JP2000026760A - Functional coating composition - Google Patents

Functional coating composition

Info

Publication number
JP2000026760A
JP2000026760A JP10198813A JP19881398A JP2000026760A JP 2000026760 A JP2000026760 A JP 2000026760A JP 10198813 A JP10198813 A JP 10198813A JP 19881398 A JP19881398 A JP 19881398A JP 2000026760 A JP2000026760 A JP 2000026760A
Authority
JP
Japan
Prior art keywords
coating composition
carbon
film
functional coating
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10198813A
Other languages
Japanese (ja)
Inventor
Motoyasu Nakanishi
幹育 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Sogyo Co Ltd
Original Assignee
Suzuki Sogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Sogyo Co Ltd filed Critical Suzuki Sogyo Co Ltd
Priority to JP10198813A priority Critical patent/JP2000026760A/en
Publication of JP2000026760A publication Critical patent/JP2000026760A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a functional coating composition capable of easily coating in a preferred thickness, easily forming a coating film having solidity and excellent in functions such as heating resistance, antistatic characteristic, electromagnetic shielding property, or the like. SOLUTION: This functional coating composition is prepared by blending carbon nanotubes and/or carbon microcoil with either of the following coating film forming components; (1) a composition containing an organopolysiloxane as a main ingredient and a crosslinking agent comprising a functional side chain-possessing organosiloxane and a curing catalyst; (2) a composition containing ceramic particles and a solvent for high heat; (3) a solution of perhydropolysilazane in an organic solvent; (4) a glycidyl ether-type epoxy resin prepolymer prepared in the presence of metal oxide powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カーボンナノチュ
ーブあるいはカーボンマイクロコイルを利用した機能性
コーティング剤組成物に関する。さらに詳しくは、優れ
た抵抗発熱性、静電気防止性、電磁波シールド性、電界
シールド性等の諸機能を備えた被膜を形成し得て、かつ
所望の厚さに容易に塗布して堅牢なコーティング被膜を
形成し得る機能性コーティング剤組成物に関する。
[0001] The present invention relates to a functional coating composition using carbon nanotubes or carbon microcoils. More specifically, it is possible to form a coating with various functions such as excellent resistance to heat generation, anti-static property, electromagnetic wave shielding property, electric field shielding property, etc. The present invention relates to a functional coating composition capable of forming

【0002】[0002]

【従来の技術】従来から、カーボンナノチューブを導電
性、熱伝導性、電磁波シールド性等の機能の付与要素と
して用い、例えばポリアミド、ポリエステル、ポリエー
テル、ポリイミド等の有機ポリマー、あるいはガラス、
セラミックス材料等の無機ポリマーなどをマトリックス
として用い、それらを複合して、導電性、熱伝導性、電
磁波シールド性等の機能を有する構造材料用複合材とす
ることは知られている。また、カーボンマイクロコイル
が電磁波シールド材等に利用されることも知られてい
る。しかし、未だ、カーボンナノチューブあるいはカー
ボンマイクロコイルを機能付与要素としたコーティング
剤組成物や、その中でも基体に任意の厚さの堅牢な被膜
を容易に形成し得るコーティング剤組成物は提案されて
いない。カーボンナノチューブあるいはカーボンマイク
ロコイルは、その特異な特性からして、多くの分野で利
用することが期待されており、その一つとして、機能性
コーティング剤の分野に利用することが望まれている。
特に、所望の厚さで均一に容易に塗布し得て、均一で堅
牢な被膜を容易に形成できる、カーボンナノチューブあ
るいはカーボンマイクロコイルを利用した機能性コーテ
ィング剤組成物の提供が望まれている。
2. Description of the Related Art Conventionally, carbon nanotubes have been used as elements for imparting functions such as conductivity, heat conductivity, electromagnetic wave shielding, and the like, for example, organic polymers such as polyamide, polyester, polyether and polyimide, glass, and the like.
It is known to use an inorganic polymer such as a ceramic material or the like as a matrix and to combine them into a composite material for a structural material having functions such as conductivity, heat conductivity, and electromagnetic wave shielding properties. It is also known that carbon microcoils are used for electromagnetic wave shielding materials and the like. However, there has not yet been proposed a coating composition using carbon nanotubes or carbon microcoils as a function-imparting element, and a coating composition capable of easily forming a robust film having an arbitrary thickness on a substrate. Carbon nanotubes or carbon microcoils are expected to be used in many fields because of their unique characteristics, and one of them is to be used in the field of functional coating agents.
In particular, it is desired to provide a functional coating agent composition using carbon nanotubes or carbon microcoils, which can be easily and uniformly applied to a desired thickness and can easily form a uniform and robust coating.

【0003】[0003]

【発明が解決しようとする課題】上記従来の状況に鑑
み、本発明の目的は、優れた抵抗発熱性、静電気防止
性、電磁波シールド性、電界シールド性等の諸機能を備
えた、カーボンナノチューブあるいはカーボンマイクロ
コイルを利用した機能性コーティング剤組成物を提供す
ることにある。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional circumstances, an object of the present invention is to provide a carbon nanotube or carbon nanotube having various functions such as excellent resistance heat generation, antistatic, electromagnetic wave shielding, and electric field shielding. An object of the present invention is to provide a functional coating composition using carbon microcoils.

【0004】さらに、本発明の目的は、上述の諸機能に
加え、所望の厚さで均一に容易に塗布し得て、均一で堅
牢な被膜を容易に形成することができる、カーボンナノ
チューブあるいはカーボンマイクロコイルを利用した機
能性コーティング剤組成物を提供することにある。
[0004] Further, an object of the present invention is to provide a carbon nanotube or carbon nanotube which can be easily and uniformly applied to a desired thickness and can easily form a uniform and robust coating in addition to the above-mentioned functions. An object of the present invention is to provide a functional coating agent composition using a micro coil.

【0005】[0005]

【課題を解決するための手段】上述の課題を解決するた
めに、本発明は、被膜形成性成分に、カーボンナノチュ
ーブおよびカーボンマイクロコイルのいずれか一方又は
双方を配合した機能性コーティング剤組成物としたこと
を特徴とする。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a functional coating agent composition comprising a film-forming component and one or both of a carbon nanotube and a carbon microcoil. It is characterized by having done.

【0006】さらに、本発明者らが鋭意研究した結果、
特定のセラミックス質被膜を形成する被膜形成性成分を
用いて、それにカーボンナノチューブおよびカーボンマ
イクロコイルのいずれか一方又は双方を配合すれば、所
望の厚さで均一に容易に塗布し得て、均一で堅牢な被膜
を容易に形成するという目的が達成できることを見出し
た。
[0006] Further, as a result of intensive studies by the present inventors,
If one or both of carbon nanotubes and carbon microcoils are blended with a film-forming component that forms a specific ceramic film, it can be easily and uniformly applied to a desired thickness, and can be uniformly coated. It has been found that the purpose of easily forming a robust coating can be achieved.

【0007】すなわち、本発明に係る機能性コーティン
グ剤組成物は、上記被膜形成性成分が下記(a)〜
(d)から選ばれた一のものである機能性コーティング
剤組成物としたことを特徴とする。 (a)オルガノポリシロキサンを主剤とし、それに架橋
剤として官能性側鎖を有するオルガノシロキサンおよび
硬化触媒が配合された組成物。 (b)セラミックス粒子に高熱用溶媒が配合された組成
物。 (c)ペルヒドロポリシラザンの有機溶媒溶液。 (d)金属酸化物粉末の存在下に低分子量のグリシジル
エーテル型エポキシ樹脂を触媒を用いて反応させ、調製
されたプレポリマー。
That is, in the functional coating composition according to the present invention, the film-forming component has the following (a) to
(D) a functional coating composition selected from the group consisting of: (A) A composition comprising an organopolysiloxane as a main component, an organosiloxane having a functional side chain as a crosslinking agent, and a curing catalyst. (B) A composition in which a high heat solvent is blended with ceramic particles. (C) An organic solvent solution of perhydropolysilazane. (D) A prepolymer prepared by reacting a low molecular weight glycidyl ether type epoxy resin with a catalyst in the presence of a metal oxide powder.

【0008】[0008]

【発明の実施の形態】カーボンナノチューブおよびカー
ボンマイクロコイルのいずれか一方又は双方を配合する
被膜形成性成分としては、アルキド樹脂、アクリル樹
脂、ユリア樹脂、エポキシ樹脂、フェノール樹脂、アミ
ノアルキド樹脂、メラミン樹脂、ポリ酢酸ビニル、ポリ
塩化ビニル、ポリウレタン等の通常使用される有機系ポ
リマーや、無機系ポリマー等を用いることができ、特に
限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION As a film-forming component containing one or both of carbon nanotubes and carbon microcoils, alkyd resin, acrylic resin, urea resin, epoxy resin, phenol resin, aminoalkyd resin, melamine resin Ordinarily used organic polymers such as polyvinyl acetate, polyvinyl chloride, and polyurethane, and inorganic polymers can be used, and are not particularly limited.

【0009】その中でも本発明の被膜形成性成分として
は、まず、オルガノポリシロキサンを主剤とし、それに
架橋剤として官能性側鎖を有するオルガノシロキサンお
よび硬化触媒が配合された組成物(以下「オルガノポリ
シロキサン組成物」と略称)が好ましく用いられる。こ
のオルガノポリシロキサン組成物において、主剤のオル
ガノポリシロキサンは、メチル基あるいはフェニル基を
有するものが好ましい。架橋剤としては、アルコキシ
基、アシロキシ基、オキシム基等の官能性側鎖を有する
オルガノシロキサンが好ましい。硬化触媒としては、Z
n、Al、Co、Sn等の金属を含有する有機化合物お
よびハロゲンが好ましい。また、このオルガノポリシロ
キサン組成物は、珪素成分をSiO2 換算で40%以上
含有していることが好ましく、また溶剤、水もしくは水
酸基を含有しないものである。また、このオルガノポリ
シロキサン組成物は、低温加熱や常温乾燥でも硬化し
て、硬質で密着性に優れたセラミックス被膜を形成す
る。また、その硬化機構は、主剤のオリガノポリシロキ
サンの官能基が、まず空気中の水分により加水分解を受
けて水酸基に変化し、次に該オリガノポリシロキサンの
水酸基を架橋剤のオルガノシロキサンの官能基がアタッ
クし、硬化触媒の作用も受けて脱アルコール反応を起こ
し、三次元構造の高分子化合物たるポリシロキサン硬化
体を形成すると考えられている。いわゆるゾル・ゲル法
による金属アルコキシ縮合物となる。かかるオルガノポ
リシロキサン組成物の例として、ホ−マーテクノロジー
株式会社販売のヒートレスガラス(HEATLESS
GLASS)(商品名)等が挙げられる。上記オルガノ
ポリシロキサン組成物には、必要に応じて、例えばシロ
キサン結合が三次元に伸びた網状構造で、珪素原子に一
個のメチル基が結合した無機と有機の中間的な構造を有
するシリコーン樹脂の微粒子などの他の配合物も添加す
ることができる。上記無機と有機の中間的な構造を有す
るシリコーン樹脂の例として、東芝シリコーン株式会社
販売のトスパール(商品名)等が挙げられる。
Among them, as a film-forming component of the present invention, a composition comprising an organopolysiloxane as a main component, an organosiloxane having a functional side chain as a cross-linking agent, and a curing catalyst (hereinafter referred to as "organopolysiloxane"). Abbreviated as "siloxane composition"). In this organopolysiloxane composition, the organopolysiloxane as a main component preferably has a methyl group or a phenyl group. As the crosslinking agent, an organosiloxane having a functional side chain such as an alkoxy group, an acyloxy group, and an oxime group is preferable. As a curing catalyst, Z
Organic compounds containing metals such as n, Al, Co, Sn and the like and halogens are preferred. The organopolysiloxane composition preferably contains a silicon component in an amount of 40% or more in terms of SiO 2 , and does not contain a solvent, water or a hydroxyl group. In addition, the organopolysiloxane composition cures even when heated at low temperature or dried at room temperature to form a hard ceramic coating having excellent adhesion. Further, the curing mechanism is such that the functional group of the organopolysiloxane of the main agent is first hydrolyzed by moisture in the air to be changed to a hydroxyl group, and then the hydroxyl group of the organopolysiloxane is converted to the hydroxyl group of the crosslinking agent organosiloxane. It is considered that a functional group is attacked and a dealcoholization reaction is caused by the action of a curing catalyst to form a cured polysiloxane as a polymer compound having a three-dimensional structure. It becomes a metal alkoxy condensate by the so-called sol-gel method. As an example of such an organopolysiloxane composition, a heatless glass (HEATLESS) sold by Homer Technology Co., Ltd.
GLASS) (trade name) and the like. If necessary, the organopolysiloxane composition may be, for example, a silicone resin having an intermediate structure between inorganic and organic in which a siloxane bond has a three-dimensionally extended network structure and one methyl group bonded to a silicon atom. Other formulations, such as microparticles, can also be added. Examples of the silicone resin having an intermediate structure between inorganic and organic include Tospearl (trade name) sold by Toshiba Silicone Co., Ltd.

【0010】本発明で好ましく用いられる被膜形成性成
分の他の一つとして、セラミックス粒子に高熱用溶媒が
配合された組成物が用いられる。この組成物における高
熱用溶媒の例としては、ブタノール、イソプロパノール
等のアルコール系溶剤等が挙げられる。また、セラミッ
クス粒子の例としては、アルミナ、アルミニウム、ジル
コニア、溶融シリカ、パーライト、ムライトなどのセラ
ミックス粒子が挙げられ、その粒径は、必要に応じて適
宜選択することができるが、一般に数〜数十μmが適当
である。高熱用溶媒は、被膜形成性成分全体で比重が2
〜3程度になるように配合したものが好適に用いられ
る。このセラミックス粒子に高熱用溶媒が配合された組
成物の例として、株式会社熱研製のレッドプルーフ(商
品名)等が挙げられる。
As another one of the film-forming components preferably used in the present invention, a composition in which a high heat solvent is mixed with ceramic particles is used. Examples of the solvent for high heat in this composition include alcohol solvents such as butanol and isopropanol. Examples of the ceramic particles include ceramic particles such as alumina, aluminum, zirconia, fused silica, pearlite, and mullite, and the particle size can be appropriately selected as necessary. Ten μm is appropriate. The high heat solvent has a specific gravity of 2 for the entire film-forming component.
What is blended so as to be about 3 is preferably used. As an example of a composition in which a solvent for high heat is blended with the ceramic particles, Red Proof (trade name) manufactured by Athen Co., Ltd. and the like can be mentioned.

【0011】被膜形成性成分のさらに他の一つとして、
ペルヒドロポリシラザンの有機溶媒溶液が用いられる。
ペルヒドロポリシラザンは、構造式が〔SiHa
b n(式中、aは1〜3、bは0または1であ
る。)で表されるセラミックス前駆体である。このペル
ヒドロポリシラザンは、例えば、ジクロロシランと溶媒
中のピリジンとの錯体生成を経由して合成することによ
り(ピリジン錯体法)、低分子量環状体の少ない、比較
的高分子量のオリゴマーを得ることができる。実際の分
子構造は複雑であるが、不規則な環状部を多く含む、数
平均分子量が数千のオリゴマーである。このペルヒドロ
ポリシラザンは、基体表面に塗布後焼成することにより
セラミックスに転化され、大気またはそれに準じた雰囲
気下で焼成した場合には、シリカガラス(SiO2 )に
転化する。有機溶媒の例としては、ベンゼン、トルエ
ン、キシレン等の芳香族炭化水素溶媒が挙げられ、中で
もキシレンは好ましく用いられる。有機溶媒溶液中のペ
ルヒドロポリシラザンの濃度は、必要に応じて適宜選択
できるが、高濃度であると水飴状となり作業性に劣るの
で、適当に粘性を有する範囲とする。かかるペルヒドロ
ポリシラザンの例として、東燃株式会社製の東燃ポリシ
ラザン(商品名)等が挙げられる。また、このペルヒド
ロポリシラザンの有機溶媒溶液には、必要に応じて、酸
化マグネシウム、炭化珪素等のフィラー等を配合するこ
とができる。
As still another one of the film-forming components,
An organic solvent solution of perhydropolysilazane is used.
Perhydropolysilazane has a structural formula of [SiH a N
Hb ] n (where a is 1 to 3 and b is 0 or 1). This perhydropolysilazane can be synthesized, for example, by forming a complex of dichlorosilane and pyridine in a solvent (pyridine complex method) to obtain a relatively high molecular weight oligomer having a small number of low molecular weight cyclic substances. it can. Although the actual molecular structure is complex, it is an oligomer having a number average molecular weight of several thousand containing many irregular cyclic parts. This perhydropolysilazane is converted into ceramics by being applied to the surface of the substrate and then baked, and when baked in air or an atmosphere similar thereto, it is converted into silica glass (SiO 2 ). Examples of the organic solvent include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, among which xylene is preferably used. The concentration of perhydropolysilazane in the organic solvent solution can be appropriately selected as needed. However, if the concentration is high, it becomes syrupy and poor in workability, so that it is in a range having an appropriate viscosity. Examples of such perhydropolysilazane include Tonen polysilazane (trade name) manufactured by Tonen Corporation. Further, a filler such as magnesium oxide and silicon carbide can be added to the organic solvent solution of perhydropolysilazane, if necessary.

【0012】被膜形成性成分のなおさらに他の一つとし
て、金属酸化物粉末の存在下に低分子量のグリシジルエ
ーテル型エポキシ樹脂を触媒を用いて反応させ、調製さ
れたプレポリマーが用いられる。このプレポリマーは、
例えば、国際公開番号W090/08168号公報の実
施例1〜5の記載に従い、次の製造方法により得ること
ができる。まず、反応容器に低分子量のグリシジルエー
テル型エポキシ樹脂と触媒を投入し、加熱下において反
応させる。次に、反応容器に金属酸化物粉末を投入し、
攪拌しながら加熱を継続し、所要時間後に反応を終了さ
せ、プレポリマーを得る。このプレポリマーの製造にお
いて用いる低分子量のグリシジルエーテル型エポキシ樹
脂としては、レゾルシノールのジグリシジルエーテル、
ビスフェノールAのジグリシジルエーテル等を挙げるこ
とができる。また、触媒としては、2−エチル−4−メ
チルイミダゾール、2−メチルイミダゾール、4−メチ
ルイミダゾール等を挙げることができる。さらに、金属
酸化物粉末としては、特に制限はないが、シリカ粉末、
アルミナ粉末、マグネシア粉末が好ましく用いられる。
また、このプレポリマーの例として、株式会社ニッケー
コー製のセラプロテックス(商品名)等を挙げることが
できる。
As still another one of the film-forming components, a prepolymer prepared by reacting a low molecular weight glycidyl ether type epoxy resin with a catalyst in the presence of a metal oxide powder is used. This prepolymer is
For example, it can be obtained by the following production method in accordance with the description of Examples 1 to 5 in International Publication No. WO090 / 08168. First, a low molecular weight glycidyl ether type epoxy resin and a catalyst are charged into a reaction vessel and reacted under heating. Next, the metal oxide powder is charged into the reaction vessel,
Heating is continued while stirring, and after a required time, the reaction is terminated to obtain a prepolymer. Examples of the low-molecular-weight glycidyl ether type epoxy resin used in the production of this prepolymer include diglycidyl ether of resorcinol,
Examples thereof include diglycidyl ether of bisphenol A. Examples of the catalyst include 2-ethyl-4-methylimidazole, 2-methylimidazole, and 4-methylimidazole. Further, the metal oxide powder is not particularly limited, silica powder,
Alumina powder and magnesia powder are preferably used.
Further, as an example of the prepolymer, Seraprotex (trade name) manufactured by Nikko Co., Ltd. can be mentioned.

【0013】次に、本発明で用いるカーボンナノチュー
ブあるいはカーボンマイクロコイルとしては、公知の種
々カーボンナノチューブおよびカーボンマイクロコイル
を用いることができる。カーボンナノチューブは、一般
に、炭素からなる、外径2〜70nmで、長さが直径の
102 倍以上である円筒状の中空繊維状のものであっ
て、炭素含有ガスの気相分解反応や、炭素棒・炭素繊維
等を用いたアーク放電法によって得られるものであ
る。また、その末端形状は必ずしも円筒状である必要は
なく、例えば円錐状等変形していても差し支えない。さ
らに末端は閉じた構造でも開いていてもどちらでも良
い。好ましく用いられるカーボンナノチューブの例とし
て、ハイペリオン・カタリシス・インターナショナル社
製のGraphite Fibrils・Grades
BN(商品名)等が挙げられる。カーボンマイクロコ
イルは、一般に、炭素からなる、繊維直径が0.05〜
5μm、コイル外径が繊維直径の2〜10倍であり、巻
数が10μm当たり5/コイル外径(μm)〜50/コ
イル外径(μm)であるコイル状繊維のものであって、
炭素含有ガスの気相分解反応によって得られるものであ
る。本発明の実施に当たり、カーボンナノチューブとカ
ーボンマイクロコイルを併用することもでき、その併用
割合は必要に応じて適宜選択することができる。また、
カーボンナノチューブおよびカーボンマイクロコイルの
いずれか一方又は双方の上記被膜形成性成分への配合割
合は、必要に応じて適宜選択することができるが、一般
に、被膜形成性成分100重量部に対して1〜20重量
部が適当であり、好ましくは5〜10重量部である。
Next, various known carbon nanotubes and carbon microcoils can be used as the carbon nanotubes or carbon microcoils used in the present invention. Carbon nanotubes typically composed of carbon, an outer diameter of 2 to 70 nm, be of cylindrical hollow fiber is not less than 10 2 times the diameter length, vapor phase decomposition reaction or a carbon-containing gas, it is obtained by an arc discharge method using carbon rods, carbon fibers or the like. Further, the terminal shape does not necessarily have to be cylindrical, and may be deformed, for example, into a conical shape. Further, the ends may be closed or open. Examples of preferably used carbon nanotubes include Graphite Fibrils Grades manufactured by Hyperion Catalysis International.
BN (product name) and the like. Carbon microcoils are generally made of carbon and have a fiber diameter of 0.05 to
5 μm, a coiled fiber having an outer coil diameter of 2 to 10 times the fiber diameter, and a number of turns of 5 / coil outer diameter (μm) to 50 / coil outer diameter (μm) per 10 μm;
It is obtained by a gas phase decomposition reaction of a carbon-containing gas. In carrying out the present invention, a carbon nanotube and a carbon microcoil can be used in combination, and the combination ratio can be appropriately selected as needed. Also,
The mixing ratio of one or both of the carbon nanotubes and the carbon microcoils to the above-mentioned film-forming component can be appropriately selected as needed, but is generally 1 to 100 parts by weight of the film-forming component. 20 parts by weight is suitable, preferably 5 to 10 parts by weight.

【0014】本発明の機能性コーティング剤組成物の調
製は、上記各種被膜形成性成分のいずれかと、カーボン
ナノチューブおよびカーボンマイクロコイルのいずれか
一方又は双方とを、ヘンシェルミキサー、オープンロー
ルミキサー、バンバリー混合機等の公知の混合手段を用
いて適宜混合して行うことができる。
The functional coating composition of the present invention is prepared by mixing any one of the above-mentioned various film-forming components and one or both of carbon nanotubes and carbon microcoils with a Henschel mixer, an open roll mixer, and a Banbury mixer. It can be suitably mixed using a known mixing means such as a mixer.

【0015】得られた機能性コーティング剤組成物は、
スピンコート法、ディッピングコート法、スプレーコー
ト法、バーコート法、ロールコート法、印刷法など公知
の塗布方法により、所望の基体表面に、所望の厚さの均
一な塗膜を容易に設けることができる。本発明の機能性
コーティング剤組成物を塗布する基体は、特に制限する
必要はなく、種々の材質の基体を適宜選択することがで
きる。
[0015] The obtained functional coating composition is
By using a known coating method such as a spin coating method, a dipping coating method, a spray coating method, a bar coating method, a roll coating method, and a printing method, a uniform coating film having a desired thickness can be easily provided on a desired substrate surface. it can. The substrate on which the functional coating composition of the present invention is applied is not particularly limited, and substrates of various materials can be appropriately selected.

【0016】また、基体に塗布された本発明の機能性コ
ーティング剤組成物の塗膜は、硬化あるいは乾燥させ
て、コーティング被膜とされる。この硬化あるいは乾燥
の条件は、用いる被膜形成性成分の種類等に応じて適宜
選択できる。
The coating film of the functional coating composition of the present invention applied to a substrate is cured or dried to form a coating film. The conditions for this curing or drying can be appropriately selected according to the type of the film-forming component used and the like.

【0017】特に、(a)〜(d)の被膜形成性成分を
含む機能性コーティング剤組成物を用いることによっ
て、より堅牢なコーティング被膜を得ることができる。
その際の硬化条件は、(a)および(b)の場合は常温
〜120℃で1〜24時間、(c)の場合は100〜6
00℃で1時間、(d)の場合は80℃で4時間保持す
るのが適当である。またこの硬化は、従来から知られた
方法により行うことができる。
Particularly, by using a functional coating composition containing the film-forming components (a) to (d), a more robust coating film can be obtained.
Curing conditions at that time are as follows: (a) and (b): room temperature to 120 ° C. for 1 to 24 hours; (c): 100 to 6
It is appropriate to hold at 00 ° C. for 1 hour, and in (d) at 80 ° C. for 4 hours. This curing can be performed by a conventionally known method.

【0018】本発明の機能性コーティング剤組成物を硬
化あるいは乾燥させて形成された被膜は、優れた抵抗発
熱性、静電気防止性、電磁波シールド性、電界シールド
性等の諸特性を有する。したがって、本発明の機能性コ
ーティング剤組成物は、抵抗発熱材、静電気防止材、電
磁波シールド材、電磁波吸収材等として種々の分野に好
適に用いることができる。
The coating formed by curing or drying the functional coating composition of the present invention has various properties such as excellent resistance to heat generation, antistatic properties, electromagnetic wave shielding properties, and electric field shielding properties. Therefore, the functional coating composition of the present invention can be suitably used in various fields as a resistance heating material, an antistatic material, an electromagnetic wave shielding material, an electromagnetic wave absorbing material and the like.

【0019】[0019]

【実施例】以下、実施例により本発明を更に詳しく説明
するが、本発明はこれらにより限定されるものではな
い。 実施例1 ヒートレスガラス GS600A1(ホ−マーテクノロ
ジー(株)販売;商品名;オルガノポリシロキサンを主
剤とし、それに架橋剤として官能性側鎖を有するオルガ
ノシロキサンおよび硬化触媒が配合された組成物)10
0重量部、イソペンチルアルコール20重量部およびカ
ーボンナノチューブ(ハイペリオン・カタリシス・イン
ターナショナル社製Graphite Fibrils
・Grades BN)5重量部とを、ボールミルで6
時間混合してコーティング剤組成物を調製した。このコ
ーティング剤組成物を、メタクリル板に、スプレーコー
トで塗布し、膜厚200μmの塗膜とした。これを、硬
化炉により120℃に2時間保持して塗膜を硬化させ
た。この硬化被膜の膜厚は100μmであった。上記硬
化被膜の形成されたメタクリル板について、三菱化学
(株)製ローレスターHPを用いて表面抵抗値および体
積抵抗値を測定した。その結果は、表面抵抗値は3.3
75×103 (Ω/□)、体積抵抗値は101.93(Ω・
cm)となり良好な値を示した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. Example 1 Heatless glass GS600A1 (sold by Homer Technology Co., Ltd .; trade name; a composition containing an organopolysiloxane as a main component, an organosiloxane having a functional side chain as a crosslinking agent, and a curing catalyst) 10
0 parts by weight, 20 parts by weight of isopentyl alcohol and carbon nanotubes (Graphite Fibrils manufactured by Hyperion Catalysis International, Inc.)
・ Grades BN) 5 parts by weight with a ball mill for 6
After mixing for a period of time, a coating composition was prepared. This coating composition was applied to a methacryl plate by spray coating to form a coating film having a thickness of 200 μm. This was kept at 120 ° C. for 2 hours in a curing furnace to cure the coating. The thickness of the cured film was 100 μm. The surface resistance and the volume resistance of the methacrylic plate on which the cured film was formed were measured using Loresta HP manufactured by Mitsubishi Chemical Corporation. As a result, the surface resistance value was 3.3.
75 × 10 3 (Ω / □), volume resistance value is 10 1.93 (Ω ·
cm), showing a good value.

【0020】実施例2 実施例1において、ヒートレスガラス GS600A1
に代えて株式会社ニッケーコー製のセラプロテックス
L2033((株)ニッケーコー製;商品名;セラミッ
クス粒子に高熱用溶媒が配合された組成物)を用いたこ
と、カーボンナノチューブの添加量をセラプロテックス
100重量部に対し6重量部としたこと、および塗膜の
硬化を常温で半日、80℃で2時間保持して行ったこと
以外は、実施例1と同様にして、コーティング剤組成物
を調製し、それを塗布して膜厚200μmの塗膜とし、
硬化させて、膜厚100μmの硬化被膜が形成されたメ
タクリル板を得、それについて実施例1と同様に試験し
た。その結果は、表面抵抗値が3.375×103 (Ω
/□)、体積抵抗値が101.92(Ω・cm)となり良好
な値を示した。
Example 2 In Example 1, the heatless glass GS600A1 was used.
Nikko Co., Ltd. instead of Seraprotex
L2033 (manufactured by Nikkei Co., Ltd .; trade name; a composition in which a high heat solvent is mixed with ceramic particles), the amount of carbon nanotubes added was 6 parts by weight based on 100 parts by weight of Ceraprotex, and A coating composition was prepared in the same manner as in Example 1 except that the coating was cured by holding it at room temperature for half a day and at 80 ° C. for 2 hours. age,
It was cured to obtain a methacryl plate on which a cured film having a thickness of 100 μm was formed. The methacryl plate was tested in the same manner as in Example 1. The result is that the surface resistance value is 3.375 × 10 3
/ □), and the volume resistance value was 10 1.92 (Ω · cm), which was a good value.

【0021】[0021]

【発明の効果】本発明によれば、所望の厚さで均一に容
易に塗布し得て、均一で堅牢な被膜を容易に形成するこ
とができて、かつ優れた抵抗発熱性、静電気防止性、電
磁波シールド性、電界シールド性等の諸機能を備えた、
カーボンナノチューブあるいはカーボンマイクロコイル
を含有する機能性コーティング剤組成物が提供される。
本発明の機能性コーティング剤組成物は、抵抗発熱材、
静電気防止材、電磁波シールド材、電界シールド材等と
して種々の分野に好適に用いることができる。
According to the present invention, it is possible to easily and uniformly apply a coating having a desired thickness, to easily form a uniform and robust coating, and to obtain excellent resistance to heat generation and antistatic properties. With various functions such as electromagnetic wave shielding property, electric field shielding property,
A functional coating composition containing carbon nanotubes or carbon microcoils is provided.
Functional coating agent composition of the present invention, a resistance heating material,
It can be suitably used in various fields as an antistatic material, an electromagnetic wave shielding material, an electric field shielding material and the like.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被膜形成性成分に、カーボンナノチュー
ブおよびカーボンマイクロコイルのいずれか一方又は双
方を配合したことを特徴とする機能性コーティング剤組
成物。
1. A functional coating composition comprising a film-forming component and one or both of carbon nanotubes and carbon microcoils.
【請求項2】 被膜形成性成分が下記(a)〜(d)か
ら選ばれた一のものであることを特徴とする請求項1記
載の機能性コーティング剤組成物。 (a)オルガノポリシロキサンを主剤とし、それに架橋
剤として官能性側鎖を有するオルガノシロキサンおよび
硬化触媒が配合された組成物。 (b)セラミックス粒子に高熱用溶媒が配合された組成
物。 (c)ペルヒドロポリシラザンの有機溶媒溶液。 (d)金属酸化物粉末の存在下に低分子量のグリシジル
エーテル型エポキシ樹脂を触媒を用いて反応させ、調製
されたプレポリマー。
2. The functional coating composition according to claim 1, wherein the film-forming component is one selected from the following (a) to (d). (A) A composition comprising an organopolysiloxane as a main component, an organosiloxane having a functional side chain as a crosslinking agent, and a curing catalyst. (B) A composition in which a high heat solvent is blended with ceramic particles. (C) An organic solvent solution of perhydropolysilazane. (D) A prepolymer prepared by reacting a low molecular weight glycidyl ether type epoxy resin with a catalyst in the presence of a metal oxide powder.
【請求項3】 カーボンナノチューブおよびカーボンマ
イクロコイルのいずれか一方又は双方の配合割合が被膜
形成性成分100重量部に対して1〜20重量部である
請求項1又は2記載の機能性コーティング剤組成物。
3. The functional coating composition according to claim 1, wherein one or both of the carbon nanotubes and the carbon microcoils are present in an amount of 1 to 20 parts by weight based on 100 parts by weight of the film-forming component. object.
JP10198813A 1998-07-14 1998-07-14 Functional coating composition Pending JP2000026760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10198813A JP2000026760A (en) 1998-07-14 1998-07-14 Functional coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10198813A JP2000026760A (en) 1998-07-14 1998-07-14 Functional coating composition

Publications (1)

Publication Number Publication Date
JP2000026760A true JP2000026760A (en) 2000-01-25

Family

ID=16397349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10198813A Pending JP2000026760A (en) 1998-07-14 1998-07-14 Functional coating composition

Country Status (1)

Country Link
JP (1) JP2000026760A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118937A (en) * 1993-10-25 1995-05-09 Nitto Shoji Kk Cylinder comb for comber
JP2001011344A (en) * 1999-06-30 2001-01-16 Nec Corp Coating and film formed using the same and their production
JP2001030200A (en) * 1999-07-22 2001-02-06 Nec Corp Film and manufacture of laminate using the film
WO2002020402A1 (en) * 2000-09-06 2002-03-14 Facultes Universitaires Notre-Dame De La Paix Method for the production of functionalised short carbon nanotubes and functionalised short carbon nanotubes obtainable by said method
JP2002075602A (en) * 2000-08-25 2002-03-15 Shimadzu Corp Surface heat generating body
KR100348498B1 (en) * 2000-07-13 2002-08-09 명지대학교 Preparing Method of Coating Materials for Electromagnetic Interference Shielding
JP2002273741A (en) * 2001-03-15 2002-09-25 Polymatech Co Ltd Carbon nano-tube composite molded object and method for manufacturing the same
JP2002290094A (en) * 2001-03-27 2002-10-04 Toray Ind Inc Electromagnetic wave shielding material and its molding
KR100370069B1 (en) * 2000-07-10 2003-01-30 엘지전자 주식회사 Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby
WO2003013199A2 (en) * 2001-07-27 2003-02-13 Eikos, Inc. Conformal coatings comprising carbon nanotubes
WO2003040026A2 (en) * 2001-11-02 2003-05-15 The Government Of The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
KR20030090063A (en) * 2002-05-21 2003-11-28 (주)이엠피테크놀로지 Cover tape for chip transportation
EP1385481A1 (en) * 2001-03-26 2004-02-04 Eikos, Inc. Carbon nanotubes in structures and repair compositions
KR100425630B1 (en) * 2001-06-14 2004-04-03 오원춘 Electromagnetic wave-shielding composition comprising metal treated carbon nanotube
JP2004162052A (en) * 2002-10-22 2004-06-10 Osaka Gas Co Ltd Electromagnetic wave-absorbing coating material composition, electromagnetic wave-absorbing housing and electromagnetic wave-absorbing film or sheet
JP2004538353A (en) * 2001-08-17 2004-12-24 ユニバーシティ・オブ・デイトン Method of forming conductive polymer nanocomposites and materials produced thereby
JP2005060497A (en) * 2003-08-11 2005-03-10 Mitsubishi Plastics Ind Ltd Snow- and ice-slipping member and its manufacturing process
JP2005133149A (en) * 2003-10-30 2005-05-26 Nippon Steel Corp Surface treated metallic material having excellent conductivity
JP2005252080A (en) * 2004-03-05 2005-09-15 Fuji Xerox Co Ltd Wave absorber and its manufacturing method
JP2005311330A (en) * 2004-03-22 2005-11-04 Takiron Co Ltd Radio wave absorber
JP2006012982A (en) * 2004-06-23 2006-01-12 Takiron Co Ltd Sound wave/electric wave absorber
KR20060017268A (en) * 2004-08-20 2006-02-23 삼성에스디아이 주식회사 A method for preparing an electron emission source, the electron emission source and an electron emission device comprising the same
US7060241B2 (en) 2001-03-26 2006-06-13 Eikos, Inc. Coatings comprising carbon nanotubes and methods for forming same
JP2007113089A (en) * 2005-10-21 2007-05-10 Nissin Kogyo Co Ltd Method for producing ceramic thin film and base material
WO2007089114A1 (en) * 2006-02-01 2007-08-09 Kwang Suck Suh Basic solution washable antistatic composition and polymer products manufactured by using the same
EP1914277A1 (en) * 2006-10-18 2008-04-23 Nanocyl S.A. Anti-adhesive and anti-static composition
WO2008046165A2 (en) * 2006-10-18 2008-04-24 Nanocyl S.A. Anti-adhesive and antistatic composition
WO2008046166A3 (en) * 2006-10-18 2008-06-12 Nanocyl Sa Use of a marine anti-biofouling and fouling release coating composition
JP2008166279A (en) * 2006-12-27 2008-07-17 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission lamp and its manufacturing method
JP2009523885A (en) * 2006-01-19 2009-06-25 ダウ・コーニング・コーポレイション Silicone resin film, method for preparing the same, and nanomaterial-filled silicone composition
WO2009081986A1 (en) 2007-12-26 2009-07-02 Nano Carbon Technologies Co., Ltd. Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element
JP2009525383A (en) * 2006-02-02 2009-07-09 ダウ・コーニング・コーポレイション Silicone resin film, method for preparing the same, and nanomaterial-filled silicone composition
JP2009228035A (en) * 2008-03-19 2009-10-08 Mitsubishi Motors Corp Thermosetting treatment method and thermosetting treatment product
US7750071B2 (en) 2001-03-22 2010-07-06 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
JP2010527297A (en) * 2007-05-01 2010-08-12 ダウ・コーニング・コーポレイション Reinforced silicone resin film
US7927169B2 (en) 2004-11-22 2011-04-19 Nissin Kogyo Co., Ltd. Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device
KR101036799B1 (en) 2010-10-08 2011-05-25 주식회사 대영테크 Organopolysiloxane coat-ing composition
US8808605B2 (en) 2003-04-09 2014-08-19 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
CN104263204A (en) * 2014-09-12 2015-01-07 江苏宏盛化学有限公司 Preparation method for carbon nanotube-epoxy resin radiation-resistant coating for steel-based surface of nuclear power station
JP2018126990A (en) * 2017-01-20 2018-08-16 イマジニアリング株式会社 Printer

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118937A (en) * 1993-10-25 1995-05-09 Nitto Shoji Kk Cylinder comb for comber
JP2001011344A (en) * 1999-06-30 2001-01-16 Nec Corp Coating and film formed using the same and their production
JP2001030200A (en) * 1999-07-22 2001-02-06 Nec Corp Film and manufacture of laminate using the film
KR100370069B1 (en) * 2000-07-10 2003-01-30 엘지전자 주식회사 Method for fabricating electromagnetic wave compatibility materials using carbon nanotube or carbon nanofiber, and materials thereby
KR100348498B1 (en) * 2000-07-13 2002-08-09 명지대학교 Preparing Method of Coating Materials for Electromagnetic Interference Shielding
JP2002075602A (en) * 2000-08-25 2002-03-15 Shimadzu Corp Surface heat generating body
US7419650B2 (en) 2000-09-06 2008-09-02 Facultes Universitaries Notre-Dame De La Paix Method for the production of functionalised short carbon nanotubes and functionalised short carbon nanotubes obtainable by said method
WO2002020402A1 (en) * 2000-09-06 2002-03-14 Facultes Universitaires Notre-Dame De La Paix Method for the production of functionalised short carbon nanotubes and functionalised short carbon nanotubes obtainable by said method
JP2002273741A (en) * 2001-03-15 2002-09-25 Polymatech Co Ltd Carbon nano-tube composite molded object and method for manufacturing the same
JP4697829B2 (en) * 2001-03-15 2011-06-08 ポリマテック株式会社 Carbon nanotube composite molded body and method for producing the same
US7750071B2 (en) 2001-03-22 2010-07-06 Clemson University Halogen containing-polymer nanocomposite compositions, methods, and products employing such compositions
EP1385481A4 (en) * 2001-03-26 2006-06-07 Eikos Inc Carbon nanotubes in structures and repair compositions
AU2002254368B2 (en) * 2001-03-26 2007-07-19 Eikos, Inc. Carbon nanotubes in structures and repair compositions
EP1385481A1 (en) * 2001-03-26 2004-02-04 Eikos, Inc. Carbon nanotubes in structures and repair compositions
US7060241B2 (en) 2001-03-26 2006-06-13 Eikos, Inc. Coatings comprising carbon nanotubes and methods for forming same
JP2002290094A (en) * 2001-03-27 2002-10-04 Toray Ind Inc Electromagnetic wave shielding material and its molding
KR100425630B1 (en) * 2001-06-14 2004-04-03 오원춘 Electromagnetic wave-shielding composition comprising metal treated carbon nanotube
WO2003013199A2 (en) * 2001-07-27 2003-02-13 Eikos, Inc. Conformal coatings comprising carbon nanotubes
WO2003013199A3 (en) * 2001-07-27 2003-05-22 Eikos Inc Conformal coatings comprising carbon nanotubes
US7118693B2 (en) * 2001-07-27 2006-10-10 Eikos, Inc. Conformal coatings comprising carbon nanotubes
JP2004538353A (en) * 2001-08-17 2004-12-24 ユニバーシティ・オブ・デイトン Method of forming conductive polymer nanocomposites and materials produced thereby
US7588699B2 (en) 2001-11-02 2009-09-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
US7972536B2 (en) 2001-11-02 2011-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically conductive, optically transparent polymer/carbon nanotube composites
US7906043B2 (en) 2001-11-02 2011-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
WO2003040026A2 (en) * 2001-11-02 2003-05-15 The Government Of The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
WO2003040026A3 (en) * 2001-11-02 2003-10-23 Nasa Electrically conductive, optically transparent polymer/carbon nanotube composites and process for preparation thereof
KR20030090063A (en) * 2002-05-21 2003-11-28 (주)이엠피테크놀로지 Cover tape for chip transportation
JP2004162052A (en) * 2002-10-22 2004-06-10 Osaka Gas Co Ltd Electromagnetic wave-absorbing coating material composition, electromagnetic wave-absorbing housing and electromagnetic wave-absorbing film or sheet
US8808605B2 (en) 2003-04-09 2014-08-19 Nissin Kogyo Co., Ltd. Carbon fiber composite material and process for producing the same
JP2005060497A (en) * 2003-08-11 2005-03-10 Mitsubishi Plastics Ind Ltd Snow- and ice-slipping member and its manufacturing process
JP2005133149A (en) * 2003-10-30 2005-05-26 Nippon Steel Corp Surface treated metallic material having excellent conductivity
JP2005252080A (en) * 2004-03-05 2005-09-15 Fuji Xerox Co Ltd Wave absorber and its manufacturing method
JP2005311330A (en) * 2004-03-22 2005-11-04 Takiron Co Ltd Radio wave absorber
JP2006012982A (en) * 2004-06-23 2006-01-12 Takiron Co Ltd Sound wave/electric wave absorber
JP4575044B2 (en) * 2004-06-23 2010-11-04 タキロン株式会社 Sound wave / radio wave absorber
KR20060017268A (en) * 2004-08-20 2006-02-23 삼성에스디아이 주식회사 A method for preparing an electron emission source, the electron emission source and an electron emission device comprising the same
US7927169B2 (en) 2004-11-22 2011-04-19 Nissin Kogyo Co., Ltd. Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device
US8253318B2 (en) 2004-11-22 2012-08-28 Nissin Kogyo Co., Ltd. Method of manufacturing thin film, substrate having thin film, electron emission material, method of manufacturing electron emission material, and electron emission device
JP2007113089A (en) * 2005-10-21 2007-05-10 Nissin Kogyo Co Ltd Method for producing ceramic thin film and base material
JP4490900B2 (en) * 2005-10-21 2010-06-30 日信工業株式会社 Manufacturing method and substrate of ceramic thin film
JP2009523885A (en) * 2006-01-19 2009-06-25 ダウ・コーニング・コーポレイション Silicone resin film, method for preparing the same, and nanomaterial-filled silicone composition
KR101426316B1 (en) 2006-01-19 2014-08-06 다우 코닝 코포레이션 Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
JP2013082938A (en) * 2006-01-19 2013-05-09 Dow Corning Corp Silicone resin film, method for preparing the same, and nanomaterial-filled silicone composition
WO2007089114A1 (en) * 2006-02-01 2007-08-09 Kwang Suck Suh Basic solution washable antistatic composition and polymer products manufactured by using the same
JP2009525383A (en) * 2006-02-02 2009-07-09 ダウ・コーニング・コーポレイション Silicone resin film, method for preparing the same, and nanomaterial-filled silicone composition
WO2008046166A3 (en) * 2006-10-18 2008-06-12 Nanocyl Sa Use of a marine anti-biofouling and fouling release coating composition
JP2010506705A (en) * 2006-10-18 2010-03-04 ナノシル エス.エー. Marine organism adhesion prevention and deposit removal composition
WO2008046165A3 (en) * 2006-10-18 2008-06-19 Nanocyl Sa Anti-adhesive and antistatic composition
EP1914277A1 (en) * 2006-10-18 2008-04-23 Nanocyl S.A. Anti-adhesive and anti-static composition
US8080285B2 (en) 2006-10-18 2011-12-20 Nanocyl S.A. Marine anti-biofouling release coating of polysiloxane and cylindrical nanofiller
WO2008046165A2 (en) * 2006-10-18 2008-04-24 Nanocyl S.A. Anti-adhesive and antistatic composition
US7986084B2 (en) 2006-12-27 2011-07-26 Tsinghua University Field emission lamp
JP2008166279A (en) * 2006-12-27 2008-07-17 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission lamp and its manufacturing method
JP2010527297A (en) * 2007-05-01 2010-08-12 ダウ・コーニング・コーポレイション Reinforced silicone resin film
WO2009081986A1 (en) 2007-12-26 2009-07-02 Nano Carbon Technologies Co., Ltd. Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element
JP2009228035A (en) * 2008-03-19 2009-10-08 Mitsubishi Motors Corp Thermosetting treatment method and thermosetting treatment product
KR101036799B1 (en) 2010-10-08 2011-05-25 주식회사 대영테크 Organopolysiloxane coat-ing composition
CN104263204A (en) * 2014-09-12 2015-01-07 江苏宏盛化学有限公司 Preparation method for carbon nanotube-epoxy resin radiation-resistant coating for steel-based surface of nuclear power station
JP2018126990A (en) * 2017-01-20 2018-08-16 イマジニアリング株式会社 Printer

Similar Documents

Publication Publication Date Title
JP2000026760A (en) Functional coating composition
JP4076280B2 (en) Thin film resistance heating element and toner heat fixing member using the same
US7244373B1 (en) Composite and method of manufacturing the same
US5436084A (en) Electronic coatings using filled borosilazanes
CA2581301C (en) Heat-resistant coating compositions, coated articles, and methods
CN110591375B (en) High-performance epoxy-silicone rubber modified material with interpenetrating network structure
CN106167602A (en) Conductive preparation with and preparation method thereof
KR20090074761A (en) Polymeric composition comprising metal alkoxide condensation product, organic silane compound and boron compound
Shen et al. Enhanced thermal conductivity of epoxy composites with core‐shell SiC@ SiO2 nanowires
JP2018100401A (en) Adhesive composition and use thereof in electronics
WO2009100757A1 (en) Surface modified electrical insulation system
Bondioli et al. Epoxy resin modified with in situ generated metal oxides by means of sol–gel process
EP0994158B1 (en) Process for forming fired film using an organopolysiloxane composition
US20010026847A1 (en) Electrically insulating crosslinked thin-film-forming organic resin composition and method for forming thin film therefrom
Martin et al. Impact of the backbone structure on the rheological and thermal properties of preceramic polymer-grafted nanoparticles and derived ceramics
JP3975305B2 (en) Epoxy resin composition and molded body
Ponyrko et al. High‐Tg, heat resistant epoxy–silica hybrids with a low content of silica generated by nonaqueous sol–gel process
Jin et al. New thermo‐oxidative protective coating for carbon/carbon composites in mid‐temperature range using a combination of nano‐filler and macro‐filler with polybenzoxazine as a carbon‐forming matrix
Ding et al. Thermal insulation and antioxidation of vertical graphene oxide‐grafted carbon nanofiber aerogels with ceramic coating
WO1998044018A1 (en) Epoxy resin composition and moldings
Park et al. Mechanical, surface, and thermal properties of polyamideimide–polydimethylsiloxane nanocomposites fabricated by sol–gel process
JP2011256370A (en) Coating composition, and silica-epoxy resin composite material
JP7452304B2 (en) Composition for heat dissipation member, heat dissipation member, electronic device, and method for producing heat dissipation member
CN1312704C (en) Insulated conductor and insulated conductor with self-melting adhesivity
JPS6088068A (en) Polyorganosiloxane composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021