JP2005014201A - Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method - Google Patents

Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method Download PDF

Info

Publication number
JP2005014201A
JP2005014201A JP2004046519A JP2004046519A JP2005014201A JP 2005014201 A JP2005014201 A JP 2005014201A JP 2004046519 A JP2004046519 A JP 2004046519A JP 2004046519 A JP2004046519 A JP 2004046519A JP 2005014201 A JP2005014201 A JP 2005014201A
Authority
JP
Japan
Prior art keywords
carbon
particles
powder
carbon composite
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004046519A
Other languages
Japanese (ja)
Inventor
Masuo Hosokawa
益男 細川
Masayoshi Kawahara
正佳 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSOKAWA FUNTAI GIJUTSU KENKYU
Hosokawa Powder Technology Research Institute
Original Assignee
HOSOKAWA FUNTAI GIJUTSU KENKYU
Hosokawa Powder Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSOKAWA FUNTAI GIJUTSU KENKYU, Hosokawa Powder Technology Research Institute filed Critical HOSOKAWA FUNTAI GIJUTSU KENKYU
Priority to JP2004046519A priority Critical patent/JP2005014201A/en
Publication of JP2005014201A publication Critical patent/JP2005014201A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon composite particle capable of sufficiently exhibiting a functional characteristic and the effect possessed by carbon particles, by uniformly dispersing the carbon particles being an extremely fine nano structure particle of 1 nm to several 10 nm unit such as a carbon nanotube. <P>SOLUTION: A carbon-containing composite particle being the nano structure particle is formed by being compounded by fixing or covering a surface of powder particles with the carbon particles, or fixing or covering a surface of the carbon particles with the powder particles, by applying compressive force and shearing force to a processing object 4 mixed with a powder material composed of one or a plurality of kinds of powder particles and a carbon material composed of the carbon particles of a nano structure. Thus, even in an easily coagulable fine carbon particle, the carbon particles can be uniformly dispersed in a material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、二次電池用、燃料電池用、その他の電子材料用として、また、導電性フィラー、熱伝導性フィラー、高強度フィラーとして使用される炭素複合粒子の製造方法に関する。   The present invention relates to a method for producing carbon composite particles used for secondary batteries, fuel cells, other electronic materials, and used as conductive fillers, heat conductive fillers, and high-strength fillers.

従来、リチウムイオン電池の負極活物質材料として、カーボン、グラファイト、アセチレンブラック、黒鉛等をピッチと混合し、混合工程で圧縮力と剪断力を加えてこれら炭素材料粒子を微細化させ、かつ粒子表面を滑らかにすると共に、粒子形状を球状化して充填性を高め電池性能を向上させるべく改善がなされてきた(特許文献1参照)。   Conventionally, carbon, graphite, acetylene black, graphite, etc., are mixed with pitch as negative electrode active material materials for lithium ion batteries, and these carbon material particles are refined by applying compressive force and shearing force in the mixing process, and the particle surface In order to improve the battery performance by improving the battery performance by smoothing the particle shape and making the particle shape spherical (see Patent Document 1).

ところで、炭素は様々な結晶構造を持つ材料であるが、近年、結晶構造が中空の針状分子であるカーボンナノチューブやサッカーボール状分子であるフラーレンなどのナノ構造体の炭素粒子が発見された。カーボンナノチューブには単層と複層のもの、複層と同程度の直径で中実構造のもの、さらにナノホーン、カップスタック形状のものも発見されている。ナノ構造体のカーボンナノチューブの直径は1〜1000nmの範囲にある。具体的には、単層のものでは直径1nm〜数十nm、多層のものでは直径数十nm〜500nmで、さらに1000nmのものも実験室段階では作成されている。また、フラーレンは直径がサブnm(例えば0.7nm程度)のグラファイト構造を持っている。また、気相法で製造されるカーボンナノチューブの直径を大きくしたものも従来のカーボンブラックや炭素繊維などと比べるとナノスケールに近い微細構造を有している。   By the way, carbon is a material having various crystal structures, but in recent years, carbon particles of nanostructures such as carbon nanotubes that are hollow needle-like molecules and fullerenes that are soccer ball-like molecules have been discovered. Carbon nanotubes have been found to have single-walled and multi-walled carbon nanotubes, solid structures with the same diameter as the multi-walled carbon nanotubes, and nanohorn and cup-stacked shapes. The diameter of the carbon nanotubes in the nanostructure is in the range of 1-1000 nm. Specifically, a single layer has a diameter of 1 nm to several tens of nm, a multilayer has a diameter of several tens of nm to 500 nm, and a further 1000 nm has been prepared at the laboratory stage. In addition, fullerene has a graphite structure with a diameter of sub-nm (for example, about 0.7 nm). In addition, carbon nanotubes produced by a vapor phase method having a large diameter have a microstructure close to nanoscale as compared with conventional carbon black and carbon fiber.

カーボンナノチューブは電界放出ディスプレイのエミッタやトンネル顕微鏡の針に使用され効果が期待されている。また、カーボンナノチューブは導電性付与材として従来のカーボンブラックや炭素繊維などと比べてケタ違いに小さいナノスケールの導電ネットワークを形成でき、カーボンブラックの1/4〜1/5の添加量で同程度の導電性が得られる。そのため、静電防止、電着塗装、EMIシールド、導電樹脂などにおいて、わずかな添加量で十分な効果が得られる。さらに、カーボンナノチューブを樹脂材料に強化材として添加することで薄肉化でき高精度が要求される樹脂構造部品にも適用できる。また、フィラーとして樹脂中に微分散させて耐熱化させることもできる。カーボンナノホーンは触媒の微分散に向くとして燃料電池分野で期待されている。フラーレンは凝集体ではイオン伝導性を持つことから燃料電池向けの固体電解質への応用が期待できる。また、燃料電池向けの水素吸蔵用材料への応用や集積回路の高密度化が期待できることから電界効果トランジスタへの応用も検討されている。   Carbon nanotubes are expected to be effective when used for emitters in field emission displays and needles in tunneling microscopes. In addition, carbon nanotubes can form nanoscale conductive networks that are significantly smaller than conventional carbon black or carbon fiber as a conductivity imparting material, and the same amount with 1/4 to 1/5 addition of carbon black. Conductivity is obtained. Therefore, a sufficient effect can be obtained with a small addition amount in antistatic, electrodeposition coating, EMI shield, conductive resin and the like. Furthermore, by adding carbon nanotubes as a reinforcing material to the resin material, it can be thinned and can be applied to resin structure parts that require high accuracy. Moreover, it can be finely dispersed in a resin as a filler to make it heat resistant. Carbon nanohorns are expected in the fuel cell field as being suitable for fine dispersion of catalysts. Since fullerenes have ionic conductivity in aggregates, application to solid electrolytes for fuel cells can be expected. In addition, application to a field effect transistor is also being studied because application to a hydrogen storage material for a fuel cell and an increase in the density of an integrated circuit can be expected.

特開2000−123876号公報JP 2000-123876 A

以上のように、カーボンナノチューブ、カーボンナノホーン、フラーレンなど、従来の炭素材料にない優れた特性を有するものであるが、製造での量産化が難しく非常に高価であることの他に、カーボンナノチューブは微細であるうえに細長い繊維状をしているために互いに絡まり合って凝集し易く、またフラーレンは微細であるため凝集し易く、他の材料中に添加しても凝集したままで十分に分散化させることができないという問題点があった。   As described above, carbon nanotubes, carbon nanohorns, fullerenes, etc. have excellent characteristics not found in conventional carbon materials, but besides being difficult to mass-produce in production and very expensive, carbon nanotubes are Since it is fine and elongated, it is entangled with each other and easily aggregates, and fullerene is easy to aggregate because it is fine, and even when added to other materials, it remains dispersed and is sufficiently dispersed There was a problem that it could not be made.

本発明は、こうした点に鑑み、カーボンナノチューブ(単層、多層、ナノホーン、カップスタック型を含む)やフラーレンなどのような直径が0.1〜1000nm程度の極めて微細な炭素材料であっても均一な分散を実現することによって、所望の特性や効果が十分に発揮できる複合粒子を得ることを目的とする。   In view of these points, the present invention is uniform even for extremely fine carbon materials having a diameter of about 0.1 to 1000 nm, such as carbon nanotubes (including single-walled, multilayered, nanohorn, and cup-stacked types) and fullerenes. An object of the present invention is to obtain composite particles capable of sufficiently exhibiting desired characteristics and effects by realizing proper dispersion.

本発明は、凝集し易い偏平あるいは繊維状等の微細な粒子であっても複合粒子化することで別の材料中への均一分散を可能にできることを見出したもので、第1の発明に係る炭素複合粒子の製造方法は、一又は複数種の粉体粒子からなる粉体材料とナノ構造体の炭素粒子からなる炭素材料とを混合状態で圧縮力と剪断力を付与させて、粉体粒子の表面に炭素粒子を固定または被覆、あるいは炭素粒子の表面に粉体粒子を固定または被覆させて複合化することを特徴とする。   The present invention has been found that even fine particles, such as flat or fibrous particles, which are likely to be aggregated, can be uniformly dispersed in another material by forming composite particles. A method for producing a carbon composite particle is obtained by applying a compressive force and a shearing force in a mixed state to a powder material composed of one or more kinds of powder particles and a carbon material composed of nanostructured carbon particles. The carbon particles are fixed or coated on the surface of the carbon particles, or the powder particles are fixed or coated on the surface of the carbon particles to form a composite.

本発明を実施するには、例えば図1や図2に示すような粉体処理装置を使用することによって効率良く所望の製品を得ることができる。なお、図1の粉体処理装置は通常バッチ運転を行うもので、1回毎に原料の供給と処理製品の排出を行い、運転中は製品の取り出しは行わない構造になっている。図2に示す粉体処理装置では、原料の供給と共に処理製品の排出をも行うことができ、連続運転が行えるようになっている。   In order to carry out the present invention, a desired product can be efficiently obtained by using a powder processing apparatus as shown in FIGS. 1 and 2, for example. The powder processing apparatus of FIG. 1 normally performs batch operation, and is configured to supply raw materials and discharge processed products every time, and does not take out products during operation. In the powder processing apparatus shown in FIG. 2, the processed product can be discharged together with the supply of the raw material, and the continuous operation can be performed.

〔作用効果〕第1の発明に係る炭素複合粒子の製造方法は、ナノ構造体の炭素粒子を含有する炭素複合粒子の形成を複合化処理によって行う。複合化処理とは、複数の粉体原料を混ぜ合わせたものに圧縮力と剪断力を加えて特定の粉体粒子の表面に他の粉体粒子を融合し、一体化する処理をいう。これにより、夫々の粉体粒子の分布が均質なものとなり、均一な成分の被覆膜および被覆層をもった複合粒子が得られる。また、本発明に係る炭素複合粒子の製造方法は異種の粉体原料を単一粒子レベルで均一に分散させた状態に混合することを意味する精密混合性に優れているため、数nmサイズの粒子の凝集体であっても効果的に分散させ、複合粒子化することができる。   [Effect] In the method for producing carbon composite particles according to the first invention, the formation of carbon composite particles containing nanostructured carbon particles is performed by a composite treatment. The compounding process refers to a process in which a compression force and a shearing force are applied to a mixture of a plurality of powder raw materials to fuse and integrate other powder particles on the surface of specific powder particles. Thereby, the distribution of the respective powder particles becomes uniform, and composite particles having a coating film and a coating layer of uniform components can be obtained. In addition, the method for producing carbon composite particles according to the present invention is excellent in precision mixing, which means that different types of powder raw materials are mixed in a uniformly dispersed state at a single particle level. Even particle agglomerates can be effectively dispersed into composite particles.

第2の発明に係る炭素複合粒子の製造方法は、第1の発明に係る炭素複合粒子の製造方法をさらに特徴付けるものとして、ナノ構造体の炭素材料がカーボンナノチューブまたはフラーレンである炭素複合粒子を製造するものである。   The method for producing carbon composite particles according to the second invention is characterized by further characterizing the method for producing carbon composite particles according to the first invention, and produces carbon composite particles in which the carbon material of the nanostructure is a carbon nanotube or fullerene To do.

例えばカーボンナノチューブについては、図3(a)に凝集した状態を示しており、微細な繊維形状は互いに絡みつき易く分散させ難いことが分かる。また、図3(b)は本発明の実施によりこの凝集体が分散された状態を模式的に示すものである。   For example, carbon nanotubes are shown in an aggregated state in FIG. 3 (a), and it can be seen that fine fiber shapes are easily entangled with each other and difficult to disperse. FIG. 3 (b) schematically shows a state in which the aggregates are dispersed by carrying out the present invention.

〔作用効果〕本発明のナノ構造体の炭素粒子による炭素複合粒子の形成では、一又は複数種の粉体粒子からなる粉体粒子と微小なナノ構造体の炭素粒子からなる炭素材料とを混合して圧縮力と剪断力を加えるが、圧縮力および剪断力を加える段階でも混合作用が促進されることで、両者の凝集を抑えて精密混合することができ、直径が1nm、長さ数μm程度のカーボンナノチューブ、または直径がサブnm(例えば0.7nm程度)のフラーレンであっても粒径が数nmの粉体粒子との接触付着を促進し複合化させることができる。その結果、例えばカーボンナノチューブの表面にSiO2粒子を付着させると、図7に示すように、カーボンナノチューブ同士の絡み付きを緩和させる効果が得られ、また、図8に示すように、粉体粒子の表面にカーボンナノチューブを巻き付ける状態で付着させることで、直線性が高いカーボンナノチューブをバインダを使わずにまたは少量のバインダで有効に造粒できる効果が得られる。   [Effect] In the formation of carbon composite particles by the carbon particles of the nanostructure of the present invention, powder particles composed of one or more kinds of powder particles and a carbon material composed of fine nanostructure carbon particles are mixed. The compression action and the shearing force are applied, but the mixing action is promoted even at the stage of applying the compression force and the shearing force, so that the aggregation of both can be suppressed and precise mixing can be achieved, and the diameter is 1 nm and the length is several μm. Even carbon nanotubes having a diameter of about 1 nm or fullerenes having a diameter of sub-nm (for example, about 0.7 nm) can promote contact adhesion with powder particles having a particle size of several nm to be combined. As a result, for example, when SiO2 particles are attached to the surface of the carbon nanotubes, the effect of relaxing the entanglement between the carbon nanotubes is obtained as shown in FIG. 7, and the surface of the powder particles is obtained as shown in FIG. By adhering the carbon nanotubes to each other in a wound state, it is possible to effectively granulate the carbon nanotubes having high linearity without using a binder or with a small amount of binder.

第3の発明に係る炭素複合粒子の製造方法は、第2の発明に係る炭素複合粒子の製造方法をさらに特徴付けるものとして、絶縁性樹脂で構成した前記粉体粒子を前記炭素粒子の表面に固定または被覆させた後、当該絶縁性樹脂の溶融温度まで加熱するものである。   The method for producing carbon composite particles according to the third invention is characterized in that the powder particles made of an insulating resin are fixed to the surface of the carbon particles as further characterizing the method for producing the carbon composite particles according to the second invention. Or after making it coat | cover, it heats to the melting temperature of the said insulating resin.

〔作用効果〕例えばカーボンナノチューブの表面に固定または被覆された絶縁性樹脂の粉体粒子が加熱されて溶けてカーボンナノチューブの表面を隙間なく覆うので、カーボンナノチューブの絶縁性を高めることができ、これによって例えば微細ケーブル、微細コードやナノピンセットなどへの利用が可能となる。   [Effect] For example, the insulating resin powder particles fixed or coated on the surface of the carbon nanotubes are heated and melted to cover the surface of the carbon nanotubes without gaps, so that the insulating properties of the carbon nanotubes can be improved. Can be used for fine cables, fine cords, nanotweezers, and the like.

第4の発明に係る炭素複合粒子は、第1〜第3の発明に係る炭素複合粒子の製造方法によって製造されるナノ構造体の炭素複合粒子であり、粉体粒子の表面にナノ構造体の炭素粒子を固定または被覆、あるいは炭素粒子の表面に粉体粒子を固定または被覆させて複合化させて製造された炭素複合粒子は、粉体粒子とナノ構造体の炭素粒子とが分散されると共に、均一混合されつつ圧縮力と剪断力とを同時に付与されるため、双方に均一かつ満遍なく分布し、続いて強力な圧縮力と剪断力を付与されて、粉体粒子の表面に、あるいは炭素粒子の表面に強固に固定化されるものである。   The carbon composite particle according to the fourth invention is a carbon composite particle of a nanostructure manufactured by the method for manufacturing a carbon composite particle according to the first to third inventions, and the nanostructure is formed on the surface of the powder particle. Carbon composite particles produced by fixing or coating carbon particles, or by fixing or coating powder particles on the surface of carbon particles to form a composite, are obtained by dispersing powder particles and nanostructured carbon particles. Since the compression force and the shear force are simultaneously applied while being uniformly mixed, the powder is uniformly and evenly distributed to both sides, and then the strong compression force and the shear force are applied to the surface of the powder particle or the carbon particle. It is firmly fixed on the surface of the film.

〔作用効果〕本発明によるナノ構造体の炭素複合粒子は、核となる粉体粒子の表面にナノ構造体の炭素粒子が固定されて均一かつ強固な皮膜あるいは被覆層を持つ複合粒子の形態と、ナノ構造体の炭素粒子の形状を維持した状態でその表面に微細な粉体粒子が固定されて均一な皮膜あるいは被覆層を形成する形態のものがある。また、均質化が図られ均質な状態の複合粒子が得られる。これらは、材料、用途、使用目的等に合わせて種々の材料の組合せが考えられるので、目的に合った最適なナノ構造体の炭素複合材料を提供することができる。   [Function and Effect] The nanostructured carbon composite particles according to the present invention are in the form of composite particles having a uniform and strong film or coating layer in which the nanostructured carbon particles are fixed on the surface of the core powder particles. There is a form in which fine powder particles are fixed on the surface of the nanostructure carbon particles while maintaining the shape of the carbon particles to form a uniform film or coating layer. Moreover, homogenization is achieved and composite particles in a homogeneous state are obtained. Since combinations of various materials can be considered according to the material, application, purpose of use, and the like, it is possible to provide an optimal nanostructure carbon composite material that meets the purpose.

以上のように、本発明によれば、核となる粉体粒子の表面に微細な炭素粒子を固定あるいは炭素粒子による被膜または被覆層が形成された炭素複合粒子、または、核となる炭素粒子の表面に微細な粉体粒子を固定あるいは粉体粒子による被膜または被覆層が形成された炭素複合粒子を効率よく製造することができる。しかも、材料の種類、組み合わせ、性状を問わず実施でき、良好な炭素複合粒子の製造が可能となる。   As described above, according to the present invention, carbon composite particles in which fine carbon particles are fixed on the surface of powder particles serving as nuclei or a coating or coating layer of carbon particles is formed, or carbon particles serving as nuclei are formed. Carbon composite particles in which fine powder particles are fixed on the surface or a film or coating layer of powder particles is formed can be efficiently produced. And it can implement irrespective of a kind, combination, and property of material, and manufacture of a favorable carbon composite particle is attained.

以下に本発明の実施の形態を図面に基づいて説明する。図1および図2は本発明に用いる粉体処理装置の概略を示す。図3ないし図4は本発明の実施によるカーボンナノチューブの分散する状態を示すもので、図3は模式図、図4および図5は顕微鏡写真である。図6〜図10は本発明の実施により製造されたカーボンナノチューブと粉体材料との複合状態を示す顕微鏡写真である。   Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 schematically show a powder processing apparatus used in the present invention. 3 to 4 show a state in which carbon nanotubes are dispersed according to the present invention. FIG. 3 is a schematic view, and FIGS. 4 and 5 are micrographs. 6 to 10 are photomicrographs showing the composite state of the carbon nanotubes produced by the practice of the present invention and the powder material.

〔粉体処理装置〕図1の粉体処理装置は、主に、基台1に設置した略円筒形状のケーシング2、および、当該ケーシング2の内部に設けた同じく略円筒形状の筒状回転体3、当該筒状回転体3との間に押圧力を発生させて被処理物4を処理すべく前記筒状回転体3の内部に配設したプレスヘッド5とからなる。前記筒状回転体3を回転させることで、当該筒状回転体3の内周面に形成した受け面6と前記プレスヘッド5とを相対回転させ、前記受け面6と前記プレスヘッド5との間の空間7に存する被処理物4に圧縮力と剪断力を付与して、前述のごとく原料どうしの複合化・混合・球状化等を行うのである。尚、本発明においては、これらの処理を総称してメカノフュージョン処理という(以下、粉体処理ともいう)。   [Powder Processing Apparatus] The powder processing apparatus shown in FIG. 1 mainly includes a substantially cylindrical casing 2 installed on a base 1, and a cylindrical rotating body having a substantially cylindrical shape provided inside the casing 2. 3 and a press head 5 disposed inside the cylindrical rotating body 3 for generating a pressing force between the cylindrical rotating body 3 and processing the workpiece 4. By rotating the cylindrical rotating body 3, the receiving surface 6 formed on the inner peripheral surface of the cylindrical rotating body 3 and the press head 5 are relatively rotated, and the receiving surface 6 and the press head 5 are A compression force and a shearing force are applied to the workpiece 4 existing in the space 7 between them, and as described above, the raw materials are combined, mixed, spheroidized, and the like. In the present invention, these treatments are collectively called mechanofusion treatment (hereinafter also referred to as powder treatment).

前記プレスヘッド5によって圧縮力と剪断力を付与された前記被処理物4は、主に前記筒状回転体3の周壁8に設けた孔部9を介して外方に排出され、前記周壁8の外周部に形成した羽根部材10によって再び前記筒状回転体3の内部に循環させる。本構成にすることで、プレスヘッドと受け面6との間に挟まれた被処理物4を積極的に流動・循環させ、前記受け面6に対する被処理物4の付着量を少なくすることができる。尚、処理する材料の種類によっては、過大な圧縮力あるいは剪断力を加えると物性を損ねたりする場合がある。しかし、当該粉体処理装置のごとく、孔部9を介して被処理物4を循環させる構成の装置を用いることとすれば、被処理物4に作用させる圧縮力等を適宜加減することができる。例えば、前記孔部9の開口面積を広く設定しておけば、被処理物4は筒状回転体3の外部に容易に排出されるから、被処理物4に対するプレスヘッド5の作用時間が短かくなり、被処理物4に作用する圧縮力等が結果的に弱まることとなる。逆に、前記孔部9の開口面積を狭く設定しておけば、被処理物4に対するプレスヘッド5の作用時間が長くなり、前記圧縮力等は強まることとなる。このように、本構成の粉体処理装置を用いる場合には、被処理物4に作用させる圧縮力等を任意に変更して最適な粉体処理条件を得ることが可能であり、優れた品質の製品を得ることができる。   The workpiece 4 to which the compressive force and the shearing force are applied by the press head 5 is discharged to the outside mainly through a hole 9 provided in the peripheral wall 8 of the cylindrical rotating body 3, and the peripheral wall 8. It is made to circulate again inside the said cylindrical rotary body 3 by the blade member 10 formed in the outer peripheral part. By adopting this configuration, the workpiece 4 sandwiched between the press head and the receiving surface 6 can be actively flowed and circulated to reduce the amount of the workpiece 4 attached to the receiving surface 6. it can. Depending on the type of material to be treated, physical properties may be impaired when an excessive compressive force or shear force is applied. However, if an apparatus configured to circulate the workpiece 4 through the hole 9 as in the powder processing apparatus is used, the compressive force applied to the workpiece 4 can be appropriately adjusted. . For example, if the opening area of the hole 9 is set wide, the workpiece 4 is easily discharged to the outside of the cylindrical rotating body 3, so that the operation time of the press head 5 on the workpiece 4 is short. As a result, the compressive force or the like acting on the workpiece 4 is weakened as a result. On the contrary, if the opening area of the hole 9 is set to be narrow, the operation time of the press head 5 with respect to the object to be processed 4 becomes longer, and the compression force and the like become stronger. Thus, when using the powder processing apparatus of this structure, it is possible to obtain the optimum powder processing conditions by arbitrarily changing the compressive force or the like that acts on the object 4 to be processed. You can get a product.

処理する材料によっては、粉体処理装置の内部を減圧したり所定のガス雰囲気にする場合がある。そのため、本発明に係る粉体処理装置では、例えば、ケーシング2と筒状回転体3の軸体3aとの間、あるいは、ケーシング2とプレスヘッド5の支持杆5aとの間にシール部材11a,11bを設けてある。   Depending on the material to be processed, the inside of the powder processing apparatus may be depressurized or a predetermined gas atmosphere. Therefore, in the powder processing apparatus according to the present invention, for example, the seal member 11a, between the casing 2 and the shaft body 3a of the cylindrical rotating body 3 or between the casing 2 and the support rod 5a of the press head 5 is provided. 11b is provided.

図2に示す粉体処理装置は、連続処理を可能とするもので、機台(図示省略)に固定された横型長胴のケーシング22に対して、横向き状態の回転軸20に支持されたプレスヘッド25が複数個、回転軸20の外周部に複数列に亘って配置されてケーシング22の内面に沿って回転するように構成され、かつ原料の供給口と処理製品の排出口が前記回転軸20の両端部側に配置されて構成されている点が異なるものの、プレスヘッド25とケーシング22の内面間で行われる作用効果は、図1の装置と同様である。図2に示すごとく、回転軸20の長手方向に沿って隣接するプレスヘッド25の間に、ケーシング22の内面から突出すると共に回転軸20の回転方向に延出するスリット板30を設け、処理材料が回転軸20の軸方向に移動するときの速度を抑えて機内での滞留時間を確保させるようにしている。同時に、スリット板30にスリット状の開口31を設け、処理材料の量に応じて軸方向の移動速度を調整できるようにしてある。   The powder processing apparatus shown in FIG. 2 is capable of continuous processing, and is a press supported by a rotary shaft 20 in a lateral direction with respect to a casing 22 of a horizontal long barrel fixed to a machine base (not shown). A plurality of heads 25 are arranged in a plurality of rows on the outer peripheral portion of the rotary shaft 20 and are configured to rotate along the inner surface of the casing 22, and a raw material supply port and a processed product discharge port are the rotary shafts. Although different in that it is arranged on both ends of 20, the operational effects performed between the press head 25 and the inner surface of the casing 22 are the same as those of the apparatus of FIG. 1. As shown in FIG. 2, a slit plate 30 that protrudes from the inner surface of the casing 22 and extends in the rotation direction of the rotary shaft 20 is provided between the press heads 25 adjacent to each other along the longitudinal direction of the rotary shaft 20. The movement time in the axial direction of the rotary shaft 20 is suppressed to ensure the residence time in the machine. At the same time, a slit-like opening 31 is provided in the slit plate 30 so that the moving speed in the axial direction can be adjusted according to the amount of the processing material.

〔分散性の効果〕図4は、原料のナノ構造体炭素の顕微鏡写真で、直径230nm,長さ10μmの多層のカーボンナノチューブであり、互いに凝集体を造っているのが分かる。図5は、この原料を前記粉体処理装置を使って前述の粉体処理を60分間行わせたもので、凝集体が略全体に分散されていることが分かる。 [Effect of Dispersibility] FIG. 4 is a microphotograph of the raw material nanostructure carbon, which is a multi-walled carbon nanotube having a diameter of 230 nm and a length of 10 μm, and shows that aggregates are formed. FIG. 5 shows that the raw material was subjected to the above-described powder processing for 60 minutes using the powder processing apparatus, and it can be seen that the aggregates are dispersed almost entirely.

〔炭素複合粒子〕本発明によるナノ構造体の炭素複合粒子の形態を以下に示す。図6は、リチウムイオン電池用の正極活性材料として粒径10μmのコバルト酸リチウムと粒径50nmのナノカーボンと直径100nm×3μmの多層のカーボンナノチューブを使って粉体処理を行ったもので、コバルト酸リチウムを母粒子として、その表面にナノカーボンおよびカーボンナノチューブが子粒子として固着しているのが分かる。 [Carbon composite particles] The form of the carbon composite particles of the nanostructure according to the present invention is shown below. FIG. 6 shows a powder treatment using lithium cobaltate having a particle size of 10 μm, nanocarbon having a particle size of 50 nm, and multi-walled carbon nanotubes having a diameter of 100 nm × 3 μm as a positive electrode active material for a lithium ion battery. It can be seen that, with lithium acid as the mother particle, nanocarbon and carbon nanotubes are fixed as child particles on the surface.

図7は、直径230nm,長さ10μmの多層のカーボンナノチューブと粒径9nmのSiO2とを各々50%加えて60分間の粉体処理を行ったもので、カーボンナノチューブ表面のSiO2は見えないものの、カーボンナノチューブ同士は原料時の状態ほどには極端に絡み合ったようにも見えないことから、SiO2粒子がカーボンナノチューブの表面に付くことで、カーボンナノチューブ同士の絡み付きが緩和されたものと思われる。また、両粉体がよく分散されマクロ的には均質化がなされている。   FIG. 7 shows a case in which 50% of multi-walled carbon nanotubes having a diameter of 230 nm and a length of 10 μm and SiO 2 having a particle diameter of 9 nm were added for 60 minutes and subjected to powder treatment for 60 minutes. Since the carbon nanotubes do not appear to be extremely entangled as in the state of the raw material, it is considered that the entanglement between the carbon nanotubes is alleviated by attaching the SiO 2 particles to the surface of the carbon nanotube. Both powders are well dispersed and are homogenized macroscopically.

図8は、粒径8.4μmのPMMA(樹脂)と直径230nm,長さ10μmの多層のカーボンナノチューブとをそれぞれ30%と70%の割合で混合し、3時間の粉体処理を行ったもので、カーボンナノチューブがマリモ状に形成されたのが分かる。直線性の高いカーボンナノチューブをバインダを使わずにあるいは少量のバインダ(上記PMMA樹脂がバインダになり得る)で造粒する有効な方法と言える。   FIG. 8 shows a case where PMMA (resin) having a particle size of 8.4 μm and multi-walled carbon nanotubes having a diameter of 230 nm and a length of 10 μm are mixed at a ratio of 30% and 70%, respectively, and subjected to powder treatment for 3 hours. Thus, it can be seen that the carbon nanotubes were formed in a marimo shape. This can be said to be an effective method for granulating carbon nanotubes having high linearity without using a binder or with a small amount of binder (the PMMA resin can be a binder).

図9は、粒径100nmのPMMAと直径230nm,長さ10μmの多層のカーボンナノチューブとを各々50%の割合で混合し、1時間の粉体処理を行ったもので、枝に付いた莟のようにPMMA粒子がカーボンナノチューブの表面に固着しているのが見える。この複合粒子は直接的に熱プレスしたり、混練前のマスターバッチ品として、ナノ電子材料や熱伝導性フィラーなどとして利用できる。   FIG. 9 shows a case where PMMA having a particle size of 100 nm and multi-walled carbon nanotubes having a diameter of 230 nm and a length of 10 μm are mixed at a ratio of 50% and subjected to powder treatment for 1 hour. Thus, it can be seen that the PMMA particles are fixed to the surface of the carbon nanotube. The composite particles can be directly hot-pressed or used as a nano batch or a heat conductive filler as a master batch product before kneading.

図10は、図9に示す複合粒子をPMMAの溶融温度程度まで加熱して表面のPMMAを溶融させてカーボンナノチューブの表面に被覆膜を形成させたものである。こうすることにより、カーボンナノチューブの絶縁性を高めることができることによってケーブル化が可能になり、微細コードやナノピンセットなどへの利用も図れる。   FIG. 10 shows the composite particles shown in FIG. 9 heated to the melting temperature of PMMA to melt the surface PMMA to form a coating film on the surface of the carbon nanotube. By doing so, it becomes possible to make a cable by increasing the insulating properties of the carbon nanotubes, and it can be used for fine cords and nanotweezers.

本発明により製造された炭素複合粒子は、二次電池用、燃料電池用、その他の電子材料用として、また、導電性フィラー、熱伝導性フィラー、高強度フィラーとして使用でき、従来のカーボンブラックや炭素繊維に代わる材料として幅広く利用されるほか、各種技術開発分野における新素材としても適用範囲を広げることができる。
例えば二次電池用材料としては、本発明による炭素複合粒子は、従来のカーボンブラックや炭素繊維に比べ抵抗値が低く、低温動作性が向上する。
The carbon composite particles produced according to the present invention can be used for secondary batteries, fuel cells, other electronic materials, conductive fillers, thermally conductive fillers, and high-strength fillers. In addition to being widely used as a substitute for carbon fiber, it can also be used as a new material in various technological development fields.
For example, as a material for a secondary battery, the carbon composite particles according to the present invention have a lower resistance value than conventional carbon black and carbon fiber, and improve low-temperature operability.

本発明の実施に用いる粉体処理装置の概要を示す正面断面図Front sectional view showing an outline of a powder processing apparatus used in the practice of the present invention 本発明の実施に用いる別の粉体処理装置の概要を示す正面断面図Front sectional drawing which shows the outline | summary of another powder processing apparatus used for implementation of this invention 本発明における原料の炭素材料の模式図Schematic diagram of raw carbon material in the present invention 本発明における原料の炭素材料の顕微鏡写真Photomicrograph of raw carbon material in the present invention 本発明の実施例における炭素材料の顕微鏡写真Photomicrograph of carbon material in an example of the present invention 本発明の実施例における炭素複合粒子の顕微鏡写真Photomicrograph of carbon composite particles in examples of the present invention 本発明の実施例における炭素複合粒子の顕微鏡写真Photomicrograph of carbon composite particles in examples of the present invention 本発明の実施例における炭素複合粒子の顕微鏡写真Photomicrograph of carbon composite particles in examples of the present invention 本発明の実施例における炭素複合粒子の顕微鏡写真Photomicrograph of carbon composite particles in examples of the present invention 本発明の実施例における炭素複合粒子の顕微鏡写真Photomicrograph of carbon composite particles in examples of the present invention

符号の説明Explanation of symbols

1 基台
2 ケーシング
3 筒状回転体
4 被処理物
5 プレスヘッド
6 受け面
7 空間
8 筒状回転体の周壁
9 孔部
10 羽根部材
20 回転軸
22 ケーシング
25 プレスヘッド
30 スリット板
31 開口
DESCRIPTION OF SYMBOLS 1 Base 2 Casing 3 Cylindrical rotating body 4 To-be-processed object 5 Press head 6 Receiving surface 7 Space 8 Peripheral wall of a cylindrical rotating body 9 Hole 10 Blade member 20 Rotating shaft 22 Casing 25 Press head 30 Slit plate 31 Opening

Claims (4)

一又は複数種の粉体粒子からなる粉体材料とナノ構造体の炭素粒子からなる炭素材料とを混合状態で圧縮力と剪断力を付与させて、粉体粒子の表面に炭素粒子を固定または被覆、あるいは炭素粒子の表面に粉体粒子を固定または被覆させて複合化することを特徴とする炭素複合粒子の製造方法。   The carbon material is fixed to the surface of the powder particle by applying a compressive force and a shearing force in a mixed state of the powder material composed of one or more kinds of powder particles and the carbon material composed of the carbon particles of the nanostructure. A method for producing carbon composite particles, comprising coating or fixing the powder particles on the surface of the carbon particles to form a composite. 前記炭素材料はカーボンナノチューブまたはフラーレンである請求項1に記載の炭素複合粒子の製造方法。   The method for producing carbon composite particles according to claim 1, wherein the carbon material is a carbon nanotube or fullerene. 絶縁性樹脂で構成した前記粉体粒子を前記炭素粒子の表面に固定または被覆させた後、当該絶縁性樹脂の溶融温度まで加熱する請求項2に記載の炭素複合粒子の製造方法。   The method for producing carbon composite particles according to claim 2, wherein the powder particles made of an insulating resin are fixed or coated on the surface of the carbon particles, and then heated to the melting temperature of the insulating resin. 一又は複数種の粉体粒子からなる粉体材料とナノ構造体の炭素粒子からなる炭素材料とを混合状態で圧縮力と剪断力を付与させて、粉体粒子の表面に炭素粒子を固定または被覆、あるいは炭素粒子の表面に粉体粒子を固定または被覆させて複合化された炭素複合粒子。

The carbon material is fixed on the surface of the powder particle by applying a compressive force and a shearing force in a mixed state of the powder material composed of one or plural kinds of powder particles and the carbon material composed of the carbon particles of the nanostructure. Carbon composite particles that are composited by coating or fixing powder particles on the surface of carbon particles or coating them.

JP2004046519A 2003-06-03 2004-02-23 Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method Pending JP2005014201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046519A JP2005014201A (en) 2003-06-03 2004-02-23 Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003193929 2003-06-03
JP2004046519A JP2005014201A (en) 2003-06-03 2004-02-23 Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method

Publications (1)

Publication Number Publication Date
JP2005014201A true JP2005014201A (en) 2005-01-20

Family

ID=34197101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046519A Pending JP2005014201A (en) 2003-06-03 2004-02-23 Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method

Country Status (1)

Country Link
JP (1) JP2005014201A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054066A (en) * 2004-08-10 2006-02-23 Toray Ind Inc Conductive particle and composition for anisotropic conductive material
WO2006132603A1 (en) * 2005-06-07 2006-12-14 Nanomaterials Technology Pte Ltd Process for forming dispersant-coated carbon particles
JP2007277691A (en) * 2006-04-11 2007-10-25 Showa Denko Kk Carbon fiber-reinforced aluminum composite material and its production method
JP2007302781A (en) * 2006-05-11 2007-11-22 Teijin Techno Products Ltd Carbon nanotube-containing aromatic polyamide composition, its production method and fiber
WO2009008516A1 (en) * 2007-07-11 2009-01-15 Mikuni Shikiso Kabushiki Kaisha Granulated product of carbon nanotube, and method for production thereof
JP2009521082A (en) * 2005-12-23 2009-05-28 コミツサリア タ レネルジー アトミーク Carbon nanotubes and silicon-based materials that can be used as cathodes for lithium batteries
US7988896B2 (en) 2006-08-09 2011-08-02 Tsinghua University Method of preparing carbon nanotube/polymer composite material
WO2011125327A1 (en) * 2010-04-05 2011-10-13 株式会社イノアック技術研究所 Particles containing carbon material, and process for production thereof
JP2011219342A (en) * 2010-08-26 2011-11-04 Inoac Gijutsu Kenkyusho:Kk Carbon material composite particle and method for producing the same
JP2015138633A (en) * 2014-01-22 2015-07-30 三菱マテリアル株式会社 Conductive assistant for negative electrode, composite material electrode, and lithium ion secondary battery
JP2015140276A (en) * 2014-01-28 2015-08-03 ニッタ株式会社 Composite particle and molded article
CN105152129A (en) * 2015-09-23 2015-12-16 厦门理工学院 Method for preparing tungsten-carbon nano composite particle material
JP2017095555A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Filler complex and thermosetting material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329414A (en) * 1998-03-31 1999-11-30 Aventis Res & Technol Gmbh & Co Kg Lithium battery and electrode
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2001196064A (en) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and its preparation
JP2003086174A (en) * 2001-06-25 2003-03-20 Hosokawa Micron Corp Composite particle material for electrode, electrode plate, and method of manufacturing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329414A (en) * 1998-03-31 1999-11-30 Aventis Res & Technol Gmbh & Co Kg Lithium battery and electrode
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2001196064A (en) * 1999-12-10 2001-07-19 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery and its preparation
JP2003086174A (en) * 2001-06-25 2003-03-20 Hosokawa Micron Corp Composite particle material for electrode, electrode plate, and method of manufacturing

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054066A (en) * 2004-08-10 2006-02-23 Toray Ind Inc Conductive particle and composition for anisotropic conductive material
WO2006132603A1 (en) * 2005-06-07 2006-12-14 Nanomaterials Technology Pte Ltd Process for forming dispersant-coated carbon particles
JP2008542517A (en) * 2005-06-07 2008-11-27 ナノマテリアルズ テクノロジー ピーティーイー エルティディ Method for producing carbon particles coated with dispersant
JP2009521082A (en) * 2005-12-23 2009-05-28 コミツサリア タ レネルジー アトミーク Carbon nanotubes and silicon-based materials that can be used as cathodes for lithium batteries
JP2007277691A (en) * 2006-04-11 2007-10-25 Showa Denko Kk Carbon fiber-reinforced aluminum composite material and its production method
JP2007302781A (en) * 2006-05-11 2007-11-22 Teijin Techno Products Ltd Carbon nanotube-containing aromatic polyamide composition, its production method and fiber
US7988896B2 (en) 2006-08-09 2011-08-02 Tsinghua University Method of preparing carbon nanotube/polymer composite material
JPWO2009008516A1 (en) * 2007-07-11 2010-09-09 御国色素株式会社 Granule of carbon nanotube and method for producing the same
WO2009008516A1 (en) * 2007-07-11 2009-01-15 Mikuni Shikiso Kabushiki Kaisha Granulated product of carbon nanotube, and method for production thereof
WO2011125327A1 (en) * 2010-04-05 2011-10-13 株式会社イノアック技術研究所 Particles containing carbon material, and process for production thereof
JP2011230995A (en) * 2010-04-05 2011-11-17 Inoac Gijutsu Kenkyusho:Kk Carbon material composite particle and method for producing the same
JP2011219342A (en) * 2010-08-26 2011-11-04 Inoac Gijutsu Kenkyusho:Kk Carbon material composite particle and method for producing the same
JP2015138633A (en) * 2014-01-22 2015-07-30 三菱マテリアル株式会社 Conductive assistant for negative electrode, composite material electrode, and lithium ion secondary battery
JP2015140276A (en) * 2014-01-28 2015-08-03 ニッタ株式会社 Composite particle and molded article
CN105152129A (en) * 2015-09-23 2015-12-16 厦门理工学院 Method for preparing tungsten-carbon nano composite particle material
JP2017095555A (en) * 2015-11-19 2017-06-01 積水化学工業株式会社 Filler complex and thermosetting material

Similar Documents

Publication Publication Date Title
JP4697829B2 (en) Carbon nanotube composite molded body and method for producing the same
CA2600311C (en) Composite material
JP3850427B2 (en) Carbon fiber bonded body and composite material using the same
Kim et al. Critical size of a nano SnO2 electrode for Li-secondary battery
JP2005014201A (en) Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method
JP4973569B2 (en) Fibrous carbon-based material insulator, resin composite including the same, and method for producing fibrous carbon-based material insulator
Choudhary et al. Carbon nanotubes and their composites
EP1950768A1 (en) Electrically conductive sheet
KR101157451B1 (en) Effective dispersion of carbon nano material to generate electrically high performance polymer
JPWO2010002004A1 (en) Carbon fiber and composite materials
JP2016195103A (en) Composite conductive particle and method for producing the same, and conductive resin
US20110045273A1 (en) Composite material
EP1950253A1 (en) Recycled composite material
CN110063004A (en) Battery with low output voltage
KR20180024915A (en) Porous carbon microball including surface-treated carbon material, method of manufacturing the porous carbon microball, and composite including the porous carbon microball
JP2004277637A (en) Conductive resin composition, fuel cell separator and method for producing fuel cell separator
JP2007119647A (en) Composite material
Haghighi Poudeh et al. Design of Pt-supported 1D and 3D multilayer graphene-based structural composite electrodes with controlled morphology by core–shell electrospinning/electrospraying
US10647857B2 (en) Method and resins for creating electrically-conductive objects
US11152620B2 (en) Process for producing porous graphene particulate-protected anode active materials for lithium batteries
JP4564305B2 (en) Thermosetting resin composition containing carbon nanostructure and method for producing the same
Poyraz et al. Microwave energy-based manufacturing of hollow carbon nanospheres decorated with carbon nanotubes or metal oxide nanowires
KR100585222B1 (en) Manufaturing method for providing metal assemble homogeneously combined with carbon nanotube
JP4967535B2 (en) Nanocarbon paste and method for producing nanocarbon emitter
Sharma et al. Carbon nanotube composites: critical issues

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803