002370363A (ja) * 2001-06-15 2002-12-24 Canon Inc インクジェット記録ヘッド用基板、インクジェット記録ヘッド、インクジェット記録装置
JP2003237089A (ja) * 2002-02-19 2003-08-26 Sony Corp プリンタの駆動条件の設定方法及びプリンタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013018134A (ja) * 2011-07-07 2013-01-31 Canon Inc 駆動回路、液体吐出用基板、及びインクジェット記録ヘッド
US10226921B2 (en) 2012-09-18 2019-03-12 Canon Kabushika Kaisha Printhead substrate and printing apparatus
JP2015214069A (ja) * 2014-05-09 2015-12-03 キヤノン株式会社 液体吐出用基板、液体吐出用ヘッド、および、記録装置
JP2016179696A (ja) * 2016-07-13 2016-10-13 キヤノン株式会社 記録ヘッド用基板及び記録装置

Similar Documents

Publication Publication Date Title
JP3812485B2 (ja) 液体吐出装置及びプリンタ
US20070058002A1 (en) Liquid jetting head, liquid jetting apparatus, and method of manufacturing the liquid jetting head
JP2005178116A (ja) 液体吐出ヘッド、液体吐出装置、液体吐出ヘッドの製造方法、集積回路、集積回路の製造方法
JP4604337B2 (ja) プリンタ、プリンタヘッド及びプリンタヘッドの製造方法
WO2005021268A1 (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
US7018020B2 (en) Structure with through hole, production method thereof, and liquid discharge head
JP2006110845A (ja) 液体吐出ヘッド及び液体吐出装置
JP3695530B2 (ja) プリンタヘッドの製造方法
JP4617823B2 (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP4385680B2 (ja) 液体吐出ヘッドの製造方法、液体吐出ヘッド及び液体吐出装置
JP4617824B2 (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP4661162B2 (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP2005067163A (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP2005119212A (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP2005305963A (ja) 液体吐出ヘッドの製造方法、液体吐出ヘッド及び液体吐出装置
JP2005271497A (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP2004276511A (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP2004268277A (ja) 液体吐出ヘッド及び液体吐出装置並びに液体吐出ヘッドの製造方法
JP2006116832A (ja) 液体吐出ヘッド及び液体吐出装置
JP2005022267A (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP2006116838A (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP2004167822A (ja) 液体吐出ヘッドの製造方法、液体吐出ヘッド及び液体吐出装置
JP2005035234A (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP2004276378A (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法
JP2004017567A (ja) 液体吐出ヘッド、液体吐出装置及び液体吐出ヘッドの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914