JP2003277033A - Method for growing carbon nanotube - Google Patents

Method for growing carbon nanotube

Info

Publication number
JP2003277033A
JP2003277033A JP2002084173A JP2002084173A JP2003277033A JP 2003277033 A JP2003277033 A JP 2003277033A JP 2002084173 A JP2002084173 A JP 2002084173A JP 2002084173 A JP2002084173 A JP 2002084173A JP 2003277033 A JP2003277033 A JP 2003277033A
Authority
JP
Japan
Prior art keywords
metal pattern
layer
catalytic metal
growing
carbon nanotubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002084173A
Other languages
Japanese (ja)
Other versions
JP3443646B1 (en
Inventor
Taketaka Ono
雄高 大野
Takashi Mizutani
孝 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Original Assignee
Nagoya University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC filed Critical Nagoya University NUC
Priority to JP2002084173A priority Critical patent/JP3443646B1/en
Application granted granted Critical
Publication of JP3443646B1 publication Critical patent/JP3443646B1/en
Publication of JP2003277033A publication Critical patent/JP2003277033A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To grow high-quality carbon nanotubes in a desired position. <P>SOLUTION: A multilayer catalyst metal pattern having layers of two or more kinds of different catalyst metals is heat treated prior to a CVD method. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子デバイスに応
用が期待されるカーボンナノチューブの成長方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for growing carbon nanotubes, which is expected to be applied to electronic devices.

【0002】[0002]

【従来の技術】カーボンナノチューブは、炭素6員環が
連なったグラファイトの一層を丸めた直径約数nmの円
筒状の物質である。所望の構造のカーボンナノチューブ
を作り、これをつなげることができれば、ナノメートル
サイズのデバイスが実現可能となるため、近年注目され
る素材の一つである。
2. Description of the Related Art Carbon nanotubes are cylindrical substances each having a diameter of about several nm obtained by rolling a single layer of graphite in which carbon 6-membered rings are connected. If carbon nanotubes having a desired structure can be produced and connected to each other, a nanometer-sized device can be realized.

【0003】このようなカーボンナノチューブの成長方
法としては、例えばアーク放電法及びCVD法があげら
れる。
Examples of methods for growing such carbon nanotubes include an arc discharge method and a CVD method.

【0004】アーク放電法では、やや減圧下で、例えば
アルゴン、水素等の雰囲気中、炭素棒の間に20V50
A程度のアーク放電を行うと、炉の内側に煤として付着
する物質の中にカーボンナノチューブが見られる。
In the arc discharge method, under a slightly reduced pressure, for example, in an atmosphere of argon, hydrogen or the like, a voltage of 20V50 is applied between carbon rods.
When an arc discharge of about A is performed, carbon nanotubes are found in the substance that adheres as soot inside the furnace.

【0005】また、CVD法では、炭素源となる炭素化
合物を500ないし1000℃で触媒金属微粒子と接触
させることにより、カーボンナノチューブが得られる。
In the CVD method, carbon nanotubes can be obtained by bringing a carbon compound serving as a carbon source into contact with catalytic metal fine particles at 500 to 1000 ° C.

【0006】しかしながら、これらの方法では、炉及び
触媒に付着したカーボンナノチューブを含む粉塵を集め
て精製する必要があり、また、これにより得られるもの
はカーボンナノチューブの束である。このため、カーボ
ンナノチューブをトランジスタ等の電子素子に応用する
場合に、基板上の所望の位置に単一のカーボンナノチュ
ーブを配置することは極めて困難であった。
However, in these methods, it is necessary to collect and purify the dust containing the carbon nanotubes attached to the furnace and the catalyst, and the product obtained by this is a bundle of carbon nanotubes. Therefore, when the carbon nanotube is applied to an electronic device such as a transistor, it is extremely difficult to dispose a single carbon nanotube at a desired position on the substrate.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたもので、高品質なカーボンナノチューブ
を所望の位置に成長する方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for growing high-quality carbon nanotubes at desired positions.

【0008】[0008]

【課題を解決するための手段】本発明のカーボンナノチ
ューブの成長方法は、基板上に、2種以上の異なる触媒
金属層が積層された多層触媒金属パターンを形成する工
程、及び該多層触媒金属パターンを加熱処理する工程、
及び加熱処理された該多層触媒金属パターン上に、CV
D法により、カーボンナノチューブを成長させる工程を
具備することを特徴とする。
The carbon nanotube growth method of the present invention comprises a step of forming a multilayer catalytic metal pattern in which two or more different catalytic metal layers are laminated on a substrate, and the multilayer catalytic metal pattern. Heat treatment step,
And CV on the heat-treated multi-layer catalytic metal pattern.
The method is characterized by including a step of growing carbon nanotubes by the D method.

【0009】[0009]

【発明の実施の形態】本発明のカーボンナノチューブの
成長方法は、基板上に、触媒金属パターンを形成し、こ
の基板を、炭素または炭素原料を使用してCVD(Ch
emicalVapor Deposition)法に
供することにより、触媒金属パターン上にカーボンナノ
チューブを製造する方法において、触媒金属パターン
は、2種以上の異なる触媒金属層が積層された多層触媒
金属パターンからなり、この多層触媒金属パターンは、
CVD法に供される前に加熱処理されることを特徴とす
る。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon nanotube growth method of the present invention comprises forming a catalytic metal pattern on a substrate, and then subjecting this substrate to CVD (Ch
In the method of producing carbon nanotubes on a catalyst metal pattern by subjecting the catalyst metal pattern to an electrical vapor deposition method, the catalyst metal pattern comprises a multilayer catalyst metal pattern in which two or more different catalyst metal layers are laminated. The pattern is
It is characterized in that it is heat-treated before being subjected to the CVD method.

【0010】本発明によれば、多層触媒金属パターンを
形成する基板上の位置を選択することにより、基板上の
所望の位置にカーボンナノチューブを形成することがで
きる。また、本発明によれば、2種以上の異なる触媒金
属層を積層した多層金属触媒パターンを使用し、かつC
VD法を行う前に加熱処理をすることにより、曲がりが
少なく、十分な長さを有するカーボンナノチューブを成
長させることができる。
According to the present invention, the carbon nanotube can be formed at a desired position on the substrate by selecting the position on the substrate where the multilayer catalytic metal pattern is formed. Also, according to the present invention, a multilayer metal catalyst pattern in which two or more different catalyst metal layers are laminated is used, and C
By performing the heat treatment before performing the VD method, it is possible to grow carbon nanotubes having a small bend and a sufficient length.

【0011】基板としては、半導体基板、金属基板、ガ
ラス基板、及びアルミナ基板等を使用することができ
る。
As the substrate, a semiconductor substrate, a metal substrate, a glass substrate, an alumina substrate or the like can be used.

【0012】CVD法としては、例えば熱化学的気相成
長法(熱CVD法)またはプラズマ化学的気相成長法
(プラズマCVD法)を用いることができる。
As the CVD method, for example, a thermochemical vapor deposition method (thermal CVD method) or a plasma chemical vapor deposition method (plasma CVD method) can be used.

【0013】多層触媒金属パターンの各層は、白金、コ
バルト、鉄、ニッケル、及びパラジウムのうち少なくと
も1種の金属、またはこれらの2種以上を用いた合金等
であることが好ましい。上述の金属は、カーボンナノチ
ューブの成長に使用される触媒として好適である。
Each layer of the multilayer catalytic metal pattern is preferably made of at least one metal selected from platinum, cobalt, iron, nickel and palladium, or an alloy using two or more of these metals. The metals mentioned above are suitable as catalysts used for the growth of carbon nanotubes.

【0014】より好ましくは、多層触媒金属パターン
は、白金及びコバルトのうち少なくとも1種を含む。さ
らにまた好ましくは、多層触媒金属パターンは、白金を
含有する触媒金属層とコバルトを含有する触媒金属層と
を含む。例えば多層触媒金属パターンとして、白金層と
コバルト層とを積層することができる。この場合、白金
層上にコバルト層を形成することが望ましく、その厚さ
の比は、例えば白金層1に対し、コバルト層0.001
ないし1であることが好ましい。
More preferably, the multilayer catalytic metal pattern comprises at least one of platinum and cobalt. Still more preferably, the multilayer catalytic metal pattern comprises a catalytic metal layer containing platinum and a catalytic metal layer containing cobalt. For example, a platinum layer and a cobalt layer can be laminated as a multilayer catalytic metal pattern. In this case, it is desirable to form a cobalt layer on the platinum layer, and the thickness ratio is, for example, 0.001 cobalt layer to 1 platinum layer.
It is preferably from 1 to 1.

【0015】また、加熱処理の温度は、好ましくは、5
00℃ないし1000℃であり、この範囲であると触媒
活性がより高まる。500℃未満であると、カーボンナ
ノチューブの成長が少なくなる傾向があり、また、10
00℃を超えると、多層触媒金属パターンの変形等が発
生する傾向がある。より好ましくは、700ないし90
0℃である。
The temperature of the heat treatment is preferably 5
The temperature is from 00 ° C to 1000 ° C, and in this range, the catalytic activity is further enhanced. If the temperature is lower than 500 ° C., the growth of carbon nanotubes tends to decrease,
If the temperature exceeds 00 ° C, the multilayer catalytic metal pattern may be deformed. More preferably 700 to 90
It is 0 ° C.

【0016】また、CVD法として熱CVD法を用いる
場合、上記加熱処理の温度はカーボンナノチューブの成
長温度よりも100ないし300℃高いことが好まし
い。
When the thermal CVD method is used as the CVD method, the temperature of the heat treatment is preferably 100 to 300 ° C. higher than the growth temperature of the carbon nanotubes.

【0017】この加熱処理は、例えば常圧下、及び窒素
または希ガス雰囲気下で、あるいは真空下で行われるこ
とが好ましい。
This heat treatment is preferably carried out, for example, under normal pressure and under a nitrogen or rare gas atmosphere, or under vacuum.

【0018】多層触媒金属パターンは、少なくとも2つ
の独立した多層触媒層を有することが好ましい。例えば
複数の多層触媒層をアレイ状に形成することができる。
1つの多層触媒層の大きさは、その最大長さが10nm
以上であることが好ましい。例えばトランジスタ等の電
子デバイスに使用する場合には、例えば10nmないし
数十μmであることが好ましい。
The multilayer catalytic metal pattern preferably has at least two independent multilayer catalytic layers. For example, a plurality of multilayer catalyst layers can be formed in an array.
The maximum length of one multilayer catalyst layer is 10 nm.
The above is preferable. For example, when used in an electronic device such as a transistor, the thickness is preferably, for example, 10 nm to several tens of μm.

【0019】個々の多層触媒層の形状としては、ドッ
ト、円形、及び四角等があげられる。
The shape of each multilayer catalyst layer includes dots, circles, squares and the like.

【0020】多層触媒金属パターンの形成方法として
は、例えばフォトリソグラフィー法あるいは電子リソグ
ラフィー法によるレジストパターン形成後、真空蒸着法
により触媒金属を蒸着し、レジストパターン溶解してリ
フトオフを行う方法などがあげられる。
As a method of forming the multilayer catalytic metal pattern, for example, after forming a resist pattern by a photolithography method or an electron lithography method, a catalytic metal is vapor-deposited by a vacuum vapor deposition method, and the resist pattern is dissolved to perform lift-off. .

【0021】本発明によれば、曲がりが少なく、十分な
長さを有するカーボンナノチューブを基板上の所望の位
置に形成することができるので、トランジスタのチャネ
ル及びゲート電極、論理回路及び集積回路の配線とし
て、使用可能である。
According to the present invention, since carbon nanotubes having a small amount of bending and having a sufficient length can be formed at desired positions on a substrate, channel and gate electrodes of transistors, wiring of logic circuits and integrated circuits are formed. Can be used as

【0022】[0022]

【実施例】以下、実施例を示し、本明を具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0023】実施例 例えば2cm×2cmの大きさの半導体基板上に、フォ
トリソグラフィーにより、5μm径のドット状の多層触
媒層を5μm間隔でアレイ状に配列した多層触媒金属パ
ターンを形成した。
EXAMPLE A multi-layer catalytic metal pattern in which dot-shaped multi-layer catalytic layers each having a diameter of 5 μm were arranged in an array at intervals of 5 μm was formed on a semiconductor substrate having a size of 2 cm × 2 cm, for example, by photolithography.

【0024】得られた多層触媒金属パターンの電子顕微
鏡写真を図1に示す。
An electron micrograph of the obtained multilayer catalytic metal pattern is shown in FIG.

【0025】多層金属層は、白金30nmとコバルト1
0nmの2層構造とした。
The multilayer metal layer is composed of platinum 30 nm and cobalt 1
It has a two-layer structure of 0 nm.

【0026】多層触媒金属パターンを形成した半導体基
板を、真空加熱装置内に載置し、常圧下、窒素雰囲気、
800℃で5分間加熱処理を行った。
The semiconductor substrate on which the multilayer catalytic metal pattern is formed is placed in a vacuum heating device, and under normal pressure, in a nitrogen atmosphere,
Heat treatment was performed at 800 ° C. for 5 minutes.

【0027】その後この半導体基板を熱CVD装置管状
炉内に載置し、管状炉を600℃に加熱して、常圧下
で、原料ガスとして流量20ml/分のアセチレンガス
と流量150ml/分のアルゴンガスの混合ガスを使用
し、30分間蒸着を行い、カーボンナノチューブ成長さ
せた。
Then, this semiconductor substrate is placed in a tubular furnace of a thermal CVD apparatus, the tubular furnace is heated to 600 ° C., and acetylene gas having a flow rate of 20 ml / min and argon having a flow rate of 150 ml / min are used as a source gas under normal pressure. Using a mixed gas of gases, vapor deposition was performed for 30 minutes to grow carbon nanotubes.

【0028】得られたカーボンナノチューブの電子顕微
鏡写真を図2に示す。
An electron micrograph of the obtained carbon nanotube is shown in FIG.

【0029】図示するように、直径約20nmの曲がり
の少ないカーボンナノチューブが、一方の多層触媒層
と、他方の触媒層との間を橋渡しするように、基板表面
に沿って成長していた。
As shown in the drawing, carbon nanotubes having a diameter of about 20 nm and less bending were grown along the surface of the substrate so as to bridge between the multilayer catalyst layer on one side and the catalyst layer on the other side.

【0030】比較例 なお、比較として、多層触媒金属パターンの代わりに、
白金の単層金属パターンを形成した場合、コバルトの単
層金属パターンを形成した場合、及び加熱処理を行わな
い場合について、各々実施例と同様にしてカーボンナノ
チューブを成長させた。
Comparative Example As a comparison, instead of the multilayer catalyst metal pattern,
Carbon nanotubes were grown in the same manner as in each of the examples in which the platinum single-layer metal pattern was formed, the cobalt single-layer metal pattern was formed, and the heat treatment was not performed.

【0031】しかしながら、白金の単層金属パターンを
形成した場合、カーボンナノチューブは成長せず、コバ
ルトの単層金属パターンを形成した場合、カーボンナノ
チューブは成長したが、得られたカーボンナノチューブ
は曲がりが多く、例えば2μm程の短いものであり、及
び加熱処理を行わない場合、カーボンナノチューブが成
長しなかった。
However, when the platinum single-layer metal pattern was formed, the carbon nanotubes did not grow. When the cobalt single-layer metal pattern was formed, the carbon nanotubes grew, but the obtained carbon nanotubes had many bends. The carbon nanotubes did not grow when the heat treatment was not performed, for example, as short as 2 μm.

【0032】[0032]

【発明の効果】本発明のカーボンナノチューブの成長方
法によれば、曲がりが少なく、十分な長さを有する高品
質なカーボンナノチューブを、所望の位置に成長するこ
とができる。
According to the method of growing a carbon nanotube of the present invention, it is possible to grow a high-quality carbon nanotube having little bending and a sufficient length at a desired position.

【図面の簡単な説明】[Brief description of drawings]

【図1】多層触媒パターンの電子顕微鏡写真1] Electron micrograph of multilayer catalyst pattern

【図2】カーボンナノチューブの電子顕微鏡写真[Fig. 2] Electron micrograph of carbon nanotube

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成15年3月17日(2003.3.1
7)
[Submission date] March 17, 2003 (2003.3.1)
7)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【課題を解決するための手段】本発明カーボンナノチュ
ーブの成長方法は、基板上に、2種以上の異なる触媒金
属層が積層された多層触媒金属パターンを形成する工
程、及び該多層触媒金属パターンを加熱処理する工程、
及び加熱処理された該多層触媒金属パターン上に、CV
D法によりカーボンナノチューブを成長させる工程を具
備するカーボンナノチューブの成長方法であって、前記
多層触媒金属パターンは、コバルトを含有する触媒金属
層と、白金、鉄、ニッケルからなる群から選択される少
なくとも1種を含有する触媒金属層とが積層されたこと
を特徴とする。
The carbon nanotube growth method of the present invention comprises a step of forming a multi-layer catalyst metal pattern in which two or more different catalyst metal layers are laminated on a substrate, and the multi-layer catalyst metal pattern. Process of heat treatment,
And CV on the heat-treated multi-layer catalytic metal pattern.
A method for growing carbon nanotubes, comprising the step of growing carbon nanotubes by method D , comprising:
The multilayer catalyst metal pattern is a catalyst metal containing cobalt.
Layers and a small number selected from the group consisting of platinum, iron and nickel.
It is characterized in that a catalyst metal layer containing at least one kind is laminated .

フロントページの続き Fターム(参考) 4G069 AA03 AA08 BB02A BB02B BC67A BC67B BC75A BC75B CB81 EA11 EC28 EC29 EE06 FA01 FB29 FC07 4G146 AA11 AB08 BA12 BC09 BC23 BC33A BC33B BC43 BC48 4K030 AA09 AA16 BA27 BB01 BB14 CA04 DA02 FA01 FA10 Continued front page    F-term (reference) 4G069 AA03 AA08 BB02A BB02B                       BC67A BC67B BC75A BC75B                       CB81 EA11 EC28 EC29 EE06                       FA01 FB29 FC07                 4G146 AA11 AB08 BA12 BC09 BC23                       BC33A BC33B BC43 BC48                 4K030 AA09 AA16 BA27 BB01 BB14                       CA04 DA02 FA01 FA10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、2種以上の異なる触媒金属層
が積層された多層触媒金属パターンを形成する工程、及
び該多層触媒金属パターンを加熱処理する工程、及び加
熱処理された該多層触媒金属パターン上に、CVD法に
よりカーボンナノチューブを成長させる工程を具備する
ことを特徴とするカーボンナノチューブの成長方法。
1. A step of forming a multi-layer catalyst metal pattern in which two or more different catalyst metal layers are laminated on a substrate, a step of heat-treating the multi-layer catalyst metal pattern, and the heat-treated multi-layer catalyst. A method of growing carbon nanotubes, comprising a step of growing carbon nanotubes on a metal pattern by a CVD method.
【請求項2】 前記多層触媒金属パターンは、白金を含
有する触媒金属層を含むことを特徴とする請求項1に記
載のカーボンナノチューブの成長方法。
2. The method of growing a carbon nanotube according to claim 1, wherein the multilayer catalytic metal pattern includes a catalytic metal layer containing platinum.
【請求項3】 前記多層触媒金属パターンは、白金を含
有する触媒金属層とコバルトを含有する触媒金属層とを
含むことを特徴とする請求項1に記載のカーボンナノチ
ューブの成長方法。
3. The method of growing a carbon nanotube according to claim 1, wherein the multi-layer catalytic metal pattern includes a catalytic metal layer containing platinum and a catalytic metal layer containing cobalt.
【請求項4】 前記多層触媒金属パターンは、少なくと
も2つの独立した多層触媒金属層を含むことを特徴とす
る請求項1に記載のカーボンナノチューブの成長方法。
4. The method of claim 1, wherein the multilayer catalytic metal pattern includes at least two independent multilayer catalytic metal layers.
【請求項5】 前記多層触媒層は、アレイ状に形成され
ることを特徴とする請求項4に記載のカーボンナノチュ
ーブの成長方法。
5. The method for growing carbon nanotubes according to claim 4, wherein the multi-layer catalyst layer is formed in an array.
【請求項6】 前記加熱処理工程は、500ないし10
00℃で行われる請求項1に記載のカーボンナノチュー
ブの成長方法。
6. The heat treatment step comprises 500 to 10
The method for growing a carbon nanotube according to claim 1, which is performed at 00 ° C.
【請求項7】 前記カーボンナノチューブを形成する工
程は、熱CVD法またはプラズマCVD法を用いて行わ
れることを特徴とする請求項1に記載のカーボンナノチ
ューブの成長方法。
7. The method of growing a carbon nanotube according to claim 1, wherein the step of forming the carbon nanotube is performed using a thermal CVD method or a plasma CVD method.
JP2002084173A 2002-03-25 2002-03-25 Carbon nanotube growth method Expired - Lifetime JP3443646B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084173A JP3443646B1 (en) 2002-03-25 2002-03-25 Carbon nanotube growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084173A JP3443646B1 (en) 2002-03-25 2002-03-25 Carbon nanotube growth method

Publications (2)

Publication Number Publication Date
JP3443646B1 JP3443646B1 (en) 2003-09-08
JP2003277033A true JP2003277033A (en) 2003-10-02

Family

ID=28671637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084173A Expired - Lifetime JP3443646B1 (en) 2002-03-25 2002-03-25 Carbon nanotube growth method

Country Status (1)

Country Link
JP (1) JP3443646B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288636A (en) * 2004-03-31 2005-10-20 Japan Science & Technology Agency Carbon nano-tube forming method using nano-indent edge and anti-dot catalyst array
JP2006231198A (en) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd Catalyst for producing nanocarbon material, its production method and apparatus for producing nanocarbon material
US7589043B2 (en) * 2005-09-14 2009-09-15 Samsung Sdi Co., Ltd. Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode
US7658971B2 (en) * 2004-06-08 2010-02-09 Sumitomo Electric Industries, Ltd. Method of producing carbon nanostructure
US7683528B2 (en) 2004-10-14 2010-03-23 Canon Kabushiki Kaisha Structure, electron emitting device, secondary battery, electron source, and image display device
JP2011189292A (en) * 2010-03-15 2011-09-29 Toshiba Corp Method of treating catalyst for nanocarbon production and method of manufacturing nanocarbon
US8076260B2 (en) 2007-04-06 2011-12-13 Fujitsu Semiconductor Limited Substrate structure and manufacturing method of the same
KR101128219B1 (en) 2004-06-08 2012-03-23 스미토모 덴키 고교 가부시키가이샤 Method for preparing carbon nanostructure
JP2013149628A (en) * 2005-04-25 2013-08-01 Smoltek Ab Controlled growth of nanostructures on substrate, and electron emission device based on the same
US10378104B2 (en) 2013-11-13 2019-08-13 Tokyo Electron Limited Process for producing carbon nanotubes and method for forming wiring

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005288636A (en) * 2004-03-31 2005-10-20 Japan Science & Technology Agency Carbon nano-tube forming method using nano-indent edge and anti-dot catalyst array
JP4684570B2 (en) * 2004-03-31 2011-05-18 独立行政法人科学技術振興機構 Formation method of carbon nanotubes using catalytic metal fine particles regularly arranged on a substrate
KR101128219B1 (en) 2004-06-08 2012-03-23 스미토모 덴키 고교 가부시키가이샤 Method for preparing carbon nanostructure
US7658971B2 (en) * 2004-06-08 2010-02-09 Sumitomo Electric Industries, Ltd. Method of producing carbon nanostructure
USRE44069E1 (en) 2004-06-08 2013-03-12 Sumitomo Electric Industries, Ltd. Method of producing carbon nanostructure
US7683528B2 (en) 2004-10-14 2010-03-23 Canon Kabushiki Kaisha Structure, electron emitting device, secondary battery, electron source, and image display device
JP2006231198A (en) * 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd Catalyst for producing nanocarbon material, its production method and apparatus for producing nanocarbon material
JP4551240B2 (en) * 2005-02-24 2010-09-22 三菱重工業株式会社 Catalyst for producing nanocarbon material, method for producing the same, and apparatus for producing nanocarbon material
JP2013149628A (en) * 2005-04-25 2013-08-01 Smoltek Ab Controlled growth of nanostructures on substrate, and electron emission device based on the same
US7919426B2 (en) 2005-09-14 2011-04-05 Samsung Sdi Co., Ltd. Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode
US7589043B2 (en) * 2005-09-14 2009-09-15 Samsung Sdi Co., Ltd. Supported catalyst, electrode using the supported catalyst and fuel cell including the electrode
US8076260B2 (en) 2007-04-06 2011-12-13 Fujitsu Semiconductor Limited Substrate structure and manufacturing method of the same
JP2011189292A (en) * 2010-03-15 2011-09-29 Toshiba Corp Method of treating catalyst for nanocarbon production and method of manufacturing nanocarbon
US10378104B2 (en) 2013-11-13 2019-08-13 Tokyo Electron Limited Process for producing carbon nanotubes and method for forming wiring

Also Published As

Publication number Publication date
JP3443646B1 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
JP3819382B2 (en) Carbon nanotube matrix and growth method thereof
TWI400193B (en) Process for the production of carbon nanostructure
JP4474502B2 (en) Method for producing carbon nanotube array
US6841003B2 (en) Method for forming carbon nanotubes with intermediate purification steps
Rakov Materials made of carbon nanotubes. The carbon nanotube forest
JP2001032071A (en) Thermochemical vapor phase vapor deposition apparatus and low-temperature synthesis of carbon nanotube using the same
WO2005121023A1 (en) Method for preparing carbon nanostructure
JP2003277033A (en) Method for growing carbon nanotube
CN100445202C (en) Preparing method for carbon nano-tube
WO2007116434A1 (en) Process for producing carbon nanotube
JP2001146409A (en) Method for opening tip of carbon nanotube and method for purification
KR101294362B1 (en) Method for graphene hybrid film comprising hexagonal boron nitride
JP2001031410A (en) Method for purifying carbon nanotube by thermal treatment in diffusion oven
JP2008201648A (en) Carbon nanotube production apparatus and carbon nanotube production method
US6841002B2 (en) Method for forming carbon nanotubes with post-treatment step
US20130156679A1 (en) Method and apparatus for forming nanoparticles
JP2007284336A (en) Method for growing carbon nanotube and method for manufacturing carbon nanotube structure
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
JP2005001938A (en) Method of manufacturing carbon nanotube
CN1275851C (en) Preparation method of carbon nano-pipe
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
KR100334351B1 (en) Low temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
TWI251250B (en) A method of forming carbon nanotubes
JPH0891816A (en) Purifying method of carbon single tube
JP2005001936A (en) Method of manufacturing carbon nanotube

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3443646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term