JP2002273741A - Carbon nano-tube composite molded object and method for manufacturing the same - Google Patents

Carbon nano-tube composite molded object and method for manufacturing the same

Info

Publication number
JP2002273741A
JP2002273741A JP2001074244A JP2001074244A JP2002273741A JP 2002273741 A JP2002273741 A JP 2002273741A JP 2001074244 A JP2001074244 A JP 2001074244A JP 2001074244 A JP2001074244 A JP 2001074244A JP 2002273741 A JP2002273741 A JP 2002273741A
Authority
JP
Japan
Prior art keywords
composite molded
carbon nanotubes
carbon nanotube
matrix
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001074244A
Other languages
Japanese (ja)
Other versions
JP4697829B2 (en
Inventor
Masayuki Hida
雅之 飛田
Toru Kimura
木村  亨
Morio Yumura
守雄 湯村
Satoru Oshima
哲 大嶋
Hiroki Ago
浩樹 吾郷
Kunio Uchida
邦夫 内田
Youzou Kakudate
洋三 角舘
Hiroyuki Yokoi
裕之 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Polymatech Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Polymatech Co Ltd
Priority to JP2001074244A priority Critical patent/JP4697829B2/en
Priority to US10/097,393 priority patent/US20030096104A1/en
Publication of JP2002273741A publication Critical patent/JP2002273741A/en
Application granted granted Critical
Publication of JP4697829B2 publication Critical patent/JP4697829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/605Making or treating the green body or pre-form in a magnetic field
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Abstract

PROBLEM TO BE SOLVED: To provide a carbon nano-tube composite molded object capable of developing excellent anisotropic function not obtained heretofore with respect to properties such as electrical properties, thermal properties mechanical properties or the like, and a method for manufacturing the same. SOLUTION: The carbon nano-tube composite molded object 5 is molded in such a state that carbon nano-tubes 6 are arranged in a matrix in a definite direction to be compounded with the matrix. As the matrix, at least one kind of an organic polymer selected from a thermoplastic resin, a curable resin, rubber and a thermoplastic elastomer is preferable. The composite molded object 5 is manufactured by injecting a composition, wherein the carbon nano- tubes 6 are contained in the matrix, in the molding recessed part of a mold and applying a magnetic field to the composition in a difinite direction by a magnet to arrange the carbon nano-tubes 6 in the definite direction to solidify the composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カーボンナノチュ
ーブがマトリックス中で一定方向に配列し、電気的性
質、熱的性質、機械的性質等の性質について異方性機能
を発揮することができ、電子部品、熱伝導性材料、高強
度材料などとして利用することができるカーボンナノチ
ューブ複合成形体及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a method for producing carbon nanotubes in which carbon nanotubes are arranged in a certain direction in a matrix, exhibiting anisotropic functions with respect to properties such as electrical properties, thermal properties, and mechanical properties. The present invention relates to a carbon nanotube composite molded article that can be used as a part, a heat conductive material, a high-strength material, and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、カーボンナノチューブ及びそ
の製造方法については、特開平5−125619号公
報、特開平7−216660号公報などで開示されてい
る。それらの公報によれば、カーボンナノチューブの特
異的機能を生かし、電子放出素子、水素貯蔵、薄膜電
池、プローブ、マイクロマシン、半導体超集積回路、導
電性材料、熱伝導性材料、高強度高弾性材料などの多く
の興味深い用途開発が活発に検討されている。
2. Description of the Related Art Conventionally, carbon nanotubes and a method for producing carbon nanotubes have been disclosed in Japanese Patent Application Laid-Open Nos. 5-125619 and 7-216660. According to these publications, utilizing the specific functions of carbon nanotubes, electron-emitting devices, hydrogen storage, thin-film batteries, probes, micromachines, semiconductor integrated circuits, conductive materials, heat conductive materials, high-strength high-elastic materials, etc. Many interesting application developments are being actively considered.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
カーボンナノチューブを樹脂やゴム、金属、セラミック
スなどのマトリックスに配合した組成物を固化して得ら
れるカーボンナノチューブ複合成形体は、カーボンナノ
チューブがマトリックス中でランダムな向きに分散して
いたものが主であった。従って、得られる機械的性質、
電気伝導性、電子放出特性などの機能もランダムに、す
なわちいずれの方向でも同一の機能を有する等方的な材
料であった。
However, a carbon nanotube composite molded article obtained by solidifying a composition obtained by blending a conventional carbon nanotube with a matrix of resin, rubber, metal, ceramics, etc. Mainly those that were dispersed in random directions. Therefore, the mechanical properties obtained,
It was an isotropic material having functions such as electrical conductivity and electron emission characteristics randomly, that is, having the same function in any direction.

【0004】一方、マトリックス中にカーボンナノチュ
ーブを含む組成物を、流動場やせん断場で成形したり、
組成物を引き延ばす方法等によってカーボンナノチュー
ブを流れ方向に配列させることは可能である。ところ
が、カーボンナノチューブを流動方向に配列させる方法
では、板状の成形体の厚み方向にカーボンナノチューブ
を配列させることは不可能であり、必ずしも任意の方向
にカーボンナノチューブの配列を制御させることはでき
なかった。
On the other hand, a composition containing carbon nanotubes in a matrix is formed in a flow field or a shear field,
It is possible to arrange the carbon nanotubes in the flow direction by a method of stretching the composition or the like. However, in the method of arranging the carbon nanotubes in the flow direction, it is impossible to arrange the carbon nanotubes in the thickness direction of the plate-like molded body, and it is not always possible to control the arrangement of the carbon nanotubes in any direction. Was.

【0005】さらに、特開平11−194134号公報
及び特開平10−265208号公報には、基体上に配
列された鉄、コバルト、ニッケル等の触媒分子から、気
相中でカーボンナノチューブを一定方向に成長させる製
造方法が提唱されている。ところが、この方法を用いて
カーボンナノチューブを平面基板上に一定方向に配列さ
せた場合には、平面に対して垂直方向にカーボンナノチ
ューブが配列した複合成形体しか得られない。従って、
任意形状のカーボンナノチューブ複合成形体を製造する
ことは困難であった。
Further, JP-A-11-194134 and JP-A-10-265208 disclose carbon nanotubes in a gas phase in a certain direction from catalyst molecules such as iron, cobalt and nickel arranged on a substrate. A growing manufacturing method has been proposed. However, when carbon nanotubes are arranged in a certain direction on a flat substrate using this method, only a composite molded body in which carbon nanotubes are arranged in a direction perpendicular to a plane can be obtained. Therefore,
It has been difficult to produce a carbon nanotube composite molded article of any shape.

【0006】本発明は上記従来技術に存在する問題点に
着目してなされたものである。その目的とするところ
は、電気的性質、熱的性質、機械的性質などの性質につ
いて、従来では得られなかった優れた異方性機能を発揮
することができるカーボンナノチューブ複合成形体及び
その製造方法を提供することにある。
The present invention has been made by paying attention to the problems existing in the above prior art. An object of the present invention is to provide a carbon nanotube composite molded article capable of exhibiting an excellent anisotropic function, which has not been obtained conventionally, with respect to properties such as electric properties, thermal properties, and mechanical properties, and a method for producing the same. Is to provide.

【0007】[0007]

【課題を解決するための手段】すなわち、請求項1に記
載の発明のカーボンナノチューブ複合成形体は、マトリ
ックス中にカーボンナノチューブが一定方向に配列され
て複合された状態で成形されていることを特徴とするも
のである。
That is, the carbon nanotube composite molded article according to the first aspect of the present invention is characterized in that carbon nanotubes are arranged in a matrix in a fixed direction and are composited. It is assumed that.

【0008】請求項2に記載の発明のカーボンナノチュ
ーブ複合成形体は、請求項1に記載の発明において、マ
トリックスが、熱可塑性樹脂、硬化性樹脂、ゴム及び熱
可塑性エラストマーから選ばれる少なくとも1種の有機
高分子であることを特徴とするものである。
[0008] In the carbon nanotube composite molded article according to the second aspect of the present invention, in the invention according to the first aspect, the matrix is at least one kind selected from a thermoplastic resin, a curable resin, a rubber, and a thermoplastic elastomer. It is characterized by being an organic polymer.

【0009】請求項3に記載の発明のカーボンナノチュ
ーブ複合成形体の製造方法は、マトリックス中にカーボ
ンナノチューブを含有する組成物に磁場を印加させてカ
ーボンナノチューブを一定方向に配列させた状態で、固
化させて成形することを特徴とするものである。
According to a third aspect of the present invention, there is provided a method for producing a carbon nanotube composite molded article, wherein a magnetic field is applied to a composition containing a carbon nanotube in a matrix, and the composition is solidified in a state where the carbon nanotubes are arranged in a predetermined direction. It is characterized by being molded.

【0010】請求項4に記載の発明のカーボンナノチュ
ーブ複合成形体の製造方法は、請求項3に記載の発明に
おいて、マトリックスが、熱可塑性樹脂、硬化性樹脂、
ゴム及び熱可塑性エラストマーから選ばれる少なくとも
1種の有機高分子であることを特徴とするものである。
According to a fourth aspect of the present invention, there is provided the method for producing a carbon nanotube composite molded article according to the third aspect, wherein the matrix comprises a thermoplastic resin, a curable resin,
It is characterized by being at least one organic polymer selected from rubber and thermoplastic elastomer.

【0011】従って、カーボンナノチューブを任意の一
定方向に配列させたカーボンナノチューブ複合成形体
は、カーボンナノチューブ特有の電気的性質、熱的性
質、機械的性質などの性質について、方向により発揮さ
れる機能又はその程度が異なる異方性を有する複合成形
体となる。
Therefore, a carbon nanotube composite molded article in which carbon nanotubes are arranged in an arbitrary direction has a function or a function that is exhibited depending on the direction, such as the electrical properties, thermal properties, and mechanical properties of the carbon nanotube. A composite molded article having anisotropy with different degrees is obtained.

【0012】例えば、電気的性質に関しては、導電性材
料として、特定の方向に電気伝導性が高く、かつ、一定
方向に配列されていない場合と比較してカーボンナノチ
ューブの添加量はより少なくて高い電気伝導性を発現す
ることができる。また、カーボンナノチューブの電子放
出特性はナノチューブの末端部からの電子放出が最も効
率が良いと考えられ、一定方向に配列されていない場合
と比較して複合成形体の端面により多くのカーボンナノ
チューブの末端部分を配置することが可能である。
For example, regarding the electrical properties, as a conductive material, the added amount of carbon nanotubes is smaller and higher than in the case where the electrical conductivity is high in a specific direction and not arranged in a certain direction. Electric conductivity can be exhibited. In addition, the electron emission characteristics of carbon nanotubes are considered to be the most efficient when electrons are emitted from the ends of the nanotubes. It is possible to arrange the parts.

【0013】熱的性質に関しては、例えば板状成形体の
厚み方向にカーボンナノチューブを配列させた場合、配
列に対して平行方向の熱伝導率と直角方向の熱伝導率と
では差異が生じる。すなわち、カーボンナノチューブ自
体は、軸方向の熱伝導率の方が軸に垂直方向の熱伝導率
よりも大きいために、板状成形体の厚み方向の熱伝導率
の方が大きくなり、異方性材料となる。なお、この場
合、カーボンナノチューブはグラファイト化させて熱伝
導率をさらに向上させる方が好ましい。
With regard to thermal properties, for example, when carbon nanotubes are arranged in the thickness direction of a plate-like molded body, a difference occurs between the thermal conductivity in a direction parallel to the arrangement and the thermal conductivity in a direction perpendicular to the arrangement. In other words, the carbon nanotube itself has a higher thermal conductivity in the axial direction than in the direction perpendicular to the axis. Material. In this case, it is preferable that the carbon nanotubes be graphitized to further improve the thermal conductivity.

【0014】機械的性質に関しては、例えば、板状成形
体の厚み方向と垂直な一方向にカーボンナノチューブを
配列させると、弾性率の異方性が生じ、それ以外の方向
よりも引張り強度、耐屈曲強度等が向上する。
Regarding the mechanical properties, for example, when the carbon nanotubes are arranged in one direction perpendicular to the thickness direction of the plate-like molded body, anisotropy of the elastic modulus is generated, and the tensile strength and the resistance to resistance are higher than the other directions. Flexural strength and the like are improved.

【0015】その他、磁気的性質、線膨張係数、誘電的
性質、電波吸収特性などにおいても異方性を発現するこ
とができ、制振材や、電波吸収体などの様々な用途で用
いることができる。
In addition, it can exhibit anisotropy in magnetic properties, linear expansion coefficients, dielectric properties, radio wave absorption properties, etc., and can be used in various applications such as vibration damping materials and radio wave absorbers. it can.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。カーボンナノチューブ複合成形体は、
マトリックス中にカーボンナノチューブが一定方向に配
列されて複合された状態で成形されている。このカーボ
ンナノチューブ複合成形体は、板状や管状、塊状、その
他の任意の形状に成形されて用いられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. The carbon nanotube composite molded body is
The carbon nanotubes are arranged in a predetermined direction in a matrix and formed in a composite state. The carbon nanotube composite molded article is used after being molded into a plate, a tube, a lump, or any other shape.

【0017】本発明で用いられるカーボンナノチューブ
の種類や製造方法については特に限定されるものではな
いが、カーボンより形成され、直径がナノメートルオー
ダーでチューブ状をなすものである。例えば、特開平6
−157016号、特開平6−280116号、特開平
10−203810号、特開平11−11917号など
の各公報に開示される製造方法で得られたカーボンナノ
チューブを使用することができる。カーボンナノチュー
ブの合成には、アーク放電法を利用するのが一般的にな
ってきているが、その他、レーザー蒸発法や熱分解法、
プラズマ放電を利用する方法などが近年研究され、それ
らの方法により得られるカーボンナノチューブを使用す
ることもできる。
The type and production method of the carbon nanotubes used in the present invention are not particularly limited. The carbon nanotubes are made of carbon and have a tube shape with a diameter on the order of nanometers. For example, Japanese Unexamined Patent Publication
Carbon nanotubes obtained by the production methods disclosed in JP-A-157016, JP-A-6-280116, JP-A-10-203810, JP-A-11-11917 and the like can be used. It has become common to use the arc discharge method to synthesize carbon nanotubes, but in addition, laser evaporation, thermal decomposition,
In recent years, methods utilizing plasma discharge have been studied, and carbon nanotubes obtained by those methods can also be used.

【0018】カーボンナノチューブは炭素原子が構成す
る6角網目がチューブ状に連なった構造を有している。
6角網目のチューブが1枚構造のものはシングルウォー
ルナノチューブ(以下、SWNTと略称する)と呼ば
れ、一方、多層の6角網目のチューブから構成されてい
るものはマルチウォールナノチューブ(以下、MWNT
と略称する)と呼ばれている。どのような構造のカーボ
ンナノチューブが得られるかは、合成方法や条件等によ
ってある程度決定される。
The carbon nanotube has a structure in which hexagonal meshes composed of carbon atoms are connected in a tube shape.
A single-walled hexagonal mesh tube is called a single-walled nanotube (hereinafter, abbreviated as SWNT), while a multi-walled hexagonal tube is called a multi-walled nanotube (MWNT).
). The structure of the carbon nanotube to be obtained is determined to some extent by the synthesis method, conditions, and the like.

【0019】生成物にはカーボンナノチューブと同時
に、非晶質カーボンナノ粒子、フラーレン類及び金属ナ
ノ粒子なども副生成物として混入するが、これらの副生
成物が含まれていてもよい。フラーレン類などは、トル
エン、二硫化水素、ベンゼン、クロロベンゼンなどの有
機溶剤に可溶なため、抽出が可能である。また、カーボ
ンナノチューブの層間はカーボンナノ粒子やグラファイ
ト片の層間よりも狭いため、このことを利用し、ナノ粒
子やグラファイト片のみ選択的に層間化合物を形成し、
より低温で燒結させて取り除くことが可能である。これ
により、処理温度が低くなった分、燃焼によるナノチュ
ーブの消耗を抑えることができ、回収率が上がる。
In the product, amorphous carbon nanoparticles, fullerenes, metal nanoparticles, and the like are mixed as by-products together with the carbon nanotubes. These by-products may be contained. Fullerenes and the like can be extracted because they are soluble in organic solvents such as toluene, hydrogen disulfide, benzene, and chlorobenzene. In addition, since the interlayer between the carbon nanotubes is narrower than the interlayer between the carbon nanoparticles and the graphite pieces, utilizing this fact, only the nanoparticles and the graphite pieces are selectively formed as interlayer compounds,
It can be removed by sintering at lower temperatures. As a result, the consumption of nanotubes due to combustion can be suppressed by the lower processing temperature, and the recovery rate increases.

【0020】また、生成方法にもよるが、カーボンナノ
チューブは高アスペクト比の材料であり、生成されたも
のも複雑に絡み合った構造を有している場合が多い。こ
れらは超音波分散等で分散させても良いが、好ましくは
所定の条件で粉砕処理をして、カーボンナノチューブの
長さを生成時より短く加工しても良い。粉砕処理の方法
は限定されないが、せん断、すりつぶし等の乾式粉砕
法、又は界面活性剤を含む水や有機溶剤等を含むボール
ミル、ホモジナイザー等を利用する方法が採用される。
Although it depends on the method of production, the carbon nanotube is a material having a high aspect ratio, and the produced one often has a complicatedly entangled structure. These may be dispersed by ultrasonic dispersion or the like, but preferably, the carbon nanotubes may be pulverized under predetermined conditions so that the length of the carbon nanotubes is shorter than that at the time of generation. The method of the pulverization treatment is not limited, but a dry pulverization method such as shearing or grinding, or a method using a ball mill or a homogenizer containing water or an organic solvent containing a surfactant or the like is employed.

【0021】本発明で使用されるカーボンナノチューブ
は、SWNT、MWNTのいずれかに限ったものではな
い。さらに、カーボンナノチューブに金属又は他の無機
物や有機物を含むもの、カーボンナノチューブ内に炭素
又は他の物質が充填されたもの、カーボンナノチューブ
がコイル状(螺旋状)又はフィブリル状のもの、その他
いわゆるナノファイバーも用いることができる。また、
カーボンナノチューブの直径と長さも限定されるもので
はないが、製造の容易性や機能発現性などの点から、カ
ーボンナノチューブの直径は1〜20nm、チューブ長
さは50nm〜100μmの範囲が好ましい。
The carbon nanotube used in the present invention is not limited to either SWNT or MWNT. Furthermore, carbon nanotubes containing metals or other inorganic or organic substances, carbon nanotubes filled with carbon or other substances, carbon nanotubes in a coiled (spiral) or fibril shape, and other so-called nanofibers Can also be used. Also,
The diameter and length of the carbon nanotube are not limited, but the diameter of the carbon nanotube is preferably in the range of 1 to 20 nm, and the tube length is preferably in the range of 50 nm to 100 μm from the viewpoint of ease of production and function development.

【0022】次に、カーボンナノチューブが配合される
マトリックスは、カーボンナノチューブを配合する母材
となる材料である。このマトリックスとしては例えば樹
脂、ゴム、熱可塑性エラストマー、接着剤、塗料、イン
キ、金属、合金、セラミックス、セメント、ゲル状物、
紙、繊維、織布、不織布などが使用できる。そして、マ
トリックスは目的とする複合成形体の硬さ、機械的強
度、耐熱性、電気的特性、耐久性、信頼性などの要求性
能に応じて選択することができる。なかでも、成形加工
性が容易な熱可塑性樹脂、硬化性樹脂、ゴム及び熱可塑
性エラストマーから選ばれる少なくとも1種の有機高分
子が好適である。
Next, the matrix in which the carbon nanotubes are blended is a material serving as a base material in which the carbon nanotubes are blended. Examples of this matrix include resins, rubbers, thermoplastic elastomers, adhesives, paints, inks, metals, alloys, ceramics, cements, gels,
Paper, fiber, woven fabric, non-woven fabric and the like can be used. The matrix can be selected according to the required properties of the target composite molded article, such as hardness, mechanical strength, heat resistance, electrical properties, durability, and reliability. Among them, at least one organic polymer selected from a thermoplastic resin, a curable resin, a rubber, and a thermoplastic elastomer, which is easily moldable, is preferable.

【0023】具体的な熱可塑性樹脂としては、ポリエチ
レン、ポリプロピレン、エチレン−プロピレン共重合体
などのエチレン−α−オレフィン共重合体、ポリメチル
ペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリビニ
ルアルコール、ポリビニルアセタール、ポリフッ化ビニ
リデンやポリテトラフルオロエチレン等のフッ素系重合
体、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート、ポリエチレンナフタレート、ポリスチレン、
ポリアクリロニトリル、スチレン−アクリロニトリル共
重合体、ABS樹脂、ポリフェニレンエーテル及び変性
PPE樹脂、脂肪族及び芳香族ポリアミド類、ポリイミ
ド、ポリアミドイミド、ポリメタクリル酸及びそのメチ
ルエステルなどのポリメタクリル酸エステル類、ポリア
クリル酸類、ポリカーボネート、ポリフェニレンスルフ
ィド、ポリサルホン、ポリエーテルサルホン、ポリエー
テルニトリル、ポリエーテルケトン、ポリケトン、液晶
ポリマー、シリコーン樹脂、アイオノマー等の熱可塑性
樹脂などが挙げられる。
Specific examples of the thermoplastic resin include polyethylene, polypropylene, ethylene-α-olefin copolymers such as ethylene-propylene copolymer, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, and ethylene acetate. -Vinyl acetate copolymer, polyvinyl alcohol, polyvinyl acetal, fluorine-based polymers such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene,
Polyacrylonitrile, styrene-acrylonitrile copolymer, ABS resin, polyphenylene ether and modified PPE resin, aliphatic and aromatic polyamides, polyimide, polyamideimide, polymethacrylic acid esters such as polymethacrylic acid and its methyl ester, polyacrylic Examples thereof include acids, polycarbonate, polyphenylene sulfide, polysulfone, polyether sulfone, polyether nitrile, polyether ketone, polyketone, liquid crystal polymer, silicone resin, and thermoplastic resins such as ionomer.

【0024】硬化性樹脂としては、エポキシ樹脂、フェ
ノール樹脂、アクリル樹脂、ウレタン樹脂、ポリイミド
樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹
脂、ジシクロペンタジエン樹脂、ベンゾシクロブテン樹
脂等が挙げられる。なお、硬化性樹脂の硬化形態につい
ては熱硬化性に限定されず、光硬化性、湿気硬化性など
の常法に従った硬化方法による樹脂を使用することがで
きる。
Examples of the curable resin include epoxy resin, phenol resin, acrylic resin, urethane resin, polyimide resin, unsaturated polyester resin, diallyl phthalate resin, dicyclopentadiene resin, benzocyclobutene resin and the like. The curing mode of the curable resin is not limited to the thermosetting property, and a resin obtained by a curing method according to an ordinary method such as photo-curing property and moisture-curing property can be used.

【0025】ゴムとしては、天然ゴム又は合成ゴムを使
用することができる。合成ゴムとしては、ブタジエンゴ
ム、イソプレンゴム、スチレンブタジエン共重合ゴム、
ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、
エチレン−プロピレンゴム、塩素化ポリエチレン、クロ
ロスルホン化ポリエチレン、ブチルゴム及びハロゲン化
ブチルゴム、フッ素ゴム、ウレタンゴム、シリコーンゴ
ム等が挙げられる。
As the rubber, natural rubber or synthetic rubber can be used. As synthetic rubber, butadiene rubber, isoprene rubber, styrene butadiene copolymer rubber,
Nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber,
Examples include ethylene-propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber and halogenated butyl rubber, fluorine rubber, urethane rubber, and silicone rubber.

【0026】熱可塑性エラストマーとしては、スチレン
−ブタジエン又はスチレン−イソプレンブロック共重合
体とその水添ポリマー及びスチレン系熱可塑性エラスト
マー、オレフィン系熱可塑性エラストマー、塩化ビニル
系熱可塑性エラストマー、ポリエステル系熱可塑性エラ
ストマー、ポリウレタン系熱可塑性エラストマー、ポリ
アミド系熱可塑性エラストマー等が挙げられる。リサイ
クル性を考慮すれば、上記の熱可塑性樹脂又は熱可塑性
エラストマーを使用することが好ましい。
Examples of the thermoplastic elastomer include a styrene-butadiene or styrene-isoprene block copolymer and a hydrogenated polymer thereof, a styrene-based thermoplastic elastomer, an olefin-based thermoplastic elastomer, a vinyl chloride-based thermoplastic elastomer, and a polyester-based thermoplastic elastomer. , A polyurethane-based thermoplastic elastomer, a polyamide-based thermoplastic elastomer, and the like. In consideration of recyclability, it is preferable to use the above-mentioned thermoplastic resin or thermoplastic elastomer.

【0027】なかでも、シリコーンゴム、エポキシ樹
脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシク
ロブテン樹脂、フッ素樹脂及びポリフェニレンエーテル
樹脂より選ばれる少なくとも1種、特にシリコーンゴ
ム、エポキシ樹脂及びポリイミド樹脂より選ばれる少な
くとも1種を用いることが信頼性の観点から好ましい。
Among them, at least one selected from silicone rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, fluorine resin and polyphenylene ether resin, particularly at least one selected from silicone rubber, epoxy resin and polyimide resin It is preferable to use one type from the viewpoint of reliability.

【0028】また、以上から選択される複数の有機高分
子からなるポリマーアロイを配合したり、公知の可塑剤
や充填材、硬化剤、炭素繊維やガラス繊維、アラミド繊
維などの有機繊維、安定剤、着色材などの添加剤を配合
しても差し支えない。
Further, a polymer alloy comprising a plurality of organic polymers selected from the above may be blended, a known plasticizer, a filler, a curing agent, organic fibers such as carbon fiber, glass fiber, and aramid fiber, and a stabilizer. An additive such as a coloring material may be blended.

【0029】また、マトリックス中に添加するカーボン
ナノチューブを配合しやすくしたり、磁場を印加した際
に配列しやすくする目的で、有機溶剤や水を加えて組成
物の粘度を低下させると好ましい場合がある。さらに、
分散状態を向上させる目的で界面活性剤等の分散安定剤
を用いてもよい。
For the purpose of facilitating the incorporation of carbon nanotubes to be added into the matrix and the ease of alignment when a magnetic field is applied, it is preferable to reduce the viscosity of the composition by adding an organic solvent or water. is there. further,
A dispersion stabilizer such as a surfactant may be used for the purpose of improving the dispersion state.

【0030】マトリックスに配合するカーボンナノチュ
ーブの量としては、マトリックス100重量部当り、
0.01〜100重量部の範囲が好ましい。この配合量
が0.01重量部未満の場合には異方性機能を十分に発
現できず、100重量部を越える場合にはマトリックス
におけるカーボンナノチューブの分散性が低下したりし
て好ましくない。実際には使用するマトリックス材料の
種類や他の添加剤等や、用いる磁場の強さにより変化す
るが、磁場によって配列が可能で異方性機能を効果的に
発現できる範囲のカーボンナノチューブの配合量として
は、0.1〜20重量部の範囲が実用的である。
The amount of carbon nanotubes to be mixed in the matrix is as follows:
The range of 0.01 to 100 parts by weight is preferred. If the amount is less than 0.01 part by weight, the anisotropic function cannot be sufficiently exhibited, and if it exceeds 100 parts by weight, the dispersibility of the carbon nanotubes in the matrix is undesirably reduced. Actually, the amount of carbon nanotubes varies depending on the type of matrix material used, other additives, etc., and the strength of the magnetic field used. The practical range is 0.1 to 20 parts by weight.

【0031】さらに、カーボンナノチューブとマトリッ
クス材料との濡れ性や接着性を向上させるために、カー
ボンナノチューブの表面をあらかじめ脱脂処理や洗浄処
理を施したり、紫外線照射処理、コロナ放電処理、プラ
ズマ処理、火炎処理、イオン注入処理などの活性化処理
を施すことが好ましい。加えて、これらの表面処理後に
シラン系やチタン系、アルミニウム系などのカップリン
グ剤で処理することによって、さらに多量のカーボンナ
ノチューブを容易に分散混合しやすくなり、得られる複
合成形体の一層の高機能化が達成できる。
Further, in order to improve the wettability and adhesion between the carbon nanotube and the matrix material, the surface of the carbon nanotube is subjected to a degreasing treatment or a washing treatment in advance, an ultraviolet irradiation treatment, a corona discharge treatment, a plasma treatment, a flame treatment, or the like. It is preferable to perform an activation treatment such as a treatment or an ion implantation treatment. In addition, by treating with a silane-based, titanium-based, or aluminum-based coupling agent after these surface treatments, a larger amount of carbon nanotubes can be easily dispersed and mixed. Functionalization can be achieved.

【0032】マトリックス中にカーボンナノチューブを
分散させる方法としては、特に限定されるものではな
い。例えば、液状高分子の場合には、所定量のカーボン
ナノチューブを添加して通常のミキサーやブレンダーで
混合すればよい。さらに、混合分散状態を向上させる目
的で超音波や振動による処理を施してもよい。混入した
空気を除去する目的で真空又は加圧によって脱泡操作を
加えることが好ましい。ペレットや粉末形状などの固体
高分子の場合には、所定量のカーボンナノチューブを添
加して通常の押出機、ニーダー、ロールなどの混練機械
を使用して混練分散することができる。
The method for dispersing the carbon nanotubes in the matrix is not particularly limited. For example, in the case of a liquid polymer, a predetermined amount of carbon nanotubes may be added and mixed with an ordinary mixer or blender. Further, a treatment using ultrasonic waves or vibration may be performed for the purpose of improving the mixed and dispersed state. It is preferable to perform a defoaming operation by vacuum or pressure for the purpose of removing mixed air. In the case of a solid polymer such as a pellet or powder, a predetermined amount of carbon nanotubes can be added and kneaded and dispersed using a conventional kneading machine such as an extruder, kneader, or roll.

【0033】カーボンナノチューブを一定方向に配列さ
せるために印加する磁場の強さとしては、磁束密度とし
て0.05〜30テスラの範囲が好ましい。磁束密度が
0.05テスラ未満の場合にはカーボンナノチューブを
一定方向に十分配列させることができず、30テスラを
越える場合には磁場の強さが過剰で、配列の効果はそれ
以上向上しない。実際には使用するマトリックスとカー
ボンナノチューブの種類や添加量、得ようとするカーボ
ンナノチューブ複合成形体の形状、及び最終製品の要求
性能に応じて実験的に設定することができるが、カーボ
ンナノチューブを効果的に配列させることができる磁束
密度としては、5〜20テスラの範囲が実用的である。
The strength of the magnetic field applied to arrange the carbon nanotubes in a certain direction is preferably in the range of 0.05 to 30 Tesla as the magnetic flux density. When the magnetic flux density is less than 0.05 Tesla, the carbon nanotubes cannot be arranged in a certain direction sufficiently. When the magnetic flux density exceeds 30 Tesla, the strength of the magnetic field is excessive and the effect of the arrangement is not further improved. Actually, it can be set experimentally according to the type and amount of matrix and carbon nanotubes used, the shape of the carbon nanotube composite molded product to be obtained, and the required performance of the final product. As a magnetic flux density that can be arranged in a uniform manner, a range of 5 to 20 Tesla is practical.

【0034】外部から印加する磁場の発生手段として
は、永久磁石、電磁石、コイルなどを利用できる。本発
明では、反磁性を有するカーボンナノチューブを磁力線
に対して平行方向に配列させることができるので、磁場
の向きは、所望の配列方向に応じて磁石のN極とS極を
配置させれば良い。その他、N極とN極が対向するよう
に磁石を配置させても、磁石を片側のみに配置させて
も、磁力線が曲線状になるように配置させても差し支え
ない。すなわち、目的とする機能の異方性が発現するよ
うに磁力線の向きを調整して磁場を印加すれば良い。
As a means for generating a magnetic field applied from the outside, a permanent magnet, an electromagnet, a coil, or the like can be used. In the present invention, since the diamagnetic carbon nanotubes can be arranged in a direction parallel to the magnetic field lines, the direction of the magnetic field may be such that the N pole and the S pole of the magnet are arranged according to the desired arrangement direction. . In addition, the magnets may be arranged so that the N poles face each other, the magnets may be arranged only on one side, or the magnetic force lines may be arranged in a curved line. That is, the direction of the lines of magnetic force may be adjusted to apply the magnetic field so that the anisotropy of the desired function is exhibited.

【0035】得られた混合組成物は、プレス成形法、押
出成形法、トランスファー成形法、カレンダー成形法な
どによって板状、管状、塊状などの求める形状に成形加
工して複合成形体を製造することができる。さらに、塗
装、印刷などのプロセスによって薄膜状に加工すること
も可能である。このようにして得られたカーボンナノチ
ューブ複合成形体は、カーボンナノチューブが任意の一
定方向に配列されるが、その事実は電子顕微鏡による拡
大写真で確認することができた。
The obtained mixed composition is formed into a desired shape such as a plate, a tube, a block, or the like by a press molding method, an extrusion molding method, a transfer molding method, a calendar molding method, or the like to produce a composite molded body. Can be. Further, it can be processed into a thin film by a process such as painting or printing. In the carbon nanotube composite molded article thus obtained, the carbon nanotubes are arranged in an arbitrary fixed direction, and this fact can be confirmed by an enlarged photograph by an electron microscope.

【0036】以上説明した実施形態により発揮される効
果を以下にまとめて記載する。 ・ 実施形態で説明したカーボンナノチューブ複合成形
体は、カーボンナノチューブが任意の一定方向に配列さ
れている。このため、カーボンナノチューブの延びる方
向とその他の方向において電気的性質、熱的性質、機械
的性質などの性質が異なり、従来では得られなかった優
れた異方性機能を発揮することができる。しかも、カー
ボンナノチューブは極微小な材料であることから、微小
な複合成形体について異方性機能を発揮することができ
る。
The effects exerted by the above-described embodiment will be summarized below. In the carbon nanotube composite molded article described in the embodiment, the carbon nanotubes are arranged in an arbitrary fixed direction. For this reason, properties such as electrical properties, thermal properties, and mechanical properties are different between the direction in which the carbon nanotubes extend and the other directions, and an excellent anisotropic function, which has not been obtained conventionally, can be exhibited. Moreover, since the carbon nanotube is a very minute material, the minute composite molded body can exhibit an anisotropic function.

【0037】・ このようなカーボンナノチューブ複合
成形体は、カーボンナノチューブを含有する組成物に磁
場を印加させることによって、マトリックス中のカーボ
ンナノチューブを任意の一定方向に効率良く配列させる
ことができる。
In such a carbon nanotube composite molded article, by applying a magnetic field to the composition containing carbon nanotubes, the carbon nanotubes in the matrix can be efficiently arranged in any given direction.

【0038】・ その他にも、カーボンナノチューブ複
合成形体は、磁気的性質、電磁気的性質、線膨張係数、
誘電的性質などにおいて異方性を発現することができ
る。従って、圧力センサー、感圧スイッチ、磁気シール
ド材料、磁気記録材料、磁気フィルターなどの様々な用
途に利用することが可能である。
In addition, the carbon nanotube composite molded article has magnetic properties, electromagnetic properties, linear expansion coefficients,
Anisotropy can be exhibited in dielectric properties and the like. Therefore, it can be used for various applications such as a pressure sensor, a pressure-sensitive switch, a magnetic shield material, a magnetic recording material, and a magnetic filter.

【0039】[0039]

【実施例】以下、実施例を挙げて前記実施形態をさらに
具体的に説明する。各例において、カーボンナノチュー
ブは、以下の合成例に基き作製したものを用いた。各実
施例及び比較例においては板状に成形したカーボンナノ
チューブ複合成形体について述べるが、本発明はこれに
限定されるものではない。
EXAMPLES Hereinafter, the above-described embodiment will be described more specifically with reference to examples. In each of the examples, the carbon nanotubes produced based on the following synthesis examples were used. In each of the examples and comparative examples, a carbon nanotube composite molded article molded in a plate shape will be described, but the present invention is not limited to this.

【0040】以下に、各例で使用するカーボンナノチュ
ーブの合成方法の一例として、触媒を用いる熱分解法に
ついて説明する。この方法は、カーボンファイバー気相
成長法とほぼ同じである。
Hereinafter, a thermal decomposition method using a catalyst will be described as an example of a method for synthesizing carbon nanotubes used in each example. This method is almost the same as the carbon fiber vapor deposition method.

【0041】すなわち、まず恒温槽の中に原料ガスとし
てエチレンやプロパンを水素と共に導入する。この場
合、原料ガスとしては、これ以外にもメタン、エタン、
プロパン、ブタン、ヘキサン、シクロヘキサノン等の飽
和炭化水素やエチレン、プロピレン、ベンゼン、トルエ
ン等の不飽和炭化水素、アセトン、メタノール、一酸化
炭素等の酸素を含む原料でも構わない。
That is, first, ethylene and propane are introduced into the thermostat together with hydrogen as a raw material gas. In this case, the raw material gas may be methane, ethane,
Raw materials containing saturated hydrocarbons such as propane, butane, hexane, and cyclohexanone, unsaturated hydrocarbons such as ethylene, propylene, benzene, and toluene, and oxygen such as acetone, methanol, and carbon monoxide may be used.

【0042】次に、恒温槽中に導入された上記の原料ガ
スを加熱又は冷却して蒸気圧を制御し、さらに水素ガス
流により熱分解炉に導入し、原料ガスとしてのエチレン
やプロパンを熱分解させることにより、カーボンナノチ
ューブを生成させる。 (実施例1)本実施例の板状のカーボンナノチューブ複
合成形体を製造するための製造装置及び製造方法を、図
1から図4に基づいて説明する。
Next, the above-mentioned raw material gas introduced into the constant temperature bath is heated or cooled to control the vapor pressure, and further introduced into the pyrolysis furnace by a hydrogen gas flow, and ethylene or propane as the raw material gas is heated. Decomposition produces carbon nanotubes. (Example 1) A manufacturing apparatus and a manufacturing method for manufacturing a plate-like carbon nanotube composite molded article of the present example will be described with reference to FIGS.

【0043】図2に示すように、一対の金型1a,1b
は対向配置されるとともに、一方の金型1aの対向面に
は目的とする板状のカーボンナノチューブ複合成形体に
対応する成形凹部2が凹設されている。両金型1a,1
bはアルミニウムにより形成され、成形凹部2の内面は
フッ素樹脂でコーティング処理されている。そして、熱
硬化性の不飽和ポリエステル樹脂〔日本触媒(株)製の
商品名エポラック G−157MB〕100重量部に対
し、カーボンナノチューブを1重量部添加して攪拌した
組成物3を、金型1a,1bの成形凹部2に充填した。
As shown in FIG. 2, a pair of dies 1a, 1b
Are formed facing each other, and a molding concave portion 2 corresponding to a target plate-like carbon nanotube composite molded body is formed in the facing surface of one mold 1a. Both molds 1a, 1
b is formed of aluminum, and the inner surface of the molded concave portion 2 is coated with a fluororesin. Then, a composition 3 obtained by adding 1 part by weight of carbon nanotubes to 100 parts by weight of a thermosetting unsaturated polyester resin (trade name: Epolak G-157MB, manufactured by Nippon Shokubai Co., Ltd.) and stirring was added to a mold 1a. , 1b.

【0044】次いで、図3に示すように、金型1a,1
bを一定の圧力で型締めし、成形凹部2を密閉した。そ
の後、図4に示すように、金型1a,1bの両端部に一
対の磁石4a,4bを配置し、磁石4a,4bのN極とS
極とを対向させた。すなわち、成形凹部2の内底面と平
行な一方向に10テスラの磁場を印加し、常温で30分
硬化させた。その後、金型1a,1bを型開きし、成形
凹部2からカーボンナノチューブ複合成形体5を取り出
した。
Next, as shown in FIG.
b was clamped with a constant pressure to seal the molding recess 2. Thereafter, as shown in FIG. 4, a pair of magnets 4a, 4b are disposed at both ends of the molds 1a, 1b, and the N poles of the magnets 4a, 4b and the S
The pole was opposed. That is, a magnetic field of 10 Tesla was applied in one direction parallel to the inner bottom surface of the molding concave portion 2 and cured at room temperature for 30 minutes. Thereafter, the molds 1a and 1b were opened, and the carbon nanotube composite molded body 5 was taken out from the molding concave portion 2.

【0045】図1に示したように、得られた板状の複合
成形体5中のカーボンナノチューブ6は、上下面(図1
の上面又は下面)と平行な一定方向に配列していた。 (実施例2)前記成形凹部2の内底面と垂直の方向に1
0テスラの磁場を印加した以外は実施例1と同様にし
て、カーボンナノチューブ複合成形体5を得た。得られ
た板状の複合成形体5中のカーボンナノチューブ6は、
図5に示したように、複合成形体5の上下面と垂直方向
に配列していた。 (実施例3)熱硬化性のエポキシ樹脂(EPO−TEC
H社製の商品名エポテック310)100重量部に対
し、カーボンナノチューブを1重量部添加して攪拌した
組成物を、図2に示す金型の成形凹部2に充填した。そ
の後、実施例1と同様に操作してカーボンナノチューブ
複合成形体5を得た。 (実施例4)熱硬化性のエポキシ樹脂(EPO−TEC
H社製 エポテック310)100重量部に対し、カー
ボンナノチューブを2重量部添加して攪拌した組成物
を、図2に示す金型1aの成形凹部2に充填した。その
後、実施例1と同様に操作してカーボンナノチューブ複
合成形体を得た。 (実施例5)熱可塑性のポリカーボネート樹脂〔三菱エ
ンジニアリングプラスチック(株)製の商品名ユーピロ
ンS−2000〕100重量部に対し、カーボンナノチ
ューブ1重量部をスクリュー押出機で混練した組成物に
対して、塩化メチレンを添加し、均一な液状に溶解する
まで攪拌した。得られた溶液を図2に示した金型1aの
成形凹部2に充填した。その後、成形凹部2の内底面と
平行な一方向に10テスラの磁場を印加しながら、12
0℃で1時間加熱固化してカーボンナノチューブ複合成
形体5を得た。 (実施例6)金型1aの成形凹部2の内底面と垂直の方
向に10テスラの磁場を印加した以外は実施例5と同様
にして、カーボンナノチューブ複合成形体5を得た。 (比較例1)熱硬化性の不飽和ポリエステル樹脂〔日本
触媒(株)製の商品名エポラックG−157MB〕10
0重量部に対し、カーボンナノチューブを1重量部添加
して攪拌した組成物1を、図2に示す金型1aの成形凹
部2に充填した。その後、磁場を印加せずに、常温で3
0分放置し硬化させてカーボンナノチューブ複合成形体
を得た。得られた複合成形体中のカーボンナノチューブ
は、ランダム方向に分散していた。 (比較例2)熱硬化性のエポキシ樹脂(EPO−TEC
H社製 エポテック310)100重量部に対し、カー
ボンナノチューブを1重量部添加して攪拌した組成物
を、図2に示す金型1aの成形凹部2に充填した。その
後、磁場を印加せずに、常温で30分放置し硬化させて
カーボンナノチューブ複合成形体を得た。 (比較例3)熱硬化性のエポキシ樹脂(EPO−TEC
H社製 エポテック310)100重量部に対し、カー
ボンナノチューブを2重量部添加して攪拌した組成物
を、図2に示す金型1aの成形凹部2に充填した。その
後、磁場を印加せずに、常温で30分放置し硬化させて
カーボンナノチューブ複合成形体を作製した。 (比較例4)熱可塑性のポリカーボネート樹脂〔三菱エ
ンジニアリングプラスチック(株)製の商品名ユーピロ
ンS−2000〕100重量部に対し、カーボンナノチ
ューブ1重量部をスクリュー押出機で混練したペレット
100重量部に対して、塩化メチレン70重量部を添加
し、ペレットが完全に溶解するまで攪拌した。得られた
溶液を図2に示した金型1aの成形凹部2に充填した。
その後、磁場を印加せずに120℃で1時間加熱固化
し、カーボンナノチューブ複合成形体を得た。
As shown in FIG. 1, the carbon nanotubes 6 in the obtained plate-shaped composite molded body 5 are formed on the upper and lower surfaces (FIG. 1).
(Upper surface or lower surface) of the substrate. (Embodiment 2) 1 in the direction perpendicular to the inner bottom surface of the molding recess 2
A carbon nanotube composite molded body 5 was obtained in the same manner as in Example 1 except that a magnetic field of 0 Tesla was applied. The carbon nanotubes 6 in the obtained plate-shaped composite molded body 5 are:
As shown in FIG. 5, the composite molded bodies 5 were arranged vertically with the upper and lower surfaces. (Example 3) Thermosetting epoxy resin (EPO-TEC)
A composition obtained by adding 1 part by weight of carbon nanotubes to 100 parts by weight of Epotek 310 (trade name, manufactured by Company H) and stirring the mixture was filled in the molding concave portion 2 of the mold shown in FIG. Thereafter, the same operation as in Example 1 was performed to obtain a carbon nanotube composite molded body 5. (Example 4) Thermosetting epoxy resin (EPO-TEC)
A composition obtained by adding 2 parts by weight of carbon nanotubes to 100 parts by weight of Epotek 310 (manufactured by Company H) and stirring the mixture was filled in the molding recess 2 of the mold 1a shown in FIG. Thereafter, the same operation as in Example 1 was performed to obtain a carbon nanotube composite molded body. (Example 5) A composition in which 1 part by weight of carbon nanotubes was kneaded with a screw extruder per 100 parts by weight of a thermoplastic polycarbonate resin (trade name: Iupilon S-2000 manufactured by Mitsubishi Engineering-Plastics Corporation) was used. Methylene chloride was added and stirred until dissolved into a homogeneous liquid. The obtained solution was filled in the molding recess 2 of the mold 1a shown in FIG. Thereafter, while applying a magnetic field of 10 Tesla in one direction parallel to the inner bottom surface of the molding recess 2,
The mixture was solidified by heating at 0 ° C. for 1 hour to obtain a carbon nanotube composite molded body 5. (Example 6) A carbon nanotube composite molded body 5 was obtained in the same manner as in Example 5 except that a magnetic field of 10 Tesla was applied in a direction perpendicular to the inner bottom surface of the molding concave portion 2 of the mold 1a. (Comparative Example 1) Thermosetting unsaturated polyester resin [trade name: Epolac G-157MB manufactured by Nippon Shokubai Co., Ltd.] 10
Composition 1 obtained by adding 1 part by weight of carbon nanotubes to 0 part by weight and stirring was filled in the molding recess 2 of the mold 1a shown in FIG. After that, without applying a magnetic field,
The mixture was allowed to stand for 0 minutes and cured to obtain a carbon nanotube composite molded article. The carbon nanotubes in the obtained composite molded body were dispersed in random directions. (Comparative Example 2) Thermosetting epoxy resin (EPO-TEC)
A composition obtained by adding 1 part by weight of carbon nanotubes to 100 parts by weight of Epotek 310 (manufactured by Company H) and stirring the mixture was filled in the molding recess 2 of the mold 1a shown in FIG. Thereafter, without applying a magnetic field, the mixture was allowed to stand at room temperature for 30 minutes to be cured to obtain a carbon nanotube composite molded body. (Comparative Example 3) Thermosetting epoxy resin (EPO-TEC)
A composition obtained by adding 2 parts by weight of carbon nanotubes to 100 parts by weight of Epotek 310 (manufactured by Company H) and stirring the mixture was filled in the molding recess 2 of the mold 1a shown in FIG. Thereafter, without applying a magnetic field, the mixture was left standing at room temperature for 30 minutes to be cured, thereby producing a carbon nanotube composite molded body. (Comparative Example 4) 100 parts by weight of a thermoplastic polycarbonate resin (trade name: Iupilon S-2000 manufactured by Mitsubishi Engineering-Plastics Corporation) and 100 parts by weight of pellets obtained by kneading 1 part by weight of carbon nanotubes with a screw extruder Then, 70 parts by weight of methylene chloride was added, and the mixture was stirred until the pellets were completely dissolved. The obtained solution was filled in the molding recess 2 of the mold 1a shown in FIG.
Thereafter, the mixture was heated and solidified at 120 ° C. for 1 hour without applying a magnetic field to obtain a carbon nanotube composite molded body.

【0046】上記の実施例1、2、5及び6並びに比較
例1及び4で得られたカーボンナノチューブ複合成形体
を動的粘弾性測定装置〔(株)オリエンテック製の商品
名レオバイブロンDDV−III〕にて周波数11Hzに
おける貯蔵弾性率E、損失弾性率E及び損失正接tan
δを測定した。それらの結果を表1に示した。
The carbon nanotube composite molded articles obtained in Examples 1, 2, 5 and 6 and Comparative Examples 1 and 4 were subjected to a dynamic viscoelasticity measuring apparatus [Ryovibron DDV-III manufactured by Orientec Co., Ltd.] ], The storage elastic modulus E, the loss elastic modulus E, and the loss tangent tan at a frequency of 11 Hz.
δ was measured. The results are shown in Table 1.

【0047】[0047]

【表1】 また、実施例3及び4並びに比較例2及び3で得られた
カーボンナノチューブ複合成形体をSQUID磁化測定
装置(Quantum Design社製,MPMS-7)にて0〜5Tにお
ける磁化率χを測定した。それらの結果を表2に示し
た。なお、以下の表2から表4の測定方向は、次の意味
を表す。
[Table 1] In addition, the magnetic susceptibility カ ー ボ ン at 0 to 5 T of the carbon nanotube composite molded products obtained in Examples 3 and 4 and Comparative Examples 2 and 3 was measured with a SQUID magnetization measuring device (manufactured by Quantum Design, MPMS-7). Table 2 shows the results. The measurement directions in Tables 2 to 4 below have the following meanings.

【0048】 平行:カーボンナノチューブの向きと平行方向に測定し
た。 垂直:カーボンナノチューブの向きと垂直方向に測定し
た。 無:カーボンナノチューブが一定方向に配列せず、ラン
ダムに分散した試料を測定した。
Parallel: Measured in a direction parallel to the direction of the carbon nanotube. Vertical: Measured in the direction perpendicular to the direction of the carbon nanotube. None: A sample in which the carbon nanotubes were not arranged in a certain direction but were randomly dispersed was measured.

【0049】[0049]

【表2】 さらに、実施例3及び比較例2で得られたカーボンナノ
チューブ複合成形体の電気抵抗値を測定し、結果を表3
に示した。なお、電気抵抗値は、端子間距離1mmで直
流1mAの電流を通電した際の2端子間の電圧を測定し
て算出した値である。
[Table 2] Further, the electrical resistance value of the carbon nanotube composite molded body obtained in Example 3 and Comparative Example 2 was measured, and the results were shown in Table 3.
It was shown to. The electric resistance is a value calculated by measuring a voltage between two terminals when a current of 1 mA DC is applied at a distance between terminals of 1 mm.

【0050】[0050]

【表3】 また、実施例1及び2並びに比較例1で得られたカーボ
ンナノチューブ複合成形体を熱機械分析測定装置(メト
ラー社製 TMA−40、TA−3000)にて、温度
30〜200℃における線膨張係数を測定した。それら
の結果を表4に示した。
[Table 3] Further, the carbon nanotube composite molded articles obtained in Examples 1 and 2 and Comparative Example 1 were subjected to a thermomechanical analysis and measurement apparatus (TMA-40, manufactured by METTLER COMPANY, TA-3000) to obtain a coefficient of linear expansion at a temperature of 30 to 200 ° C. Was measured. Table 4 shows the results.

【0051】[0051]

【表4】 表2の特に実施例3について、磁化率χの変化から磁気
の異方性が認められる。また、表3の実施例3につい
て、電気抵抗値の変化から電気抵抗の異方性が認められ
る。さらに、表4の実施例1について、線膨張係数の変
化から線膨張の異方性が認められる。加えて、表1に示
したように、実施例1では貯蔵弾性率E及び損失弾性率
Eについて成形体の上下面に平行な方向が垂直な方向よ
り大きく、弾性率が優れていることがわかった。
[Table 4] In particular, in Example 3 in Table 2, magnetic anisotropy is recognized from the change in the magnetic susceptibility χ. Further, in Example 3 of Table 3, anisotropy in electric resistance is recognized from a change in electric resistance value. Further, for Example 1 in Table 4, the anisotropy of linear expansion is recognized from the change in the coefficient of linear expansion. In addition, as shown in Table 1, in Example 1, regarding the storage elastic modulus E and the loss elastic modulus E, the direction parallel to the upper and lower surfaces of the molded body was larger than the direction perpendicular to the molded body, and the elastic modulus was excellent. Was.

【0052】なお、本発明は前記実施形態を次のように
変更して構成することも可能である。 ・ マトリックス中にカーボンナノチューブを含有する
組成物3に印加する磁場の方向を、金型1aの成形凹部
2の内底面に対して斜め方向に設定してもよい。
The present invention can be configured by modifying the above embodiment as follows. The direction of the magnetic field applied to the composition 3 containing carbon nanotubes in the matrix may be set obliquely to the inner bottom surface of the molding recess 2 of the mold 1a.

【0053】・ カーボンナノチューブの表面に強磁性
材料などの被膜を形成し、カーボンナノチューブの配列
を効果的に行うように構成してもよい。このように構成
すれば、異方性をより有効に発揮させることができる。
A coating of a ferromagnetic material or the like may be formed on the surface of the carbon nanotube so that the carbon nanotubes are arranged effectively. With this configuration, the anisotropy can be more effectively exerted.

【0054】・ 黒鉛化炭素繊維などの炭素繊維をカー
ボンナノチューブとともにマトリックスに配合すること
もできる。このように構成した場合、熱伝導性と電気絶
縁性についても異方性を発揮させることができる。
Carbon fibers such as graphitized carbon fibers can be blended with the carbon nanotubes in the matrix. With this configuration, it is possible to exhibit anisotropy in thermal conductivity and electrical insulation.

【0055】・ マトリックスとして金属、セラミック
ス若しくはそれ以外の無機物又はそれらの前駆体を使用
し、溶融状態又は溶媒分散状態で磁場を印加し、その後
冷却固化又は乾燥後焼成して複合成形体を製造すること
ができる。例えば、カーボンナノチューブを配合したア
ルミニウム合金組成物を所定形状の容器内に収容して溶
融させ、その状態で磁場を印加してカーボンナノチュー
ブを一定方向に配列させ、それを冷却固化して複合成形
体を製造することができる。さらに、カーボンナノチュ
ーブを配合したフェノール樹脂やエポキシ樹脂などの組
成物を所定形状の容器内に収容して溶融させ、その状態
で磁場を印加してカーボンナノチューブを一定方向に配
列させ、それを乾燥後焼成してマトリックスを炭化又は
黒鉛化させ、カーボンナノチューブ炭素複合成形体を製
造することができる。このように構成した場合、複合成
形体の硬さ、機械的強度、耐熱性、電気的特性、耐久性
などの異方性を発現させることができる。
Using a metal, ceramics or other inorganic substance or a precursor thereof as a matrix, applying a magnetic field in a molten state or a solvent-dispersed state, then cooling and solidifying or drying and firing to produce a composite molded article be able to. For example, an aluminum alloy composition containing carbon nanotubes is accommodated in a container having a predetermined shape and melted, and in this state, a magnetic field is applied to arrange the carbon nanotubes in a certain direction. Can be manufactured. Furthermore, a composition such as a phenolic resin or an epoxy resin containing the carbon nanotubes is contained in a container having a predetermined shape and melted.A magnetic field is applied in this state to arrange the carbon nanotubes in a certain direction. The matrix is carbonized or graphitized by firing to produce a carbon nanotube-carbon composite molded article. With such a configuration, anisotropy such as hardness, mechanical strength, heat resistance, electrical characteristics, and durability of the composite molded body can be exhibited.

【0056】さらに、前記実施形態より把握される技術
的思想について以下に記載する。 ・ カーボンナノチューブは、直径が1〜20nm、長
さが50nm〜100μmである請求項1又は請求項2
に記載のカーボンナノチューブ複合成形体。このように
構成した場合、カーボンナノチューブを容易に製造でき
るとともに、カーボンナノチューブ複合成形体の異方性
機能を有効に発現させることができる。
Further, the technical idea grasped from the embodiment will be described below. The carbon nanotube has a diameter of 1 to 20 nm and a length of 50 nm to 100 μm.
2. The carbon nanotube composite molded article according to item 1. With this configuration, the carbon nanotubes can be easily produced, and the anisotropic function of the carbon nanotube composite molded article can be effectively exhibited.

【0057】・ カーボンナノチューブの配合量は、マ
トリックスに対して0.1〜20重量部である請求項1
又は請求項2に記載のカーボンナノチューブ複合成形
体。このように構成した場合、磁場によってカーボンナ
ノチューブの配列が可能で、異方性機能を効果的に発現
することができる。
The compounding amount of the carbon nanotube is 0.1 to 20 parts by weight based on the matrix.
Or the carbon nanotube composite molded product according to claim 2. With this configuration, the carbon nanotubes can be arranged by the magnetic field, and the anisotropic function can be effectively exhibited.

【0058】・ 磁場の強さは、磁束密度として5〜2
0テスラである請求項3又は請求項4に記載のカーボン
ナノチューブ複合成形体の製造方法。この方法によれ
ば、カーボンナノチューブを効果的に配列させることが
できる。
The strength of the magnetic field is 5 to 2 as a magnetic flux density.
The method for producing a carbon nanotube composite molded article according to claim 3, wherein the carbon nanotube composite is 0 tesla. According to this method, the carbon nanotubes can be effectively arranged.

【0059】[0059]

【発明の効果】以上詳述したように、本発明によれば次
のような効果を発揮することができる。
As described above, according to the present invention, the following effects can be obtained.

【0060】請求項1に記載の発明のカーボンナノチュ
ーブ複合成形体によれば、電気的性質、熱的性質、機械
的性質などの性質について、従来では得られなかった優
れた異方性機能を発揮することができる。
According to the carbon nanotube composite molded article of the first aspect of the present invention, an excellent anisotropic function, which has not been obtained conventionally, is exhibited in properties such as electric properties, thermal properties and mechanical properties. can do.

【0061】請求項2に記載の発明のカーボンナノチュ
ーブ複合成形体によれば、請求項1に記載の発明の効果
に加え、所望形状を得るための成形加工性に優れてい
る。請求項3に記載の発明のカーボンナノチューブ複合
成形体の製造方法によれば、請求項1に記載の発明の効
果を奏するカーボンナノチューブ複合成形体を効率良く
得ることができる。
According to the carbon nanotube composite molded article of the second aspect of the present invention, in addition to the effects of the first aspect of the present invention, the moldability for obtaining a desired shape is excellent. According to the method for producing a carbon nanotube composite molded article according to the third aspect of the present invention, it is possible to efficiently obtain a carbon nanotube composite molded article exhibiting the effects of the first aspect.

【0062】請求項4に記載の発明のカーボンナノチュ
ーブ複合成形体の製造方法によれば、請求項3に記載の
発明の効果に加え、所望形状を得るための成形加工性に
優れている。
According to the method for producing a carbon nanotube composite molded article of the invention described in claim 4, in addition to the effect of the invention described in claim 3, the molding processability for obtaining a desired shape is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1のカーボンナノチューブ複合成形体
を示す概略説明図。
FIG. 1 is a schematic explanatory view showing a carbon nanotube composite molded body of Example 1.

【図2】 成形用の金型を型開きした状態を示す断面
図。
FIG. 2 is a sectional view showing a state in which a molding die is opened.

【図3】 金型の成形凹部に組成物を注入して型締めし
た状態を示す断面図。
FIG. 3 is a cross-sectional view showing a state in which a composition is injected into a molding recess of a mold and the mold is clamped.

【図4】 図3の状態に続き、金型の両端に一対の磁石
を配置し、成形凹部内の組成物に磁場を印加した状態を
示す断面図。
FIG. 4 is a cross-sectional view showing a state in which a pair of magnets are arranged at both ends of the mold and a magnetic field is applied to the composition in the molding concave portion, following the state of FIG. 3;

【図5】 実施例2のカーボンナノチューブ複合成形体
を示す概略説明図。
FIG. 5 is a schematic explanatory view showing a carbon nanotube composite molded body of Example 2.

【符号の説明】[Explanation of symbols]

5…カーボンナノチューブ複合成形体、6…カーボンナ
ノチューブ。
5: Carbon nanotube composite molded article, 6: Carbon nanotube.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 101/00 C08L 101/00 // B29K 21:00 B29K 21:00 101:10 101:10 (72)発明者 木村 亨 東京都北区田端5丁目10番5号 ポリマテ ック 株式会社R&Dセンター内 (72)発明者 湯村 守雄 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 (72)発明者 大嶋 哲 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 (72)発明者 吾郷 浩樹 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 (72)発明者 内田 邦夫 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 (72)発明者 角舘 洋三 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 (72)発明者 横井 裕之 茨城県つくば市東1−1 経済産業省産業 技術総合研究所物質工学工業技術研究所 内 Fターム(参考) 4F071 AA02 AA03 AB03 AE15 AH12 BA01 BB01 BB03 BB06 BB13 4F204 AA28 AA36 AA45 AA49 AE04 AJ02 AJ03 AJ09 EA03 EB01 EE02 EF02 EF27 4J002 AA011 AA021 DA036 FD116──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 101/00 C08L 101/00 // B29K 21:00 B29K 21:00 101: 10 101: 10 (72) Inventor Toru Kimura 5-10-5 Tabata, Kita-ku, Tokyo Polymerec R & D Center (72) Inventor Morio Yumura 1-1, Higashi, Tsukuba, Ibaraki Pref. In-house (72) Inventor Tetsu Oshima 1-1 East Higashi Tsukuba, Ibaraki Pref. Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology (72) Inventor Hiroki Ago 1-1 East East Tsukuba, Ibaraki Pref. (72) Inventor Kunio Uchida 1-1, Higashi 1-1, Tsukuba, Ibaraki Pref., Ministry of Economy, Trade and Industry (72) Inventor, Yozo Kakudate 1-1, Higashi, Tsukuba, Ibaraki, Japan Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology (72) Inventor, Hiroyuki Yokoi, East 1, Tsukuba, Ibaraki -1 Ministry of Economy, Trade and Industry, National Institute of Advanced Industrial Science and Technology (AIST) Material Engineering and Industrial Technology Research Institute F-term (reference) DA036 FD116

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 マトリックス中にカーボンナノチューブ
が一定方向に配列されて複合された状態で成形されてい
ることを特徴とするカーボンナノチューブ複合成形体。
1. A carbon nanotube composite molded article characterized in that carbon nanotubes are arranged in a matrix in a matrix and formed in a composite state.
【請求項2】 マトリックスが、熱可塑性樹脂、硬化性
樹脂、ゴム及び熱可塑性エラストマーから選ばれる少な
くとも1種の有機高分子であることを特徴とする請求項
1に記載のカーボンナノチューブ複合成形体。
2. The carbon nanotube composite molded article according to claim 1, wherein the matrix is at least one organic polymer selected from a thermoplastic resin, a curable resin, a rubber, and a thermoplastic elastomer.
【請求項3】 マトリックス中にカーボンナノチューブ
を含有する組成物に磁場を印加させてカーボンナノチュ
ーブを一定方向に配列させた状態で、固化させて成形す
ることを特徴とするカーボンナノチューブ複合成形体の
製造方法。
3. A method for producing a carbon nanotube composite molded body, comprising applying a magnetic field to a composition containing carbon nanotubes in a matrix, solidifying and molding the carbon nanotubes in a state where the carbon nanotubes are arranged in a certain direction. Method.
【請求項4】 マトリックスが、熱可塑性樹脂、硬化性
樹脂、ゴム及び熱可塑性エラストマーから選ばれる少な
くとも1種の有機高分子であることを特徴とする請求項
3に記載のカーボンナノチューブ複合成形体の製造方
法。
4. The carbon nanotube composite molded article according to claim 3, wherein the matrix is at least one organic polymer selected from a thermoplastic resin, a curable resin, a rubber, and a thermoplastic elastomer. Production method.
JP2001074244A 2001-03-15 2001-03-15 Carbon nanotube composite molded body and method for producing the same Expired - Fee Related JP4697829B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001074244A JP4697829B2 (en) 2001-03-15 2001-03-15 Carbon nanotube composite molded body and method for producing the same
US10/097,393 US20030096104A1 (en) 2001-03-15 2002-03-14 Carbon nanotube complex molded body and the method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001074244A JP4697829B2 (en) 2001-03-15 2001-03-15 Carbon nanotube composite molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002273741A true JP2002273741A (en) 2002-09-25
JP4697829B2 JP4697829B2 (en) 2011-06-08

Family

ID=18931545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001074244A Expired - Fee Related JP4697829B2 (en) 2001-03-15 2001-03-15 Carbon nanotube composite molded body and method for producing the same

Country Status (2)

Country Link
US (1) US20030096104A1 (en)
JP (1) JP4697829B2 (en)

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003025069A1 (en) * 2001-09-14 2003-03-27 Bridgestone Corporation Thermoplastic elastomer composition
JP2003138040A (en) * 2001-11-07 2003-05-14 Toray Ind Inc Aromatic polyamide film and magnetic recording medium
JP2003238816A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber reinforced resin composition, molding material and its molded article
JP2003249613A (en) * 2001-12-20 2003-09-05 Intel Corp Carbon nanotube thermal interface structure
JP2004132486A (en) * 2002-10-11 2004-04-30 Nsk Ltd Wheel supporting rolling bearing unit
JP2004143019A (en) * 2002-10-28 2004-05-20 Shimizu Corp Cement hardening material, cement hardened body, concrete placing mold and concrete structure
JP2004162051A (en) * 2002-10-22 2004-06-10 Osaka Gas Co Ltd Infrared ray-radiating coating material, infrared ray-radiating film, heat-emitting substrate and heat-emitting housing
JP2004162052A (en) * 2002-10-22 2004-06-10 Osaka Gas Co Ltd Electromagnetic wave-absorbing coating material composition, electromagnetic wave-absorbing housing and electromagnetic wave-absorbing film or sheet
JP2004191035A (en) * 2002-11-29 2004-07-08 Usui Kokusai Sangyo Kaisha Ltd Heat transfer pipe internally provided with resin pipe
JP2004191036A (en) * 2002-11-29 2004-07-08 Usui Kokusai Sangyo Kaisha Ltd Heat transfer pipe internally provided with fin member made of resin material
DE10301996A1 (en) * 2003-01-21 2004-07-29 Tuhh-Technologie-Gmbh Mixing of carbon nanotube reinforcement with polymers (especially polyesters) takes place before the end of the polycondensation used to produce the polymer
WO2004065496A1 (en) * 2003-01-20 2004-08-05 Teijin Limited Carbon nanotube coated with aromatic condensation polymer
JP2004216931A (en) * 2003-01-09 2004-08-05 Nissin Kogyo Co Ltd Synthetic resin part and antilock brake hydraulic pressure control device for vehicle with cover comprising the part as well as wheel speed sensor with holder comprising the part
JP2004231105A (en) * 2003-01-31 2004-08-19 Nissin Kogyo Co Ltd Cup seal and hydraulic master cylinder
JP2004229869A (en) * 2003-01-30 2004-08-19 Mizuno Corp Golf club head
JP2004239600A (en) * 2003-01-17 2004-08-26 Usui Kokusai Sangyo Kaisha Ltd Heat transfer pipe externally provided with resin fin member
JP2004255600A (en) * 2003-02-24 2004-09-16 National Institute For Materials Science Method and apparatus for manufacturing anisotropic molding
JP2004529840A (en) * 2001-03-26 2004-09-30 エイコス・インコーポレーテッド Carbon nanotubes in structures and repair compositions
JP2004279021A (en) * 2003-02-27 2004-10-07 Usui Kokusai Sangyo Kaisha Ltd Heat transfer pipe with internally mounted resin fin member
JP2004285400A (en) * 2003-03-20 2004-10-14 Nissin Kogyo Co Ltd Mounting member for vehicle
JP2004308837A (en) * 2003-04-09 2004-11-04 Nissin Kogyo Co Ltd Seal member
JP2004308836A (en) * 2003-04-09 2004-11-04 Nissin Kogyo Co Ltd Seal member
WO2004099477A2 (en) * 2003-05-09 2004-11-18 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
JP2004351034A (en) * 2003-05-30 2004-12-16 Kenji Onoda Golf ball with high strength
JP2004538353A (en) * 2001-08-17 2004-12-24 ユニバーシティ・オブ・デイトン Method of forming conductive polymer nanocomposites and materials produced thereby
WO2005008784A1 (en) * 2003-07-17 2005-01-27 Matsushita Electric Industrial Co., Ltd. Field effect transistor and method for manufacturing same
JP2005068386A (en) * 2003-08-28 2005-03-17 Nissin Kogyo Co Ltd Carbon fiber composite material, method for producing the same, carbon fiber composite molded article and method for producing the same molded article
WO2004070349A3 (en) * 2002-11-27 2005-03-31 Univ Rice William M Functionalized carbon nanotube-polymer composites and interactions with radiation
JP2005082640A (en) * 2003-09-05 2005-03-31 Nissin Kogyo Co Ltd Carbon fiber composite material and method for producing the same, and carbon fiber composite molded product
JP2005098666A (en) * 2003-09-01 2005-04-14 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube with fin member
JP2005097525A (en) * 2003-04-09 2005-04-14 Nissin Kogyo Co Ltd Carbon fiber composite material and method for producing the same
JP2005097534A (en) * 2003-07-23 2005-04-14 Nissin Kogyo Co Ltd Carbon fiber composite material and its producing method, carbon fiber composite formed article and its producing method, carbon fiber-metal composite material and its producing method, and carbon fiber-metal composite formed article and its prducing method
JP2005147601A (en) * 2003-11-19 2005-06-09 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube having radial fin
JP2005179519A (en) * 2003-12-19 2005-07-07 Nissin Kogyo Co Ltd Composite material of carbon fiber and method for producing the same, composite molded product of carbon fiber and method for producing the same, composite metallic material of carbon fiber and method for producing the same, and composite metallic molded product of carbon fiber and method for producing the same
JP2005520021A (en) * 2002-03-14 2005-07-07 カーボン ナノテクノロジーズ インコーポレーテッド Composite materials containing polar polymers and single-walled carbon nanotubes
JP2005179120A (en) * 2003-12-19 2005-07-07 Nissin Kogyo Co Ltd Carbon fiber composite material and its manufacturing method, carbon fiber composite metallic material and its manufacturing method
JP2005179625A (en) * 2003-12-20 2005-07-07 Bridgestone Corp Rubber composition and tire using the same
JP2005194346A (en) * 2004-01-05 2005-07-21 Nissin Kogyo Co Ltd Carbon fiber composite material and its manufacturing method, carbon fiber composite molding and its manufacturing method, carbon fiber composite metallic material and its manufacturing method, and carbon fiber composite metallic molding and its manufacturing method
JP2005200594A (en) * 2004-01-19 2005-07-28 Nissin Kogyo Co Ltd Carbon fiber composite material and manufacturing method thereof, carbon fiber composite molded article and manufacturing method thereof, carbon fiber composite metal material and manufacturing method thereof, as well as, carbon fiber composite metal molded article and manufacturing method thereof
JP2005201435A (en) * 2003-12-18 2005-07-28 Koyo Seiko Co Ltd Sealing device and energized bearing including it
JP2005238708A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Carbon nanotube reinforced resin structure and its manufacturing method
JP2005263951A (en) * 2004-03-18 2005-09-29 Teijin Ltd Resin composition composed of wholly aromatic polyamide and carbon-based material, and composite fiber
JP2006028410A (en) * 2004-07-20 2006-02-02 Nissin Kogyo Co Ltd Carbon fiber composite material and its manufacturing method
EP1623198A2 (en) * 2003-05-14 2006-02-08 Tekscan, Inc. High temperature pressure sensitive devices and methods thereof
JP2006086471A (en) * 2004-09-17 2006-03-30 Yaskawa Electric Corp Heat radiation fin and its manufacturing method
JP2006131903A (en) * 2004-11-02 2006-05-25 Internatl Business Mach Corp <Ibm> Conductive liquid crystal polymer matrix, miniature electronic device containing the same, method for producing structure containing the device (conductive liquid crystal polymer matrix containing carbon nanotube)
JP2006150541A (en) * 2004-11-30 2006-06-15 Nano Frontier Corp Oriented and patterning-solidified compound material of cnt and its manufacturing method
JP2006158950A (en) * 2004-11-15 2006-06-22 Kasco Corp Golf ball
JP2006167710A (en) * 2004-11-22 2006-06-29 Nissin Kogyo Co Ltd Method of manufacturing thin film, substrate having thin-film, electron emission material, method of manufacturing electron emission material, and electron emission device
JP2006255852A (en) * 2005-03-18 2006-09-28 Kyocera Corp Composite fiber body and cutting tool using the same
JP2006265550A (en) * 2005-03-24 2006-10-05 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat conduction material and its production method
JP2006312677A (en) * 2005-05-09 2006-11-16 Tatsuhiro Takahashi Carbon fiber oriented connecting film and its manufacturing method
KR100647595B1 (en) * 2004-02-17 2006-11-17 삼성에스디아이 주식회사 Complex for forming case and plasma display panel assembly using the same
JP2007009213A (en) * 2005-07-01 2007-01-18 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat conductive material and method for preparation of the same
JP2007009333A (en) * 2006-10-23 2007-01-18 Shinshu Univ Plated structure and method of manufacturing the same
CN1303618C (en) * 2002-11-29 2007-03-07 日精树脂工业株式会社 Conductive resin molded product with insulation sheath and its preparing method
KR100695737B1 (en) * 2004-05-24 2007-03-15 닛신 고오교오 가부시키가이샤 Carbon Fiber Composite Material and Method of Producing the Same, Carbon Fiber Composite Metal Material and Method of Producing the Same, and Carbon Fiber Composite Non-Metal Material and Method of Producing the Same
JP2007062570A (en) * 2005-08-31 2007-03-15 Nissin Kogyo Co Ltd Lip-shaped seal member, vehicular hydraulic master cylinder using the lip-shaped seal member
JP2007506642A (en) * 2003-09-24 2007-03-22 インテル コーポレイション Thermal interface material with aligned carbon nanotubes
JP2007076604A (en) * 2005-09-16 2007-03-29 Nissin Kogyo Co Ltd Diaphragm and reservoir tank of hydraulic master cylinder for vehicle
JP2007078153A (en) * 2005-09-16 2007-03-29 Nissin Kogyo Co Ltd Mount rubber
JP2007078152A (en) * 2005-09-16 2007-03-29 Nissin Kogyo Co Ltd Mount rubber
JP2007168263A (en) * 2005-12-22 2007-07-05 Seiko Precision Inc Resin-made case for electronic equipment and manufacturing method of resin molding
JP2007273284A (en) * 2006-03-31 2007-10-18 Nissin Kogyo Co Ltd Electron emitting material, its manufacturing method, base material formed with electron emitting material, and electron emitting device
JP2007273283A (en) * 2006-03-31 2007-10-18 Nissin Kogyo Co Ltd Electron emitting material, its manufacturing method, base material formed with electron emitting material, and electron emitting device
JP2007284679A (en) * 2006-04-14 2007-11-01 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Composite material containing carbon nanotubes and process for its production
JPWO2005095274A1 (en) * 2004-03-31 2008-02-21 ステラケミファ株式会社 Aggregate of carbon nanotubes, method for forming the same, and biocompatible material
JP2008044099A (en) * 2006-08-11 2008-02-28 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Carbon nanotube composite material and manufacturing method thereof
JP2008156646A (en) * 2006-12-22 2008-07-10 Xerox Corp Coating composition and fusing material
JP2008308344A (en) * 2007-06-12 2008-12-25 Nissin Kogyo Co Ltd Carbon nanofiber, manufacturing method thereof, manufacturing method of carbon fiber composite material using carbon nanofiber and carbon fiber composite material
JP2009130113A (en) * 2007-11-22 2009-06-11 Fujitsu Ltd Package and electronic device using carbon nanotube
JP2009286688A (en) * 2008-05-28 2009-12-10 Qinghua Univ Method of manufacturing carbon nanotube film
JP2010056482A (en) * 2008-08-29 2010-03-11 Fujitsu Ltd Printed wiring board and conductive material
JP2010064488A (en) * 2008-09-12 2010-03-25 Qinghua Univ Method for manufacturing composite using carbon nanotube array
JP2010120289A (en) * 2008-11-18 2010-06-03 Semes Co Ltd Device and method for composing conductive composite
JP2010192581A (en) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology Electromagnetic wave radiator and electromagnetic wave absorber
JP2010222707A (en) * 2010-06-07 2010-10-07 Shinshu Univ Electroless plating method and electroless plating solution
JP2010538861A (en) * 2007-08-16 2010-12-16 エアバス オペレーションズ リミティド Method and apparatus for manufacturing parts from composite materials
JP2012062452A (en) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd Thermoplastic resin composite material and method of producing the same
JP2012082382A (en) * 2010-09-15 2012-04-26 Sekisui Chem Co Ltd Resin composite molding, and method for manufacturing the same
JP2012087041A (en) * 2010-09-22 2012-05-10 Yamagata Prefecture Multi-wall carbon nanotube-dispersed and mixed aqueous gel, manufacturing method, and application thereof
JP2012139679A (en) * 2011-01-03 2012-07-26 General Electric Co <Ge> Process of forming material having nano-particle and material having nano-particle
US8377547B2 (en) 2004-07-16 2013-02-19 Nissin Kogyo Co., Ltd. Carbon fiber-metal composite material and method of producing the same
JP2013063641A (en) * 2011-09-01 2013-04-11 Boeing Co:The Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced part
JP2013523591A (en) * 2010-04-06 2013-06-17 ウィリアム・マーシュ・ライス・ユニバーシティ Production of highly conductive carbon nanotube-polymer composites
JPWO2011099617A1 (en) * 2010-02-15 2013-06-17 国立大学法人北海道大学 Carbon nanotube sheet and method for producing the same
CN103241709A (en) * 2013-04-29 2013-08-14 中国科学院金属研究所 Method for adjusting photoelectric property of nanocarbon film by ozone and for graphing nanocarbon film
US8513348B2 (en) 2008-07-10 2013-08-20 Nissin Kogyo Co., Ltd. Carbon nanofibers, method of producing carbon nanofibers, carbon fiber composite material using carbon nanofibers, and method of producing the carbon fiber composite material
JP2013534363A (en) * 2010-07-23 2013-09-02 インターナショナル・ビジネス・マシーンズ・コーポレーション Method and system for enhancing the performance of thermal interface materials
KR101308183B1 (en) 2011-08-19 2013-09-12 숭실대학교산학협력단 Conductive polymer complex and forming method thereof
JP2013202919A (en) * 2012-03-28 2013-10-07 Sekisui Chem Co Ltd Multilayer film
JP2013202920A (en) * 2012-03-28 2013-10-07 Sekisui Chem Co Ltd Multilayer film and method of manufacturing the same
KR101360417B1 (en) * 2011-11-23 2014-02-11 현대자동차주식회사 Aluminum-cnt composites and method for producing the same
US20140132439A1 (en) * 2012-07-10 2014-05-15 Kabushiki Kaisha Riken Electromagnetic wave absorber
US9082744B2 (en) 2013-07-08 2015-07-14 International Business Machines Corporation Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field
US9090004B2 (en) 2013-02-06 2015-07-28 International Business Machines Corporation Composites comprised of aligned carbon fibers in chain-aligned polymer binder
US9096784B2 (en) 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
US9245813B2 (en) 2013-01-30 2016-01-26 International Business Machines Corporation Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance
US9257359B2 (en) 2011-07-22 2016-02-09 International Business Machines Corporation System and method to process horizontally aligned graphite nanofibers in a thermal interface material used in 3D chip stacks
JP2017507809A (en) * 2014-02-04 2017-03-23 エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. Articles of nanostructure-reinforced composite and manufacturing method
CN106883476A (en) * 2010-12-14 2017-06-23 钢筋分子设计有限责任公司 Improved Elastomer Formulations
KR20180004624A (en) * 2016-07-04 2018-01-12 류도영 Carbon nanotubes and conductive polymer composite material produced is mixed utilization and efficient composition
WO2018012445A1 (en) * 2016-07-15 2018-01-18 パナソニックIpマネジメント株式会社 Metal-clad laminate and printed wiring board
KR20180020501A (en) * 2016-08-18 2018-02-28 한국과학기술연구원 Polyketone-carbon based filler composites and preparation methods thereof
JP2018070391A (en) * 2016-10-25 2018-05-10 国立研究開発法人産業技術総合研究所 Carbon nanotube rubber composite material
WO2019022528A1 (en) * 2017-07-28 2019-01-31 엘에프피 주식회사 Polytetrafluoroethylene carbon nanotube composite having electro-conductive property and method for producing same
KR20190047780A (en) * 2017-10-30 2019-05-09 (주) 오프렌 Method and apparatus for producing high strength component
WO2022009554A1 (en) * 2020-07-07 2022-01-13 正毅 千葉 Electromagnetic wave absorbing material, electromagnetic wave absorbing coating material, electronic device and resin component

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991363B2 (en) * 2000-04-28 2006-01-31 Premark Feg L.L.C. Mixer with pivotable bowl
US20040022981A1 (en) * 2002-04-01 2004-02-05 Carbon Nanotechnologies, Inc. Composite of single-wall carbon nanotubes and aromatic polyamide and process for making the same
JP2003317606A (en) * 2002-04-19 2003-11-07 Mitsubishi Pencil Co Ltd Electrode for electron gun and electron gun
JP4416376B2 (en) * 2002-05-13 2010-02-17 富士通株式会社 Semiconductor device and manufacturing method thereof
JP3969228B2 (en) * 2002-07-19 2007-09-05 松下電工株式会社 Mechanical deformation detection sensor, acceleration sensor using the same, and pressure sensor
US6987027B2 (en) * 2002-08-23 2006-01-17 The Regents Of The University Of California Microscale vacuum tube device and method for making same
US7012266B2 (en) 2002-08-23 2006-03-14 Samsung Electronics Co., Ltd. MEMS-based two-dimensional e-beam nano lithography device and method for making the same
US6864162B2 (en) * 2002-08-23 2005-03-08 Samsung Electronics Co., Ltd. Article comprising gated field emission structures with centralized nanowires and method for making the same
US6994584B1 (en) * 2002-08-30 2006-02-07 Advanced Micro Devices, Inc. Thermally conductive integrated circuit mounting structures
US20050079282A1 (en) * 2002-09-30 2005-04-14 Sungho Jin Ultra-high-density magnetic recording media and methods for making the same
US20040071951A1 (en) * 2002-09-30 2004-04-15 Sungho Jin Ultra-high-density information storage media and methods for making the same
US7068582B2 (en) * 2002-09-30 2006-06-27 The Regents Of The University Of California Read head for ultra-high-density information storage media and method for making the same
AU2003266625A1 (en) * 2002-09-30 2004-04-23 Bridgestone Corporation Orientated carbon nanotube composite, process for producing orientated carbon nanotube composite, and, produced using orientated carbon nanotube composite, pneumatic tire, wheel for vehicle, tire wheel assembly and disk brake
WO2004033370A1 (en) * 2002-10-11 2004-04-22 Massachusetts Institute Of Technology Nanopellets and method of making nanopellets
US20040096607A1 (en) * 2002-11-15 2004-05-20 Kelley Ronald James Gas storage media, containers, and battery employing the media
ATE510881T1 (en) * 2002-12-04 2011-06-15 Teijin Ltd COMPOSITE FIBER WITH FULLY AROMATIC POLYAMIDE AND CARBON NANOTUBE
DE10327530A1 (en) * 2003-06-17 2005-01-20 Electrovac Gesmbh Device comprising at least one heat source formed by a functional element to be cooled, having at least one heat sink and at least one intermediate layer of a thermal conductive material between the heat source and the heat sink and thermal conductive mass, in particular for use in such a device
CA2530471A1 (en) * 2003-06-23 2005-02-17 William Marsh Rice University Elastomers reinforced with carbon nanotubes
US20040266063A1 (en) * 2003-06-25 2004-12-30 Montgomery Stephen W. Apparatus and method for manufacturing thermal interface device having aligned carbon nanotubes
US6976532B2 (en) * 2003-06-26 2005-12-20 The Regents Of The University Of California Anisotropic thermal applications of composites of ceramics and carbon nanotubes
US7481267B2 (en) * 2003-06-26 2009-01-27 The Regents Of The University Of California Anisotropic thermal and electrical applications of composites of ceramics and carbon nanotubes
JP2005127965A (en) * 2003-10-27 2005-05-19 Mitsubishi Pencil Co Ltd Optically measuring carbon substrate and method for manufacturing the same
JP2005133034A (en) * 2003-10-31 2005-05-26 Fuji Xerox Co Ltd Aliphatic polyetherketone polymer and resin composition
JP4070707B2 (en) * 2003-11-13 2008-04-02 株式会社潤工社 Fluororesin composition
US20070257766A1 (en) * 2003-11-18 2007-11-08 Richards Robert F Micro-Transducer and Thermal Switch for Same
US7932549B2 (en) * 2003-12-18 2011-04-26 International Business Machines Corporation Carbon nanotube conductor for trench capacitors
US6997039B2 (en) 2004-02-24 2006-02-14 Clemson University Carbon nanotube based resonant-circuit sensor
KR20060024564A (en) * 2004-09-14 2006-03-17 삼성에스디아이 주식회사 Method for aligning carbon nanotubes and method of manufacturing field emission device using the same
TW200633171A (en) * 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
TWI388042B (en) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg Integrated circuit nanotube-based substrate
US7351360B2 (en) 2004-11-12 2008-04-01 International Business Machines Corporation Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive
WO2006064782A1 (en) 2004-12-17 2006-06-22 Kabushiki Kaisha Fine Rubber Kenkyuusho Dielectric raw material, antenna device, portable phone and electromagnetic wave shielding body
WO2006064783A1 (en) * 2004-12-17 2006-06-22 Kabushiki Kaisha Fine Rubber Kenkyuusho Method of controlling specific inductive capacity, dielectric material, mobile phone and human phantom model
WO2006078952A1 (en) * 2005-01-21 2006-07-27 University Of California Methods for fabricating a long-range ordered periodic array of nano-features, and articles comprising same
US20060174385A1 (en) * 2005-02-02 2006-08-03 Lewis Gruber Method and apparatus for detecting targets
US8092910B2 (en) * 2005-02-16 2012-01-10 Dow Corning Toray Co., Ltd. Reinforced silicone resin film and method of preparing same
ATE551398T1 (en) * 2005-02-16 2012-04-15 Dow Corning REINFORCED SILICONE RESIN FILM AND PRODUCTION METHOD THEREOF
JP2007039638A (en) * 2005-03-23 2007-02-15 Nissin Kogyo Co Ltd Carbon fiber composite material
JP2009503230A (en) * 2005-08-04 2009-01-29 ダウ・コーニング・コーポレイション Reinforced silicone resin film and method for producing the same
JP2009508999A (en) * 2005-09-16 2009-03-05 ハイピリオン カタリシス インターナショナル インコーポレイテッド Conductive silicone and method for producing the same
EP1969065B1 (en) * 2005-12-21 2011-07-27 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
ATE515528T1 (en) * 2006-01-19 2011-07-15 Dow Corning SILICONE RESIN FILM, PRODUCTION METHOD THEREOF AND SILICONE COMPOSITION FILLED WITH NANOMATERIAL
US20090005499A1 (en) * 2006-02-02 2009-01-01 Mark Fisher Silicone Resin Film, Method of Preparing Same, and Nanomaterial-Filled Silicone Composition
US20090221734A1 (en) * 2006-02-10 2009-09-03 Teijin Limited Resin composition and process for the production thereof
WO2007097835A2 (en) * 2006-02-20 2007-08-30 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
EP2385016B1 (en) 2006-05-19 2018-08-08 Massachusetts Institute of Technology Continuous process for the production of nanostructures
US8337979B2 (en) 2006-05-19 2012-12-25 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
KR20090074758A (en) * 2006-10-05 2009-07-07 다우 코닝 코포레이션 Silicone resin film and method of preparing same
KR20090107529A (en) * 2007-02-06 2009-10-13 다우 코닝 코포레이션 Silicone resin, silicone composition, coated substrate, and reinforced silicone resin film
WO2008103229A1 (en) * 2007-02-22 2008-08-28 Dow Corning Corporation Reinforced silicone resin film and method of preparing same
WO2008103221A1 (en) * 2007-02-22 2008-08-28 Dow Corning Corporation Process for preparing conductive films and articles prepared using the process
JP5377334B2 (en) * 2007-02-22 2013-12-25 ダウ コーニング コーポレーション Reinforced silicone resin film
US8283025B2 (en) * 2007-02-22 2012-10-09 Dow Corning Corporation Reinforced silicone resin films
CN101675097B (en) * 2007-05-01 2012-03-14 陶氏康宁公司 Reinforced silicone resin film
US8020621B2 (en) * 2007-05-08 2011-09-20 Baker Hughes Incorporated Downhole applications of composites having aligned nanotubes for heat transport
US20110121179A1 (en) * 2007-06-01 2011-05-26 Liddiard Steven D X-ray window with beryllium support structure
US20080318026A1 (en) * 2007-06-25 2008-12-25 University Of Dayton Method of modifying carbon nanomaterials, composites incorporating modified carbon nanomaterials and method of producing the composites
EP2167632A4 (en) * 2007-07-09 2013-12-18 Univ Brigham Young Methods and devices for charged molecule manipulation
CN101360387B (en) * 2007-08-03 2012-06-13 富葵精密组件(深圳)有限公司 Flexible circuit board base membrane, flexible circuit board substrate and flexible circuit board
CN101376497B (en) * 2007-08-31 2011-06-22 清华大学 Carbon nano-tube composite material precast member and preparation thereof
DE102007042217B4 (en) * 2007-09-05 2019-10-10 Robert Bosch Gmbh Process for the preparation of porous ceramics, the ceramics thus produced and their use
EP2190778A4 (en) * 2007-09-28 2014-08-13 Univ Brigham Young Carbon nanotube assembly
US8498381B2 (en) 2010-10-07 2013-07-30 Moxtek, Inc. Polymer layer on X-ray window
US9305735B2 (en) 2007-09-28 2016-04-05 Brigham Young University Reinforced polymer x-ray window
KR20100070349A (en) * 2007-10-12 2010-06-25 다우 코닝 코포레이션 Reinforced silicone resin film and nanofiber-filled silicone composition
RU2410402C2 (en) 2007-12-28 2011-01-27 Александр Метталинович Тишин Porous materials with embedded nanoparticles, preparation methods and use thereof
WO2009102630A1 (en) * 2008-02-11 2009-08-20 Memc Electronic Materials, Inc. Carbon nanotube reinforced wiresaw beam used in wiresaw slicing of ingots into wafers
US9023175B2 (en) * 2008-08-04 2015-05-05 Lockheed Martin Corporation Carbon/carbon film adhesive
US20100108393A1 (en) * 2008-11-04 2010-05-06 Baker Hughes Incorporated Downhole mud motor and method of improving durabilty thereof
US9494615B2 (en) * 2008-11-24 2016-11-15 Massachusetts Institute Of Technology Method of making and assembling capsulated nanostructures
WO2010061236A1 (en) * 2008-11-25 2010-06-03 Mantovani, Sascha Device for rapidly transferring thermal energy
EP2401747B1 (en) * 2009-02-27 2014-04-30 Siemens Aktiengesellschaft Electric component and method for producing an electric component
US8313443B2 (en) * 2009-03-09 2012-11-20 Tom Michael D Tensiometer utilizing elastic conductors
US20100239828A1 (en) * 2009-03-19 2010-09-23 Cornaby Sterling W Resistively heated small planar filament
US8247971B1 (en) 2009-03-19 2012-08-21 Moxtek, Inc. Resistively heated small planar filament
WO2011009477A1 (en) * 2009-07-23 2011-01-27 Siemens Aktiengesellschaft Cable containing oriented nanoparticles
US20110146859A1 (en) * 2009-12-21 2011-06-23 Frank Schmitz Tire with component containing carbon nanotubes
JP5912109B2 (en) * 2010-06-22 2016-04-27 モレキュラー レバー デザイン エルエルシー Carbon nanotube composition
US8995621B2 (en) 2010-09-24 2015-03-31 Moxtek, Inc. Compact X-ray source
US8526574B2 (en) 2010-09-24 2013-09-03 Moxtek, Inc. Capacitor AC power coupling across high DC voltage differential
CN102053735B (en) * 2010-12-27 2015-01-21 清华大学 Touch screen input fingerstall
US9575598B2 (en) * 2010-12-27 2017-02-21 Tsinghua University Inputting fingertip sleeve
US8804910B1 (en) 2011-01-24 2014-08-12 Moxtek, Inc. Reduced power consumption X-ray source
US8750458B1 (en) 2011-02-17 2014-06-10 Moxtek, Inc. Cold electron number amplifier
US8929515B2 (en) 2011-02-23 2015-01-06 Moxtek, Inc. Multiple-size support for X-ray window
JP5790023B2 (en) * 2011-02-25 2015-10-07 富士通株式会社 Manufacturing method of electronic parts
US8792619B2 (en) 2011-03-30 2014-07-29 Moxtek, Inc. X-ray tube with semiconductor coating
US9174412B2 (en) 2011-05-16 2015-11-03 Brigham Young University High strength carbon fiber composite wafers for microfabrication
US8989354B2 (en) 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9997785B2 (en) 2011-06-23 2018-06-12 Molecular Rebar Design, Llc Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
JP5940658B2 (en) 2011-06-23 2016-06-29 モレキュラー レバー デザイン,エルエルシー Nanoplate-nanotube composite, method for producing the same, and product obtained therefrom
US8817950B2 (en) 2011-12-22 2014-08-26 Moxtek, Inc. X-ray tube to power supply connector
US8761344B2 (en) 2011-12-29 2014-06-24 Moxtek, Inc. Small x-ray tube with electron beam control optics
GB201210850D0 (en) 2012-06-19 2012-08-01 Eads Uk Ltd Thermoplastic polymer powder
US10609843B2 (en) * 2012-10-04 2020-03-31 Compass Datacenters, Llc Magnetic blocking tiles for a datacenter facility
KR101462426B1 (en) * 2012-12-07 2014-11-17 한화케미칼 주식회사 Formulation and Process of Highly Thermal Conducting Rubber Composite using Carbon Nanotubes for Bladder
US20140175338A1 (en) * 2012-12-21 2014-06-26 Polyone Corporation Electrically conductive polyphenylene sulfide compounds
JP2014187134A (en) * 2013-03-22 2014-10-02 Riken Corp Electromagnetic wave absorber
US9173623B2 (en) 2013-04-19 2015-11-03 Samuel Soonho Lee X-ray tube and receiver inside mouth
KR101903300B1 (en) 2014-07-22 2018-10-01 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Molded fluoropolymer breakseal with compliant material
US10427382B2 (en) * 2015-10-29 2019-10-01 King Abdulaziz University Composite epoxy material with embedded MWCNT fibers and process of manufacturing
EP3463826B1 (en) 2016-05-31 2023-07-05 Massachusetts Institute of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US20190300771A1 (en) * 2016-09-28 2019-10-03 Teijin Limited Heat dissipation sheet
GB2555852A (en) * 2016-11-14 2018-05-16 Jaguar Land Rover Ltd Moulding process and apparatus
US20190085138A1 (en) 2017-09-15 2019-03-21 Massachusetts Institute Of Technology Low-defect fabrication of composite materials
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
US11600929B2 (en) * 2019-09-30 2023-03-07 Alexander Socransky Method and apparatus for moldable material for terrestrial, marine, aeronautical and space applications which includes an ability to reflect radio frequency energy and which may be moldable into a parabolic or radio frequency reflector to obviate the need for reflector construction techniques which produce layers susceptible to layer separation and susceptible to fracture under extreme circumstances

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029939B2 (en) * 1972-07-05 1975-09-27
JP2000026760A (en) * 1998-07-14 2000-01-25 Suzuki Sogyo Co Ltd Functional coating composition
JP2000063670A (en) * 1998-08-24 2000-02-29 Suzuki Sogyo Co Ltd Thermally conductive silicone rubber composition and its molded item
JP2000141505A (en) * 1998-11-09 2000-05-23 Polymatech Co Ltd Method for molding polymer composite material and magnetic field-orientated press molding device
JP2000141392A (en) * 1998-11-09 2000-05-23 Polymatech Co Ltd Method for molding polymer composite material and magnetic field oriented press forming machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599961B1 (en) * 2000-02-01 2003-07-29 University Of Kentucky Research Foundation Polymethylmethacrylate augmented with carbon nanotubes
US6420293B1 (en) * 2000-08-25 2002-07-16 Rensselaer Polytechnic Institute Ceramic matrix nanocomposites containing carbon nanotubes for enhanced mechanical behavior
JP2002121404A (en) * 2000-10-19 2002-04-23 Polymatech Co Ltd Heat-conductive polymer sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029939B2 (en) * 1972-07-05 1975-09-27
JP2000026760A (en) * 1998-07-14 2000-01-25 Suzuki Sogyo Co Ltd Functional coating composition
JP2000063670A (en) * 1998-08-24 2000-02-29 Suzuki Sogyo Co Ltd Thermally conductive silicone rubber composition and its molded item
JP2000141505A (en) * 1998-11-09 2000-05-23 Polymatech Co Ltd Method for molding polymer composite material and magnetic field-orientated press molding device
JP2000141392A (en) * 1998-11-09 2000-05-23 Polymatech Co Ltd Method for molding polymer composite material and magnetic field oriented press forming machine

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529840A (en) * 2001-03-26 2004-09-30 エイコス・インコーポレーテッド Carbon nanotubes in structures and repair compositions
JP2004538353A (en) * 2001-08-17 2004-12-24 ユニバーシティ・オブ・デイトン Method of forming conductive polymer nanocomposites and materials produced thereby
WO2003025069A1 (en) * 2001-09-14 2003-03-27 Bridgestone Corporation Thermoplastic elastomer composition
JP2003138040A (en) * 2001-11-07 2003-05-14 Toray Ind Inc Aromatic polyamide film and magnetic recording medium
JP2003249613A (en) * 2001-12-20 2003-09-05 Intel Corp Carbon nanotube thermal interface structure
JP2003238816A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber reinforced resin composition, molding material and its molded article
JP2005520021A (en) * 2002-03-14 2005-07-07 カーボン ナノテクノロジーズ インコーポレーテッド Composite materials containing polar polymers and single-walled carbon nanotubes
JP2004132486A (en) * 2002-10-11 2004-04-30 Nsk Ltd Wheel supporting rolling bearing unit
JP2004162051A (en) * 2002-10-22 2004-06-10 Osaka Gas Co Ltd Infrared ray-radiating coating material, infrared ray-radiating film, heat-emitting substrate and heat-emitting housing
JP2004162052A (en) * 2002-10-22 2004-06-10 Osaka Gas Co Ltd Electromagnetic wave-absorbing coating material composition, electromagnetic wave-absorbing housing and electromagnetic wave-absorbing film or sheet
JP2004143019A (en) * 2002-10-28 2004-05-20 Shimizu Corp Cement hardening material, cement hardened body, concrete placing mold and concrete structure
US8809979B2 (en) 2002-11-27 2014-08-19 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
WO2004070349A3 (en) * 2002-11-27 2005-03-31 Univ Rice William M Functionalized carbon nanotube-polymer composites and interactions with radiation
EP2258763A1 (en) * 2002-11-27 2010-12-08 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
US7744844B2 (en) 2002-11-27 2010-06-29 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
EP2258762A1 (en) * 2002-11-27 2010-12-08 William Marsh Rice University Functionalized carbon nanotube-polymer composites and interactions with radiation
JP2004191036A (en) * 2002-11-29 2004-07-08 Usui Kokusai Sangyo Kaisha Ltd Heat transfer pipe internally provided with fin member made of resin material
CN1303618C (en) * 2002-11-29 2007-03-07 日精树脂工业株式会社 Conductive resin molded product with insulation sheath and its preparing method
JP2004191035A (en) * 2002-11-29 2004-07-08 Usui Kokusai Sangyo Kaisha Ltd Heat transfer pipe internally provided with resin pipe
JP2004216931A (en) * 2003-01-09 2004-08-05 Nissin Kogyo Co Ltd Synthetic resin part and antilock brake hydraulic pressure control device for vehicle with cover comprising the part as well as wheel speed sensor with holder comprising the part
JP2004239600A (en) * 2003-01-17 2004-08-26 Usui Kokusai Sangyo Kaisha Ltd Heat transfer pipe externally provided with resin fin member
WO2004065496A1 (en) * 2003-01-20 2004-08-05 Teijin Limited Carbon nanotube coated with aromatic condensation polymer
US7754328B2 (en) 2003-01-20 2010-07-13 Teijin Limited Carbon nanotube coated with aromatic condensation polymer
DE10301996A1 (en) * 2003-01-21 2004-07-29 Tuhh-Technologie-Gmbh Mixing of carbon nanotube reinforcement with polymers (especially polyesters) takes place before the end of the polycondensation used to produce the polymer
JP2004229869A (en) * 2003-01-30 2004-08-19 Mizuno Corp Golf club head
JP2004231105A (en) * 2003-01-31 2004-08-19 Nissin Kogyo Co Ltd Cup seal and hydraulic master cylinder
JP2004255600A (en) * 2003-02-24 2004-09-16 National Institute For Materials Science Method and apparatus for manufacturing anisotropic molding
JP2004279021A (en) * 2003-02-27 2004-10-07 Usui Kokusai Sangyo Kaisha Ltd Heat transfer pipe with internally mounted resin fin member
JP2004285400A (en) * 2003-03-20 2004-10-14 Nissin Kogyo Co Ltd Mounting member for vehicle
US7785701B2 (en) 2003-04-09 2010-08-31 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
US7927692B2 (en) 2003-04-09 2011-04-19 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
JP2004308836A (en) * 2003-04-09 2004-11-04 Nissin Kogyo Co Ltd Seal member
JP2004308837A (en) * 2003-04-09 2004-11-04 Nissin Kogyo Co Ltd Seal member
JP2005097525A (en) * 2003-04-09 2005-04-14 Nissin Kogyo Co Ltd Carbon fiber composite material and method for producing the same
US8808605B2 (en) 2003-04-09 2014-08-19 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
KR100675599B1 (en) * 2003-05-09 2007-01-30 쇼와 덴코 가부시키가이샤 Fine carbon fiber with linearity and resin composite material using the same
US8372511B2 (en) 2003-05-09 2013-02-12 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
JP2013217011A (en) * 2003-05-09 2013-10-24 Showa Denko Kk Linear fine carbon fiber
JP2004360160A (en) * 2003-05-09 2004-12-24 Showa Denko Kk Linear fine carbon fiber and resin composite material given by using the same
CN100439574C (en) * 2003-05-09 2008-12-03 昭和电工株式会社 Fine carbon fiber with linearity and resin composite material using the same
WO2004099477A2 (en) * 2003-05-09 2004-11-18 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
US8084121B2 (en) 2003-05-09 2011-12-27 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
WO2004099477A3 (en) * 2003-05-09 2005-01-27 Showa Denko Kk Fine carbon fiber with linearity and resin composite material using the same
JP2010084316A (en) * 2003-05-09 2010-04-15 Showa Denko Kk Fine carbon fiber with linearity and composite material using the same
EP1623198A2 (en) * 2003-05-14 2006-02-08 Tekscan, Inc. High temperature pressure sensitive devices and methods thereof
JP2004351034A (en) * 2003-05-30 2004-12-16 Kenji Onoda Golf ball with high strength
US7858968B2 (en) 2003-07-17 2010-12-28 Panasonic Corporation Field effect transistor and method of fabricating the same
WO2005008784A1 (en) * 2003-07-17 2005-01-27 Matsushita Electric Industrial Co., Ltd. Field effect transistor and method for manufacturing same
JP4632952B2 (en) * 2003-07-17 2011-02-16 パナソニック株式会社 Field effect transistor and manufacturing method thereof
JPWO2005008784A1 (en) * 2003-07-17 2006-09-28 松下電器産業株式会社 Field-effect transistor and method of manufacturing the same
US8053506B2 (en) 2003-07-23 2011-11-08 Nissin Kogyo Co., Ltd. Carbon fiber composite material and method of producing the same, formed product of carbon fiber composite and method of producing the same, carbon fiber-metal composite material and method of producing the same, and formed product of carbon fiber-metal composite and method of producing the same
JP2005097534A (en) * 2003-07-23 2005-04-14 Nissin Kogyo Co Ltd Carbon fiber composite material and its producing method, carbon fiber composite formed article and its producing method, carbon fiber-metal composite material and its producing method, and carbon fiber-metal composite formed article and its prducing method
JP2005068386A (en) * 2003-08-28 2005-03-17 Nissin Kogyo Co Ltd Carbon fiber composite material, method for producing the same, carbon fiber composite molded article and method for producing the same molded article
JP2005098666A (en) * 2003-09-01 2005-04-14 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube with fin member
JP2005082640A (en) * 2003-09-05 2005-03-31 Nissin Kogyo Co Ltd Carbon fiber composite material and method for producing the same, and carbon fiber composite molded product
CN100433311C (en) * 2003-09-24 2008-11-12 英特尔公司 Thermal interface material with aligned carbon nanotubes
JP2007506642A (en) * 2003-09-24 2007-03-22 インテル コーポレイション Thermal interface material with aligned carbon nanotubes
JP2005147601A (en) * 2003-11-19 2005-06-09 Usui Kokusai Sangyo Kaisha Ltd Heat transfer tube having radial fin
JP2005201435A (en) * 2003-12-18 2005-07-28 Koyo Seiko Co Ltd Sealing device and energized bearing including it
JP2005179120A (en) * 2003-12-19 2005-07-07 Nissin Kogyo Co Ltd Carbon fiber composite material and its manufacturing method, carbon fiber composite metallic material and its manufacturing method
JP2005179519A (en) * 2003-12-19 2005-07-07 Nissin Kogyo Co Ltd Composite material of carbon fiber and method for producing the same, composite molded product of carbon fiber and method for producing the same, composite metallic material of carbon fiber and method for producing the same, and composite metallic molded product of carbon fiber and method for producing the same
JP2005179625A (en) * 2003-12-20 2005-07-07 Bridgestone Corp Rubber composition and tire using the same
JP2005194346A (en) * 2004-01-05 2005-07-21 Nissin Kogyo Co Ltd Carbon fiber composite material and its manufacturing method, carbon fiber composite molding and its manufacturing method, carbon fiber composite metallic material and its manufacturing method, and carbon fiber composite metallic molding and its manufacturing method
JP2005200594A (en) * 2004-01-19 2005-07-28 Nissin Kogyo Co Ltd Carbon fiber composite material and manufacturing method thereof, carbon fiber composite molded article and manufacturing method thereof, carbon fiber composite metal material and manufacturing method thereof, as well as, carbon fiber composite metal molded article and manufacturing method thereof
KR100647595B1 (en) * 2004-02-17 2006-11-17 삼성에스디아이 주식회사 Complex for forming case and plasma display panel assembly using the same
JP2005238708A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Carbon nanotube reinforced resin structure and its manufacturing method
JP2005263951A (en) * 2004-03-18 2005-09-29 Teijin Ltd Resin composition composed of wholly aromatic polyamide and carbon-based material, and composite fiber
JP5014786B2 (en) * 2004-03-31 2012-08-29 ステラケミファ株式会社 Aggregate of carbon nanotubes, method for forming the same, and biocompatible material
JPWO2005095274A1 (en) * 2004-03-31 2008-02-21 ステラケミファ株式会社 Aggregate of carbon nanotubes, method for forming the same, and biocompatible material
KR100695737B1 (en) * 2004-05-24 2007-03-15 닛신 고오교오 가부시키가이샤 Carbon Fiber Composite Material and Method of Producing the Same, Carbon Fiber Composite Metal Material and Method of Producing the Same, and Carbon Fiber Composite Non-Metal Material and Method of Producing the Same
US8377547B2 (en) 2004-07-16 2013-02-19 Nissin Kogyo Co., Ltd. Carbon fiber-metal composite material and method of producing the same
JP2006028410A (en) * 2004-07-20 2006-02-02 Nissin Kogyo Co Ltd Carbon fiber composite material and its manufacturing method
JP4666203B2 (en) * 2004-09-17 2011-04-06 株式会社安川電機 Radiation fin and method of manufacturing the same
JP2006086471A (en) * 2004-09-17 2006-03-30 Yaskawa Electric Corp Heat radiation fin and its manufacturing method
JP2006131903A (en) * 2004-11-02 2006-05-25 Internatl Business Mach Corp <Ibm> Conductive liquid crystal polymer matrix, miniature electronic device containing the same, method for producing structure containing the device (conductive liquid crystal polymer matrix containing carbon nanotube)
JP2006158950A (en) * 2004-11-15 2006-06-22 Kasco Corp Golf ball
US8253318B2 (en) 2004-11-22 2012-08-28 Nissin Kogyo Co., Ltd. Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device
JP2006167710A (en) * 2004-11-22 2006-06-29 Nissin Kogyo Co Ltd Method of manufacturing thin film, substrate having thin-film, electron emission material, method of manufacturing electron emission material, and electron emission device
US7927169B2 (en) 2004-11-22 2011-04-19 Nissin Kogyo Co., Ltd. Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device
JP2006150541A (en) * 2004-11-30 2006-06-15 Nano Frontier Corp Oriented and patterning-solidified compound material of cnt and its manufacturing method
JP2006255852A (en) * 2005-03-18 2006-09-28 Kyocera Corp Composite fiber body and cutting tool using the same
JP2006265550A (en) * 2005-03-24 2006-10-05 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat conduction material and its production method
JP2006312677A (en) * 2005-05-09 2006-11-16 Tatsuhiro Takahashi Carbon fiber oriented connecting film and its manufacturing method
JP4653029B2 (en) * 2005-07-01 2011-03-16 鴻富錦精密工業(深▲セン▼)有限公司 Thermally conductive material and method for producing the same
US8029900B2 (en) 2005-07-01 2011-10-04 Tsinghua University Thermal interface material and method for manufacturing same
JP2007009213A (en) * 2005-07-01 2007-01-18 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Heat conductive material and method for preparation of the same
JP2007062570A (en) * 2005-08-31 2007-03-15 Nissin Kogyo Co Ltd Lip-shaped seal member, vehicular hydraulic master cylinder using the lip-shaped seal member
JP4493567B2 (en) * 2005-08-31 2010-06-30 日信工業株式会社 Lip-shaped seal member and vehicle hydraulic master cylinder using the lip-shaped seal member
JP2007076604A (en) * 2005-09-16 2007-03-29 Nissin Kogyo Co Ltd Diaphragm and reservoir tank of hydraulic master cylinder for vehicle
JP4493572B2 (en) * 2005-09-16 2010-06-30 日信工業株式会社 Reservoir tank of diaphragm and vehicle hydraulic master cylinder
JP2007078153A (en) * 2005-09-16 2007-03-29 Nissin Kogyo Co Ltd Mount rubber
JP2007078152A (en) * 2005-09-16 2007-03-29 Nissin Kogyo Co Ltd Mount rubber
JP2007168263A (en) * 2005-12-22 2007-07-05 Seiko Precision Inc Resin-made case for electronic equipment and manufacturing method of resin molding
JP2007273283A (en) * 2006-03-31 2007-10-18 Nissin Kogyo Co Ltd Electron emitting material, its manufacturing method, base material formed with electron emitting material, and electron emitting device
JP2007273284A (en) * 2006-03-31 2007-10-18 Nissin Kogyo Co Ltd Electron emitting material, its manufacturing method, base material formed with electron emitting material, and electron emitting device
JP4723529B2 (en) * 2006-04-14 2011-07-13 鴻富錦精密工業(深▲セン▼)有限公司 Composite material including carbon nanotube and method for producing the same
JP2007284679A (en) * 2006-04-14 2007-11-01 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Composite material containing carbon nanotubes and process for its production
JP2008044099A (en) * 2006-08-11 2008-02-28 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Carbon nanotube composite material and manufacturing method thereof
JP4599565B2 (en) * 2006-10-23 2010-12-15 国立大学法人信州大学 Electrolytic plating method and electrolytic plating solution
JP2007009333A (en) * 2006-10-23 2007-01-18 Shinshu Univ Plated structure and method of manufacturing the same
JP2008156646A (en) * 2006-12-22 2008-07-10 Xerox Corp Coating composition and fusing material
JP2008308344A (en) * 2007-06-12 2008-12-25 Nissin Kogyo Co Ltd Carbon nanofiber, manufacturing method thereof, manufacturing method of carbon fiber composite material using carbon nanofiber and carbon fiber composite material
JP2010538861A (en) * 2007-08-16 2010-12-16 エアバス オペレーションズ リミティド Method and apparatus for manufacturing parts from composite materials
JP2009130113A (en) * 2007-11-22 2009-06-11 Fujitsu Ltd Package and electronic device using carbon nanotube
US8236389B2 (en) 2008-05-28 2012-08-07 Tsinghua University Method for making carbon nanotube films
JP2009286688A (en) * 2008-05-28 2009-12-10 Qinghua Univ Method of manufacturing carbon nanotube film
US8513348B2 (en) 2008-07-10 2013-08-20 Nissin Kogyo Co., Ltd. Carbon nanofibers, method of producing carbon nanofibers, carbon fiber composite material using carbon nanofibers, and method of producing the carbon fiber composite material
JP2010056482A (en) * 2008-08-29 2010-03-11 Fujitsu Ltd Printed wiring board and conductive material
JP2010064488A (en) * 2008-09-12 2010-03-25 Qinghua Univ Method for manufacturing composite using carbon nanotube array
JP2010120289A (en) * 2008-11-18 2010-06-03 Semes Co Ltd Device and method for composing conductive composite
JP2010192581A (en) * 2009-02-17 2010-09-02 National Institute Of Advanced Industrial Science & Technology Electromagnetic wave radiator and electromagnetic wave absorber
JP5540419B2 (en) * 2010-02-15 2014-07-02 国立大学法人北海道大学 Carbon nanotube sheet and method for producing the same
JPWO2011099617A1 (en) * 2010-02-15 2013-06-17 国立大学法人北海道大学 Carbon nanotube sheet and method for producing the same
JP2013523591A (en) * 2010-04-06 2013-06-17 ウィリアム・マーシュ・ライス・ユニバーシティ Production of highly conductive carbon nanotube-polymer composites
JP2010222707A (en) * 2010-06-07 2010-10-07 Shinshu Univ Electroless plating method and electroless plating solution
JP2013534363A (en) * 2010-07-23 2013-09-02 インターナショナル・ビジネス・マシーンズ・コーポレーション Method and system for enhancing the performance of thermal interface materials
US9096784B2 (en) 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
JP2012082382A (en) * 2010-09-15 2012-04-26 Sekisui Chem Co Ltd Resin composite molding, and method for manufacturing the same
JP2012062452A (en) * 2010-09-18 2012-03-29 Sekisui Chem Co Ltd Thermoplastic resin composite material and method of producing the same
JP2012087041A (en) * 2010-09-22 2012-05-10 Yamagata Prefecture Multi-wall carbon nanotube-dispersed and mixed aqueous gel, manufacturing method, and application thereof
CN106883476A (en) * 2010-12-14 2017-06-23 钢筋分子设计有限责任公司 Improved Elastomer Formulations
JP2012139679A (en) * 2011-01-03 2012-07-26 General Electric Co <Ge> Process of forming material having nano-particle and material having nano-particle
US9257359B2 (en) 2011-07-22 2016-02-09 International Business Machines Corporation System and method to process horizontally aligned graphite nanofibers in a thermal interface material used in 3D chip stacks
KR101308183B1 (en) 2011-08-19 2013-09-12 숭실대학교산학협력단 Conductive polymer complex and forming method thereof
JP2013063641A (en) * 2011-09-01 2013-04-11 Boeing Co:The Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced part
KR101360417B1 (en) * 2011-11-23 2014-02-11 현대자동차주식회사 Aluminum-cnt composites and method for producing the same
JP2013202919A (en) * 2012-03-28 2013-10-07 Sekisui Chem Co Ltd Multilayer film
JP2013202920A (en) * 2012-03-28 2013-10-07 Sekisui Chem Co Ltd Multilayer film and method of manufacturing the same
US9276326B2 (en) * 2012-07-10 2016-03-01 Kabushiki Kaisha Riken Electromagnetic wave absorber
US20140132439A1 (en) * 2012-07-10 2014-05-15 Kabushiki Kaisha Riken Electromagnetic wave absorber
US9245813B2 (en) 2013-01-30 2016-01-26 International Business Machines Corporation Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance
US9090004B2 (en) 2013-02-06 2015-07-28 International Business Machines Corporation Composites comprised of aligned carbon fibers in chain-aligned polymer binder
CN103241709A (en) * 2013-04-29 2013-08-14 中国科学院金属研究所 Method for adjusting photoelectric property of nanocarbon film by ozone and for graphing nanocarbon film
US9082744B2 (en) 2013-07-08 2015-07-14 International Business Machines Corporation Method for aligning carbon nanotubes containing magnetic nanoparticles in a thermosetting polymer using a magnetic field
US9406651B2 (en) 2013-07-08 2016-08-02 Globalfoundries Inc. Chip stack with oleic acid-aligned nanotubes in thermal interface material
JP2017507809A (en) * 2014-02-04 2017-03-23 エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. Articles of nanostructure-reinforced composite and manufacturing method
KR20180004624A (en) * 2016-07-04 2018-01-12 류도영 Carbon nanotubes and conductive polymer composite material produced is mixed utilization and efficient composition
KR101896103B1 (en) * 2016-07-04 2018-10-04 류도영 Carbon nanotubes and conductive polymer composite material produced is mixed utilization and efficient composition
WO2018012445A1 (en) * 2016-07-15 2018-01-18 パナソニックIpマネジメント株式会社 Metal-clad laminate and printed wiring board
KR101984207B1 (en) * 2016-08-18 2019-05-30 한국과학기술연구원 Polyketone-carbon based filler composites and preparation methods thereof
KR20180020501A (en) * 2016-08-18 2018-02-28 한국과학기술연구원 Polyketone-carbon based filler composites and preparation methods thereof
JP2018070391A (en) * 2016-10-25 2018-05-10 国立研究開発法人産業技術総合研究所 Carbon nanotube rubber composite material
WO2019022528A1 (en) * 2017-07-28 2019-01-31 엘에프피 주식회사 Polytetrafluoroethylene carbon nanotube composite having electro-conductive property and method for producing same
KR20190047780A (en) * 2017-10-30 2019-05-09 (주) 오프렌 Method and apparatus for producing high strength component
KR102049102B1 (en) 2017-10-30 2019-11-26 (주) 오프렌 Method and apparatus for producing high strength component
WO2022009554A1 (en) * 2020-07-07 2022-01-13 正毅 千葉 Electromagnetic wave absorbing material, electromagnetic wave absorbing coating material, electronic device and resin component

Also Published As

Publication number Publication date
US20030096104A1 (en) 2003-05-22
JP4697829B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP2002273741A (en) Carbon nano-tube composite molded object and method for manufacturing the same
Lu et al. Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer
Chen et al. A review of the interfacial characteristics of polymer nanocomposites containing carbon nanotubes
Kim et al. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites
JP4241070B2 (en) Resin composition and method for producing the same
Gantayat et al. Carbon nanomaterial–reinforced epoxy composites: a review
Zhang et al. Magnetic and mechanical properties of polyvinyl alcohol (PVA) nanocomposites with hybrid nanofillers–graphene oxide tethered with magnetic Fe3O4 nanoparticles
JP5403750B2 (en) Linear fine carbon fiber and composite using the same
TWI273118B (en) Electroconductive curable composition, cured product thereof and process for producing the same
Sathyanarayana et al. Thermoplastic nanocomposites with carbon nanotubes
Wu et al. Interface design of environmentally friendly carbon nanotube-filled polyester composites: Fabrication, characterisation, functionality and application.
JP2009074072A (en) Method for improving conductivity of resin molded body comprising carbon nanotube by heat treatment
Akhtar et al. Multi-component MWCNT/NG/EP-based bipolar plates with enhanced mechanical and electrical characteristics fabricated by compression moulding
TW201027565A (en) Composite material including carbon fibers
KR101896103B1 (en) Carbon nanotubes and conductive polymer composite material produced is mixed utilization and efficient composition
Barikani et al. Effect of different chemical modification systems on thermal and electrical conductivity of functionalized multiwall carbon nanotube/epoxy nanocomposites
JP2007291346A (en) Low electric conductivity high heat radiation polymer material and molded body
Ghose et al. High temperature resin/carbon nanotube composite fabrication
Yu et al. Enhanced electromechanical properties of natural rubber via the synergistic effect of poly (catechol/polyamine) modification and Ag deposition on TiO2 nanoparticles
JP2005014201A (en) Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method
JP2005264134A (en) Conductive polymer, its preparation process and its application
WO2007129088A1 (en) Carbon nanotube enhanced magnets
JP2007169814A (en) Micro-carbon fiber and biodevice using the same
WO2009069565A1 (en) Molded articles, process for producing the molded articles, and use of the molded articles
WO2006095821A1 (en) Thermoplastic resin composition and thermoplastic resin molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

R150 Certificate of patent or registration of utility model

Ref document number: 4697829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees