JP2002121404A - Heat-conductive polymer sheet - Google Patents

Heat-conductive polymer sheet

Info

Publication number
JP2002121404A
JP2002121404A JP2000319844A JP2000319844A JP2002121404A JP 2002121404 A JP2002121404 A JP 2002121404A JP 2000319844 A JP2000319844 A JP 2000319844A JP 2000319844 A JP2000319844 A JP 2000319844A JP 2002121404 A JP2002121404 A JP 2002121404A
Authority
JP
Japan
Prior art keywords
graphitized carbon
conductive polymer
carbon fiber
heat
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000319844A
Other languages
Japanese (ja)
Inventor
Masayuki Hida
雅之 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2000319844A priority Critical patent/JP2002121404A/en
Priority to US09/977,215 priority patent/US6652958B2/en
Priority to EP01124845A priority patent/EP1199328B1/en
Priority to DE60110180T priority patent/DE60110180T2/en
Publication of JP2002121404A publication Critical patent/JP2002121404A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/15Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/155Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from petroleum pitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/29393Base material with a principal constituent of the material being a solid not provided for in groups H01L2224/293 - H01L2224/29391, e.g. allotropes of carbon, fullerene, graphite, carbon-nanotubes, diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/833Thermal property of nanomaterial, e.g. thermally conducting/insulating or exhibiting peltier or seebeck effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • Y10T428/249945Carbon or carbonaceous fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Abstract

PROBLEM TO BE SOLVED: To provide a heat-conductive polymer sheet capable of effectively radiating much heat generated from electric products and electronic parts, etc., and having excellent heat conductivity of the sheet to thickness direction. SOLUTION: This heat-conductive polymer sheet comprises a polymer material and graphitized carbon fiber as heat-conductive filler, and the graphitized carbon fiber is obtained by using mesophase pitch as a raw material, spinning and infusibilizing the pitch and carbonizing infusibilized material and graphitizing the material to form a coated layer of ferromagnetic substance on the surface. The graphitized carbon fiber is orientated in thickness direction of the sheet. In the graphitized carbon fiber, a spacing (d002) between graphite layers determined by X-ray diffraction is preferably <0.3370 nm and peak intensity ratio (P102/P100) of (101) diffraction peak to (100) diffraction peak is preferably >=1.15. Further, the ferromagnetic substance is preferably at least one kind of metal, alloy or compound selected from a group consisting of nickel, cobalt and iron.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた熱伝導性を
有する熱伝導性高分子シートに関するものである。さら
に詳しくは、電気製品に使用される各種半導体素子や電
源、光源、部品などから発生する熱を効果的に外部に放
散させる特定の黒鉛化炭素繊維を含有する熱伝導性高分
子シートに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermally conductive polymer sheet having excellent thermal conductivity. More specifically, the present invention relates to a heat conductive polymer sheet containing a specific graphitized carbon fiber that effectively dissipates heat generated from various semiconductor elements, power supplies, light sources, components, and the like used in electrical products. is there.

【0002】[0002]

【従来の技術】最近、電子機器の高性能化、小型化及び
軽量化に伴う半導体パッケージの高密度実装化やLSI
の高集積化、高速化などによって、電子機器から発生す
る熱対策が非常に重要な課題になっている。そして、こ
のような発熱する素子の熱を拡散させる方法として、発
熱源と放熱器の間や、熱源と金属製伝熱板などの間に、
熱伝導性の良い熱伝導性高分子組成物からなるシート材
を介在させる方法が一般的に用いられている。
2. Description of the Related Art Recently, high-density packaging of semiconductor packages and LSIs have been developed in accordance with high performance, miniaturization and weight reduction of electronic devices.
Due to the high integration and high speed of semiconductor devices, countermeasures against heat generated from electronic devices have become very important issues. And as a method of diffusing the heat of such a heating element, between a heat source and a radiator, or between a heat source and a metal heat transfer plate,
A method of interposing a sheet material made of a heat conductive polymer composition having good heat conductivity is generally used.

【0003】これらの高い熱伝導性を要求される熱伝導
性高分子組成物としては、樹脂やゴムなどの高分子材料
中に、熱伝導率の大きい酸化アルミニウムや窒化ホウ
素、窒化アルミニウム、窒化ケイ素、酸化マグネシウ
ム、酸化亜鉛、炭化ケイ素、石英、水酸化アルミニウム
などの金属酸化物、金属窒化物、金属炭化物、金属水酸
化物などの熱伝導性充填剤を充填したものが知られてい
る。しかし、これらの熱伝導性高分子組成物は必ずしも
充分に大きな熱伝導性は得られていなかった。
[0003] These heat conductive polymer compositions which require high heat conductivity include polymer materials such as resin and rubber, which have high heat conductivity, such as aluminum oxide, boron nitride, aluminum nitride and silicon nitride. Fillers filled with a thermally conductive filler such as metal oxides such as magnesium oxide, zinc oxide, silicon carbide, quartz, and aluminum hydroxide, metal nitrides, metal carbides, and metal hydroxides are known. However, these thermally conductive polymer compositions have not always obtained sufficiently large thermal conductivity.

【0004】そして、熱伝導性をさらに向上させる目的
で、熱伝導率の大きい炭素繊維や黒鉛粉末を高分子材料
に充填させた様々な熱伝導性高分子組成物が提案されて
いる。例えば、特開平9−283955号公報には特定
のアスペクト比の黒鉛化炭素繊維をシリコーンゴムなど
の高分子材料に分散した熱伝導性高分子シートが開示さ
れている。
[0004] For the purpose of further improving the thermal conductivity, various thermally conductive polymer compositions in which a polymer material is filled with carbon fiber or graphite powder having a high thermal conductivity have been proposed. For example, Japanese Patent Application Laid-Open No. 9-283955 discloses a thermally conductive polymer sheet in which graphitized carbon fibers having a specific aspect ratio are dispersed in a polymer material such as silicone rubber.

【0005】一方、本出願人らは、特開2000−19
5998号公報において、強磁性体を被覆したピッチ系
炭素繊維がシリコーンゴムシートの一定方向に配向され
てなる熱伝導性に優れた熱伝導性高分子シート及びその
製造方法並びに放熱特性が良好な半導体装置を提案して
いる。
On the other hand, the present applicants disclose Japanese Patent Application Laid-Open No. 2000-19 / 2000.
In Japanese Patent No. 5998, a thermally conductive polymer sheet excellent in thermal conductivity, in which pitch-based carbon fibers coated with a ferromagnetic material are oriented in a certain direction of a silicone rubber sheet, a method for producing the same, and a semiconductor having good heat radiation characteristics The device is proposed.

【0006】[0006]

【発明が解決しようとする課題】ところが、発熱量が一
段と増大し続ける最近の高性能な電子部品においては、
半導体素子などの電子部品からの多大な発熱により、電
気化学的なマイグレーションが加速されたり、配線やパ
ット部の腐食が促進されたり、発熱する熱応力によって
構成材料にクラックが生じたり、破壊したり、構成部品
の接合部の界面が剥離して電子部品の信頼性や寿命を損
なうなどの様々なトラブルが発生するおそれがある。そ
のため、熱伝導性をより一層向上させた熱伝導性高分子
組成物のニーズは高まり続けているが、上記従来の様々
な炭素繊維や黒鉛粉末を充填させた熱伝導性高分子組成
物は熱伝導性が未だ不充分であり、早急な改善が切望さ
れていた。
However, in recent high-performance electronic components in which the calorific value continues to increase further,
Excessive heat generation from electronic components such as semiconductor elements accelerates electrochemical migration, accelerates corrosion of wiring and pads, and generates or cracks constituent materials due to the heat stress generated In addition, there is a possibility that various troubles such as a failure of the reliability and the life of the electronic component due to peeling of the interface at the joint of the component parts may occur. Therefore, the need for a thermally conductive polymer composition with further improved thermal conductivity continues to increase, but the above-mentioned conventional thermally conductive polymer compositions filled with various carbon fibers and graphite powders have a high thermal conductivity. The conductivity is still insufficient, and a quick improvement has been desired.

【0007】例えば、上記特開平9−283955号公
報に記載の技術では、熱伝導性充填剤として黒鉛化炭素
繊維を使用しているものの、繊維の原料を炭化した後黒
鉛化し、粉砕したものを使用しているものと考えられ
る。このため、粉砕後の繊維に縦割れが発生し、黒鉛化
処理時に縮重合反応や環化反応が進みにくく、また粉砕
された繊維の全表面積中に占める破断面表面積の割合が
大きくなり、熱伝達しにくくなる。そのため、得られる
熱伝導性高分子シートの熱伝導性は、充分に向上された
ものではなかった。
For example, in the technology described in Japanese Patent Application Laid-Open No. 9-283955, although graphitized carbon fiber is used as a thermally conductive filler, a material obtained by carbonizing the raw material of the fiber, then graphitizing and pulverizing the material is used. It is considered to be used. For this reason, longitudinal cracks occur in the crushed fibers, and the condensation polymerization reaction and the cyclization reaction do not easily proceed during the graphitization treatment.In addition, the ratio of the fracture surface area to the total surface area of the crushed fibers increases, It becomes difficult to transmit. Therefore, the heat conductivity of the obtained heat conductive polymer sheet was not sufficiently improved.

【0008】一方、近年の電子部品などの小型化及び軽
量化に伴い、特定の方向に良好な熱伝導性を有する熱伝
導性成形体の開発が嘱望されている。例えば、半導体素
子などの電子機器間などに介在される熱伝導性高分子シ
ートなどにおいては、シートの厚み方向への高熱伝導性
が要求される。
On the other hand, with the recent reduction in size and weight of electronic components and the like, development of a thermally conductive molded body having good thermal conductivity in a specific direction has been demanded. For example, a thermally conductive polymer sheet or the like interposed between electronic devices such as semiconductor elements requires high thermal conductivity in the thickness direction of the sheet.

【0009】本発明は、上述のような従来技術に存在す
る問題点に着目してなされたものであり、その目的は、
電気製品や電子部品などから発生する多量の熱を効果的
に放散できるシートの厚み方向への優れた熱伝導性を有
する熱伝導性高分子シートを提供するものである。
The present invention has been made in view of the problems existing in the prior art as described above.
An object of the present invention is to provide a thermally conductive polymer sheet having excellent thermal conductivity in the thickness direction of the sheet, which can effectively dissipate a large amount of heat generated from electric products and electronic components.

【0010】[0010]

【課題を解決するための手段】上記問題を解決するため
に、請求項1に記載の発明は、高分子材料と、熱伝導性
充填剤として黒鉛化炭素繊維とを含有してなる熱伝導性
高分子シートであって、黒鉛化炭素繊維は、メソフェー
ズピッチを原料とし、紡糸、不融化及び炭化後に粉砕さ
れ、その後黒鉛化され、表面に強磁性体の被覆層が形成
されたものであり、当該黒鉛化炭素繊維が、シートの厚
み方向に配向されたものであることを特徴とする。
In order to solve the above problems, the invention according to claim 1 is directed to a heat conductive material containing a polymer material and a graphitized carbon fiber as a heat conductive filler. A polymer sheet, the graphitized carbon fiber is a material having a mesophase pitch as a raw material, spun, infusibilized and carbonized, pulverized, then graphitized, and a ferromagnetic coating layer formed on the surface, The graphitized carbon fibers are characterized in that they are oriented in the thickness direction of the sheet.

【0011】請求項2に記載の発明は、請求項1に記載
の発明において、前記黒鉛化炭素繊維は、X線回折法に
よる前記黒鉛化炭素繊維の黒鉛層間の面間隔(d00
2)が0.3370nm未満、かつ、(101)回折ピ
ークと(100)回折ピークのピーク強度比(P101
/P100)が1.15以上であることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention, the graphitized carbon fibers are formed by an X-ray diffraction method with a plane spacing (d00) between the graphite layers of the graphitized carbon fibers.
2) is less than 0.3370 nm, and the peak intensity ratio between the (101) diffraction peak and the (100) diffraction peak (P101
/ P100) is 1.15 or more.

【0012】請求項3に記載の発明は、請求項1又は請
求項2に記載の発明において、前記強磁性体は、ニッケ
ル、コバルト及び鉄からなる群より選択される少なくと
も1種の金属、合金又は化合物であることを特徴とす
る。
According to a third aspect of the present invention, in the first or second aspect, the ferromagnetic material is at least one metal or alloy selected from the group consisting of nickel, cobalt and iron. Or a compound.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。本発明の熱伝導性高分子シートは、後
述する高分子材料と、熱伝導性充填剤として黒鉛化炭素
繊維とを含有してなり、メソフェーズピッチを原料と
し、紡糸、不融化及び炭化後に粉砕され、その後黒鉛化
され、表面に強磁性体の被覆層が形成された黒鉛化炭素
繊維が、シートの厚み方向に配向されたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. The heat conductive polymer sheet of the present invention contains a polymer material described below, and graphitized carbon fibers as a heat conductive filler, and uses mesophase pitch as a raw material, and is spun, infusibilized, and pulverized after carbonization. Then, the graphitized carbon fibers which are graphitized and have a ferromagnetic coating layer formed on the surface are oriented in the thickness direction of the sheet.

【0014】<黒鉛化炭素繊維>まず、熱伝導性充填剤
として用いられる黒鉛化炭素繊維について説明する。こ
こで用いられる黒鉛化炭素繊維は、黒鉛化処理前に所定
の粒径に粉砕又は切断された、後述する製法にて製造さ
れる黒鉛化炭素繊維の粉砕品を用いる。
<Graphized Carbon Fiber> First, the graphitized carbon fiber used as a thermally conductive filler will be described. As the graphitized carbon fiber used here, a pulverized product of the graphitized carbon fiber produced by a production method described later, which is pulverized or cut to a predetermined particle size before the graphitization treatment, is used.

【0015】黒鉛化炭素繊維の原料としては、例えば、
ナフタレンやフェナントレン等の縮合多環炭化水素化合
物、PAN(ポリアクリロニトリル)、石油系ピッチや
石炭系ピッチ等の縮合複素環化合物等が挙げられるが、
特に光学的異方性ピッチ、すなわち、メソフェーズピッ
チを原料として用いることが好ましい。メソフェーズピ
ッチを用いることにより、後述する紡糸工程において、
ピッチ分子がその異方性により繊維長さ方向に配向さ
れ、その繊維長さ方向へ優れた熱伝導性を有する黒鉛化
炭素繊維を得ることができる。このメソフェーズピッチ
は、紡糸可能ならば特に限定されるものではなく、一種
を単独で用いても、二種以上を適宜組み合わせて用いて
もよいが、メソフェーズピッチを単独で用いること、す
なわち、メソフェーズピッチ含有量100%の黒鉛化炭
素繊維が、高熱伝導化、紡糸性及び品質の安定性の面か
ら最も好ましい。
As a raw material of the graphitized carbon fiber, for example,
Examples thereof include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, PAN (polyacrylonitrile), and condensed heterocyclic compounds such as petroleum pitch and coal pitch.
In particular, it is preferable to use an optically anisotropic pitch, that is, a mesophase pitch as a raw material. By using the mesophase pitch, in the spinning process described below,
The pitch molecules are oriented in the fiber length direction due to the anisotropy, so that graphitized carbon fibers having excellent thermal conductivity in the fiber length direction can be obtained. The mesophase pitch is not particularly limited as long as it can be spun, and one type may be used alone, or two or more types may be used in appropriate combination. Graphitized carbon fibers having a content of 100% are most preferred from the viewpoint of high thermal conductivity, spinnability and quality stability.

【0016】黒鉛化炭素繊維は、紡糸、不融化及び炭化
の各処理を順次行い、所定の粒径に粉砕又は切断した
後、黒鉛化されたものを用いることが好ましい。炭化後
に粉砕又は切断して、その後黒鉛化することにより、粉
砕又は切断時における炭素繊維の縦割れを防ぐことがで
き、また、粉砕時に新たに表面に露出した黒鉛層面にお
いて黒鉛化処理時に縮重合反応、環化反応が進みやすく
なる。そのため、より一層熱伝導性を向上させた黒鉛化
炭素繊維を得ることができる。一方、紡糸した炭素繊維
を高温で黒鉛化した後に粉砕すると、繊維軸方向に発達
した黒鉛層面に沿って開裂が発生し易くなり、粉砕され
た炭素繊維の全表面積中に占める破断面表面積の割合が
大きくなって熱伝達しにくくなり、熱伝導性が低下する
ため不適当である。
It is preferable to use graphitized carbon fibers which are subjected to spinning, infusibilization and carbonization successively, pulverized or cut to a predetermined particle size, and then graphitized. By pulverizing or cutting after carbonization and then graphitizing, it is possible to prevent longitudinal cracking of the carbon fiber at the time of pulverization or cutting, and also to perform polycondensation during graphitization treatment on the newly exposed surface of the graphite layer during pulverization. The reaction and the cyclization reaction easily proceed. Therefore, a graphitized carbon fiber with further improved thermal conductivity can be obtained. On the other hand, when the spun carbon fiber is graphitized after being graphitized at a high temperature, cracking is likely to occur along the graphite layer surface developed in the fiber axis direction, and the ratio of the fracture surface area to the total surface area of the pulverized carbon fiber And heat transfer becomes difficult, and thermal conductivity is lowered, which is not suitable.

【0017】黒鉛化炭素繊維の形態としては、厳密には
繊維状(繊維状の形態が維持された粉砕品や切断品も含
む)、鱗片状、ウィスカー状、マイクロコイル状、ナノ
チューブ状などの形状が挙げられるが、特に限定される
ものではない。
Strictly speaking, the form of the graphitized carbon fiber may be fibrous (including pulverized or cut products in which the fibrous form is maintained), scale, whisker, microcoil, nanotube, etc. However, there is no particular limitation.

【0018】黒鉛化炭素繊維の繊維直径は、特に限定さ
れないが、好ましくは5〜20μm、より好ましくは5
〜15μm、特に好ましくは8〜12μmである。繊維
直径は5〜20μmの範囲が工業的に生産しやすく、得
られる熱伝導性高分子シートの熱伝導性が大きくなる。
一方、繊維直径が5μmよりも小さく、あるいは20μ
mよりも大きいと、生産性が低下する。
The fiber diameter of the graphitized carbon fiber is not particularly limited, but is preferably 5 to 20 μm, more preferably 5 to 20 μm.
To 15 μm, particularly preferably 8 to 12 μm. When the fiber diameter is in the range of 5 to 20 μm, industrial production is easy, and the thermal conductivity of the resulting thermally conductive polymer sheet is increased.
On the other hand, when the fiber diameter is smaller than 5 μm or 20 μm
If it is larger than m, productivity decreases.

【0019】黒鉛化炭素繊維の平均粒径は、好ましくは
10〜500μm、より好ましくは15〜200μm、
特に好ましくは15〜100μmである。平均粒径が1
0μmより小さいと、高分子材料中の黒鉛化炭素繊維同
士の接触が少なくなり、熱の伝達経路が不充分になって
得られる熱伝導性高分子シートの熱伝導性が低下する。
一方、平均粒径が500μmよりも大きいと、黒鉛化炭
素繊維が嵩高くなって高分子材料中に高濃度で充填する
ことが困難になる。なお、上記の平均粒径は、レーザー
回折方式による粒度分布から算出することができる。
The average particle size of the graphitized carbon fibers is preferably 10 to 500 μm, more preferably 15 to 200 μm,
Particularly preferably, it is 15 to 100 μm. Average particle size is 1
When it is smaller than 0 μm, the contact between the graphitized carbon fibers in the polymer material decreases, and the heat transfer path becomes insufficient, and the heat conductivity of the obtained heat conductive polymer sheet decreases.
On the other hand, if the average particle size is larger than 500 μm, the graphitized carbon fibers become bulky and it becomes difficult to fill the polymer material with a high concentration. The average particle size can be calculated from the particle size distribution by a laser diffraction method.

【0020】また、黒鉛化炭素繊維は、その構造パラメ
ータとして、X線回折法による黒鉛層間の面間隔(d0
02)が0.3370nm未満で、かつ、(101)回
折ピークと(100)回折ピークのピーク強度比(P1
01/P100)が1.15以上であることが好まし
い。
The graphitized carbon fiber has, as a structural parameter, an interplanar spacing (d0) between graphite layers by an X-ray diffraction method.
02) is less than 0.3370 nm, and the peak intensity ratio (P1) between the (101) diffraction peak and the (100) diffraction peak
01 / P100) is preferably 1.15 or more.

【0021】ここで、X線回折法とは、X線源にCuK
αを、標準物質に高純度シリコンを使用して回折パター
ンを測定するものである。得られる(002)回折パタ
ーンのピーク位置と半値幅とから、面間隔(d002)
が求められる。また、ピーク強度比(101)/(10
0)は、得られる回折線図にベースラインを引き、この
ベースラインから(101)(2θ≒44.5度)、
(100)(2θ≒42.5度)の各ピークの高さ(P
101)、(P100)を測定し、(101)の回折ピ
ーク高さを(100)回折ピーク高さで除して求められ
る。
Here, the X-ray diffraction method means that an X-ray source is CuK
α is used to measure a diffraction pattern using high-purity silicon as a standard substance. From the peak position and the half-value width of the obtained (002) diffraction pattern, the plane spacing (d002)
Is required. Further, the peak intensity ratio (101) / (10
0) draws a baseline on the obtained diffraction diagram, and (101) (2θ ≒ 44.5 degrees) from this baseline;
The height (P) of each peak at (100) (2θ ≒ 42.5 degrees)
101), (P100) is measured, and the diffraction peak height of (101) is divided by the (100) diffraction peak height.

【0022】黒鉛化炭素繊維の黒鉛層面の面間隔(d0
02)が0.3370nm未満で、かつ、(101)回
折ピークと(100)回折ピークのピーク強度比(P1
01/P100)が1.15未満であると、得られる熱
伝導性高分子シートに十分な熱伝導性を持たせることが
できず不適当である。その理由については定かではない
が、黒鉛化炭素繊維をシートの厚み方向に磁場配向させ
た熱伝導性高分子シートの場合、熱の伝達経路が、本発
明で限定した黒鉛化炭素繊維のミクロ構造と非常に強く
相関しているためと推定される。尚、黒鉛化炭素繊維の
黒鉛層間の面間隔(d002)の下限値は、理論値とし
て算出される0.3354nmであり、ピーク強度比
(P101/P100)の上限値は、3である。
The surface spacing (d0) of the graphite layer surface of the graphitized carbon fiber
02) is less than 0.3370 nm, and the peak intensity ratio (P1) between the (101) diffraction peak and the (100) diffraction peak
(01 / P100) is less than 1.15, the resulting thermally conductive polymer sheet cannot have sufficient thermal conductivity, which is inappropriate. Although the reason is not clear, in the case of a thermally conductive polymer sheet in which the graphitized carbon fibers are magnetically oriented in the thickness direction of the sheet, the heat transfer path is the microstructure of the graphitized carbon fibers limited by the present invention. It is presumed that the correlation is very strong. Note that the lower limit of the interplanar spacing (d002) between the graphite layers of the graphitized carbon fiber is 0.3354 nm calculated as a theoretical value, and the upper limit of the peak intensity ratio (P101 / P100) is 3.

【0023】黒鉛化炭素繊維の熱伝導率は、特に限定さ
れないが、本発明の目的を達成するためには、繊維長さ
方向における熱伝導率が、好ましくは400W/m・K
以上、より好ましくは800W/m・K以上、特に好ま
しくは1000W/m・K以上である。
The thermal conductivity of the graphitized carbon fiber is not particularly limited, but in order to achieve the object of the present invention, the thermal conductivity in the fiber length direction is preferably 400 W / m · K.
Above, more preferably 800 W / m · K or more, particularly preferably 1000 W / m · K or more.

【0024】<被覆層>黒鉛化炭素繊維の表面には、強
磁性体の被覆層が形成されている。これにより、磁場雰
囲気下にて磁場配向させることにより、シートの厚み方
向へ黒鉛化炭素繊維を容易に配向させることが可能とな
る。
<Coating Layer> A ferromagnetic coating layer is formed on the surface of the graphitized carbon fiber. This makes it possible to easily orient the graphitized carbon fibers in the thickness direction of the sheet by orienting the magnetic field in a magnetic field atmosphere.

【0025】強磁性体としては、ニッケル系及びニッケ
ル系合金、鉄系合金、窒化鉄系、フェライト系、バリウ
ムフェライト系、コバルト系合金、マンガン系合金、ネ
オジウム/鉄/ホウ素系やサマリウム/コバルト系など
の希土類系合金が、磁場配向の容易さから好適に用いる
ことができる。なかでもニッケル、コバルト及び鉄より
選ばれる少なくとも1種の金属、合金あるいは化合物よ
りなる強磁性体は、磁性が強く、高分子材料中の黒鉛化
炭素繊維を容易に磁場配向させることができるため好ま
しい。また、製造しやすさ、製造コスト、磁場配向のさ
せやすさ等を考慮すれば、ニッケル系とコバルト系が好
ましく、無電解メッキ法を適用する場合は、ニッケル‐
リン合金、ニッケル‐ホウ素合金、コバルト‐リン合
金、コバルト‐ホウ素合金などが実用的で好ましい。さ
らに、電気絶縁性を考慮するとフェライト系などが好ま
しい。
Examples of the ferromagnetic material include nickel-based and nickel-based alloys, iron-based alloys, iron nitride-based, ferrite-based, barium ferrite-based, cobalt-based alloys, manganese-based alloys, neodymium / iron / boron-based alloys, and samarium / cobalt-based alloys. Rare-earth alloys such as these can be suitably used because of the ease of magnetic field orientation. Among them, a ferromagnetic material composed of at least one metal, alloy, or compound selected from nickel, cobalt, and iron is preferable because it has strong magnetism and can easily orient magnetically graphitized carbon fibers in a polymer material. . Considering ease of production, production cost, ease of magnetic field orientation, etc., nickel-based and cobalt-based are preferred.
Practical and preferred are phosphorus alloys, nickel-boron alloys, cobalt-phosphorus alloys, cobalt-boron alloys, and the like. Further, in consideration of electric insulation, ferrite or the like is preferable.

【0026】強磁性体の被覆層の膜厚は、特に限定する
ものではないが、0.01〜5μmであることが好まし
い。被覆層の膜厚が0.01μmよりも薄いと発現され
る磁性が弱く、黒鉛化炭素繊維を低磁場で磁場配向させ
ることが困難となる。一方、被覆層の膜厚が5μmを越
えると、黒鉛化炭素繊維を低磁場で磁場配向させること
は可能であるが、得られる熱伝導性高分子シートの熱伝
導率が低下する。熱伝導率や製造コスト、高分子材料へ
の高充填化などを考慮すると、実用的な膜厚は0.05
〜3μmであり、より好ましくは0.05〜2μmであ
る。
The thickness of the ferromagnetic coating layer is not particularly limited, but is preferably 0.01 to 5 μm. If the thickness of the coating layer is less than 0.01 μm, the magnetic properties developed are weak, and it is difficult to orient the graphitized carbon fibers in a low magnetic field. On the other hand, when the thickness of the coating layer exceeds 5 μm, it is possible to orient the graphitized carbon fibers in a low magnetic field, but the thermal conductivity of the obtained thermally conductive polymer sheet is reduced. Considering thermal conductivity, manufacturing cost, and high filling of polymer materials, the practical film thickness is 0.05
To 3 μm, and more preferably 0.05 to 2 μm.

【0027】なお、黒鉛化炭素繊維、あるいは、強磁性
体の被覆層が形成された黒鉛化炭素繊維は、その表面
に、金属やセラミックスなどを被覆させたものでもよ
い。例えば、銀、銅、金、酸化アルミニウム、酸化マグ
ネシウム、酸化亜鉛、窒化ホウ素、窒化アルミニウム、
窒化ケイ素、炭化ケイ素、水酸化アルミニウムなどの熱
伝導率の大きな公知の金属、合金、セラミックスなどを
被覆することにより、例えば、熱伝導性を向上させるこ
とが可能である。
The graphitized carbon fiber or the graphitized carbon fiber on which the ferromagnetic coating layer is formed may have a surface coated with a metal or ceramic. For example, silver, copper, gold, aluminum oxide, magnesium oxide, zinc oxide, boron nitride, aluminum nitride,
By coating known metals, alloys, ceramics, and the like having high thermal conductivity such as silicon nitride, silicon carbide, and aluminum hydroxide, for example, the thermal conductivity can be improved.

【0028】また、強磁性体がニッケルなどの電気伝導
性を有する金属などである場合には、酸化アルミニウ
ム、酸化マグネシウム、酸化亜鉛、窒化ホウ素、窒化ア
ルミニウム、窒化ケイ素、炭化ケイ素、水酸化アルミニ
ウムなどの電気絶縁性のセラミックスや、シロキサン骨
格を有する絶縁性高分子などを、最表面に被覆層として
形成することにより、得られる熱伝導性高分子シートを
電気絶縁性にすることが可能である。
When the ferromagnetic material is a metal having electric conductivity such as nickel, aluminum oxide, magnesium oxide, zinc oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, aluminum hydroxide, etc. By forming an electrically insulating ceramic or an insulating polymer having a siloxane skeleton on the outermost surface as a coating layer, the resulting thermally conductive polymer sheet can be made electrically insulating.

【0029】さらに、強磁性体の被覆層が形成された黒
鉛化炭素繊維は、シラン系やチタン系、アルミニウム系
などの公知のカップリング剤やサイジング剤などで処理
することにより、その表面を改質させたものでもよい。
高分子材料との濡れ性や接着性を向上させたり、界面の
剥離強度を改良したりすることができ、高分子材料へ
の、より一層の黒鉛化炭素繊維の高充填化が可能となる
とともに、磁場配向させやすくなり、得られる熱伝導性
高分子シートの一層の高熱伝導率化が達成できる。
Further, the surface of the graphitized carbon fiber on which the ferromagnetic coating layer is formed is modified by treating it with a known coupling agent or sizing agent such as silane, titanium or aluminum. It may be a quality one.
It can improve the wettability and adhesiveness with the polymer material, and improve the peel strength at the interface, making it possible to further fill the polymer material with highly graphitized carbon fibers. In addition, the magnetic field can be easily oriented, and the thermal conductivity of the resulting thermally conductive polymer sheet can be further increased.

【0030】<高分子材料>高分子材料は、特に限定さ
れるものではなく、目的とする熱伝導性高分子シートの
形状、硬さ、機械的性質、熱的性質、電気的性質、耐久
性、信頼性などの要求性能や用途に応じて、例えば、熱
可塑性樹脂、熱可塑性エラストマー、硬化性樹脂、架橋
ゴムなどを任意に選択することができる。特に、熱可塑
性樹脂、熱可塑性エラストマー、硬化性樹脂、架橋ゴム
は、成形加工が容易であるため好適であり、なかでも、
熱可塑性樹脂及び熱可塑性エラストマーは、繰返し成形
加工でき、リサイクルが可能である点から特に好まし
い。
<Polymer Material> The polymer material is not particularly limited, and the shape, hardness, mechanical properties, thermal properties, electrical properties, and durability of the intended heat conductive polymer sheet can be obtained. For example, a thermoplastic resin, a thermoplastic elastomer, a curable resin, a crosslinked rubber, or the like can be arbitrarily selected according to the required performance such as reliability and use. In particular, thermoplastic resins, thermoplastic elastomers, curable resins, and crosslinked rubbers are preferable because molding processing is easy.
The thermoplastic resin and the thermoplastic elastomer are particularly preferable because they can be repeatedly molded and recycled.

【0031】具体的な熱可塑性樹脂としては、ポリエチ
レン、ポリプロピレン、エチレン−プロピレン共重合体
などのエチレン−α−オレフィン共重合体、ポリメチル
ペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリビニ
ルアルコール、ポリアセタール、ポリフッ化ビニリデン
やポリテトラフルオロエチレン等のフッ素樹脂、ポリエ
チレンテレフタレート、ポリブチレンテレフタレート、
ポリエチレンナフタレート、ポリスチレン、ポリアクリ
ロニトリル、スチレン−アクリロニトリル共重合体、A
BS樹脂、ポリフェニレンエーテル(PPE)樹脂、変
性PPE樹脂、脂肪族及び芳香族ポリアミド類、ポリイ
ミド、ポリアミドイミド、ポリメタクリル酸及びそのメ
チルエステルなどのポリメタクリル酸エステル類、ポリ
アクリル酸類、ポリカーボネート、ポリフェニレンスル
フィド、ポリサルホン、ポリエーテルサルホン、ポリエ
ーテルニトリル、ポリエーテルケトン、ポリケトン、液
晶ポリマー、シリコーン樹脂、アイオノマー等が挙げら
れる。
Specific thermoplastic resins include polyethylene, polypropylene, ethylene-α-olefin copolymers such as ethylene-propylene copolymer, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, and ethylene acetate. -Vinyl acetate copolymer, polyvinyl alcohol, polyacetal, fluorine resin such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate,
Polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, A
BS resin, polyphenylene ether (PPE) resin, modified PPE resin, aliphatic and aromatic polyamides, polyimide, polyamideimide, polymethacrylic acid esters such as polymethacrylic acid and its methyl ester, polyacrylic acids, polycarbonate, polyphenylene sulfide , Polysulfone, polyethersulfone, polyethernitrile, polyetherketone, polyketone, liquid crystal polymer, silicone resin, ionomer and the like.

【0032】具体的な熱可塑性エラストマーとしては、
スチレン−ブタジエン又はスチレン−イソプレンブロッ
ク共重合体とその水添ポリマー、スチレン系熱可塑性エ
ラストマー、オレフィン系熱可塑性エラストマー、塩化
ビニル系熱可塑性エラストマー、ポリエステル系熱可塑
性エラストマー、ポリウレタン系熱可塑性エラストマ
ー、ポリアミド系熱可塑性エラストマー等が挙げられ
る。
Specific thermoplastic elastomers include:
Styrene-butadiene or styrene-isoprene block copolymer and its hydrogenated polymer, styrene-based thermoplastic elastomer, olefin-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyamide-based Thermoplastic elastomers and the like can be mentioned.

【0033】具体的な硬化性樹脂としては、エポキシ樹
脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシク
ロブテン樹脂、フェノール樹脂、不飽和ポリエステル樹
脂、ジアリルフタレート樹脂、シリコーン樹脂、ポリウ
レタン樹脂、ポリイミドシリコーン樹脂、熱硬化型ポリ
フェニレンエーテル樹脂及び変性PPE樹脂等が挙げら
れる。
Specific curable resins include epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, polyurethane resin, polyimide silicone resin, and thermosetting resin. Curable polyphenylene ether resin, modified PPE resin and the like can be mentioned.

【0034】具体的な架橋ゴム又はその類似物として
は、天然ゴム、ブタジエンゴム、イソプレンゴム、スチ
レン−ブタジエン共重合ゴム、ニトリルゴム、水添ニト
リルゴム、クロロプレンゴム、エチレン−プロピレンゴ
ム、塩素化ポリエチレン、クロロスルホン化ポリエチレ
ン、ブチルゴム及びハロゲン化ブチルゴム、フッ素ゴ
ム、ウレタンゴム、シリコーンゴム等が挙げられる。
Specific examples of the crosslinked rubber or the like include natural rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene-propylene rubber, and chlorinated polyethylene. Chlorosulfonated polyethylene, butyl rubber and halogenated butyl rubber, fluorine rubber, urethane rubber, silicone rubber and the like.

【0035】これらの高分子材料の中でも、シリコーン
ゴム、エポキシ樹脂、ポリウレタン樹脂、不飽和ポリエ
ステル樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベ
ンゾシクロブテン樹脂、フッ素樹脂、ポリフェニレンエ
ーテル樹脂、及び熱可塑性エラストマーより選ばれる少
なくとも1種、さらに好ましくは、シリコーンゴム、エ
ポキシ樹脂、不飽和ポリエステル樹脂、ポリイミド樹
脂、ポリウレタン樹脂、及び熱可塑性エラストマーより
選ばれる少なくとも1種の高分子材料を用いることが、
耐熱性などの温度特性や電気的信頼性の観点から好まし
い。加えて、これらの高分子材料を用いると、黒鉛化炭
素繊維を充填する際に、低粘度の液体化、あるいは、加
熱溶融時に低粘度化することが可能となり、磁場雰囲気
下における黒鉛化炭素繊維の配向制御がしやすくなる。
Among these polymer materials, selected from silicone rubber, epoxy resin, polyurethane resin, unsaturated polyester resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, fluororesin, polyphenylene ether resin, and thermoplastic elastomer At least one, more preferably, using at least one polymer material selected from silicone rubber, epoxy resin, unsaturated polyester resin, polyimide resin, polyurethane resin, and thermoplastic elastomer,
It is preferable from the viewpoint of temperature characteristics such as heat resistance and electrical reliability. In addition, when these polymer materials are used, when filling the graphitized carbon fiber, it becomes possible to make the liquid low in viscosity, or to lower the viscosity when melted by heating. Orientation control becomes easy.

【0036】なお、これらの高分子材料は用途や要求性
能に応じて適宜選択して用いられる。例えば、誘電率、
誘電正接が小さくて高周波領域での特性を要求される配
線基板用途などには、フッ素樹脂、熱硬化型ポリフェニ
レンエーテル樹脂、変性PPE樹脂、ポリオレフィン系
樹脂などを用いることが好ましい。また、低硬度の架橋
ゴムや熱可塑性エラストマーを用いれば、熱伝導性に優
れた柔軟な熱伝導性高分子シートを得ることができる。
さらに、黒鉛化炭素繊維を高濃度で充填して配向させる
場合には、液状物あるいは溶融状態での粘度が低い高分
子材料あるいは高分子前駆体を用いることが好ましい。
These polymer materials are appropriately selected and used according to the application and required performance. For example, the dielectric constant,
For a wiring board application requiring a small dielectric loss tangent and high-frequency characteristics, it is preferable to use a fluorine resin, a thermosetting polyphenylene ether resin, a modified PPE resin, a polyolefin resin, or the like. If a low-hardness crosslinked rubber or a thermoplastic elastomer is used, a flexible heat conductive polymer sheet having excellent heat conductivity can be obtained.
Furthermore, when the graphitized carbon fibers are filled and oriented at a high concentration, it is preferable to use a polymer material or a polymer precursor having a low viscosity in a liquid state or a molten state.

【0037】また、これらの高分子材料は、一種を単独
で用いても、二種以上を適宜組み合わせて用いてもよ
く、これらの高分子材料から選択される複数の高分子材
料からなるポリマーアロイを使用しても差し支えない。
さらに、硬化性樹脂又は架橋ゴムの架橋方法について
は、熱硬化法に限定されず、光硬化法、湿気硬化法など
の公知の架橋方法を採用することができる。
These polymer materials may be used alone or in an appropriate combination of two or more. A polymer alloy comprising a plurality of polymer materials selected from these polymer materials may be used. Can be used.
Further, the method of crosslinking the curable resin or the crosslinked rubber is not limited to the thermosetting method, and a known crosslinking method such as a light curing method and a moisture curing method can be employed.

【0038】<熱伝導性高分子シート>続いて、上記の
黒鉛化炭素繊維と高分子材料とを含有する高分子組成物
よりなる熱伝導性高分子シートについて説明する。
<Thermal Conductive Polymer Sheet> Next, a thermally conductive polymer sheet made of a polymer composition containing the above graphitized carbon fibers and a polymer material will be described.

【0039】強磁性体の被覆層が形成された黒鉛化炭素
繊維は、シートの厚み方向に配向されている。そして、
この熱伝導性高分子シートは、シートの厚み方向に配向
された黒鉛化炭素繊維の繊維長さ方向への高熱伝導率が
発揮されることにより、シートの厚み方向への優れた熱
伝導性を示すこととなる。
The graphitized carbon fibers on which the ferromagnetic coating layer is formed are oriented in the thickness direction of the sheet. And
This thermally conductive polymer sheet exhibits excellent thermal conductivity in the sheet thickness direction by exhibiting high thermal conductivity in the fiber length direction of the graphitized carbon fibers oriented in the sheet thickness direction. Will be shown.

【0040】高分子材料に配合される黒鉛化炭素繊維の
濃度は、目的とする最終製品の要求性能によって適宜決
定されるが、体積百分率で表して好ましくは5〜75体
積%、より好ましくは7〜60体積%である。黒鉛化炭
素繊維の配合量が5体積%よりも少ないと、得られる熱
伝導性高分子シートの熱伝導率が小さくなり、放熱特性
が低下し、また、配合量が75体積%を越えると、粘度
が増大して黒鉛化炭素繊維を高分子材料中で配向させる
ことが困難になり、かつ、気泡の混入が避けられず好ま
しくない。なお、高分子組成物の粘度を低下させるため
に、揮発性の有機溶剤や低粘度の軟化剤、反応性可塑剤
を添加してもよい。
The concentration of the graphitized carbon fiber to be blended with the polymer material is appropriately determined depending on the required performance of the intended final product, but is preferably expressed as a volume percentage, preferably 5 to 75% by volume, more preferably 7 to 75% by volume. 6060% by volume. When the blending amount of the graphitized carbon fiber is less than 5% by volume, the thermal conductivity of the obtained heat conductive polymer sheet becomes small, the heat radiation property is reduced, and when the blending amount exceeds 75% by volume, As the viscosity increases, it becomes difficult to orient the graphitized carbon fibers in the polymer material, and mixing of air bubbles is inevitable, which is not preferable. In order to reduce the viscosity of the polymer composition, a volatile organic solvent, a low-viscosity softener, or a reactive plasticizer may be added.

【0041】また、高分子組成物に、必要に応じてその
他の熱伝導性充填剤、難燃剤、軟化材、着色剤、安定剤
などを配合してもよい。その他の熱伝導性充填剤として
は、金属やセラミックス、具体的には、銀、銅、金、酸
化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化
アルミニウム、窒化ケイ素、炭化ケイ素、水酸化アルミ
ニウムなどのほか、金属被覆樹脂、上述の強磁性体の被
覆層が形成された黒鉛化炭素繊維以外の黒鉛化炭素繊
維、黒鉛化されていない炭素繊維、天然黒鉛、人造黒
鉛、メソカーボンマイクロビーズ、ウィスカー状、マイ
クロコイル状又はナノチューブ状のカーボン、黒鉛ある
いはダイヤモンド粉などが挙げられる。なお、最終製品
として得られる熱伝導性高分子シートに、特に電気絶縁
性が要求される用途においては、酸化アルミニウム、酸
化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化
ケイ素、炭化ケイ素、水酸化アルミニウム等の電気絶縁
性を有する熱伝導性充填剤の少なくとも一種を配合する
ことが好ましい。
The polymer composition may further contain other heat conductive fillers, flame retardants, softeners, coloring agents, stabilizers, and the like, if necessary. Other heat conductive fillers include metals and ceramics, specifically, silver, copper, gold, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, aluminum hydroxide, and the like. Metal-coated resin, graphitized carbon fiber other than the graphitized carbon fiber with the above-described ferromagnetic coating layer formed thereon, non-graphitized carbon fiber, natural graphite, artificial graphite, mesocarbon microbeads, whisker-like, micro Examples thereof include coiled or nanotube-shaped carbon, graphite, and diamond powder. In addition, the heat conductive polymer sheet obtained as the final product, especially in applications where electrical insulation is required, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, aluminum hydroxide, etc. It is preferable to mix at least one kind of heat conductive filler having electric insulation.

【0042】熱伝導性高分子シートの厚みは、特に限定
されないが、好ましくは50μm〜10mm、より好ま
しくは200μm〜5mmである。50μmよりも薄い
と製造しにくく、また、取り扱いにくくなる。また、1
0mmよりも厚くなると熱抵抗が大きくなるので好まし
くない。
The thickness of the heat conductive polymer sheet is not particularly limited, but is preferably 50 μm to 10 mm, more preferably 200 μm to 5 mm. If it is thinner than 50 μm, it is difficult to manufacture and it is difficult to handle. Also, 1
When the thickness is larger than 0 mm, the thermal resistance increases, which is not preferable.

【0043】熱伝導性高分子シートの硬度は、用途に応
じて適宜決定されるが、使用時の応力緩和性と追随性に
関しては柔軟なほど、すなわち低硬度ほど有利である。
具体的な硬度としては、ショアーA硬度で70以下が好
ましく、40以下がより好ましく、アスカーC硬度で3
0以下のゲル状のシリコーンゴムや熱可塑性エラストマ
ーを高分子材料として使用したものが特に好ましい。
The hardness of the thermally conductive polymer sheet is appropriately determined according to the intended use, but the softer, that is, the lower the hardness, the more advantageous in terms of stress relaxation and follow-up during use.
Specifically, the Shore A hardness is preferably 70 or less, more preferably 40 or less, and the Asker C hardness is 3 or less.
Those using a gel-like silicone rubber or thermoplastic elastomer of 0 or less as a polymer material are particularly preferable.

【0044】<製造方法>以下、熱伝導性高分子シート
の製造方法について説明する。熱伝導性高分子シートを
製造する方法としては、特開2000−195998号
公報にて提唱されている製造方法を応用した製法が簡便
で好ましい。すなわち、強磁性体の被覆層が形成された
黒鉛化炭素繊維と高分子材料とを含有する高分子組成物
に、外部から磁場を印加して黒鉛化炭素繊維をシートの
厚み方向に磁場配向させ、その後シート状に成形する方
法である。これにより、黒鉛化炭素繊維の繊維長さ方向
への高熱伝導率を生かして、シートの厚み方向の熱伝導
性を飛躍的に向上させた熱伝導性高分子シートを容易に
得ることができる。
<Manufacturing Method> A method of manufacturing the heat conductive polymer sheet will be described below. As a method for producing the thermally conductive polymer sheet, a production method applying the production method proposed in JP-A-2000-195998 is simple and preferable. That is, a magnetic field is externally applied to a polymer composition containing a graphitized carbon fiber on which a ferromagnetic coating layer is formed and a polymer material to magnetically orient the graphitized carbon fiber in the sheet thickness direction. And then forming into a sheet. This makes it possible to easily obtain a thermally conductive polymer sheet in which the thermal conductivity in the thickness direction of the sheet is dramatically improved by utilizing the high thermal conductivity of the graphitized carbon fibers in the fiber length direction.

【0045】(黒鉛化炭素繊維)まず、黒鉛化炭素繊維
の製法について説明する。メソフェーズピッチを原料と
する繊維状(繊維状の形態が維持された粉砕品や切断
品)の黒鉛化炭素繊維は、紡糸、不融化及び炭化の各処
理を順次行った後に粉砕又は切断し、その後黒鉛化して
製造される。
(Graphized Carbon Fiber) First, the method for producing the graphitized carbon fiber will be described. Fibrous graphitized carbon fibers made from mesophase pitch as raw materials (crushed or cut products in which the fibrous form is maintained) are crushed or cut after successively performing spinning, infusibilizing and carbonizing treatments. Manufactured by graphitization.

【0046】紡糸工程における紡糸方法としては、メル
トスピニング法、メルトブロー法、遠心紡糸法、渦流紡
糸法等が挙げられるが、紡糸時の生産性や得られる黒鉛
化炭素繊維の品質の観点からメルトブロー法が好まし
い。また、メルトブロー法の場合、数十ポイズ以下の低
粘度で紡糸し、かつ高速冷却することによって、黒鉛層
面が繊維軸に平行に配列しやすくなるという利点もあ
る。メルトブロー法を用いる場合、紡糸孔の直径は0.
1〜0.5mmが好ましく、0.15〜0.3mmがよ
り好ましい。紡糸孔の直径が0.1mmよりも小さいと
目詰まりが生じやすく、また紡糸ノズルの製作が困難に
なるため好ましくない。逆に0.5mmを超えると、繊
維直径が25μm以上と大きくなりやすく、また繊維直
径がばらつきやすくなり品質管理上も好ましくない。紡
糸速度は、生産性の面から毎分500m以上が好まし
く、毎分1500m以上がより好ましく、毎分2000
m以上が特に好ましい。紡糸温度は、原料ピッチにより
多少変化するが、原料ピッチの軟化点以上でピッチが変
質しない温度以下であれば良く、通常は300〜400
℃、好ましくは300〜380℃である。原料ピッチの
軟化点は、前記紡糸温度との関係から、軟化点が低くま
た不融化反応速度の速いものの方が、製造コスト及び安
定性の面で有利である。よって、原料ピッチの軟化点
は、230〜350℃が好ましくは、250〜310℃
がより好ましい。
Examples of the spinning method in the spinning step include a melt spinning method, a melt blow method, a centrifugal spinning method, and a vortex spinning method. From the viewpoints of productivity during spinning and the quality of the graphitized carbon fiber obtained, the melt blowing method is used. Is preferred. In addition, in the case of the melt blow method, there is an advantage that the graphite layer surface is easily arranged parallel to the fiber axis by spinning at a low viscosity of several tens of poise or less and cooling at a high speed. When the melt blowing method is used, the diameter of the spinning hole is 0.1 mm.
It is preferably from 1 to 0.5 mm, more preferably from 0.15 to 0.3 mm. If the diameter of the spinning hole is smaller than 0.1 mm, clogging is liable to occur, and it becomes difficult to manufacture a spinning nozzle. Conversely, if it exceeds 0.5 mm, the fiber diameter tends to be as large as 25 μm or more, and the fiber diameter tends to vary, which is not preferable in quality control. The spinning speed is preferably 500 m / min or more, more preferably 1500 m / min or more, and 2000 m / min from the viewpoint of productivity.
m or more is particularly preferred. The spinning temperature varies somewhat depending on the raw material pitch, but may be any temperature which is higher than the softening point of the raw material pitch and lower than the temperature at which the pitch is not deteriorated.
° C, preferably 300 to 380 ° C. As for the softening point of the raw material pitch, a material having a lower softening point and a higher infusibilization reaction rate is more advantageous in terms of production cost and stability in view of the spinning temperature. Therefore, the softening point of the raw material pitch is preferably from 230 to 350 ° C, more preferably from 250 to 310 ° C.
Is more preferred.

【0047】不融化工程における不融化処理の方法とし
ては、二酸化窒素や酸素等の酸化性ガス雰囲気中で加熱
処理する方法、硝酸やクロム酸等の酸化性水溶液中で処
理する方法、光やγ線等により重合処理する方法等が挙
げられるが、空気中で加熱処理する方法が簡便なことか
ら好ましい。空気中で加熱処理する方法を採る場合、原
料により加熱処理の条件は若干異なるが、好ましくは3
℃/分以上、より好ましくは5℃/分以上の平均昇温速
度で、350℃程度まで昇温させながら加熱処理するこ
とが望ましい。
The infusibilizing treatment in the infusibilizing step includes a method of heating in an oxidizing gas atmosphere such as nitrogen dioxide or oxygen, a method of treating in an oxidizing aqueous solution such as nitric acid or chromic acid, and a method of treating light or γ. A method of performing a polymerization treatment with a wire or the like may be mentioned, but a method of performing a heat treatment in the air is preferred because it is simple. When the method of performing heat treatment in air is adopted, the conditions of heat treatment slightly vary depending on the raw material, but preferably 3
It is desirable to perform the heat treatment while raising the temperature to about 350 ° C. at an average temperature rising rate of not less than 5 ° C./min, more preferably not less than 5 ° C./min.

【0048】炭化工程における炭化処理としては、不活
性ガス雰囲気中で加熱処理することによって炭素繊維を
軽度に炭化する方法が挙げられる。ここで、軽度に炭化
とは、炭素繊維が実質上処理温度に達した状態であるこ
とを意味し、具体的には処理雰囲気温度で10分以上処
理することを意味する。炭化処理の際の処理温度は好ま
しくは250〜1500℃、より好ましくは500〜9
00℃である。
As the carbonization treatment in the carbonization step, a method of lightly carbonizing the carbon fiber by performing a heat treatment in an inert gas atmosphere may be mentioned. Here, "lightly carbonized" means that the carbon fiber has substantially reached the processing temperature, and specifically means that the carbon fiber is processed at a processing atmosphere temperature for 10 minutes or more. The treatment temperature during the carbonization treatment is preferably from 250 to 1500C, more preferably from 500 to 9C.
00 ° C.

【0049】粉砕又は切断処理としては、ビクトリーミ
ル、ジェットミル、高速回転ミルなどの粉砕機あるいは
チョップド繊維で用いられる切断機などが好適に使用さ
れる。また、粉砕又は切断を効率良く実施するために
は、上記各種方法に共通して、例えばプレートを取り付
けたローターを高速で回転することにより、繊維軸に対
し直角方向に繊維を寸断する方法が適切である。この粉
砕又は切断処理によって生じる炭素繊維の平均粒径は、
ローターの回転数、プレートの角度などを調整すること
により制御される。なお、粉砕方法としては、ボールミ
ルなどの磨砕機による方法もあるが、この方法によると
繊維の直角方向への加圧力が働いて繊維軸方向への縦割
れの発生が多くなるので不適当である。
As the pulverizing or cutting treatment, a pulverizer such as a Victory mill, a jet mill or a high-speed rotating mill, or a cutter used for chopped fibers is preferably used. In addition, in order to efficiently carry out pulverization or cutting, a method of cutting fibers in a direction perpendicular to the fiber axis by rotating a rotor attached with a plate at a high speed, for example, is common to the above-mentioned various methods. It is. The average particle size of the carbon fibers produced by this pulverization or cutting treatment is
It is controlled by adjusting the number of rotations of the rotor, the angle of the plate, and the like. In addition, as a pulverizing method, there is a method using a grinding machine such as a ball mill. However, according to this method, a pressing force in a direction perpendicular to the fiber acts and the number of longitudinal cracks in the fiber axis direction increases, which is inappropriate. .

【0050】ここで、上記炭素繊維の粉砕又は切断処理
は、炭化の後に限定されるものでなく、不融化処理の後
に行っても後述する黒鉛化処理の後に行ってもよいが、
不融化処理した炭素繊維を炭化処理した後、粉砕又は切
断することが最も好ましい。不融化した炭素繊維を、2
50〜1500℃の温度で軽度に炭化した後に粉砕する
ことにより、粉砕後の炭素繊維の縦割れを防ぐことがで
き、粉砕時に新たに表面に露出した黒鉛層面において黒
鉛化処理時に縮重合反応、環化反応が進みやすくなり、
熱伝導性をより一層向上させることができる。この処理
温度が250℃未満では炭化の程度が不充分になりやす
く、1500℃を越えると炭素繊維の強度が大きくなり
粉砕が困難となる。一方、紡糸した炭素繊維を高温で黒
鉛化してから粉砕すると、繊維軸方向に発達した黒鉛層
面に沿って開裂が発生し易くなり、粉砕された炭素繊維
の全表面積中に占める破断面表面積の割合が大きくなっ
て熱伝達しにくくなり、熱伝導性が低下するため不適当
である。
Here, the pulverization or cutting of the carbon fiber is not limited to after carbonization, and may be performed after infusibilization or after graphitization as described below.
It is most preferable to pulverize or cut after carbonizing the infusibilized carbon fiber. The infusibilized carbon fiber is
By pulverizing after lightly carbonizing at a temperature of 50 to 1500 ° C., longitudinal cracking of the carbon fiber after pulverization can be prevented, and a polycondensation reaction during graphitization treatment on a graphite layer surface newly exposed on the surface during pulverization, The cyclization reaction proceeds easily,
Thermal conductivity can be further improved. If the treatment temperature is lower than 250 ° C., the degree of carbonization tends to be insufficient, and if it exceeds 1500 ° C., the strength of the carbon fiber increases and pulverization becomes difficult. On the other hand, when the spun carbon fiber is graphitized at a high temperature and then pulverized, it is easy for cleavage to occur along the graphite layer surface developed in the fiber axis direction, and the ratio of the fracture surface area to the total surface area of the pulverized carbon fiber And heat transfer becomes difficult, and thermal conductivity is lowered, which is not suitable.

【0051】黒鉛化工程における黒鉛化処理は、不活性
ガス雰囲気中で粉砕した炭素繊維を高温で加熱処理する
ことによって行われる。黒鉛化処理の際の処理温度は好
ましくは2500℃以上、より好ましくは3000℃以
上である。この黒鉛化処理により黒鉛構造が発達し、処
理温度が高温となるにしたがって黒鉛化が進行して得ら
れる黒鉛化炭素繊維の繊維長さ方向の熱伝導率が向上す
る。以上の操作により、繊維形状が保持された粉末状の
黒鉛化炭素繊維が得られる。
The graphitization treatment in the graphitization step is carried out by heating carbon fibers pulverized in an inert gas atmosphere at a high temperature. The processing temperature during the graphitization treatment is preferably 2500 ° C. or higher, more preferably 3000 ° C. or higher. The graphitization treatment develops a graphite structure, and as the treatment temperature increases, the graphitized carbon fiber obtained by graphitization progresses has an improved thermal conductivity in the fiber length direction. By the above operation, a powdery graphitized carbon fiber in which the fiber shape is maintained can be obtained.

【0052】(強磁性体の被覆)次いで、上記のように
製造された黒鉛化炭素繊維の表面に、強磁性体の被覆層
を形成する。
(Coating of Ferromagnetic Material) Next, a coating layer of a ferromagnetic material is formed on the surface of the graphitized carbon fiber manufactured as described above.

【0053】被覆層の形成方法としては、無電解メッキ
法、電解メッキ法、真空蒸着法やスパッタリング法など
による物理的蒸着法、化学的蒸着法、溶射法、塗装法、
浸漬法、微細粒子を機械的に黒鉛化炭素繊維表面に固着
させるメカノケミカル法などの種々の方法が採用でき
る。
The coating layer may be formed by a physical vapor deposition method such as an electroless plating method, an electrolytic plating method, a vacuum vapor deposition method or a sputtering method, a chemical vapor deposition method, a thermal spraying method, a coating method,
Various methods such as an immersion method and a mechanochemical method of mechanically fixing fine particles to the surface of the graphitized carbon fiber can be adopted.

【0054】なお、黒鉛化炭素繊維の表面処理を目的と
して、黒鉛化炭素繊維の表面を予め脱脂や洗浄処理した
り、電解酸化などによる酸化処理、紫外線照射処理、コ
ロナ放電処理、プラズマ処理、火炎処理、イオン注入な
どの活性化処理を施すことが好ましい。
For the purpose of surface treatment of the graphitized carbon fiber, the surface of the graphitized carbon fiber is previously degreased or washed, oxidized by electrolytic oxidation, ultraviolet irradiation, corona discharge, plasma, flame, or the like. It is preferable to perform activation treatment such as treatment or ion implantation.

【0055】(成形)上記のように製造された強磁性体
の被覆層が形成された黒鉛化炭素繊維を、例えば、ブレ
ンダー、ミキサー、ロール、押出機などの公知の混合・
混練装置を用いて高分子材料に配合し、攪拌、脱泡、混
練等の操作を施すことにより高分子組成物が得られる。
そして、得られた高分子組成物をシート状に成形するこ
とにより、熱伝導性高分子シートが製造される。
(Molding) The graphitized carbon fibers having the ferromagnetic coating layer produced as described above are mixed with a known mixing / mixing method such as a blender, mixer, roll, or extruder.
The polymer composition is obtained by blending with a polymer material using a kneading apparatus and performing operations such as stirring, defoaming, and kneading.
Then, the obtained polymer composition is formed into a sheet to produce a thermally conductive polymer sheet.

【0056】高分子組成物をシート状に成形加工する方
法としては、特に限定されるものではなく、例えば、圧
縮成形法、押出成形法、射出成形法、注型成形法、ブロ
ー成形法、カレンダー成形法などのほか、液状組成物の
場合には、塗装法、印刷法、ディスペンサー法、ポッテ
ィング法などの方法を採用することができる。
The method for forming the polymer composition into a sheet is not particularly limited, and examples thereof include a compression molding method, an extrusion molding method, an injection molding method, a casting molding method, a blow molding method, and a calendering method. In addition to a molding method, in the case of a liquid composition, a method such as a coating method, a printing method, a dispenser method, and a potting method can be employed.

【0057】(配向)黒鉛化炭素繊維をシートの厚み方
向に配向させるには、シートの厚み方向に永久磁石や電
磁石のN極とS極とを対向させ、磁力線の向きがシート
の厚み方向に対応するように高分子組成物を配置する。
そして、黒鉛化炭素繊維を十分に配向させてから、冷却
あるいは硬化反応させてマトリックスの高分子組成物を
固化させる。これにより、黒鉛化炭素繊維が、磁力線に
沿ってシートの厚み方向に配向され、シートの厚み方向
に優れた熱伝導性を発揮する熱伝導性高分子シートを得
ることができる。
(Orientation) In order to orient the graphitized carbon fibers in the thickness direction of the sheet, the north and south poles of a permanent magnet or an electromagnet are opposed to each other in the thickness direction of the sheet, and the direction of the magnetic field is directed in the thickness direction of the sheet. The polymer composition is arranged correspondingly.
Then, after the graphitized carbon fibers are sufficiently oriented, they are cooled or cured to solidify the polymer composition of the matrix. As a result, the graphitized carbon fibers are oriented in the thickness direction of the sheet along the lines of magnetic force, and a thermally conductive polymer sheet exhibiting excellent thermal conductivity in the thickness direction of the sheet can be obtained.

【0058】外部磁場として使用する磁場発生手段とし
ては、特に限定されず、例えば、永久磁石、電磁石、コ
イルなどが好適に用いられる。また、その磁束密度とし
ては、0.05テスラ以上であれば実用的な黒鉛化炭素
繊維の配向が達成でき、目的とする高熱伝導性を示す熱
伝導性高分子シートを得ることができる。磁束密度は、
好ましくは0.1テスラ以上、より好ましくは0.2テ
スラ以上である。磁束密度が高いほど、黒鉛化炭素繊維
を高度に配向させることが可能となる。
The magnetic field generating means used as the external magnetic field is not particularly limited. For example, permanent magnets, electromagnets, coils, etc. are preferably used. If the magnetic flux density is 0.05 Tesla or more, practical orientation of the graphitized carbon fibers can be achieved, and a desired thermally conductive polymer sheet having high thermal conductivity can be obtained. The magnetic flux density is
It is preferably at least 0.1 Tesla, more preferably at least 0.2 Tesla. The higher the magnetic flux density, the more highly graphitized carbon fibers can be oriented.

【0059】なお、磁力線は必ずしも直線状でなくても
よく、曲線状や矩形、あるいは2方向以上であっても構
わず、シートの厚み方向に磁場配向させることが可能で
ある。また、磁石については必ずしも両側に対向させる
必要はなく、片側のみに配置した磁石によっても高分子
組成物中の黒鉛化炭素繊維をシートの厚み方向に磁場配
向させることが可能である。
The lines of magnetic force need not necessarily be linear, but may be curved, rectangular, or two or more directions, and the magnetic field can be oriented in the thickness direction of the sheet. Further, it is not always necessary to oppose both sides of the magnet, and it is possible to magnetically orient the graphitized carbon fibers in the polymer composition in the thickness direction of the sheet by using a magnet arranged only on one side.

【0060】<実施形態>次に上記の熱伝導性高分子シ
ートの適用例について説明する。図1〜図4に示すよう
に、熱伝導性高分子シートは、電子機器等において半導
体素子や電源、光源などの発熱部材と放熱器などの放熱
部材との間に介在するなどして用いられ、発熱部材が発
生する熱を効果的に外部へ放散させるための放熱部材、
伝熱部材あるいはそれらの構成材料等として用いられ
る。
<Embodiment> Next, an application example of the above-mentioned heat conductive polymer sheet will be described. As shown in FIGS. 1 to 4, a thermally conductive polymer sheet is used in an electronic device or the like by being interposed between a heat generating member such as a semiconductor element, a power source, and a light source and a heat radiating member such as a radiator. A heat dissipating member for effectively dissipating the heat generated by the heat generating member to the outside,
Used as heat transfer members or their constituent materials.

【0061】図1に示す例では、プリント配線基板11
上に半導体素子12(ボールグリッドアレイ型半導体パ
ッケージ)が配設されるとともに、その半導体素子12
を覆うように放熱器14が支持部材14aを介して支持
されている。熱伝導性高分子シート13は、半導体素子
12と放熱器14との間に介装されている。
In the example shown in FIG.
A semiconductor element 12 (a ball grid array type semiconductor package) is provided thereon, and the semiconductor element 12
The radiator 14 is supported via a support member 14a so as to cover the radiator. The heat conductive polymer sheet 13 is interposed between the semiconductor element 12 and the radiator 14.

【0062】図2に示す例では、プリント配線基板11
上に半導体素子12(チップサイズ型半導体パッケー
ジ)が配設されている。熱伝導性高分子シート13は、
プリント配線基板11と半導体素子12との間に介装さ
れている。
In the example shown in FIG.
The semiconductor element 12 (chip size type semiconductor package) is provided thereon. The heat conductive polymer sheet 13 is
It is interposed between the printed wiring board 11 and the semiconductor element 12.

【0063】図3に示す例では、プリント配線基板11
上に半導体素子12(ピングリッドアレイ型半導体パッ
ケージ)が配設されている。熱伝導性高分子シート13
は、半導体素子12と凹凸状をなすヒートシンク15と
の間に介装されている。
In the example shown in FIG.
A semiconductor element 12 (pin grid array type semiconductor package) is provided thereon. Thermal conductive polymer sheet 13
Are interposed between the semiconductor element 12 and the heat sink 15 having an uneven shape.

【0064】図4に示す例では、プリント配線基板11
上には複数の実装部品16が配設されている。熱伝導性
高分子シート13は、その複数の実装部品16と筐体1
7との間に介装されている。
In the example shown in FIG.
A plurality of mounting components 16 are arranged on the upper side. The heat conductive polymer sheet 13 is provided with a plurality of mounting parts 16 and the housing 1.
7 is interposed.

【0065】そして、この熱伝導性高分子シート13に
より、シートの厚み方向への優れた熱伝導性が発揮さ
れ、発熱部材からの熱を効果的に放散することが可能と
なる。また、例えば、図8に示すようなプリント配線基
板、放熱板、放熱ゴムシート、半導体パッケージ用部
品、ヒートシンク、ヒートスプレッダー、筐体などに応
用することもできる。
The heat conductive polymer sheet 13 exhibits excellent heat conductivity in the thickness direction of the sheet, and can effectively dissipate heat from the heat generating member. Further, for example, the present invention can be applied to a printed wiring board, a heat radiating plate, a heat radiating rubber sheet, a semiconductor package component, a heat sink, a heat spreader, a housing, and the like as shown in FIG.

【0066】以上の実施形態によって発揮される効果を
以下にまとめて記載する。 ・ 黒鉛化炭素繊維の原料としてメソフェーズピッチを
用いることにより、繊維長さ方向への優れた熱伝導性を
有する黒鉛化炭素繊維を得ることができる。しかも、こ
の黒鉛化炭素繊維は、黒鉛化処理の前に、炭化して粉砕
する処理を行うことから、粉砕後の繊維の縦割れを防ぐ
ことができ、粉砕時に新たに表面に露出した黒鉛層面に
おいてより高温での黒鉛化処理時に縮重合反応、環化反
応が進みやすくなる。このため、高熱伝導性を有する黒
鉛化炭素繊維を得ることができる。これにより、熱伝導
性をより一層向上させた熱伝導性高分子シートを得るこ
とができ、電気部品や電子部品などから発生する多量の
熱を効果的に放散させることができる。
The effects exerted by the above embodiments will be summarized below. -By using mesophase pitch as a raw material of the graphitized carbon fiber, a graphitized carbon fiber having excellent thermal conductivity in the fiber length direction can be obtained. Moreover, since the graphitized carbon fiber is subjected to carbonization and pulverization before the graphitization treatment, it is possible to prevent longitudinal cracking of the fiber after pulverization, and the surface of the graphite layer newly exposed to the surface during pulverization. , The condensation polymerization reaction and the cyclization reaction easily proceed during the graphitization treatment at a higher temperature. Therefore, graphitized carbon fibers having high thermal conductivity can be obtained. This makes it possible to obtain a thermally conductive polymer sheet with further improved thermal conductivity, and to effectively dissipate a large amount of heat generated from electric components and electronic components.

【0067】・ 黒鉛化炭素繊維の繊維直径が、5〜2
0μmであることにより、高分子組成物の製造が容易で
あるとともに、熱伝導性高分子シートの熱伝導性を向上
させることができる。また、黒鉛化炭素繊維の平均粒径
が、10〜500μmであることにより、高分子材料中
に高濃度で充填することができるとともに、高分子材料
中の黒鉛化炭素繊維同士の接触させて熱伝達経路を確保
することができ、熱伝導性を向上させることができる。
The fiber diameter of the graphitized carbon fiber is 5 to 2
When the thickness is 0 μm, the production of the polymer composition is easy, and the thermal conductivity of the thermally conductive polymer sheet can be improved. When the average particle size of the graphitized carbon fibers is 10 to 500 μm, it can be filled into the polymer material at a high concentration, and the graphitized carbon fibers in the polymer material are brought into contact with each other to be heated. A transmission path can be secured, and thermal conductivity can be improved.

【0068】・ 黒鉛化炭素繊維のX線回折法による黒
鉛層間の面間隔(d002)が0.3370nm未満
で、かつ、(101)回折ピークと(100)回折ピー
クのピーク強度比(P101/P100)が1.15以
上であることにより、熱伝導率をさらに向上させること
ができる。
The interplanar spacing (d002) between the graphite layers of the graphitized carbon fiber by X-ray diffraction is less than 0.3370 nm, and the peak intensity ratio between the (101) diffraction peak and the (100) diffraction peak (P101 / P100) ) Is 1.15 or more, whereby the thermal conductivity can be further improved.

【0069】・ 黒鉛化炭素繊維の表面に強磁性体の被
覆層を形成することにより、磁場雰囲気下で黒鉛化炭素
繊維を高分子材料中で容易に配向させることができるよ
うになる。従って、黒鉛化炭素繊維をシートの厚み方向
に高度に配向させることができるようになり、黒鉛化炭
素繊維の繊維長さ方向への高熱伝導性を発揮させること
ができ、シートの厚み方向への熱伝導性を飛躍的に向上
させた熱伝導性高分子シートを容易に得ることができ
る。また、強磁性体の被覆層の膜厚が、0.01〜5μ
mであることにより、高分子材料へ高充填化することが
できるとともに、黒鉛化炭素繊維を低磁場で配向させる
ことができるようになり、高熱伝導性を示す熱伝導性高
分子シートを低コストで製造することができる。
By forming a ferromagnetic coating layer on the surface of the graphitized carbon fiber, the graphitized carbon fiber can be easily oriented in the polymer material under a magnetic field atmosphere. Therefore, the graphitized carbon fibers can be highly oriented in the thickness direction of the sheet, and can exhibit high thermal conductivity in the fiber length direction of the graphitized carbon fibers. A thermally conductive polymer sheet having significantly improved thermal conductivity can be easily obtained. The thickness of the ferromagnetic coating layer is 0.01 to 5 μm.
m, the polymer material can be highly filled, and the graphitized carbon fibers can be oriented in a low magnetic field, so that a thermally conductive polymer sheet exhibiting high thermal conductivity can be manufactured at low cost. Can be manufactured.

【0070】[0070]

【実施例】以下、実施例を挙げて前記実施形態をさらに
具体的に説明するが、これらは本発明の範囲を何ら制限
するものではない。
EXAMPLES The above embodiments will be described more specifically with reference to the following Examples, which do not limit the scope of the present invention.

【0071】(黒鉛化炭素繊維の試作例1)光学異方性
で比重1.25の石油系メソフェーズピッチを原料とし
て、幅3mmのスリットの中に直径0.2mmの紡糸孔
を有するダイスを使用し、スリットから加熱空気を噴出
させて、紡糸温度360℃で溶融ピッチを牽引して平均
直径13μmのピッチ系繊維を製造した。
(Prototype Example 1 of Graphitized Carbon Fiber) Using a petroleum-based mesophase pitch having an optical anisotropy and a specific gravity of 1.25 as a raw material, a die having a 0.2 mm diameter spinning hole in a 3 mm wide slit was used. Then, heated air was ejected from the slit, and the molten pitch was drawn at a spinning temperature of 360 ° C. to produce a pitch-based fiber having an average diameter of 13 μm.

【0072】紡出された繊維をベルト上に捕集したマッ
トを、空気中で室温から300℃まで平均昇温速度6℃
/分で昇温して不融化処理した。引続き、この不融化処
理繊維を700℃で軽度に炭化処理した後、高速回転ミ
ルで粉砕し平均粒径30μmの炭素繊維粉砕品を得た。
The mat in which the spun fibers were collected on a belt was heated in air from room temperature to 300 ° C. at an average heating rate of 6 ° C.
/ Min to perform infusibility treatment. Subsequently, the infusibilized fiber was lightly carbonized at 700 ° C., and then pulverized by a high-speed rotating mill to obtain a pulverized carbon fiber having an average particle diameter of 30 μm.

【0073】この炭素繊維粉砕品を、アルゴン雰囲気下
で、2300℃まで昇温後、2300℃で40分間保持
し、次いで3℃/分の速度で3000℃まで昇温し、さ
らに3000℃で1時間保持してから降温して、黒鉛化
された炭素繊維粉砕品を製造した。
The carbon fiber crushed product was heated to 2300 ° C. in an argon atmosphere, kept at 2300 ° C. for 40 minutes, then heated to 3000 ° C. at a rate of 3 ° C./min, and further heated at 3000 ° C. for 1 minute. After the temperature was maintained, the temperature was lowered to produce a graphitized carbon fiber pulverized product.

【0074】得られた黒鉛化炭素繊維粉砕品(試作例
1)の密度、繊維直径、平均粒径、X線回折パラメー
タ、及び、繊維長さ方向の熱伝導率の測定結果を表1に
示す。なお、繊維長さ方向の熱伝導率は、粉砕前のマッ
ト形状のものを同様の条件で黒鉛化したものを用いて測
定した。
Table 1 shows the measurement results of the density, fiber diameter, average particle size, X-ray diffraction parameters, and thermal conductivity in the fiber length direction of the obtained graphitized carbon fiber pulverized product (prototype example 1). . The thermal conductivity in the fiber length direction was measured using a mat-shaped material before pulverization that was graphitized under the same conditions.

【0075】(黒鉛化炭素繊維の試作例2)光学異方性
で比重1.25の石油系メソフェーズピッチを原料とし
て、幅3mmのスリットの中に直径0.2mmの紡糸孔
を有するダイスを使用し、スリットから加熱空気を噴出
させて、紡糸温度360℃で溶融ピッチを牽引して平均
直径15μmのピッチ製繊維を製造した。
(Prototype Example 2 of Graphitized Carbon Fiber) Using a petroleum-based mesophase pitch having an optical anisotropy and a specific gravity of 1.25 as a raw material, a die having a 0.2 mm diameter spinning hole in a 3 mm wide slit was used. Then, heated air was blown out from the slit, and the molten pitch was drawn at a spinning temperature of 360 ° C. to produce a pitch-formed fiber having an average diameter of 15 μm.

【0076】紡出された繊維をベルト上に捕集したマッ
トを、空気中で室温から300℃まで平均昇温速度6℃
/分で昇温して不融化処理した。引続き、この不融化処
理繊維を700℃で軽度に炭化処理した後、高速回転ミ
ルで粉砕し平均粒径50μmの炭素繊維粉砕品を得た。
The mat in which the spun fibers were collected on a belt was heated in air from room temperature to 300 ° C. at an average heating rate of 6 ° C.
/ Min to perform infusibility treatment. Subsequently, the infusibilized fiber was lightly carbonized at 700 ° C. and then pulverized with a high-speed rotating mill to obtain a pulverized carbon fiber having an average particle diameter of 50 μm.

【0077】この炭素繊維粉砕品を、アルゴン雰囲気下
で、2300℃まで昇温後、2300℃で40分間保持
し、次いで3℃/分の速度で3100℃まで昇温し、さ
らに3100℃で1時間保持してから降温して、黒鉛化
された炭素繊維粉砕品を製造した。
The carbon fiber pulverized product was heated to 2300 ° C. in an argon atmosphere, kept at 2300 ° C. for 40 minutes, and then heated to 3100 ° C. at a rate of 3 ° C./min. After the temperature was maintained, the temperature was lowered to produce a graphitized carbon fiber pulverized product.

【0078】得られた黒鉛化炭素繊維粉砕品(試作例
2)の密度、繊維直径、平均粒径、X線回折パラメー
タ、及び、繊維長さ方向の熱伝導率の測定結果を表1に
示す。 (黒鉛化炭素繊維の試作例3、試作例4)比較用に市販
の超高弾性率ピッチ系黒鉛化炭素長繊維を使用し、試作
例1、2と同様に高速回転ミルで粉砕した。試作例3
は、三菱化学株式会社製の黒鉛化炭素繊維(繊維長さ方
向の熱伝導率が600W/m・K)の粉砕品、試作例4
は、日本グラファイトファイバー株式会社製の黒鉛化炭
素繊維(繊維長さ方向の熱伝導率が1000W/m・
K)の粉砕品である。
Table 1 shows the measurement results of the density, fiber diameter, average particle diameter, X-ray diffraction parameters, and thermal conductivity in the fiber length direction of the obtained graphitized carbon fiber pulverized product (Trial Production Example 2). . (Prototype Examples 3 and 4 of Graphitized Carbon Fiber) For comparison, a commercially available ultra-high modulus pitch type graphitized carbon long fiber was used and pulverized by a high-speed rotary mill in the same manner as in Examples 1 and 2. Prototype example 3
Is a pulverized product of graphitized carbon fiber manufactured by Mitsubishi Chemical Corporation (heat conductivity in the fiber length direction of 600 W / m · K), prototype example 4
Is a graphitized carbon fiber manufactured by Nippon Graphite Fiber Co., Ltd. (having a thermal conductivity of 1000 W / m.
K) is a pulverized product.

【0079】得られた黒鉛化炭素繊維粉砕品(試作例
3、4)の密度、繊維直径、平均粒径、X線回折パラメ
ータ、及び、繊維長さ方向の熱伝導率の測定結果を表1
に示す。なお、これらの試作例3、4の黒鉛化炭素繊維
粉砕品を電子顕微鏡で観察すると、いずれも繊維が縦方
向に割れていた。
Table 1 shows the measurement results of the density, fiber diameter, average particle diameter, X-ray diffraction parameters, and thermal conductivity in the fiber length direction of the obtained pulverized graphitized carbon fiber products (prototype examples 3 and 4).
Shown in When the graphitized carbon fiber pulverized products of Prototype Examples 3 and 4 were observed with an electron microscope, the fibers were all broken in the longitudinal direction.

【0080】[0080]

【表1】 (強磁性体の被覆層を形成した黒鉛化炭素繊維の試作例
5)表2に示すように、以下の方法で試作例1の黒鉛化
炭素繊維の表面に、強磁性体としてのニッケル‐ホウ素
合金の被覆層を形成した。
[Table 1] (Prototype Example 5 of Graphitized Carbon Fiber Forming Ferromagnetic Coating Layer) As shown in Table 2, nickel-boron as a ferromagnetic material was formed on the surface of the graphitized carbon fiber of Prototype Example 1 by the following method. A coating layer of the alloy was formed.

【0081】試作例1の黒鉛化炭素繊維粉砕品をトリク
ロロエチレンで洗浄した後、塩化第1スズの塩酸水溶液
に投入し、約15分間浸漬した後、蒸留水で洗浄した。
次いで、洗浄後の黒鉛化炭素繊維を塩化パラジウムの塩
酸水溶液に投入し、黒鉛化炭素繊維の表面を活性化処理
した後に蒸留水で洗浄した。
The pulverized graphitized carbon fiber product of Prototype Example 1 was washed with trichlorethylene, poured into an aqueous solution of stannous chloride in hydrochloric acid, immersed for about 15 minutes, and then washed with distilled water.
Next, the washed graphitized carbon fiber was put into a hydrochloric acid aqueous solution of palladium chloride, the surface of the graphitized carbon fiber was activated, and then washed with distilled water.

【0082】そして、この黒鉛化炭素繊維を硫酸ニッケ
ル‐ジメチルアミノボラン‐クエン酸ナトリウム‐エチ
レンジアミン四酢酸水溶液(メッキ液)に投入し、攪拌
しながら約80℃まで加熱して、無電解メッキ法により
黒鉛化炭素繊維の表面に厚み0.2μmの均一なニッケ
ル‐ホウ素合金の被覆層を形成させた。さらに、アルゴ
ン雰囲気中で、400℃で20分間熱処理してニッケル
‐ホウ素合金を磁性化させた。
Then, the graphitized carbon fiber was put into an aqueous solution of nickel sulfate-dimethylaminoborane-sodium citrate-ethylenediaminetetraacetic acid (plating solution), heated to about 80 ° C. with stirring, and subjected to electroless plating. A uniform nickel-boron alloy coating layer having a thickness of 0.2 μm was formed on the surface of the graphitized carbon fiber. Further, the nickel-boron alloy was magnetized by heat treatment at 400 ° C. for 20 minutes in an argon atmosphere.

【0083】(強磁性体の被覆層を形成した黒鉛化炭素
繊維の試作例6)表2に示すように、以下の方法で試作
例1の黒鉛化炭素繊維の表面に強磁性体としてのコバル
ト‐リン合金の被覆層を形成した。
(Trial Example 6 of Graphitized Carbon Fiber with Ferromagnetic Coating Layer Formed) As shown in Table 2, the surface of the graphitized carbon fiber of Trial Example 1 was coated with cobalt as a ferromagnetic material by the following method. -A coating layer of phosphorus alloy was formed.

【0084】試作例1の黒鉛化炭素繊維粉砕品をトリク
ロロエチレンで洗浄した後、塩化第1スズの塩酸水溶液
に投入し、約15分間浸漬した後、蒸留水で洗浄した。
次いで、洗浄後の黒鉛化炭素繊維を塩化パラジウムの塩
酸水溶液に投入し、黒鉛化炭素繊維の表面を活性化した
後に蒸留水で洗浄した。
The crushed graphitized carbon fiber product of Trial Production Example 1 was washed with trichloroethylene, then poured into an aqueous solution of stannous chloride in hydrochloric acid, immersed for about 15 minutes, and washed with distilled water.
Next, the washed graphitized carbon fiber was poured into an aqueous solution of palladium chloride in hydrochloric acid to activate the surface of the graphitized carbon fiber and then washed with distilled water.

【0085】そして、この黒鉛化炭素繊維を硫酸コバル
ト‐次亜リン酸ナトリウム‐硫酸ナトリウム‐酢酸ナト
リウム‐硫酸アンモニウム水溶液(メッキ液)に投入
し、攪拌しながら約90℃まで加熱して、無電解メッキ
法により黒鉛化炭素繊維の表面に厚み0.15μmの均
一なコバルト‐リン合金の被覆層を形成させた。
Then, this graphitized carbon fiber is put into an aqueous solution of cobalt sulfate-sodium hypophosphite-sodium sulfate-sodium acetate-ammonium sulfate (plating solution), and heated to about 90 ° C. with stirring to perform electroless plating. A uniform coating layer of a cobalt-phosphorus alloy having a thickness of 0.15 μm was formed on the surface of the graphitized carbon fiber by the method.

【0086】(強磁性体の被覆層を形成した黒鉛化炭素
繊維の試作例7〜11)上記試作例5、6と同様の方法
により、実施例7〜9は試作例2の黒鉛化炭素繊維を、
実施例10は試作例3の黒鉛化炭素繊維を、実施例11
は試作例4の黒鉛化炭素繊維をそれぞれ用いて、表2に
記した強磁性体の種類及び膜厚の被覆層を形成させた黒
鉛化炭素繊維(試作例7〜11)を作製した。なお、表
2中の強磁性体の種類に記載したニッケルはニッケル‐
ホウ素合金、コバルトはコバルト−リン合金を意味す
る。
(Prototype Examples 7 to 11 of Graphitized Carbon Fiber Forming Ferromagnetic Coating Layer) Examples 7 to 9 are graphitized carbon fibers of Prototype Example 2 by the same method as that of Prototype Examples 5 and 6. To
In Example 10, the graphitized carbon fiber of Prototype Example 3 was used.
Produced graphitized carbon fibers (prototype examples 7 to 11) each having a coating layer having the type and thickness of the ferromagnetic material shown in Table 2 using the graphitized carbon fibers of prototype example 4. Note that nickel described in the type of ferromagnetic material in Table 2 is nickel-
Boron alloy and cobalt mean cobalt-phosphorus alloy.

【0087】[0087]

【表2】 (実施例1)高分子材料としての液状シリコーンゴム
(GE東芝シリコーン株式会社製 TSE3070)6
5体積%、試作例5の黒鉛化炭素繊維を25体積%、酸
化アルミニウム粉末(昭和電工株式会社製 AS−2
0)10体積%を混合し真空脱泡した高分子組成物を調
製した。
[Table 2] (Example 1) Liquid silicone rubber as polymer material (TSE3070 manufactured by GE Toshiba Silicone Co., Ltd.) 6
5% by volume, 25% by volume of the graphitized carbon fiber of Prototype Example 5, aluminum oxide powder (AS-2 manufactured by Showa Denko KK)
0) A polymer composition was prepared by mixing 10% by volume and degassing in vacuo.

【0088】次いで、図5(a)、図5(b)、図5
(c)に示すように、得られた高分子組成物を、アルミ
ニウム製の縦20mm、横20mmの板状の金型の成形
凹部内に充填し、厚み方向に磁束密度0.5テスラのN
極とS極が対向する磁場雰囲気下で黒鉛化炭素繊維を充
分に磁場配向させた後に加熱硬化させ、厚み1mmの柔
軟なゴムシート状の熱伝導性高分子シートを得た。
Next, FIG. 5A, FIG. 5B, FIG.
As shown in (c), the obtained polymer composition was filled in a mold recess of a 20-mm-long and 20-mm-wide plate-like mold made of aluminum.
The graphitized carbon fiber was sufficiently magnetically oriented in a magnetic field atmosphere in which the pole and the S pole face each other, and then heat-cured to obtain a flexible rubber sheet-like heat conductive polymer sheet having a thickness of 1 mm.

【0089】得られた熱伝導性高分子シート中の黒鉛化
炭素繊維は、図6に示すようにシートの厚み方向に揃っ
て配向していた。また、熱伝導性高分子シートの厚み方
向の熱伝導率は9.1W/m・Kであった。
The graphitized carbon fibers in the obtained thermally conductive polymer sheet were oriented uniformly in the thickness direction of the sheet as shown in FIG. The thermal conductivity in the thickness direction of the thermally conductive polymer sheet was 9.1 W / m · K.

【0090】(実施例2〜実施例5)表3に記したよう
に、黒鉛化炭素繊維として試作例6〜9の黒鉛化炭素繊
維を用いた以外は、実施例1と同様に、高分子組成物を
それぞれ調製し、黒鉛化炭素繊維を充分に磁場配向させ
た後に加熱硬化させ、厚み1mmの柔軟なゴムシート状
の熱伝導性高分子シートを得た。
(Examples 2 to 5) As shown in Table 3, except that the graphitized carbon fibers of Experimental Examples 6 to 9 were used as the graphitized carbon fibers, Each of the compositions was prepared, and the graphitized carbon fibers were sufficiently magnetically oriented and then heat-cured to obtain a flexible rubber sheet-like thermally conductive polymer sheet having a thickness of 1 mm.

【0091】得られた熱伝導性高分子シート中の黒鉛化
炭素繊維は図6に示すようにシートの厚み方向に揃って
配向していた。また、得られた各々の熱伝導性高分子シ
ートの厚み方向の熱伝導率を表3に示す。
The graphitized carbon fibers in the obtained thermally conductive polymer sheet were aligned in the thickness direction of the sheet as shown in FIG. Table 3 shows the thermal conductivity in the thickness direction of each of the obtained thermally conductive polymer sheets.

【0092】[0092]

【表3】 (比較例1〜比較例6)表4に記したように、黒鉛化炭
素繊維として試作例1〜4、10、11の黒鉛化炭素繊
維を用いた以外は、実施例1と同様に、高分子組成物を
それぞれ調製し、黒鉛化炭素繊維を充分に磁場配向させ
た後に加熱硬化させ、厚み1mmの柔軟なゴムシート状
の熱伝導性高分子シートを得た。
[Table 3] (Comparative Examples 1 to 6) As shown in Table 4, except that the graphitized carbon fibers of Prototype Examples 1 to 4, 10, and 11 were used as the graphitized carbon fibers, Each molecular composition was prepared, and the graphitized carbon fiber was sufficiently magnetically oriented and then cured by heating to obtain a flexible rubber sheet-like thermally conductive polymer sheet having a thickness of 1 mm.

【0093】比較例1〜比較例4の熱伝導性高分子シー
ト中の黒鉛化炭素繊維は、図7に示すように高分子材料
中で配向していなかったが、比較例5、6の熱伝導性高
分子シート中の黒鉛化炭素繊維は、図6に示すようにシ
ートの厚み方向に揃って配向していた。また、得られた
各々の熱伝導性高分子シート中の黒鉛化炭素繊維の配向
有無、及び、シートの厚み方向の熱伝導率を表4に示
す。
The graphitized carbon fibers in the thermally conductive polymer sheets of Comparative Examples 1 to 4 were not oriented in the polymer material as shown in FIG. The graphitized carbon fibers in the conductive polymer sheet were aligned in the thickness direction of the sheet as shown in FIG. Table 4 shows the presence or absence of orientation of the graphitized carbon fibers in each of the obtained thermally conductive polymer sheets, and the thermal conductivity in the thickness direction of the sheets.

【0094】[0094]

【表4】 (実施例6〜実施例12)表5に記したように、高分子
材料として、各々所定量の液状エポキシ樹脂(米国エポ
キシテクノロジー社製 エポテック310)、不飽和ポ
リエステル(株式会社日本触媒製 エポラック)又は熱
可塑性エラストマー(旭化成工業株式会社製 タフテッ
クH1053)と、試作例8の黒鉛化炭素繊維と、酸化
アルミニウム粉末(昭和電工株式会社製 AS−20)
と、窒化ホウ素粉末(電気化学工業株式会社製 SG
P)とを混合し真空脱泡した高分子組成物を調製した。
なお、熱可塑性エラストマー(旭化成工業株式会社製
タフテックH1053)の場合には、熱可塑性エラスト
マー100重量部に対してトルエン400重量部を添加
した溶液を用い、表5中の熱可塑性エラストマーの体積
%は熱可塑性エラストマー固形分の体積%を示す。
[Table 4] (Examples 6 to 12) As described in Table 5, as polymer materials, a predetermined amount of a liquid epoxy resin (Epotech 310 manufactured by Epoxy Technology, USA) and an unsaturated polyester (Epolac manufactured by Nippon Shokubai Co., Ltd.) were used. Alternatively, a thermoplastic elastomer (Toughtec H1053 manufactured by Asahi Kasei Kogyo Co., Ltd.), the graphitized carbon fiber of Prototype Example 8, and aluminum oxide powder (AS-20 manufactured by Showa Denko KK)
And boron nitride powder (SG manufactured by Denki Kagaku Kogyo Co., Ltd.)
P) was mixed with the mixture to prepare a polymer composition which was degassed under vacuum.
In addition, thermoplastic elastomer (made by Asahi Kasei Corporation)
In the case of Tuftec H1053), a solution obtained by adding 400 parts by weight of toluene to 100 parts by weight of the thermoplastic elastomer is used, and the volume% of the thermoplastic elastomer in Table 5 indicates the volume% of the solid content of the thermoplastic elastomer.

【0095】次いで、図5(a)、図5(b)、図5
(c)に示すように、得られた各々の高分子組成物を、
アルミニウム製の縦20mm、横20mmの板状の金型
の成形凹部内に充填し、厚み方向にそれぞれ表3に示す
磁束密度のN極とS極が対向する磁場雰囲気下で黒鉛化
炭素繊維を充分に磁場配向させた後に加熱乾燥あるいは
加熱硬化させ、厚み1mmの熱伝導性高分子シートを得
た。
Next, FIG. 5A, FIG. 5B, FIG.
As shown in (c), each of the obtained polymer compositions was
Filled into the molding recesses of a 20 mm long, 20 mm wide plate-shaped mold made of aluminum, and graphitized carbon fibers were placed in a magnetic field atmosphere in which the N and S poles of the magnetic flux densities shown in Table 3 face each other in the thickness direction. After the magnetic field was sufficiently oriented, it was dried by heating or cured to obtain a heat conductive polymer sheet having a thickness of 1 mm.

【0096】得られた熱伝導性高分子シート中の黒鉛化
炭素繊維は図6に示すようにシートの厚み方向に揃って
配向していた。また、得られた熱伝導性高分子シートの
厚み方向の熱伝導率を表5に示す。
The graphitized carbon fibers in the obtained thermally conductive polymer sheet were oriented uniformly in the thickness direction of the sheet as shown in FIG. Table 5 shows the thermal conductivity in the thickness direction of the obtained thermally conductive polymer sheet.

【0097】[0097]

【表5】 (比較例7〜比較例10)実施例6〜実施例12と同様
の方法により、表6に記したように、高分子材料とし
て、各々所定量の液状エポキシ樹脂(米国エポキシテク
ノロジー社製 エポテック310)、不飽和ポリエステ
ル(株式会社日本触媒製 エポラック)又は熱可塑性エ
ラストマー(旭化成工業株式会社製 タフテックH10
53)と、試作例8の黒鉛化炭素繊維と、酸化アルミニ
ウム粉末(昭和電工株式会社製 AS−20)と、窒化
ホウ素粉末(電気化学工業株式会社製 SGP)とを混
合し真空脱泡した高分子組成物を調製した。なお、熱可
塑性エラストマー(旭化成工業株式会社製 タフテック
H1053)の場合には、熱可塑性エラストマー100
重量部に対してトルエン400重量部を添加した溶液を
用い、表3中の熱可塑性エラストマーの体積%は熱可塑
性エラストマー固形分の体積%を示す。
[Table 5] (Comparative Examples 7 to 10) In the same manner as in Examples 6 to 12, as shown in Table 6, a predetermined amount of a liquid epoxy resin (Epotech 310 manufactured by Epoxy Technology, USA) was used as the polymer material. ), Unsaturated polyester (Epolac, manufactured by Nippon Shokubai Co., Ltd.) or thermoplastic elastomer (Toughtec H10, manufactured by Asahi Kasei Corporation)
53), the graphitized carbon fiber of Prototype Example 8, aluminum oxide powder (AS-20, manufactured by Showa Denko KK), and boron nitride powder (SGP, manufactured by Denki Kagaku Kogyo Co., Ltd.) were mixed and vacuum degassed. A molecular composition was prepared. In the case of a thermoplastic elastomer (ToughTech H1053 manufactured by Asahi Kasei Corporation), the thermoplastic elastomer 100
A solution obtained by adding 400 parts by weight of toluene to parts by weight is used, and the volume% of the thermoplastic elastomer in Table 3 indicates the volume% of the solid content of the thermoplastic elastomer.

【0098】次いで、図5(a)、図5(b)、図5
(c)に示すように、得られた各々の高分子組成物を、
アルミニウム製の縦20mm、横20mmの板状の金型
の成形凹部内に充填し、磁場を印加せずに加熱乾燥ある
いは加熱硬化させて厚み1mmの熱伝導性高分子シート
を得た。
Next, FIG. 5A, FIG. 5B, FIG.
As shown in (c), each of the obtained polymer compositions was
A 1 mm thick thermally conductive polymer sheet was obtained by filling in a molding recess of a 20 mm-long and 20 mm-wide aluminum plate-shaped mold and heating and drying or curing without applying a magnetic field.

【0099】得られた比較例7〜比較例10の熱伝導性
高分子シート中の黒鉛化炭素繊維は図7に示すようにい
ずれも配向していなかった。また、得られた各々の熱伝
導性高分子シートの黒鉛化炭素繊維の配向有無、厚み方
向の熱伝導率を表6に示す。
The graphitized carbon fibers in the obtained thermally conductive polymer sheets of Comparative Examples 7 to 10 were not oriented as shown in FIG. Table 6 shows the orientation of the graphitized carbon fibers in each of the obtained thermally conductive polymer sheets, and the thermal conductivity in the thickness direction.

【0100】[0100]

【表6】 実施例1〜5、比較例5、6の熱伝導性高分子シート
は、試作例1〜4の黒鉛化炭素繊維の表面に強磁性体の
被覆層が形成された黒鉛化炭素繊維(試作例5〜11)
を用い、黒鉛化炭素繊維をシートの厚み方向に磁場配向
させた熱伝導性高分子シートである。一方、強磁性体の
被覆層が形成されていない黒鉛化炭素繊維(試作例1〜
4)を用いた比較例1〜4の熱伝導性高分子シートは、
磁場を印加したが黒鉛化炭素繊維が磁場配向されなかっ
た。従って、実施例1〜5、比較例5、6の熱伝導性高
分子シートは、強磁性体の被覆層が形成されたことによ
り、低磁場で黒鉛化炭素繊維を磁場配向させることがで
き、これにより、比較例1〜4の熱伝導性高分子シート
と比較してシートの厚み方向への熱伝導率が飛躍的に向
上されたことが示された。
[Table 6] The thermally conductive polymer sheets of Examples 1 to 5 and Comparative Examples 5 and 6 are graphitized carbon fibers in which a ferromagnetic coating layer is formed on the surfaces of the graphitized carbon fibers of prototypes 1 to 4 (prototype examples). 5-11)
Is a thermally conductive polymer sheet in which graphitized carbon fibers are magnetically oriented in the thickness direction of the sheet. On the other hand, graphitized carbon fibers without a ferromagnetic coating layer (Prototype Examples 1 to 3)
The heat conductive polymer sheets of Comparative Examples 1 to 4 using 4)
Although a magnetic field was applied, the graphitized carbon fibers were not magnetically oriented. Therefore, the thermally conductive polymer sheets of Examples 1 to 5 and Comparative Examples 5 and 6 can magnetically orient the graphitized carbon fibers in a low magnetic field by forming the ferromagnetic coating layer. Thereby, it was shown that the thermal conductivity in the thickness direction of the sheet was dramatically improved as compared with the thermally conductive polymer sheets of Comparative Examples 1 to 4.

【0101】比較例5、6の熱伝導性高分子シートは、
特開平2000−195998号公報に記載されている
方法を応用した熱伝導性高分子シートである。比較例
5、6の熱伝導性高分子シートは、試作例3、4の黒鉛
化炭素繊維に強磁性体の被覆層が形成された黒鉛化炭素
繊維(試作例10、11)を用い、シートの厚み方向に
黒鉛化炭素繊維を磁場配向させることにより、比較例
3、4と比較して熱伝導率を向上させている。しかしな
がら、従来の黒鉛化されたピッチ系炭素長繊維を粉砕し
てから強磁性体の被覆層を形成させた黒鉛化炭素繊維を
使用し、また、その黒鉛化炭素繊維は、X線回折法によ
る構造パラメータとして黒鉛層間の面間隔(d002)
が0.3370nm未満、かつ、(101)回折ピーク
と(100)回折ピークのピーク強度比(P101/P
100)が1.15以上の条件を満足していない。その
ため、得られる熱伝導性高分子シートの熱伝導率は必ず
しも充分ではないことが示された。
The heat conductive polymer sheets of Comparative Examples 5 and 6 were as follows:
This is a heat conductive polymer sheet to which the method described in JP-A-2000-195998 is applied. The thermally conductive polymer sheets of Comparative Examples 5 and 6 were formed using the graphitized carbon fibers (prototype examples 10 and 11) in which the ferromagnetic coating layer was formed on the graphitized carbon fibers of prototype examples 3 and 4. By aligning the graphitized carbon fibers in the magnetic field in the thickness direction, the thermal conductivity is improved as compared with Comparative Examples 3 and 4. However, conventional graphitized pitch-based carbon long fibers are ground and then graphitized carbon fibers having a ferromagnetic coating layer formed thereon are used, and the graphitized carbon fibers are obtained by X-ray diffraction. Plane spacing between graphite layers as structural parameter (d002)
Is less than 0.3370 nm, and the peak intensity ratio between the (101) diffraction peak and the (100) diffraction peak (P101 / P
100) does not satisfy the condition of 1.15 or more. Therefore, it was shown that the heat conductivity of the obtained heat conductive polymer sheet was not always sufficient.

【0102】実施例6〜12の熱伝導性高分子シート
は、メソフェーズピッチを原料とし、紡糸、不融化及び
炭化後に粉砕し、その後黒鉛化され、表面に強磁性体の
被覆層が形成された黒鉛化炭素繊維(試作例8)を用
い、シートの厚み方向に黒鉛化炭素繊維が磁場配向され
ている。一方、比較例7〜10の熱伝導性高分子シート
は、実施例6〜12と同様に試作例8の黒鉛化炭素繊維
を用いているが、磁場を印加せず、そのため黒鉛化炭素
繊維がシートの厚み方向に配向されていない。従って、
実施例6〜12の熱伝導性高分子シートは、黒鉛化炭素
繊維をシートの厚み方向に配向させることにより、比較
例7〜10の熱伝導性高分子シートと比較して、熱伝導
性が向上されたことが示された。
The heat conductive polymer sheets of Examples 6 to 12 were pulverized after spinning, infusibilizing and carbonizing using mesophase pitch as a raw material, and then graphitized to form a ferromagnetic coating layer on the surface. Graphitized carbon fibers (prototype example 8) were used and the graphitized carbon fibers were magnetically oriented in the thickness direction of the sheet. On the other hand, the thermally conductive polymer sheets of Comparative Examples 7 to 10 use the graphitized carbon fibers of Prototype Example 8 in the same manner as Examples 6 to 12, but do not apply a magnetic field. It is not oriented in the thickness direction of the sheet. Therefore,
The heat conductive polymer sheets of Examples 6 to 12 had heat conductivity higher than those of Comparative Examples 7 to 10 by orienting the graphitized carbon fibers in the thickness direction of the sheets. It was shown to be improved.

【0103】なお、前記実施形態を次のように変更して
実施することもできる。 ・ 図1に示す支持部材14aや放熱器14、図3に示
すヒートシンク15や図4に示す筐体17などを、熱伝
導性高分子シート13を応用して構成すること。このよ
うに構成することにより、熱の放散効果を高めることが
できる。
The above-described embodiment can be modified as follows. The support member 14a and the radiator 14 shown in FIG. 1, the heat sink 15 shown in FIG. 3, and the housing 17 shown in FIG. 4 are configured by applying the heat conductive polymer sheet 13. With this configuration, the heat dissipation effect can be enhanced.

【0104】・ 前記図2及び図3に示す熱伝導性高分
子シート13を、熱伝導性接着剤又は熱伝導性グリスな
どに置き換えること。このように構成しても、熱を効果
的に放散することができる。
The heat conductive polymer sheet 13 shown in FIGS. 2 and 3 is replaced with a heat conductive adhesive or heat conductive grease. Even with such a configuration, heat can be effectively dissipated.

【0105】さらに、前記実施形態より把握される技術
的思想について記載する。 (1) 前記黒鉛化炭素繊維は、不融化処理後に不活性
ガス中にて250〜1500℃の温度で軽度に炭化した
後に粉砕されたものであることを特徴とする請求項1か
ら請求項3のいずれかに記載の熱伝導性高分子シート。
このように構成することにより、粉砕後の炭素繊維の縦
割れを防ぐことができ、粉砕時に新たに表面に露出した
黒鉛層面において黒鉛化処理時に縮重合反応、環化反応
が進みやすくなり、熱伝導性をより一層向上させること
ができる。
Further, a technical idea grasped from the embodiment will be described. (1) The graphitized carbon fibers are pulverized after being lightly carbonized at a temperature of 250 to 1500 ° C. in an inert gas after infusibilization treatment, and then pulverized. A heat conductive polymer sheet according to any one of the above.
With this configuration, it is possible to prevent longitudinal cracking of the carbon fiber after pulverization, and the condensation polymerization reaction and the cyclization reaction easily proceed during the graphitization treatment on the graphite layer newly exposed on the surface during the pulverization. The conductivity can be further improved.

【0106】(2) 前記被覆層の膜厚は、0.01〜
5μmであることを特徴とする請求項1から請求項3の
いずれかに記載の熱伝導性高分子シート。このように構
成することにより、黒鉛化炭素繊維を低磁場で磁場配向
させることができるとともに高分子材料へ高充填化させ
ることが可能となり、得られる熱伝導性高分子シートの
熱伝導率を向上させることができる。
(2) The coating layer has a thickness of 0.01 to
The thermally conductive polymer sheet according to any one of claims 1 to 3, wherein the thickness is 5 µm. With this configuration, the graphitized carbon fibers can be magnetically oriented in a low magnetic field and can be highly filled into a polymer material, thereby improving the thermal conductivity of the resulting thermally conductive polymer sheet. Can be done.

【0107】(3) 前記被覆層は、電気絶縁性を有す
るものであることを特徴とする請求項1から請求項3の
いずれかに記載の熱伝導性高分子シート。このように構
成することにより、熱伝導性に加えて電気絶縁性をも発
揮することができる。
(3) The thermally conductive polymer sheet according to any one of claims 1 to 3, wherein the coating layer has electrical insulation. With such a configuration, electrical insulation can be exhibited in addition to thermal conductivity.

【0108】[0108]

【発明の効果】以上詳述したように、本発明によれば、
電気製品や電子部品などから発生する多量の熱を効果的
に放散できるシートの厚み方向への優れた熱伝導性を有
する熱伝導性高分子シートを提供することができる。
As described in detail above, according to the present invention,
It is possible to provide a thermally conductive polymer sheet having excellent thermal conductivity in the thickness direction of the sheet, which can effectively dissipate a large amount of heat generated from electrical products and electronic components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の熱伝導性高分子シートの適用例を示
す部分断面図。
FIG. 1 is a partial cross-sectional view showing an application example of a heat conductive polymer sheet of the present invention.

【図2】 本発明の熱伝導性高分子シートの適用例を示
す部分断面図。
FIG. 2 is a partial sectional view showing an application example of the heat conductive polymer sheet of the present invention.

【図3】 本発明の熱伝導性高分子シートの適用例を示
す部分断面図。
FIG. 3 is a partial cross-sectional view showing an application example of the heat conductive polymer sheet of the present invention.

【図4】 本発明の熱伝導性高分子シートの適用例を示
す部分断面図。
FIG. 4 is a partial sectional view showing an application example of the heat conductive polymer sheet of the present invention.

【図5】 (a)〜(c)本発明の熱伝導性高分子シー
トの製造方法の概略を示す要部断面図。
5 (a) to 5 (c) are cross-sectional views showing the outline of a method for producing the thermally conductive polymer sheet of the present invention.

【図6】 本発明の熱伝導性高分子シートにおける黒鉛
化炭素繊維の配向状態を示す概略図(黒鉛化炭素繊維が
厚み方向に配向)。
FIG. 6 is a schematic view showing an orientation state of graphitized carbon fibers in the thermally conductive polymer sheet of the present invention (graphitized carbon fibers are oriented in a thickness direction).

【図7】 従来の熱伝導性高分子シートにおける黒鉛化
炭素繊維の分散状態を示す概略図(黒鉛化炭素繊維は無
配向)。
FIG. 7 is a schematic view showing a dispersion state of graphitized carbon fibers in a conventional heat conductive polymer sheet (graphitized carbon fibers are not oriented).

【図8】 本発明の熱伝導性高分子シートを応用したプ
リント配線基板の例を示す概略図(黒鉛化炭素繊維が厚
み方向に配向)。
FIG. 8 is a schematic view showing an example of a printed wiring board to which the heat conductive polymer sheet of the present invention is applied (graphitized carbon fibers are oriented in the thickness direction).

【図9】 従来の熱伝導性高分子シートを応用したプリ
ント配線基板の例を示す概略図(黒鉛化炭素繊維は無配
向)。
FIG. 9 is a schematic view showing an example of a printed wiring board to which a conventional heat conductive polymer sheet is applied (graphitized carbon fibers are not oriented).

【符号の説明】[Explanation of symbols]

13…熱伝導性高分子シート、20…熱伝導性充填剤と
しての黒鉛化炭素繊維。
13: heat conductive polymer sheet, 20: graphitized carbon fiber as heat conductive filler.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 5/08 D01F 9/14 511 D01F 9/14 511 C01B 31/04 101Z H01L 23/373 C09K 5/00 D // C01B 31/04 101 H01L 23/36 M Fターム(参考) 4F071 AA11 AA12 AA12X AA13 AA15 AA15X AA20 AA20X AA21 AA22 AA22X AA24 AA25 AA26 AA27 AA28 AA28X AA29 AA30 AA32 AA33 AA34 AA34X AA41 AA42 AA45 AA46 AA47 AA49 AA50 AA51 AA53 AA54 AA60 AA62 AA64 AA67 AA69 AA75 AA77 AA78 AA79 AB03 AD01 AF44 BB01 BB03 BB04 BB05 BB06 BC01 4G046 EA02 EC01 EC02 EC05 4J002 AA001 AA011 AA021 AC011 AC031 AC061 AC071 AC081 AC091 AC111 BB031 BB061 BB121 BB151 BB171 BB181 BB231 BB241 BB271 BC031 BC061 BD041 BD101 BD121 BD141 BD151 BE021 BF021 BF031 BF051 BG011 BG051 BG101 BH021 BN151 BP011 CB001 CC031 CD001 CF061 CF071 CF081 CF101 CF211 CG001 CH051 CH071 CH091 CJ001 CK021 CL001 CM041 CN011 CN031 CP031 DA026 FA046 FB076 FD016 4L037 AT02 CS03 CS04 FA02 FA05 FA17 PC05 PG03 PG04 PP38 PS02 PS12 UA06 UA20 5F036 AA01 BB21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09K 5/08 D01F 9/14 511 D01F 9/14 511 C01B 31/04 101Z H01L 23/373 C09K 5/00 D // C01B 31/04 101 H01L 23/36 MF term (reference) 4F071 AA11 AA12 AA12X AA13 AA15 AA15X AA20 AA20X AA21 AA22 AA22X AA24 AA25 AA26 AA27 AA28 AA28X AA29 AAAA AAAAAA AA53 AA54 AA60 AA62 AA64 AA67 AA69 AA75 AA77 AA78 AA79 AB03 AD01 AF44 BB01 BB03 BB04 BB05 BB06 BC01 4G046 EA02 EC01 EC02 EC05 4J002 AA001 AA011 AA021 AC011 AC031 AC061 BB BB BB 313 BD141 BD151 BE021 BF021 BF031 BF051 BG011 BG051 BG101 BH021 BN151 BP011 CB0 01 CC031 CD001 CF061 CF071 CF081 CF101 CF211 CG001 CH051 CH071 CH091 CJ001 CK021 CL001 CM041 CN011 CN031 CP031 DA026 FA046 FB076 FD016 4L037 AT02 CS03 CS04 FA02 FA05 FA17 PC05 PG03 PG04 PP38 PS02 PS12 UA06 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高分子材料と、熱伝導性充填剤として黒
鉛化炭素繊維とを含有してなる熱伝導性高分子シートで
あって、 黒鉛化炭素繊維は、メソフェーズピッチを原料とし、紡
糸、不融化及び炭化後に粉砕され、その後黒鉛化され、
表面に強磁性体の被覆層が形成されたものであり、当該
黒鉛化炭素繊維が、シートの厚み方向に配向されたもの
であることを特徴とする熱伝導性高分子シート。
1. A thermally conductive polymer sheet comprising a polymer material and graphitized carbon fibers as a thermally conductive filler, wherein the graphitized carbon fibers are made of mesophase pitch as a raw material. Crushed after infusibilization and carbonization, then graphitized,
A thermally conductive polymer sheet having a ferromagnetic coating layer formed on the surface thereof, wherein the graphitized carbon fibers are oriented in the thickness direction of the sheet.
【請求項2】 前記黒鉛化炭素繊維は、X線回折法によ
る前記黒鉛化炭素繊維の黒鉛層間の面間隔(d002)
が0.3370nm未満、かつ、(101)回折ピーク
と(100)回折ピークのピーク強度比(P101/P
100)が1.15以上であることを特徴とする請求項
1に記載の熱伝導性高分子シート。
2. The graphitized carbon fiber has an interplanar spacing (d002) between graphite layers of the graphitized carbon fiber determined by an X-ray diffraction method.
Is less than 0.3370 nm, and the peak intensity ratio between the (101) diffraction peak and the (100) diffraction peak (P101 / P
2. The thermally conductive polymer sheet according to claim 1, wherein (100) is 1.15 or more.
【請求項3】 前記強磁性体は、ニッケル、コバルト及
び鉄からなる群より選択される少なくとも1種の金属、
合金又は化合物であることを特徴とする請求項1又は請
求項2に記載の熱伝導性高分子シート。
3. The ferromagnetic material comprises at least one metal selected from the group consisting of nickel, cobalt and iron;
The heat conductive polymer sheet according to claim 1, wherein the heat conductive polymer sheet is an alloy or a compound.
JP2000319844A 2000-10-19 2000-10-19 Heat-conductive polymer sheet Pending JP2002121404A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000319844A JP2002121404A (en) 2000-10-19 2000-10-19 Heat-conductive polymer sheet
US09/977,215 US6652958B2 (en) 2000-10-19 2001-10-16 Thermally conductive polymer sheet
EP01124845A EP1199328B1 (en) 2000-10-19 2001-10-18 Thermally conductive polymer sheet
DE60110180T DE60110180T2 (en) 2000-10-19 2001-10-18 Thermally conductive polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000319844A JP2002121404A (en) 2000-10-19 2000-10-19 Heat-conductive polymer sheet

Publications (1)

Publication Number Publication Date
JP2002121404A true JP2002121404A (en) 2002-04-23

Family

ID=18798234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000319844A Pending JP2002121404A (en) 2000-10-19 2000-10-19 Heat-conductive polymer sheet

Country Status (4)

Country Link
US (1) US6652958B2 (en)
EP (1) EP1199328B1 (en)
JP (1) JP2002121404A (en)
DE (1) DE60110180T2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135041A (en) * 2004-11-05 2006-05-25 Shin Etsu Polymer Co Ltd Component fixing jig
JP2006265441A (en) * 2005-03-25 2006-10-05 Mitsubishi Engineering Plastics Corp Heat-conductive resin molded article and method for producing the same
JP2006525220A (en) * 2003-04-24 2006-11-09 カーボン ナノテクノロジーズ インコーポレーテッド Conductive carbon nanotube / polymer composite
JP2006527912A (en) * 2003-06-17 2006-12-07 キュラミック エレクトロニックス ゲーエムベーハー A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices
JP2007099798A (en) * 2005-09-30 2007-04-19 Mitsubishi Engineering Plastics Corp Heat-conductive insulating polycarbonate-based resin composition and molding
JP2007099799A (en) * 2005-09-30 2007-04-19 Mitsubishi Engineering Plastics Corp Highly heat-conductive insulating polycarbonate-based resin composition and molding
JP2007168263A (en) * 2005-12-22 2007-07-05 Seiko Precision Inc Resin-made case for electronic equipment and manufacturing method of resin molding
JP2008510878A (en) * 2004-08-23 2008-04-10 ゼネラル・エレクトリック・カンパニイ Thermally conductive composition and production method thereof
WO2008053843A1 (en) * 2006-11-01 2008-05-08 Hitachi Chemical Co., Ltd. Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
JP2008266659A (en) * 2008-08-11 2008-11-06 Efuko Kk Non-crosslinking resin composition and thermally conductive molded product using it
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
WO2009142290A1 (en) * 2008-05-23 2009-11-26 日立化成工業株式会社 Heat radiation sheet and heat radiation device
JP2010077407A (en) * 2008-09-01 2010-04-08 Nec Corp Thermally conductive resin composition, method for producing the same and molded product of thermally conductive resin
JP2011032430A (en) * 2009-08-05 2011-02-17 Nitto Denko Corp Infrared absorptive thermally conductive polyimide film and self-adhesive sheet
JP2012171999A (en) * 2011-02-18 2012-09-10 Shin-Etsu Chemical Co Ltd Addition reaction curable silicone rubber composition and semiconductor device sealed by cured material of the same
JP2015143405A (en) * 2013-12-27 2015-08-06 東レ株式会社 Carbon fiber nonwoven fabric and method for producing carbon fiber nonwoven fabric
JP2016108688A (en) * 2014-12-04 2016-06-20 大阪ガスケミカル株式会社 Carbon fiber for heat insulation material, and heat insulation material using the same
JP2016186084A (en) * 2016-06-03 2016-10-27 リケンテクノス株式会社 Resin composition
JP2017500403A (en) * 2013-12-10 2017-01-05 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Tire comprising tread based on rubber composition containing pitch-based carbon fiber
JP2020536152A (en) * 2017-10-27 2020-12-10 エルジー・ケム・リミテッド Composite material
JP2021038353A (en) * 2019-09-05 2021-03-11 富士高分子工業株式会社 Heat-conductive resin molded body
CN115716993A (en) * 2022-09-30 2023-02-28 湖南大学 Oriented high-thermal-conductivity wave-absorbing plate and preparation method thereof

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7934098A (en) * 1997-06-25 1999-01-04 Mitsubishi Pencil Co. Ltd. Carbonaceous heating element and process for producing the same
IL156245A0 (en) * 2000-12-22 2004-01-04 Dca Design Int Ltd Drive mechanism for an injection device
JP4697829B2 (en) * 2001-03-15 2011-06-08 ポリマテック株式会社 Carbon nanotube composite molded body and method for producing the same
US7038009B2 (en) * 2001-08-31 2006-05-02 Cool Shield, Inc. Thermally conductive elastomeric pad and method of manufacturing same
US20040238115A1 (en) * 2001-09-12 2004-12-02 Hisao Matsuno Circuit device mounting method and press
US6965513B2 (en) * 2001-12-20 2005-11-15 Intel Corporation Carbon nanotube thermal interface structures
US6919115B2 (en) * 2002-01-08 2005-07-19 Cool Options, Inc. Thermally conductive drive belt
JP2003347787A (en) * 2002-05-23 2003-12-05 Shin Etsu Chem Co Ltd Electromagnetic wave absorbing composition
US6856016B2 (en) * 2002-07-02 2005-02-15 Intel Corp Method and apparatus using nanotubes for cooling and grounding die
JP3834528B2 (en) 2002-07-11 2006-10-18 ポリマテック株式会社 Method for producing thermally conductive polymer molded body
JP2004051852A (en) * 2002-07-22 2004-02-19 Polymatech Co Ltd Thermally conductive polymer molding and its production method
US20060099135A1 (en) * 2002-09-10 2006-05-11 Yodh Arjun G Carbon nanotubes: high solids dispersions and nematic gels thereof
JP3948377B2 (en) * 2002-09-12 2007-07-25 株式会社豊田中央研究所 Pressure contact type semiconductor device
US6783692B2 (en) * 2002-10-17 2004-08-31 Dow Corning Corporation Heat softening thermally conductive compositions and methods for their preparation
DE10248644B4 (en) * 2002-10-18 2008-07-03 Semikron Elektronik Gmbh & Co. Kg The power semiconductor module
TWI239606B (en) * 2002-11-07 2005-09-11 Kobe Steel Ltd Heat spreader and semiconductor device and package using the same
AT412265B (en) * 2002-11-12 2004-12-27 Electrovac HEAT EXTRACTION COMPONENT
JP2004175926A (en) * 2002-11-27 2004-06-24 Polymatech Co Ltd Thermally conductive epoxy resin molded form and method for producing the same
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US7273095B2 (en) 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US7285591B2 (en) * 2003-03-20 2007-10-23 The Trustees Of The University Of Pennsylvania Polymer-nanotube composites, fibers, and processes
US7569626B2 (en) 2003-06-05 2009-08-04 Dfine, Inc. Polymer composites for biomedical applications and methods of making
US7112472B2 (en) * 2003-06-25 2006-09-26 Intel Corporation Methods of fabricating a composite carbon nanotube thermal interface device
US7168484B2 (en) * 2003-06-30 2007-01-30 Intel Corporation Thermal interface apparatus, systems, and methods
US7477527B2 (en) * 2005-03-21 2009-01-13 Nanoconduction, Inc. Apparatus for attaching a cooling structure to an integrated circuit
US7732918B2 (en) * 2003-08-25 2010-06-08 Nanoconduction, Inc. Vapor chamber heat sink having a carbon nanotube fluid interface
US8048688B2 (en) * 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
US7538422B2 (en) 2003-08-25 2009-05-26 Nanoconduction Inc. Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US7316869B2 (en) * 2003-08-26 2008-01-08 Intel Corporation Mounting a pellicle to a frame
US7264853B2 (en) * 2003-08-26 2007-09-04 Intel Corporation Attaching a pellicle frame to a reticle
US20050089638A1 (en) * 2003-09-16 2005-04-28 Koila, Inc. Nano-material thermal and electrical contact system
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
US20050214197A1 (en) * 2003-09-17 2005-09-29 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
US7235159B2 (en) * 2003-09-17 2007-06-26 Molecular Nanosystems, Inc. Methods for producing and using catalytic substrates for carbon nanotube growth
US20050058805A1 (en) * 2003-09-17 2005-03-17 Toru Kimura Polymer composite molded body and method for producing the same
US20050061496A1 (en) * 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
DE10345157B4 (en) * 2003-09-29 2009-01-08 Qimonda Ag Thermally conductive packaging of electronic circuit units
JP2005129734A (en) * 2003-10-23 2005-05-19 Sony Corp Electronic device
DE102004011726A1 (en) * 2004-03-05 2005-09-22 Ing. Erich Pfeiffer Gmbh metering
US7314667B2 (en) * 2004-03-12 2008-01-01 Intel Corporation Process to optimize properties of polymer pellicles and resist for lithography applications
US20050202252A1 (en) * 2004-03-12 2005-09-15 Alexander Tregub Use of alternative polymer materials for "soft" polymer pellicles
US7169463B2 (en) * 2004-06-21 2007-01-30 Owens Corning Fiberglas Technology, Inc. Sizing composition for sheet molding compound roving
US7498376B2 (en) * 2004-06-23 2009-03-03 Delphi Technologies, Inc. Thermal transient suppression material and method of production
US7820452B2 (en) * 2004-06-24 2010-10-26 Martin Parkinson Transparent elastomer safety shield
US7161809B2 (en) * 2004-09-15 2007-01-09 Advanced Energy Technology Inc. Integral heat spreader
US20060083927A1 (en) * 2004-10-15 2006-04-20 Zyvex Corporation Thermal interface incorporating nanotubes
TWI393226B (en) * 2004-11-04 2013-04-11 Taiwan Semiconductor Mfg Nanotube-based filler
TW200633171A (en) 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
US8092910B2 (en) 2005-02-16 2012-01-10 Dow Corning Toray Co., Ltd. Reinforced silicone resin film and method of preparing same
US8088449B2 (en) 2005-02-16 2012-01-03 Dow Corning Toray Co., Ltd. Reinforced silicone resin film and method of preparing same
US20060231946A1 (en) * 2005-04-14 2006-10-19 Molecular Nanosystems, Inc. Nanotube surface coatings for improved wettability
US7596751B2 (en) * 2005-04-22 2009-09-29 Hewlett-Packard Development Company, L.P. Contact sheet based image management
US20060251897A1 (en) * 2005-05-06 2006-11-09 Molecular Nanosystems, Inc. Growth of carbon nanotubes to join surfaces
JP2007042863A (en) * 2005-08-03 2007-02-15 Matsushita Electric Ind Co Ltd Electronic apparatus
US8334022B2 (en) 2005-08-04 2012-12-18 Dow Corning Corporation Reinforced silicone resin film and method of preparing same
US7197804B2 (en) * 2005-08-29 2007-04-03 The Aerospace Corporation Method of making copper and carbon nanotube thermal conductor
US20070069373A1 (en) * 2005-09-29 2007-03-29 Roth Arti P Device with surface cooling and method of making
WO2008045104A2 (en) 2005-12-21 2008-04-17 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
US20070155949A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Thermally stable composite material
US20070154717A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Thermally stable composite material
US20070152195A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Electrostatic dissipative composite material
US20070154716A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Composite material
WO2008051242A2 (en) * 2006-01-19 2008-05-02 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone compositon
EP1979427B1 (en) * 2006-02-02 2011-07-13 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
WO2007097835A2 (en) * 2006-02-20 2007-08-30 Dow Corning Corporation Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition
US7476339B2 (en) * 2006-08-18 2009-01-13 Saint-Gobain Ceramics & Plastics, Inc. Highly filled thermoplastic composites
WO2008097275A2 (en) * 2006-08-30 2008-08-14 Molecular Nanosystems, Inc. Methods for forming freestanding nanotube objects and objects so formed
DE102007001130B4 (en) * 2007-01-04 2014-07-03 Qimonda Ag Method for producing a through-connection in a layer and arrangement with a layer with through-connection
WO2008103221A1 (en) * 2007-02-22 2008-08-28 Dow Corning Corporation Process for preparing conductive films and articles prepared using the process
US8273448B2 (en) 2007-02-22 2012-09-25 Dow Corning Corporation Reinforced silicone resin films
EP2117836B1 (en) 2007-02-22 2012-11-07 Dow Corning Corporation Reinforced silicone resin films
US8186566B2 (en) * 2007-03-10 2012-05-29 Nexgeneering Technology Llc Method for cohesively bonding metal to a non-metallic substrate
JP5269885B2 (en) * 2007-05-01 2013-08-21 ダウ・コーニング・コーポレイション Nanomaterial-filled silicone composition and reinforced silicone resin film
DE102007037316A1 (en) * 2007-08-08 2009-02-12 Lanxess Deutschland Gmbh Thermally conductive and electrically insulating thermoplastic compounds
US20090146112A1 (en) * 2007-12-06 2009-06-11 Fujitsu Limited Composite material and method of producing the same
US8951473B2 (en) 2008-03-04 2015-02-10 Massachusetts Institute Of Technology Devices and methods for determination of species including chemical warfare agents
US20110103021A1 (en) * 2008-03-20 2011-05-05 Robert Hendrik Catharina Janssen Heatsinks of thermally conductive plastic materials
US9023175B2 (en) * 2008-08-04 2015-05-05 Lockheed Martin Corporation Carbon/carbon film adhesive
US8735313B2 (en) 2008-12-12 2014-05-27 Massachusetts Institute Of Technology High charge density structures, including carbon-based nanostructures and applications thereof
US20100175854A1 (en) * 2009-01-15 2010-07-15 Luca Joseph Gratton Method and apparatus for multi-functional capillary-tube interface unit for evaporation, humidification, heat exchange, pressure or thrust generation, beam diffraction or collimation using multi-phase fluid
US20100237157A1 (en) * 2009-03-21 2010-09-23 Zhaojun Guo Ground heating flooring with internal heating conduction structure
US8456073B2 (en) * 2009-05-29 2013-06-04 Massachusetts Institute Of Technology Field emission devices including nanotubes or other nanoscale articles
FR2950470B1 (en) * 2009-09-18 2016-07-01 Thales Sa COMPONENT COMPRISING A INTERFACE WITH LOW MAGNETIC THERMAL RESISTANCE AND METHOD OF MANUFACTURE
US8187887B2 (en) 2009-10-06 2012-05-29 Massachusetts Institute Of Technology Method and apparatus for determining radiation
US20110171629A1 (en) * 2009-11-04 2011-07-14 Massachusetts Institute Of Technology Nanostructured devices including analyte detectors, and related methods
WO2011104442A1 (en) * 2010-02-23 2011-09-01 Arcelormittal Investigación Y Desarrollo Sl Mold, method for making a mold and method for making a plastic-material or composite product using said mold
US20110233756A1 (en) * 2010-03-24 2011-09-29 Maxim Integrated Products, Inc. Wafer level packaging with heat dissipation
TWI404259B (en) * 2010-08-06 2013-08-01 Univ Nat Chiao Tung Fuel cell, sheet having penetrable electric conductivity and manufacturing thereof
US20120171093A1 (en) 2010-11-03 2012-07-05 Massachusetts Institute Of Technology Compositions comprising functionalized carbon-based nanostructures and related methods
US9349932B2 (en) * 2011-08-29 2016-05-24 Koninklijke Philips N.V. Flexible lighting assembly, a luminaire, and a method of manufacturing a flexible layer
KR101509853B1 (en) * 2012-02-07 2015-04-06 현대자동차주식회사 Radiant heat plate for battery cell module and battery cell module having the same
KR101470066B1 (en) * 2012-03-22 2014-12-08 현대자동차주식회사 Heat control plate for battery cell module and battery cell module having the same
US9999158B2 (en) 2013-01-03 2018-06-12 Henkel IP & Holding GmbH Thermally conductive EMI suppression compositions
US9725829B2 (en) * 2013-03-15 2017-08-08 Ut-Battelle, Llc Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby
US9228065B2 (en) 2013-05-09 2016-01-05 University Of Houston System Solution based polymer nanofiller-composites synthesis
DE102013215253A1 (en) * 2013-08-02 2015-02-05 Siemens Aktiengesellschaft Fiber composite for combination with metallic workpieces
JP6268363B2 (en) * 2013-12-25 2018-01-31 パナソニックIpマネジメント株式会社 Carbon material for negative electrode material of sodium ion secondary battery, manufacturing method thereof, and sodium ion secondary battery using the same
EP2897164B1 (en) * 2014-01-17 2020-01-01 Henkel IP & Holding GmbH Thermally-conductive interface pad for EMI-suppression
US9902091B2 (en) * 2015-04-21 2018-02-27 Rohr, Inc. Composite bonding tool with high thermal conductivity and low coefficient of thermal expansion
CN208791533U (en) 2015-06-12 2019-04-26 新格拉夫解决方案有限责任公司 Composite article, product and clothes
DE102015118245A1 (en) * 2015-10-26 2017-04-27 Infineon Technologies Austria Ag Thermal interface material with defined thermal, mechanical and electrical properties
US9994741B2 (en) 2015-12-13 2018-06-12 International Business Machines Corporation Enhanced adhesive materials and processes for 3D applications
EP3436512A4 (en) * 2016-03-31 2019-12-11 NeoGraf Solutions, LLC Noise suppressing assemblies
US11024449B2 (en) 2017-06-06 2021-06-01 Apple Inc. Multipole elastomeric magnet with magnetic-field shunt
JP6613462B2 (en) * 2017-06-27 2019-12-04 積水ポリマテック株式会社 Thermally conductive sheet
CN107817258B (en) * 2017-10-24 2020-01-24 中国南方电网有限责任公司超高压输电公司检修试验中心 Liquid silicone rubber aging degree evaluation method based on X-ray diffraction spectrum peak-splitting fitting
WO2019090323A1 (en) 2017-11-06 2019-05-09 Massachusetts Institute Of Technology High functionalization density graphene
TWI686309B (en) * 2019-01-09 2020-03-01 可成科技股份有限公司 Heat-dissipating structure and manufacturing method thereof
KR20210024740A (en) * 2019-08-26 2021-03-08 현대자동차주식회사 A composite fiber web excellent in heat resistance and sound absorption and a method for manufacturing the same
CN111471292B (en) * 2019-12-16 2022-03-22 广东一纳科技有限公司 Preparation method of graphene heat dissipation film
US20230057644A1 (en) * 2021-08-17 2023-02-23 Lenovo (Singapore) Pte. Ltd. Thermally conductive compositions for targeted heat dissipation of electronic components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147860A (en) * 1995-11-24 1997-06-06 Petoca:Kk Negative electrode material for lithium ion secondary battery
JP2000164215A (en) * 1998-11-25 2000-06-16 Petoca Ltd Graphite material for negative electrode of lithium ion secondary battery
JP2000191987A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive film and semiconductive device
JP2000192337A (en) * 1998-12-21 2000-07-11 Mitsubishi Chemicals Corp Graphite carbon fiber and heat-dissipation sheet made thereof
JP2000195998A (en) * 1998-12-28 2000-07-14 Polymatech Co Ltd Heat conductive sheet, its manufacture, and semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960612A (en) * 1987-07-02 1990-10-02 At&T Bell Laboratories Thermal conductor assembly method
US4838347A (en) * 1987-07-02 1989-06-13 American Telephone And Telegraph Company At&T Bell Laboratories Thermal conductor assembly
JPH09283955A (en) 1996-04-10 1997-10-31 Matsushita Electric Works Ltd Heat radiation sheet
JPH09283145A (en) 1996-04-15 1997-10-31 Petoca:Kk Carbon material for lithium secondary battery and manufacture thereof
JP2000281802A (en) 1999-03-30 2000-10-10 Polymatech Co Ltd Thermoconductive formed shape, its production, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147860A (en) * 1995-11-24 1997-06-06 Petoca:Kk Negative electrode material for lithium ion secondary battery
JP2000164215A (en) * 1998-11-25 2000-06-16 Petoca Ltd Graphite material for negative electrode of lithium ion secondary battery
JP2000192337A (en) * 1998-12-21 2000-07-11 Mitsubishi Chemicals Corp Graphite carbon fiber and heat-dissipation sheet made thereof
JP2000191987A (en) * 1998-12-28 2000-07-11 Polymatech Co Ltd Thermally conductive adhesive film and semiconductive device
JP2000195998A (en) * 1998-12-28 2000-07-14 Polymatech Co Ltd Heat conductive sheet, its manufacture, and semiconductor device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797121B2 (en) * 2003-04-24 2011-10-19 三星電子株式会社 Conductive carbon nanotube / polymer composite
JP2006525220A (en) * 2003-04-24 2006-11-09 カーボン ナノテクノロジーズ インコーポレーテッド Conductive carbon nanotube / polymer composite
JP2006527912A (en) * 2003-06-17 2006-12-07 キュラミック エレクトロニックス ゲーエムベーハー A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices
JP4711956B2 (en) * 2003-06-17 2011-06-29 キュラミック エレクトロニックス ゲーエムベーハー A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices
JP2008510878A (en) * 2004-08-23 2008-04-10 ゼネラル・エレクトリック・カンパニイ Thermally conductive composition and production method thereof
JP2006135041A (en) * 2004-11-05 2006-05-25 Shin Etsu Polymer Co Ltd Component fixing jig
JP4619093B2 (en) * 2004-11-05 2011-01-26 信越ポリマー株式会社 Parts fixing jig
JP2006265441A (en) * 2005-03-25 2006-10-05 Mitsubishi Engineering Plastics Corp Heat-conductive resin molded article and method for producing the same
JP2007099798A (en) * 2005-09-30 2007-04-19 Mitsubishi Engineering Plastics Corp Heat-conductive insulating polycarbonate-based resin composition and molding
JP2007099799A (en) * 2005-09-30 2007-04-19 Mitsubishi Engineering Plastics Corp Highly heat-conductive insulating polycarbonate-based resin composition and molding
JP2007168263A (en) * 2005-12-22 2007-07-05 Seiko Precision Inc Resin-made case for electronic equipment and manufacturing method of resin molding
JP5381102B2 (en) * 2006-11-01 2014-01-08 日立化成株式会社 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JP2014001388A (en) * 2006-11-01 2014-01-09 Hitachi Chemical Co Ltd Thermally conductive sheet, method for producing the same, and heat radiation device using thermally conductive sheet
WO2008053843A1 (en) * 2006-11-01 2008-05-08 Hitachi Chemical Co., Ltd. Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
WO2009038048A1 (en) 2007-09-18 2009-03-26 Shimane Prefectural Government Metal covered carbon material and carbon-metal composite material using the metal covered carbon material
JP4743344B2 (en) * 2008-05-23 2011-08-10 日立化成工業株式会社 Heat dissipation sheet and heat dissipation device
WO2009142290A1 (en) * 2008-05-23 2009-11-26 日立化成工業株式会社 Heat radiation sheet and heat radiation device
US10125237B2 (en) 2008-05-23 2018-11-13 Hitachi Chemical Company, Ltd. Heat radiation sheet and heat radiation device
JP2008266659A (en) * 2008-08-11 2008-11-06 Efuko Kk Non-crosslinking resin composition and thermally conductive molded product using it
JP2010077407A (en) * 2008-09-01 2010-04-08 Nec Corp Thermally conductive resin composition, method for producing the same and molded product of thermally conductive resin
JP2011032430A (en) * 2009-08-05 2011-02-17 Nitto Denko Corp Infrared absorptive thermally conductive polyimide film and self-adhesive sheet
JP2012171999A (en) * 2011-02-18 2012-09-10 Shin-Etsu Chemical Co Ltd Addition reaction curable silicone rubber composition and semiconductor device sealed by cured material of the same
JP2017500403A (en) * 2013-12-10 2017-01-05 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Tire comprising tread based on rubber composition containing pitch-based carbon fiber
JP2015143405A (en) * 2013-12-27 2015-08-06 東レ株式会社 Carbon fiber nonwoven fabric and method for producing carbon fiber nonwoven fabric
JP2016108688A (en) * 2014-12-04 2016-06-20 大阪ガスケミカル株式会社 Carbon fiber for heat insulation material, and heat insulation material using the same
JP2016186084A (en) * 2016-06-03 2016-10-27 リケンテクノス株式会社 Resin composition
JP2020536152A (en) * 2017-10-27 2020-12-10 エルジー・ケム・リミテッド Composite material
KR20220014894A (en) * 2017-10-27 2022-02-07 주식회사 엘지화학 Composite material
JP7034534B2 (en) 2017-10-27 2022-03-14 エルジー・ケム・リミテッド Composite material
KR102479099B1 (en) * 2017-10-27 2022-12-19 주식회사 엘지화학 Composite material
JP2021038353A (en) * 2019-09-05 2021-03-11 富士高分子工業株式会社 Heat-conductive resin molded body
CN115716993A (en) * 2022-09-30 2023-02-28 湖南大学 Oriented high-thermal-conductivity wave-absorbing plate and preparation method thereof
CN115716993B (en) * 2022-09-30 2024-03-01 湖南大学 Oriented high-heat-conductivity wave absorbing plate and preparation method thereof

Also Published As

Publication number Publication date
DE60110180D1 (en) 2005-05-25
US20020090501A1 (en) 2002-07-11
DE60110180T2 (en) 2006-03-09
US6652958B2 (en) 2003-11-25
EP1199328A1 (en) 2002-04-24
EP1199328B1 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
JP2002121404A (en) Heat-conductive polymer sheet
JP4714371B2 (en) Thermally conductive molded body and method for producing the same
JP4833398B2 (en) Method for producing thermally conductive molded body
JP4759122B2 (en) Thermally conductive sheet and thermally conductive grease
JP4663153B2 (en) Thermally conductive composite composition
JP4772239B2 (en) Graphitized carbon powder and thermally conductive composite composition
JP4897360B2 (en) Thermally conductive molded body and method for producing the same
JP4950994B2 (en) Thermally conductive adhesive
KR100998286B1 (en) Thermally conductive formed article and method of manufacturing the same
JP4814550B2 (en) Method for producing thermally conductive molded body
JP2002088171A (en) Heat-conductive sheet and method for producing the same and heat radiation device
JP4938466B2 (en) Electronic mounting board, light reflective heat conductive coverlay film
JP2002146672A (en) Heat conductive filler, heat conductive adhesive and semiconductor device
JP2000281802A (en) Thermoconductive formed shape, its production, and semiconductor device
JP5015366B2 (en) Thermally conductive molded body and method for producing the same
JP2000195998A (en) Heat conductive sheet, its manufacture, and semiconductor device
JP2006335957A (en) Method of manufacturing thermally conductive molded article and thermally conductive molded article
JP2008069474A (en) Carbon fiber aggregate suitable for reinforcing material/heat-dissipating material
JP2002097372A (en) Heat-conductive polymer composition and heat-conductive molding
JP2008049607A (en) Heat-conductive laminate with bonded thin film of electrical insulation
JP2008208316A5 (en)
JP2008208316A (en) Carbon fiber composite material
JP2002097371A (en) Heat-conductive polymer composition and heat-conductive molding
JP2002088256A (en) Thermally conductive polymeric composition and thermally conductive molded product
JP4272767B2 (en) Thermally conductive molded body and method for producing the same, resin substrate for conductor circuit and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109