JP2000057934A - Carbon-based super fine cold-cathode and manufacture thereof - Google Patents

Carbon-based super fine cold-cathode and manufacture thereof

Info

Publication number
JP2000057934A
JP2000057934A JP30125998A JP30125998A JP2000057934A JP 2000057934 A JP2000057934 A JP 2000057934A JP 30125998 A JP30125998 A JP 30125998A JP 30125998 A JP30125998 A JP 30125998A JP 2000057934 A JP2000057934 A JP 2000057934A
Authority
JP
Japan
Prior art keywords
carbon
substrate
cold cathode
electric field
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30125998A
Other languages
Japanese (ja)
Other versions
JP4008123B2 (en
Inventor
Saki Imada
早紀 今田
Masaaki Hirakawa
正明 平川
Hirohiko Murakami
村上  裕彦
Hiroyuki Yamakawa
洋幸 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP30125998A priority Critical patent/JP4008123B2/en
Publication of JP2000057934A publication Critical patent/JP2000057934A/en
Application granted granted Critical
Publication of JP4008123B2 publication Critical patent/JP4008123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a super fine and high density electron emitting source with a very simple structure by directly depositing the predetermined carbon- based material on the surface of a board at the predetermined position with a plasma CVD method or, desirably, an electric field applying type plasma CVD method. SOLUTION: Depositing condition of the reaction gas and the applying voltage is appropriately selected, and a carbon nano tube or an amorphous carbon is deposited by an electric field applying plasma CVD method at the predetermined position of a board made of silicon or the like having a small coefficient of diffusion of carbon while previously including Ni, Fe, Co or the alloy thereof or adhering them to the surface, and thereafter, high electric field treatment is performed in the vacuum for aging. At this stage, a desirable characteristic can be obtained by controlling the grain diameter of the fine grain of the assistant such as Ni as the catalyst and the diffusion density, and depositing time and diffusion density of the super fine grain assistant metal are appropriately set so as to control the diffusion density and size of a cold-cathode, and the depositing time at this stage is set at 10-20 minutes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷陰極及びその作
製方法に関するものである。特に、真空デバイス用途、
ディスプレイ用途などに利用される炭素系超微細冷陰極
(以下、冷陰極チップとも称す)及びその作製方法に関
するものである。
The present invention relates to a cold cathode and a method for manufacturing the same. In particular, vacuum device applications,
The present invention relates to a carbon-based ultrafine cold cathode (hereinafter, also referred to as a cold cathode chip) used for display applications and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】冷陰極とは、加熱することなしに電子が
放出される陰極である。陰極材料としては今までSiチ
ップやMoチップ、ダイヤモンドチップ、多結晶ダイヤ
モンド薄膜、あるいはカーボンナノチューブ塗布膜など
が検討されてきた。
2. Description of the Related Art A cold cathode is a cathode from which electrons are emitted without heating. As a cathode material, a Si chip, a Mo chip, a diamond chip, a polycrystalline diamond thin film, a carbon nanotube coating film, and the like have been studied.

【0003】SiチップやMoチップ、ダイヤモンドチ
ップなどは、ICチップなどを作製する薄膜技術を応用
して、Si、Mo、ダイヤモンドなどを円錐状やビラミ
ッド状に加工して得られる。たとえば、J. Appl. Phys.
Vol.47, No.12, p.5248(1996)に記載されているよう
に、円錐状のMoをSi基板上に形成する場合、まずS
i基板上に厚さ1μm程度の絶縁体の膜と厚さ0.5μ
m程度の金属ゲート膜を形成し、その上にレジスト膜を
形成して直径2μm程度のホールパターンをリソグラフ
ィ技術などにより作製し、直下の金属ゲート膜および絶
縁体膜をエッチングし、Si基板を露出させる。この基
板を基板面の垂線を軸として回転させながら斜め方向か
ら剥離膜の蒸着を行う。斜め方向からの蒸着により、金
属ゲート膜の開口部の側面にも剥離膜が堆積する。エミ
ッタ材料であるMoの堆積においては、Mo原子が自ら
開口部を徐々にふさぎながらホール内に堆積するように
蒸着方向を調整する。この後、剥離膜とともにホール外
に堆積した余分なMo膜を除去してエミッタを作製す
る。この方法で作製したエミッタでディスプレイ用途の
ものは現在100V/μmの電界で駆動する。
[0003] Si chips, Mo chips, diamond chips, and the like are obtained by processing Si, Mo, diamond, and the like into a conical shape or a viramid shape by applying a thin film technology for manufacturing an IC chip or the like. For example, J. Appl. Phys.
Vol. 47, No. 12, p. 5248 (1996), when conical Mo is formed on a Si substrate, first, S
An insulator film having a thickness of about 1 μm and a thickness of 0.5 μm on an i-substrate.
A metal gate film of about m is formed, a resist film is formed thereon, a hole pattern having a diameter of about 2 μm is formed by lithography technology, and the metal gate film and the insulator film immediately below are etched to expose the Si substrate. Let it. While rotating the substrate around a perpendicular line of the substrate surface, deposition of a release film is performed from an oblique direction. Due to the oblique evaporation, a release film is deposited on the side surface of the opening of the metal gate film. In the deposition of Mo as the emitter material, the deposition direction is adjusted so that Mo atoms are gradually deposited in the hole while gradually closing the opening. Thereafter, an excess Mo film deposited outside the hole together with the peeling film is removed to form an emitter. Emitters manufactured by this method for display use are currently driven by an electric field of 100 V / μm.

【0004】また、基板上一面に、プラズマCVD法、
熱フィラメント法などにより多結晶ダイヤモンド薄膜を
形成させてこれを冷陰極とするものは、複雑な工程はな
いが、プラズマCVD法では成膜中の投入パワーが非常
に大きく(数kW以上)、また良質のダイヤモンド膜を
必要な膜厚(数十〜百μm)に成長させるためには数時
間から数十時間を要するため、エネルギー消費量も大き
い。熱フィラメント法においては、膜質と膜厚分布がフ
ィラメントの形状に敏感であるため、大面積化が困難で
ある。また、いずれの方法も、突起部の密度制御、形状
制御が非常に難しいため、電子放出点の高密度化も難し
い。
Further, a plasma CVD method,
In the case where a polycrystalline diamond thin film is formed by a hot filament method or the like and used as a cold cathode, there is no complicated process. However, in the plasma CVD method, the input power during film formation is very large (several kW or more). It takes several hours to several tens of hours to grow a high quality diamond film to a required film thickness (several tens to hundreds of μm), so that the energy consumption is large. In the hot filament method, it is difficult to increase the area because the film quality and the film thickness distribution are sensitive to the shape of the filament. Also, in any of the methods, since it is very difficult to control the density and shape of the protrusions, it is also difficult to increase the density of electron emission points.

【0005】また、カーボンナノチューブを電子放出源
として利用する冷陰極の場合には、あらかじめカ−ボン
ナノチューブをアーク放電法やグラファイトへのレーザ
照射法により別個に作製し、精製した後、このカーボン
ナノチューブを導電性の接着剤で金属基板上に固定して
使用している。
In the case of a cold cathode using carbon nanotubes as an electron emission source, carbon nanotubes are separately prepared in advance by an arc discharge method or a laser irradiation method on graphite, and then purified. Is fixed on a metal substrate with a conductive adhesive.

【0006】[0006]

【発明が解決しようとする課題】このように、既存の技
術で冷陰極チップを作製するには、非常に多くの複雑な
プロセスと多くの時間を必要とし、駆動電界は100V
/μmと高く、また使用する基板自身が非常に高価であ
るという問題がある。
As described above, the fabrication of a cold cathode chip by the existing technology requires a very large number of complicated processes and a lot of time, and the driving electric field is 100 V.
/ Μm, and the substrate used is very expensive.

【0007】また、上述のような既存技術で冷陰極チッ
プを作製した場合、最も小さいものでもチップ径は1μ
m程度である。このようなチップを用いてディスプレイ
を作製した場合、1ドットの映像を数個から数十個のチ
ップで構成することになり、冷陰極チップ一つ一つの信
頼性と寿命がきわめて重要になる。言い換えれば、冷陰
極チッブが放電や残留ガスによりスパッタされ破損した
場合、たとえそれが一つのチッブであっても画像に大き
な影響を与える。
Further, when a cold cathode chip is manufactured by the above-mentioned existing technology, the chip diameter of the smallest one is 1 μm.
m. When a display is manufactured using such a chip, one dot image is composed of several to several tens of chips, and the reliability and life of each cold cathode chip is extremely important. In other words, when the cold cathode chip is sputtered and damaged by the discharge or residual gas, even a single chip has a great effect on the image.

【0008】さらに、いずれの既存の方法も、使用可能
な基板は各方法それぞれに制限があり、かつ単結晶S
i、Moなど高価なものに限られるため、実用的でない
という問題があり、安価な基板を使用できる方法の開発
が望まれている。
Further, in any of the existing methods, usable substrates are limited in each method, and the single crystal S
Since it is limited to expensive materials such as i and Mo, there is a problem that it is not practical, and development of a method that can use an inexpensive substrate is desired.

【0009】また、カーボンナノチューブを電子放出源
として利用する場合、別に形成されたカーボンナノチュ
ーブを接着剤を用いて基板上に接着・固定する余分のプ
ロセスを必要とするという問題がある。
[0009] Further, when the carbon nanotube is used as an electron emission source, there is a problem that an extra process of bonding and fixing a separately formed carbon nanotube on a substrate using an adhesive is required.

【0010】本発明の目的は、上記のような既存技術の
持つ問題点を解決するもので、高密度で微細な、また低
電界で駆動できる炭素系超微細冷陰極及びその冷陰極を
非常に簡単なプロセスで作製する方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the existing technology, and to provide a carbon-based ultrafine cold cathode which can be driven at a high density and fineness and at a low electric field, and a cold cathode thereof. An object of the present invention is to provide a method for manufacturing by a simple process.

【0011】[0011]

【課題を解決するための手段】本発明は、既存の技術と
は異なる非常に簡単な手法で、超微細かつ高密度の電子
放出源を基板表面上に作製するものである。
According to the present invention, an ultra-fine and high-density electron emission source is formed on a substrate surface by a very simple technique different from existing techniques.

【0012】本発明の炭素系超微細冷陰極は、基板上の
所定の電極形成位置に、該基板上に直接形成せしめたカ
ーボンナノチューブ又はアモルファスカーボンを電子放
出源として有するものである。このカーボンナノチュー
ブ又はアモルファスカーボンは、プラズマCVD法、好
ましくは電界印加型プラズマCVD法により形成された
ものである。
The ultrafine carbon-based cold cathode of the present invention has, as an electron emission source, a carbon nanotube or amorphous carbon formed directly on a substrate at a predetermined electrode forming position on the substrate. This carbon nanotube or amorphous carbon is formed by a plasma CVD method, preferably an electric field application type plasma CVD method.

【0013】本発明の炭素系超微細冷陰極の作製方法
は、プラズマCVD法、好ましくは電界印加型プラズマ
CVD法により、陰極上に載置した基板表面に、直接、
カーボンナノチューブ又はアモルファスカーボンを堆積
することにより、この堆積層を電子放出源とする炭素系
超微細冷陰極を得るものである。このカーボンナノチュ
ーブ又はアモルファスカーボンの堆積層を形成するため
に、助剤として、高温の水素雰囲気中で触媒作用を持つ
金属、例えばNi、Fe、Co又はこれらの金属の少な
くとも2種からなる合金を利用することが望ましい。こ
ららの助剤は、例えばあらかじめ前記基板の表面上に付
着された形態で利用されるか、前記カーボンナノチュー
ブ若しくはアモルファスカーボンの堆積中に同時に前記
基板の表面上に付着されるようにして利用されか、又は
あらかじめ前記基板中に含有された形態で利用されるの
が望ましい。助剤として、超微粒子の形態を有するもの
を用いる場合には、この助剤を基板の表面上に一様に散
布することによって利用してもよい。
[0013] The method for producing a carbon-based ultrafine cold cathode of the present invention is characterized in that a plasma CVD method, preferably an electric field-applied plasma CVD method, is applied directly to the surface of a substrate placed on the cathode.
By depositing carbon nanotubes or amorphous carbon, a carbon-based ultrafine cold cathode using this deposited layer as an electron emission source is obtained. In order to form this carbon nanotube or amorphous carbon deposited layer, a metal having a catalytic action in a high-temperature hydrogen atmosphere, for example, Ni, Fe, Co or an alloy composed of at least two of these metals is used as an auxiliary agent. It is desirable to do. These auxiliaries are used, for example, in a form previously attached to the surface of the substrate, or used so that they are simultaneously attached to the surface of the substrate during the deposition of the carbon nanotubes or amorphous carbon. Alternatively, it is desirable to use it in a form previously contained in the substrate. When an auxiliary having a form of ultrafine particles is used, the auxiliary may be uniformly dispersed on the surface of the substrate.

【0014】高温の水素雰囲気中で触媒作用を持つ金属
を助剤として含有する基板の場合は、その基板表面が凹
凸を有するものであることが望ましく、また、基板形状
は板状のみならずメッシュ状であってもワイヤ状であっ
てもよい。
In the case of a substrate containing a metal having a catalytic action in a high-temperature hydrogen atmosphere as an auxiliary agent, it is desirable that the surface of the substrate has irregularities. Shape or wire shape.

【0015】また、上記冷陰極作製方法に従ってカーボ
ンナノチューブ又はアモルファスカーボンを基板上に堆
積した後、この基板を真空中で高電界印加処理をして、
低電界で効率よく電子を放出せしめる陰極とすることが
可能となる。
After depositing carbon nanotubes or amorphous carbon on a substrate according to the above-described cold cathode manufacturing method, the substrate is subjected to a high electric field application treatment in a vacuum,
It is possible to provide a cathode that can efficiently emit electrons in a low electric field.

【0016】[0016]

【発明の実施の形態】以下本発明の実施の形態を説明す
る。
Embodiments of the present invention will be described below.

【0017】本発明によれば、具体的には、カーボンナ
ノチューブ又はアモルファスカーボンを、プラズマCV
D法、好ましくは電界印加型プラズマCVD法により、
基板の表面上の所定の位置に直接形成せしめて、電子放
出源とするものである。電界印加型プラズマCVD法に
より、カーボンナノチューブ又はアモルファスカーボン
を高い成長速度で基板表面上に堆積させることができ
る。使用しうる基板としては特に限定されないが、寿命
の観点からは、炭素の拡散係数が小さい基板が好まし
い。また、導電性の基板及び絶縁性の基板の両方とも用
いることができるが、絶縁性の基板を用いる場合は、あ
らかじめカーボンナノチューブ若しくはアモルファスカ
ーボンの層へ電子を注入するための電極及び電流回路を
別に形成しておくか、又はカーボンナノチューブ若しく
はアモルファスカーボンの層そのものをパターン加工し
て電極や電流回路に使用することも可能である。この場
合は、使用可能なシート抵抗値となるまで堆積層を成長
させなくてはならないが、あらかじめ電極形成した基板
を用いる場合は、カーボンナノチューブ又はアモルファ
スカーボンのウィスカーは島状に点在している状態のも
のでもよい。基板としては、例えば、石英基板、アルミ
ナ基板、シリコン基板、Mo基板、SUS基板、Ni−
Fe合金基板等を使用することができる。
According to the present invention, specifically, a carbon nanotube or amorphous carbon is treated with plasma CV
D method, preferably by an electric field applied plasma CVD method,
An electron emission source is formed directly at a predetermined position on the surface of the substrate. By the electric field application type plasma CVD method, carbon nanotubes or amorphous carbon can be deposited on the substrate surface at a high growth rate. The substrate that can be used is not particularly limited, but a substrate having a small carbon diffusion coefficient is preferable from the viewpoint of life. In addition, although both a conductive substrate and an insulating substrate can be used, when an insulating substrate is used, an electrode and a current circuit for injecting electrons into a carbon nanotube or amorphous carbon layer are separately provided in advance. It is also possible to form the carbon nanotube or the amorphous carbon layer itself in a pattern processing and use it for an electrode or a current circuit. In this case, the deposited layer must be grown until a usable sheet resistance value is obtained, but when a substrate on which electrodes are formed in advance is used, whiskers of carbon nanotubes or amorphous carbon are scattered in an island shape. It may be in a state. As the substrate, for example, a quartz substrate, an alumina substrate, a silicon substrate, a Mo substrate, a SUS substrate, a Ni-
An Fe alloy substrate or the like can be used.

【0018】本発明の方法においては、カーボンナノチ
ューブ又はアモルファスカーボンの堆積層を形成する際
に、助剤として、高温の水素雰囲気中で触媒作用を持つ
金属、例えばNi、Fe、Co、又はこれらの金属の少
なくとも2種からなる合金を、例えば以下述べるような
態様で使用すると、基板表面上に、炭化水素系の原料ガ
スから該カーボンナノチューブ又はアモルファスカーボ
ンのウィスカーを容易に成長させることができる。
In the method of the present invention, when forming a deposited layer of carbon nanotubes or amorphous carbon, a metal having a catalytic action in a high-temperature hydrogen atmosphere, such as Ni, Fe, Co, or a metal having a catalytic action, is used as an auxiliary agent. When an alloy composed of at least two kinds of metals is used, for example, in the manner described below, whiskers of the carbon nanotubes or amorphous carbon can be easily grown on a substrate surface from a hydrocarbon-based source gas.

【0019】例えば、助剤が、あらかじめ基板中に含有
された形態で利用される場合には、基板全体にカーボン
ナノチューブ又はアモルファスカーボンのウイスカーを
成長させることができる。この場合、助剤の含有量によ
り、ウイスカーの成長(堆積)密度をコントロールし、
高くすることも可能であるが、基板表面に対する垂直成
長の割合は低い。
For example, when the assistant is used in a form in which it is contained in the substrate in advance, whiskers of carbon nanotubes or amorphous carbon can be grown on the entire substrate. In this case, the growth (deposition) density of the whisker is controlled by the content of the auxiliary agent,
Although it can be increased, the ratio of vertical growth to the substrate surface is low.

【0020】また、助剤が、あらかじめ基板の表面上に
付着された形態で利用されるか、又はカーボンナノチュ
ーブ若しくはアモルファスカーボンの堆積中に同時に基
板の表面上に付着されるようにして利用される場合に
は、このように基板表面に助剤を付着させることで、カ
ーボンナノチューブ又はアモルファスカーボンウイスカ
ーの基板に対する垂直成分を増加させることが可能とな
る。助剤を基板の所定の位置に付着せしめて利用する場
合には、反応ガス、印加電圧などの実験条件を適切に選
択することにより、マスク材などを一切用いずに、カー
ボンナノチューブ又はアモルファスカーボンを直接に基
板表面に対して垂直に堆積させることができる。これら
の条件は、例えば、マイクロ波電力:約600W、基板
温度:800〜900℃、反応圧力(堆積圧力):1.
33〜2.66×103 Pa、反応時間(堆積時間):
約15分、堆積中の基板側の印加電圧:−250Vであ
る。
The auxiliaries are used in the form of being deposited on the surface of the substrate in advance, or in such a manner that they are simultaneously deposited on the surface of the substrate during the deposition of carbon nanotubes or amorphous carbon. In such a case, by attaching the auxiliary agent to the substrate surface in this way, it is possible to increase the vertical component of the carbon nanotubes or amorphous carbon whiskers with respect to the substrate. When the auxiliary agent is used by attaching it to a predetermined position on the substrate, the carbon nanotubes or the amorphous carbon can be obtained without using a mask material at all by appropriately selecting experimental conditions such as a reaction gas and an applied voltage. It can be deposited directly perpendicular to the substrate surface. These conditions are, for example, microwave power: about 600 W, substrate temperature: 800 to 900 ° C., reaction pressure (deposition pressure): 1.
33 to 2.66 × 10 3 Pa, reaction time (deposition time):
The applied voltage on the substrate side during the deposition is about -250 V for about 15 minutes.

【0021】助剤の基板表面への付着方法としては、例
えば、スパッタ、メッキ、有機金属化合物の塗布後焼成
等の方法がある。例えば、スパッタの初期過程で成膜を
止めると、基板上で助剤が島状の分布となり、ウイスカ
ーの成長密度は小さくなるが、基板に対する垂直成長の
割合が高くなる。
Examples of the method for attaching the auxiliary agent to the substrate surface include methods such as sputtering, plating, and application and baking of an organometallic compound. For example, if the film formation is stopped in the initial stage of the sputtering, the auxiliary agent becomes an island-like distribution on the substrate, and the growth density of the whiskers decreases, but the ratio of vertical growth to the substrate increases.

【0022】助剤が超微粒子の形態を有するものである
場合、該超微粒子を基板上に一様に散布して利用する
が、この際に、超微粒子の粒径や粒径分布及び散布密度
を制御することで所望の特性を得ることができる。
When the auxiliary agent is in the form of ultrafine particles, the ultrafine particles are uniformly dispersed on the substrate and used. At this time, the particle size, particle size distribution and distribution density of the ultrafine particles are used. , The desired characteristics can be obtained.

【0023】また、堆積時間や触媒金属超微粒子のサイ
ズ、分散密度を適切に設定することで、冷陰極の分散密
度やサイズが制御できる。一般的には、堆積時間10〜
20分、金属超微粒子の粒径5〜20nmである。さら
に、リソグラフィ技術などを用いて、金属超微粒子の堆
積位置を制御することで、冷陰極の形成位置を制御する
ことができる。
The dispersion density and size of the cold cathode can be controlled by appropriately setting the deposition time and the size and dispersion density of the ultrafine catalytic metal particles. Generally, a deposition time of 10
The metal ultrafine particles have a particle size of 5 to 20 nm for 20 minutes. Further, by controlling the deposition position of the ultrafine metal particles using a lithography technique or the like, the formation position of the cold cathode can be controlled.

【0024】さらに、本発明によれば、超微細かつ高密
度の低電界駆動炭素系冷陰極を基板面上に作製すること
ができる。具体的には、上記したように、反応ガス、印
加電圧などの堆積条件を適切に選択し、カーボンナノチ
ューブ又はアモルファスカーボンを、Ni、Fe、C
o、又はこれらの金属の少なくとも2種からなる合金な
どの触媒効果を利用して、電界印加型プラズマCVD法
等のプラズマCVD法により作製するものであり、基板
上に、該カーボンナノチューブ又はアモルファスカーボ
ンを堆積せしめた後、この基板を真空中で高電界印加処
理することにより、電子放出特性の経時的変動を低減す
ると共に、電子放出特性も向上させること、つまり効率
よく低電界で電子を放出することが可能となる冷陰極が
得られる。ここで、高電界印加処理は、いわゆるエージ
ングであり、通常駆動する電界より高い電界を数分から
数時間印加して処理するものであり、一般に4V/μm
〜20V/μm、好ましくは5V/μmの電界で、好ま
しくは1時間処理する。低電界とは、従来の冷陰極の駆
動電界(100V/μm)より低い電界であり、本発明
の場合、例えば1V/μm〜4V/μmをいう。この方
法の場合、高温水素雰囲気中で触媒作用をもつNi、F
e、Co、又はこれらの金属の少なくとも2種からなる
合金等を含む基板を使用することが好ましい。かかる基
板としては、例えば、SUS304、SUS302、S
US316などのステンレス鋼、NiとFeを含む合金
であるアンバー、パーマロイなどを使用することがで
き、これらは非常に安価である。
Further, according to the present invention, an ultrafine and high-density low-field-drive carbon-based cold cathode can be manufactured on a substrate surface. Specifically, as described above, the deposition conditions such as the reaction gas and the applied voltage are appropriately selected, and the carbon nanotube or the amorphous carbon is converted into Ni, Fe, C
o, or by using a catalytic effect such as an alloy composed of at least two of these metals, by a plasma CVD method such as an electric field application type plasma CVD method. After depositing, by applying a high electric field to the substrate in a vacuum, the variation over time of the electron emission characteristics can be reduced and the electron emission characteristics can be improved, that is, electrons can be efficiently emitted at a low electric field. Thus, a cold cathode is obtained. Here, the high electric field application processing is so-called aging, and is performed by applying an electric field higher than the electric field for normal driving for several minutes to several hours, and is generally 4 V / μm.
Treatment is performed in an electric field of 2020 V / μm, preferably 5 V / μm, preferably for 1 hour. The low electric field is an electric field lower than the driving electric field (100 V / μm) of the conventional cold cathode, and in the case of the present invention, refers to, for example, 1 V / μm to 4 V / μm. In this method, Ni, F having a catalytic action in a high-temperature hydrogen atmosphere are used.
It is preferable to use a substrate containing e, Co, or an alloy of at least two of these metals. Such substrates include, for example, SUS304, SUS302, S
Stainless steel such as US316, an alloy containing Ni and Fe, such as Invar and Permalloy, can be used, and these are very inexpensive.

【0025】前記基板としては、表面に凹凸を有してい
てもよい板状、メッシュ状、ワイヤー状等の各種形状の
基板が使用できる。基板表面に凹凸が付いている場合、
冷陰極駆動の際の電界印加時に、該基板凸部の先端には
電界が集中する。このため、この部分に冷電子放出源が
あれば、この冷電子放出源から優先的に電子放出が起こ
るので、同一平面上に冷電子放出源がある場合よりも、
さらに駆動電圧を低減することができる。また、メッシ
ュ状、ワイヤー状の場合は、そのサイズ、表面状態を適
切に選ぶことで、上記の凹凸処理された表面を有する基
板の場合と同じ効果が得られる。本発明の場合、厳密に
は点放出になるが、例えばディスプレイの画素のパター
ンと同じピッチの凸部集合体を、板状又はメッシュ状等
の冷陰極基板表面に形成して、蛍光体の位置と合わせる
ことで、微小電子銃が任意の個数で各画素に配置される
ことになる。
As the substrate, substrates having various shapes such as plate, mesh, wire, etc., which may have irregularities on the surface, can be used. If the board surface has irregularities,
When an electric field is applied at the time of driving the cold cathode, the electric field concentrates on the tip of the substrate projection. For this reason, if there is a cold electron emission source in this part, electron emission occurs preferentially from this cold electron emission source, so that compared to the case where there is a cold electron emission source on the same plane,
Further, the driving voltage can be reduced. In the case of a mesh or a wire, the same effects as in the case of the substrate having the surface subjected to the above-described unevenness treatment can be obtained by appropriately selecting the size and the surface state. In the case of the present invention, strictly speaking, point emission is performed. For example, a projection aggregate having the same pitch as the pattern of the pixels of the display is formed on the surface of the cold cathode substrate such as a plate or a mesh, and the position of the phosphor is determined. Therefore, an arbitrary number of micro electron guns are arranged in each pixel.

【0026】[0026]

【実施例】次に、本発明を実施例により図面を参照して
さらに詳細に説明するが、本発明はこれらの実施例によ
って何ら限定されるものではない。
Next, the present invention will be described in more detail by way of examples with reference to the drawings, but the present invention is not limited to these examples.

【0027】以下の実施例でカーボンナノチューブの形
成に用いた電界印加型プラズマCVD装置の概略を図1
に示す。真空室1内に陰極2及びこれと対抗してカソー
ド電極3を配置せしめ、陰極2上には基板4が載置され
る。真空室1に反応ガス源(H2、CH4)5、排気用真
空ポンプ6、マイクロ波プラズマ発生装置7を接続し、
また電極にDC電源8を接続するように構成されてい
る。かかる構成をとることにより電界印加型プラズマC
VD法により基板の表面にカーボンナノチューブを堆積
せしめることができる。このCVD装置としては、例え
ば S.Yugo et al.Appl. Phys. Lett.,58(1991)1038に記
載されている。 (実施例1)あらかじめ10〜20nm程度の粒径のN
i超微粒子を真空蒸着法により堆積させた、低電気抵抗
nタイプSi基板(縦5mm×横5mm×厚さ0.4m
m)上に、図1の装置を用いて、電界印加型プラズマC
VD法によりカーボンナノチューブを作製した。反応条
件としては、マイクロ波電力を600W、基板温度を8
50℃、反応ガスとしてCH410%/H2、反応圧力を
2.6×103Pa、反応時間を15分とした。堆積中
は基板側に−250Vの電圧を印加した。形成されたカ
ーボンナノチューブは、直径が10nmから30nm、
高さが200nmから500nmの針状で、すべて基板
表面に対して垂直であった(図2(A))。また、超微
粒子が堆積されていない部分にはカーボンナノチューブ
が形成されていなかった。この図2(A)は、本実施例
で得られた炭素系超微細冷陰極について、カーボンナノ
チューブの形成状態を示す走査型電子顕微鏡像(40゜
傾斜)の写真であり、図2(B)に示すように、該Si
基板表面にNi微粒子を堆積する際に基板の一部(X部
分)をマスキングして、Ni微粒子の堆積を排除し、基
板の他の部分(Y部分)にNi微粒子が堆積するように
したものである。しかし、実際にはマスキングが不十分
であったため、X部分にもNi微粒子が付着して、カー
ボンナノチューブ形成されてしまった。
FIG. 1 schematically shows an electric field application type plasma CVD apparatus used for forming carbon nanotubes in the following examples.
Shown in A cathode 2 and a cathode electrode 3 opposed thereto are arranged in a vacuum chamber 1, and a substrate 4 is mounted on the cathode 2. A reaction gas source (H 2 , CH 4 ) 5, an exhaust vacuum pump 6, and a microwave plasma generator 7 are connected to the vacuum chamber 1,
Further, a DC power supply 8 is connected to the electrodes. With this configuration, the electric field applied plasma C
By the VD method, carbon nanotubes can be deposited on the surface of the substrate. This CVD apparatus is described in, for example, S. Yugo et al. Appl. Phys. Lett., 58 (1991) 1038. (Example 1) N having a particle size of about 10 to 20 nm
Low electric resistance n-type Si substrate (5 mm long x 5 mm wide x 0.4 m thick) with i ultrafine particles deposited by vacuum evaporation
m) On top of this, using the apparatus of FIG.
Carbon nanotubes were produced by the VD method. The reaction conditions were: microwave power of 600 W, substrate temperature of 8
At 50 ° C., the reaction gas was CH 4 10% / H 2 , the reaction pressure was 2.6 × 10 3 Pa, and the reaction time was 15 minutes. During the deposition, a voltage of -250 V was applied to the substrate side. The formed carbon nanotube has a diameter of 10 nm to 30 nm,
Needles with a height of 200 nm to 500 nm were all perpendicular to the substrate surface (FIG. 2A). Further, no carbon nanotube was formed in the portion where the ultrafine particles were not deposited. FIG. 2A is a photograph of a scanning electron microscope image (40 ° tilt) showing the state of formation of carbon nanotubes for the ultrafine carbon-based cold cathode obtained in this example, and FIG. As shown in FIG.
Masking a part (X part) of the substrate when depositing Ni fine particles on the substrate surface, eliminating deposition of Ni fine particles, and depositing Ni fine particles on another part (Y part) of the substrate. It is. However, in practice, since the masking was insufficient, Ni fine particles also adhered to the X portion and carbon nanotubes were formed.

【0028】上記Ni超微粒子の代わりにFe超微粒
子、Co超微粒子又はNi−Fe合金超微粒子を真空蒸
着法により堆積させた該Si基板を用い、上記と同様に
処理したところ、同様のカーボンナノチューブが形成さ
れた。
Instead of the above-mentioned Ni ultra-fine particles, using the Si substrate on which Fe ultra-fine particles, Co ultra-fine particles or Ni-Fe alloy ultra-fine particles were deposited by a vacuum evaporation method, the same treatment was performed. Was formed.

【0029】このようにしてカーボンナノチューブを形
成した基板のうち、Ni超微粒子を用いて得た基板につ
いて、この基板と、基板の上方500μmの位置に基板
に平行になるように固定したアノードとを、2.6×1
-5Paの真空中に置き、アノードに0から2000V
の正電圧をかけて電子放出特性を調べたところ、500
V(1.0V/μm)を過ぎると電子の放出が始まり、
2000V(4.0V/μm)印加時に100μAの放
出電流が得られた(図3)。また、印加電圧2000V
のまま、アノードと基板との距離を300μmまで近づ
けると(6.7V/μm)、1mAまで放出電流が増加
し、I−V特性が基板とアノードとの間の距離に依存す
ることがわかった。 (実施例2)低電気抵抗nタイプSi基板(縦5mm×
横5mm×厚さ0.4mm)側面の周辺にこの基板を囲
むように所定の大きさのSUS304板(厚さ0.5m
m)を設置し、図1の装置を用いて、基板上に電界印加
型プラズマCVD法によりカーボンナノチューブを作製
した。カーボンナノチューブ形成のための助剤としての
Ni、Feの金属超微粒子の供給は、SUS304板か
らカーボンナノチューブの堆積中に同時に行われる。即
ち、電界により基板方向に引き込まれるイオンにより、
SUS304板の表面がスパッタされ、Si基板上に再
付着した粒子が助剤として働く。反応条件としては、マ
イクロ波電力を600W、基板温度を850℃、反応ガ
スとしてCH410%/H2、反応圧力を2.6×103
Pa、反応時間を15分とした。堆積中は基板側に−2
50Vの電圧を印加した。形成されたカーボンナノチュ
ーブは、直径が10nmから30nm、高さが200n
mから500nmで、すべて基板表面に対して垂直であ
った。また、カーボンナノチューブの形成される場所
は、基板周囲に置いたSUS304板の配置形状を反映
していた。
Among the substrates on which carbon nanotubes have been formed in this way, for the substrate obtained by using Ni ultrafine particles, this substrate and an anode fixed at 500 μm above the substrate so as to be parallel to the substrate are used. 2.6 × 1
0 -5 Pa placed in vacuum, 2000V from 0 to anode
The electron emission characteristics were examined by applying a positive voltage of
After V (1.0 V / μm), emission of electrons starts,
When 2000 V (4.0 V / μm) was applied, an emission current of 100 μA was obtained (FIG. 3). In addition, an applied voltage of 2000 V
When the distance between the anode and the substrate was reduced to 300 μm (6.7 V / μm), the emission current increased to 1 mA, and it was found that the IV characteristics depended on the distance between the substrate and the anode. . (Example 2) Low electric resistance n-type Si substrate (5 mm long ×
A SUS304 plate (0.5 m thick) of a predetermined size is provided around the side of the side of 5 mm x 0.4 mm thickness to surround this substrate.
m) was installed, and carbon nanotubes were produced on the substrate by an electric field application type plasma CVD method using the apparatus of FIG. The supply of the metal ultrafine particles of Ni and Fe as an auxiliary agent for forming carbon nanotubes is simultaneously performed during the deposition of carbon nanotubes from the SUS304 plate. That is, by the ions drawn toward the substrate by the electric field,
The surface of the SUS304 plate is sputtered, and the particles re-adhering to the Si substrate serve as an auxiliary. The reaction conditions were as follows: microwave power of 600 W, substrate temperature of 850 ° C., reaction gas of CH 4 10% / H 2 , and reaction pressure of 2.6 × 10 3.
Pa and the reaction time were 15 minutes. -2 on the substrate side during deposition
A voltage of 50 V was applied. The formed carbon nanotube has a diameter of 10 nm to 30 nm and a height of 200 n.
m to 500 nm, all perpendicular to the substrate surface. The location where the carbon nanotubes were formed reflected the arrangement of the SUS304 plate placed around the substrate.

【0030】このカーボンナノチューブを形成した基板
と、基板の上方400μmの位置に基板に平行になるよ
うに固定したアノードとを、2.6×10-5Paの真空
中に置き、アノードに0から2000Vの正電圧をかけ
て電子放出特性を調べたところ、800V(2.0V/
μm)から電子放出が始まり、2000V(5.0V/
μm)印加時に121μAの放出電流を得た。印加電圧
を2000Vにして、基板とアノードとの間の距離を2
50〜500μmの範囲内で変動させた場合、図4に示
すように、放出電流は基板とアノードとの距離に依存す
ることがわかった。 (実施例3)図1の装置を用い、SUS304基板(縦
5mm×横5mm×厚さ0.5mm)上に電界印加型プ
ラズマCVD法によりカーボンナノチューブ、アモルフ
ァスカーボンを作製した。反応条件としては、マイクロ
波電力を600W、基板温度を850℃、反応ガスとし
てCH430%/H2、反応圧力を2.6×103Pa、
反応時間を15分とした。堆積中は基板側に−250V
の電圧を印加した。形成された冷陰極は、直径が50n
mから200nm、長さが200nmから500nmの
針状であった(図5)。SUS基板の代わりにNi−F
e合金であるアンバーを基板として用いて、上記と同様
に処理して、同様の針状の超微細冷陰極が得られた。
The substrate on which the carbon nanotubes were formed and an anode fixed at 400 μm above the substrate so as to be parallel to the substrate were placed in a vacuum of 2.6 × 10 −5 Pa, and the anode When electron emission characteristics were examined by applying a positive voltage of 2000 V, 800 V (2.0 V /
μm), the electron emission starts at 2000 V (5.0 V /
μm) When applied, an emission current of 121 μA was obtained. When the applied voltage is 2000 V, the distance between the substrate and the anode is 2
When it was varied within the range of 50 to 500 μm, as shown in FIG. 4, it was found that the emission current depends on the distance between the substrate and the anode. Example 3 Using the apparatus of FIG. 1, carbon nanotubes and amorphous carbon were produced on an SUS304 substrate (5 mm long × 5 mm wide × 0.5 mm thick) by an electric field applied plasma CVD method. As reaction conditions, microwave power is 600 W, substrate temperature is 850 ° C., reaction gas is CH 4 30% / H 2 , reaction pressure is 2.6 × 10 3 Pa,
The reaction time was 15 minutes. -250 V on substrate side during deposition
Was applied. The formed cold cathode has a diameter of 50 n.
Needles were 200 to 500 nm in length and 200 to 500 nm in length (FIG. 5). Ni-F instead of SUS substrate
The same treatment was carried out in the same manner as described above using amber, which is an e-alloy, as a substrate, to obtain a similar needle-like ultrafine cold cathode.

【0031】上記のようにして炭素系超微細冷陰極を形
成したSUS304基板と、該基板の上方500μmの
位置に基板に平行になるように固定したアノードとを、
2.6×10-5Paの真空中に置き、アノードに0から
2000V以上の正電圧をかけて高電界処理による電子
放出特性を調べた。図6に示すように、1100V
(2.2V/μm)から電子放出が始まり、1300V
(2.6V/μm)印加時で10nA、2500V
(5.0V/μm)印加時に46μAの放出電流を得
た。この後、この5.0V/μmの状態に1時間保持し
たところ、放出電流値は46μAから413μAに上昇
した。次に、電圧を1600V(3.2V/μm)まで
下げると、放出電流は300μAになった。このことか
ら、高電界処理前の超微細冷陰極と比べて、高電界処理
した後の冷陰極はその電子放出特性が改善されており、
低電界での電流値が上昇し、極めて効率よく電子が放出
され得ることが分かった。このことは、基板としてNi
−Fe合金基板を使用した場合も同様の傾向を示した。 (実施例4)SUS304基板(縦5mm×横5mm×
厚さ1mm)の表面の半分に、図7に示すように、WC
製ペン型ガラス切りにより格子状に傷を付け、次いで、
実施例3記載の条件・手順に従って、この基板上に電界
印加型プラズマCVD法により針状の冷電子源を堆積し
た。
An SUS304 substrate on which a carbon-based ultrafine cold cathode was formed as described above, and an anode fixed at 500 μm above the substrate so as to be parallel to the substrate,
The sample was placed in a vacuum of 2.6 × 10 −5 Pa, a positive voltage of 0 to 2000 V or more was applied to the anode, and electron emission characteristics by high electric field treatment were examined. As shown in FIG.
(2.2 V / μm), electron emission starts at 1300 V
(2.6 V / μm) at the time of application of 10 nA, 2500 V
(5.0 V / μm), an emission current of 46 μA was obtained. Thereafter, when the state of 5.0 V / μm was maintained for 1 hour, the emission current value increased from 46 μA to 413 μA. Next, when the voltage was reduced to 1600 V (3.2 V / μm), the emission current became 300 μA. From this, compared with the ultra-fine cold cathode before the high electric field treatment, the cold cathode after the high electric field treatment has improved electron emission characteristics,
It has been found that the current value in a low electric field increases and electrons can be emitted very efficiently. This means that Ni
The same tendency was exhibited when a -Fe alloy substrate was used. (Example 4) SUS304 substrate (5 mm long x 5 mm wide x
WC on one half of the surface (thickness 1 mm) as shown in FIG.
Scratch in a grid by pen-shaped glass cutting, then
According to the conditions and procedures described in Example 3, a needle-like cold electron source was deposited on this substrate by an electric field application type plasma CVD method.

【0032】上記のようにして冷電子源を形成したSU
S304基板及び対照として傷つけ処理を施さないで同
様に冷陰極を形成したSUS304基板について、実施
例1と同様の配置で、アノードとして蛍光体を塗布した
TiO2膜付きガラス基板を用いて、基板−アノード間
距離500μmの条件で、電子放出による蛍光を観測し
た。その結果、傷つけ処理を施した基板の場合、傷つけ
処理を施した部分からの電子放出による蛍光は2.2V
/μmから観測でき、傷つけ処理を施していない部分か
らの蛍光は5.0V/μm付近から観測された。また、
対照としての全面傷付け処理なしの基板の場合、基板中
央部からの電子放出による蛍光は4.0V/μmから観
測された。図7に示した溝AはWC製ガラスペンの切り
傷跡であり、基板内部の切り傷のエッジ部Bで電界集中
が起こり、電子が放出し易くなったものであり、傷つけ
処理を施していない時は、基板の周辺部で電界集中が起
こっており、電子放出は周辺部の寄与が殆どであった。 (実施例5)SUS304基板(縦5mm×横5mm×
厚さ1mm)上にストライプ状の凸部を形成し、上記実
施例3と同じ条件で冷電子源を堆積した。この冷陰極基
板を、TiO2膜付きガラス基板上にストライプ状に形
成した蛍光体付きアノードと交差するように配置する
と、2極管型電界放出ディスプレイの表示部構成とな
り、本発明の冷陰極はディスプレイ用途に利用可能であ
る。
The SU having the cold electron source formed as described above
The S304 substrate and the SUS304 substrate on which a cold cathode was similarly formed without being subjected to a scratching process as a control were prepared by using a glass substrate with a TiO 2 film coated with a phosphor as an anode in the same arrangement as in Example 1. Under the condition of a distance between anodes of 500 μm, fluorescence due to electron emission was observed. As a result, in the case of the substrate subjected to the damage treatment, the fluorescence due to the emission of electrons from the part subjected to the damage treatment is 2.2 V.
/ Μm, and the fluorescence from the untreated portion was observed from around 5.0 V / μm. Also,
As a control, in the case of the substrate without the whole surface damage treatment, the fluorescence due to the electron emission from the central part of the substrate was observed from 4.0 V / μm. The groove A shown in FIG. 7 is a cut mark of a glass pen made of WC. The electric field concentration occurs at the edge B of the cut mark inside the substrate, and electrons are easily emitted. In (2), the electric field concentration occurred at the peripheral portion of the substrate, and the electron emission was mostly contributed by the peripheral portion. (Example 5) SUS304 substrate (5 mm long x 5 mm wide x
A stripe-shaped convex portion was formed on the substrate (thickness: 1 mm), and a cold electron source was deposited under the same conditions as in Example 3. When this cold cathode substrate is arranged so as to intersect with a phosphor-equipped anode formed in a stripe shape on a glass substrate with a TiO 2 film, the cold cathode substrate of the present invention has a display part configuration of a diode-type field emission display. It can be used for display applications.

【0033】[0033]

【発明の効果】本発明によれば、炭素系冷陰極チップを
作製するプロセスにおいて、従来のような円錐状あるい
はピラミッド状チップを作製するための複数のプロセス
を不要にし、従来の冷陰極チップの寸法の100分の1
程度(直径:数10nm程度)の炭素系超微細冷陰極チ
ップをも高密度で作製することができると共に、低電圧
駆動冷陰極チップを非常に高密度で作製することができ
る。
According to the present invention, in the process of manufacturing a carbon-based cold cathode chip, a plurality of processes for manufacturing a conical or pyramid-shaped chip as in the prior art are not required, and the conventional cold cathode chip can be manufactured. 1 / 100th of dimensions
It is possible to fabricate a carbon-based ultra-fine cold cathode chip of about (diameter: about several tens of nm) at a high density, and also to fabricate a low voltage driven cold cathode chip at a very high density.

【0034】本発明において助剤を基板上に付着せしめ
た場合は特に、カーボンナノチューブ又はアモルファス
カーボンが基板に対して垂直に形成され易いので、電界
集中が非常に効率よく起こり、数V/μmという、従来
の技術と比較して2桁低い電界で駆動できる低電界駆動
冷陰極が作製できる。
In the present invention, particularly when the auxiliary agent is adhered on the substrate, the carbon nanotubes or amorphous carbon are easily formed perpendicularly to the substrate, so that the electric field concentration occurs very efficiently, and is several V / μm. Thus, a cold cathode driven by a low electric field, which can be driven by an electric field two orders of magnitude lower than that of the prior art, can be manufactured.

【0035】また、本発明によれば、基板として、高温
水素雰囲気中で触媒作用を持つNi、Fe、Co又はこ
れらの金属の少なくとも2種の合金などを含むもの、例
えぱステンレス鋼、Ni−Fe合金からなる基板を用い
ることができ、これらの基板は非常に安価で取り扱いも
容易である。また、かかる基板を用いる場合、表面に凹
凸を有する板状基板や、メッシュ状、ワイヤ状の基板を
用いて基板上に冷電子源を形成せしめれば、駆動時の電
界集中がより効果的に起こり、駆動電圧が低減される冷
陰極が作製できる。
According to the present invention, a substrate containing Ni, Fe, Co or at least two alloys of these metals having a catalytic action in a high-temperature hydrogen atmosphere, such as stainless steel, Ni- Substrates made of an Fe alloy can be used, and these substrates are very inexpensive and easy to handle. In addition, when such a substrate is used, if a cold electron source is formed on a substrate using a plate-like substrate having an uneven surface or a mesh-like or wire-like substrate, the electric field concentration during driving can be more effectively reduced. As a result, a cold cathode with reduced driving voltage can be manufactured.

【0036】本発明の上述の特徴の複合的な効果によ
り、従来の冷陰極と比較して、長寿命の低電界駆動炭素
系超微細冷陰極が得られる。
Due to the combined effects of the above-mentioned features of the present invention, a carbon-based ultrafine cold cathode having a long life and a low electric field can be obtained as compared with a conventional cold cathode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1〜3で使用する電界印加型プラズマC
VD装置の概略を示す側面図。
FIG. 1 shows an electric field applied plasma C used in Examples 1 to 3.
The side view which shows the outline of a VD apparatus.

【図2】(A)実施例1で得られた炭素系超微細冷陰極
について、カーボンナノチューブの形成状態を示す走査
型電子顕微鏡像(40゜傾斜)の写真。 (B)図2(A)の写真のカーボンナノチューブの形成
位置を説明するための基板の模式的平面図。
FIG. 2 (A) is a scanning electron microscope image (40 ° tilt) of the ultrafine carbon-based cold cathode obtained in Example 1 showing the state of formation of carbon nanotubes. (B) A schematic plan view of the substrate for explaining the formation position of the carbon nanotube in the photograph of FIG. 2 (A).

【図3】実施例1で得られた炭素系冷陰極形成基板につ
いて、I−V特性の基板−アノード間距離依存性を示す
グラフ。
FIG. 3 is a graph showing the dependence of IV characteristics on the distance between the substrate and the anode for the carbon-based cold cathode forming substrate obtained in Example 1.

【図4】実施例2で得られた炭素系冷陰極形成基板につ
いて、基板−アノード間距離と放出電流との関係を示す
グラフ。
FIG. 4 is a graph showing the relationship between the substrate-anode distance and emission current for the carbon-based cold cathode forming substrate obtained in Example 2.

【図5】実施例3で得られた炭素系超微細冷陰極につい
て、カーボンナノチューブの形成状態を示す走査型電子
顕微鏡像(40゜傾斜)の写真。
FIG. 5 is a photograph of a scanning electron microscope image (40 ° tilt) showing the state of formation of carbon nanotubes for the carbon-based ultrafine cold cathode obtained in Example 3.

【図6】実施例3で得られた高電界処理された炭素系冷
陰極形成基板について、印加電界と放出電流との関係を
示すグラフ。
FIG. 6 is a graph showing a relationship between an applied electric field and an emission current for the carbon-based cold cathode forming substrate subjected to a high electric field treatment obtained in Example 3.

【図7】実施例4で用いた切り傷付き基板の表面状態を
示す走査型電子顕微鏡像の写真。
FIG. 7 is a photograph of a scanning electron microscope image showing the surface state of the substrate with cuts used in Example 4.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 裕彦 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 (72)発明者 山川 洋幸 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内 Fターム(参考) 5C035 BB01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirohiko Murakami 5-9-7 Tokodai, Tsukuba, Ibaraki Japan Inside Tsukuba Super Materials Research Laboratory, Japan Sky Technology Co., Ltd. (72) Inventor Hiroyuki Yamakawa 5 Tokodai, Tsukuba, Ibaraki -9-7 Japan Vacuum Engineering Co., Ltd. Tsukuba Super Materials Laboratory F-term (reference) 5C035 BB01

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 基板上の所定の電極形成位置に、該基板
上に直接形成せしめたカーボンナノチューブ又はアモル
ファスカーボンを電子放出源として有することを特徴と
する炭素系超微細冷陰極。
An ultra-fine carbon-based cold cathode comprising, as an electron emission source, a carbon nanotube or amorphous carbon directly formed on a substrate at a predetermined electrode formation position on the substrate.
【請求項2】 前記カーボンナノチューブ又はアモルフ
ァスカーボンが、プラズマCVD法により形成されたも
のである請求項1記載の炭素系超微細冷陰極。
2. The carbon-based ultrafine cold cathode according to claim 1, wherein said carbon nanotube or amorphous carbon is formed by a plasma CVD method.
【請求項3】 前記基板が、高温の水素雰囲気中で触媒
作用を持つ金属を含有し、かつ、基板表面が凹凸を有す
るものであることを特徴とする請求項1又は2記載の炭
素系超微細冷陰極。
3. The carbon-based superconductor according to claim 1, wherein the substrate contains a metal having a catalytic action in a high-temperature hydrogen atmosphere, and the substrate surface has irregularities. Fine cold cathode.
【請求項4】 プラズマCVD法により、陰極上に載置
した基板表面に、直接、カーボンナノチューブ又はアモ
ルファスカーボンを堆積し、この堆積層を電子放出源と
する炭素系超微細冷陰極を得ることを特徴とする炭素系
超微細冷陰極の作製方法。
4. A method of depositing carbon nanotubes or amorphous carbon directly on the surface of a substrate mounted on a cathode by a plasma CVD method and obtaining a carbon-based ultrafine cold cathode using the deposited layer as an electron emission source. Characteristic method for producing ultra-fine carbon-based cold cathode.
【請求項5】 前記カーボンナノチューブ又はアモルフ
ァスカーボンの堆積層形成のための助剤として、高温の
水素雰囲気中で触媒作用を持つ金属を利用することを特
徴とする請求項4記載の炭素系超微細冷陰極の作製方
法。
5. The ultrafine carbon-based material according to claim 4, wherein a metal having a catalytic action in a high-temperature hydrogen atmosphere is used as an auxiliary for forming the carbon nanotube or amorphous carbon deposited layer. How to make a cold cathode.
【請求項6】 前記助剤が、Ni、Fe、Co又はこれ
らの金属の少なくとも2種からなる合金であることを特
徴とする請求項5記載の炭素系超微細冷陰極の作製方
法。
6. The method for producing a carbon-based ultrafine cold cathode according to claim 5, wherein the auxiliary agent is Ni, Fe, Co or an alloy comprising at least two of these metals.
【請求項7】 前記助剤が、あらかじめ前記基板の表面
上に付着された形態で利用されるか、又は前記カーボン
ナノチューブ若しくはアモルファスカーボンの堆積中に
同時に前記基板の表面上に付着されるようにして利用さ
れることを特徴とする請求項5又は6記載の炭素系超微
細冷陰極の作製方法。
7. The method according to claim 1, wherein the auxiliary agent is used in a form previously deposited on the surface of the substrate, or is simultaneously deposited on the surface of the substrate during the deposition of the carbon nanotubes or amorphous carbon. The method for producing a carbon-based ultrafine cold cathode according to claim 5, wherein the cold cathode is used.
【請求項8】 前記助剤が超微粒子の形態を有するもの
であり、該超微粒子が前記基板の表面上に一様に散布す
ることによって利用されることを特徴とする請求項5〜
7のいずれかに記載の炭素系超微細冷陰極の作製方法。
8. The method according to claim 5, wherein the auxiliary has a form of ultrafine particles, and the ultrafine particles are used by being uniformly dispersed on the surface of the substrate.
8. The method for producing a carbon-based ultrafine cold cathode according to any one of 7.
【請求項9】 前記助剤が、あらかじめ前記基板中に含
有された形態で利用されることを特徴とする請求項5又
は6記載の炭素系超微細冷陰極の作製方法。
9. The method for producing a carbon-based ultrafine cold cathode according to claim 5, wherein the auxiliary agent is used in a form in which the auxiliary agent is previously contained in the substrate.
【請求項10】 前記基板が、高温の水素雰囲気中で触
媒作用を持つ金属を含有し、かつ、基板表面が凹凸を有
するものであることを特徴とする請求項4又は9記載の
炭素系超微細冷陰極の作製方法。
10. The carbon-based superconductor according to claim 4, wherein the substrate contains a metal having a catalytic action in a high-temperature hydrogen atmosphere, and the substrate surface has irregularities. Manufacturing method of fine cold cathode.
【請求項11】 前記カーボンナノチューブ又はアモル
ファスカーボンの堆積後、真空中で高電界印加処理を行
うことを特徴とする請求項4〜10のいずれかに記載の
炭素系超微細冷陰極の作製方法。
11. The method for producing a carbon-based ultrafine cold cathode according to claim 4, wherein a high electric field application treatment is performed in a vacuum after depositing the carbon nanotubes or amorphous carbon.
【請求項12】 前記プラズマCVD法が電界印加型プ
ラズマCVD法であることを特徴とする請求項4〜11
のいずれかに記載の炭素系超微細冷陰極の作製方法。
12. The plasma CVD method according to claim 4, wherein said plasma CVD method is an electric field applied plasma CVD method.
The method for producing a carbon-based ultrafine cold cathode according to any one of the above.
JP30125998A 1998-06-04 1998-10-22 Carbon-based ultrafine cold cathode and method for producing the same Expired - Fee Related JP4008123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30125998A JP4008123B2 (en) 1998-06-04 1998-10-22 Carbon-based ultrafine cold cathode and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-155697 1998-06-04
JP15569798 1998-06-04
JP30125998A JP4008123B2 (en) 1998-06-04 1998-10-22 Carbon-based ultrafine cold cathode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000057934A true JP2000057934A (en) 2000-02-25
JP4008123B2 JP4008123B2 (en) 2007-11-14

Family

ID=26483626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30125998A Expired - Fee Related JP4008123B2 (en) 1998-06-04 1998-10-22 Carbon-based ultrafine cold cathode and method for producing the same

Country Status (1)

Country Link
JP (1) JP4008123B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295047A (en) * 2000-04-10 2001-10-26 Ulvac Japan Ltd Carbon nanotube thin film deposition ecr plasma cvd system using slot antenna and method for depositing the same thin film
JP2002025477A (en) * 2000-07-07 2002-01-25 Ise Electronics Corp Surface display and its manufacturing method
EP1291890A2 (en) * 2001-09-10 2003-03-12 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
JP2003086085A (en) * 2001-09-13 2003-03-20 Sony Corp Method of manufacturing cold cathode field electron emission element, and method of manufacturing cold cathode field electron emission display device
US6645402B1 (en) * 1998-06-18 2003-11-11 Matsushita Electric Industrial Co., Ltd. Electron emitting device, electron emitting source, image display, and method for producing them
WO2004107825A1 (en) * 2003-05-30 2004-12-09 Tokyo Electron Limited Plasma source and plasma processing apparatus
JP2004356558A (en) * 2003-05-30 2004-12-16 Toshio Goto Apparatus and method for coating
JP2004362960A (en) * 2003-06-05 2004-12-24 Akio Hiraki Electron emitting element and manufacturing method of the same
KR100480663B1 (en) * 2001-12-21 2005-04-06 한국화학연구원 A method for synthesizing a carbon nanotube by modified inductively coupled plasma chemical vapor deposition
EP1544888A1 (en) * 2003-12-18 2005-06-22 Canon Kabushiki Kaisha Fiber containing carbon, substrate and electron emission device using fiber containing carbon, electron source using the electron emission device, display panel using the electron source, and information displaying/playing apparatus using the display panel, and a method of manufaturing thereof
US6946780B2 (en) 2000-11-06 2005-09-20 Mitsubishi Denki Kabushiki Kaisha Carbon body, process for producing the carbon body, and electric field emission electron source using the carbon body
JP2005276720A (en) * 2004-03-26 2005-10-06 Hitachi High-Technologies Corp Field emission type electron gun and electron beam application apparatus using the same
WO2005102924A1 (en) * 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof
JP2006049066A (en) * 2004-08-04 2006-02-16 Dialight Japan Co Ltd Field electron emission element, its manufacturing method, and illumination device
US7026764B2 (en) 2002-03-26 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Plasma producing apparatus and doping apparatus
JP2006160592A (en) * 2004-12-10 2006-06-22 Kansai Electric Power Co Inc:The Method of manufacturing carbon nanotube, carbon nanotube manufactured by the method and carbon nanotube manufacturing catalyst
JP2006286563A (en) * 2005-04-05 2006-10-19 Sonac Kk Electron emitter and its manufacturing method
JP2007042352A (en) * 2005-08-02 2007-02-15 Matsushita Electric Ind Co Ltd Field electron emitting source, magnetron using it, and microwave applied device
JP2007048603A (en) * 2005-08-10 2007-02-22 Dialight Japan Co Ltd Carbon film, electron emission source, and lighting lamp of field emission type
JP2007055856A (en) * 2005-08-25 2007-03-08 Dialight Japan Co Ltd Carbon film, electron releasing source, and electric field emission type illumination lamp
JPWO2005047180A1 (en) * 2003-11-17 2007-05-31 コニカミノルタホールディングス株式会社 Nanostructured carbon material manufacturing method, nanostructured carbon material formed by the manufacturing method, and substrate having the nanostructured carbon material
CN1329936C (en) * 2004-04-19 2007-08-01 东南大学 Method of utilizing powdered metallurgical process for prepn. of nanotube field emitting cold cathode
US7306503B2 (en) 2002-10-18 2007-12-11 Canon Kabushiki Kaisha Method and apparatus of fixing carbon fibers on a substrate using an aerosol deposition process
JP2008105922A (en) * 2006-10-24 2008-05-08 Samsung Sdi Co Ltd Carbide-derived carbon, electron-emitting source for cold cathode, and electron-emitting element
US7375366B2 (en) 2000-02-25 2008-05-20 Sharp Kabushiki Kaisha Carbon nanotube and method for producing the same, electron source and method for producing the same, and display
JP2010222148A (en) * 2009-03-19 2010-10-07 Ulvac Japan Ltd Apparatus for forming carbon nanotube
KR101150089B1 (en) 2004-06-10 2012-06-01 가부시키가이샤 퓨아론 쟈판 Field electron emission device and lighting device
JP2017528413A (en) * 2014-06-24 2017-09-28 テヒニシュ ウニヴェルズィテート ドレスデン Method for growing vertically aligned single-walled carbon nanotubes having the same electrical characteristics, and method for replicating single-walled carbon nanotubes having the same electrical characteristics

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645402B1 (en) * 1998-06-18 2003-11-11 Matsushita Electric Industrial Co., Ltd. Electron emitting device, electron emitting source, image display, and method for producing them
US7375366B2 (en) 2000-02-25 2008-05-20 Sharp Kabushiki Kaisha Carbon nanotube and method for producing the same, electron source and method for producing the same, and display
JP4531193B2 (en) * 2000-04-10 2010-08-25 株式会社アルバック Carbon nanotube thin film forming ECR plasma CVD apparatus using slot antenna and method of forming the thin film
JP2001295047A (en) * 2000-04-10 2001-10-26 Ulvac Japan Ltd Carbon nanotube thin film deposition ecr plasma cvd system using slot antenna and method for depositing the same thin film
JP2002025477A (en) * 2000-07-07 2002-01-25 Ise Electronics Corp Surface display and its manufacturing method
US6946780B2 (en) 2000-11-06 2005-09-20 Mitsubishi Denki Kabushiki Kaisha Carbon body, process for producing the carbon body, and electric field emission electron source using the carbon body
US6843696B2 (en) 2001-09-10 2005-01-18 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
EP1291890A3 (en) * 2001-09-10 2004-11-10 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
EP1291890A2 (en) * 2001-09-10 2003-03-12 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
US7131886B2 (en) 2001-09-10 2006-11-07 Canon Kabushiki Kaisha Method of producing fiber, and methods of producing electron-emitting device, electron source, and image display device each using the fiber
JP2003086085A (en) * 2001-09-13 2003-03-20 Sony Corp Method of manufacturing cold cathode field electron emission element, and method of manufacturing cold cathode field electron emission display device
KR100480663B1 (en) * 2001-12-21 2005-04-06 한국화학연구원 A method for synthesizing a carbon nanotube by modified inductively coupled plasma chemical vapor deposition
US7382098B2 (en) 2002-03-26 2008-06-03 Semiconductor Energy Laboratory Co., Ltd. Plasma producing apparatus and doping apparatus
US7026764B2 (en) 2002-03-26 2006-04-11 Semiconductor Energy Laboratory Co., Ltd. Plasma producing apparatus and doping apparatus
US7306503B2 (en) 2002-10-18 2007-12-11 Canon Kabushiki Kaisha Method and apparatus of fixing carbon fibers on a substrate using an aerosol deposition process
US7632379B2 (en) 2003-05-30 2009-12-15 Toshio Goto Plasma source and plasma processing apparatus
WO2004107825A1 (en) * 2003-05-30 2004-12-09 Tokyo Electron Limited Plasma source and plasma processing apparatus
JP2004356558A (en) * 2003-05-30 2004-12-16 Toshio Goto Apparatus and method for coating
JP2004362960A (en) * 2003-06-05 2004-12-24 Akio Hiraki Electron emitting element and manufacturing method of the same
JP5002960B2 (en) * 2003-11-17 2012-08-15 コニカミノルタホールディングス株式会社 Nanostructured carbon material manufacturing method, nanostructured carbon material formed by the manufacturing method, and substrate having the nanostructured carbon material
JPWO2005047180A1 (en) * 2003-11-17 2007-05-31 コニカミノルタホールディングス株式会社 Nanostructured carbon material manufacturing method, nanostructured carbon material formed by the manufacturing method, and substrate having the nanostructured carbon material
US7528538B2 (en) 2003-12-18 2009-05-05 Canon Kabushiki Kaisha Fiber containing carbon, substrate and electron emission device using fiber containing carbon, electron source using the electron emission device, display panel using the electron source, and information displaying/playing apparatus using the display panel, and a method of manufacturing thereof
EP1544888A1 (en) * 2003-12-18 2005-06-22 Canon Kabushiki Kaisha Fiber containing carbon, substrate and electron emission device using fiber containing carbon, electron source using the electron emission device, display panel using the electron source, and information displaying/playing apparatus using the display panel, and a method of manufaturing thereof
JP2005276720A (en) * 2004-03-26 2005-10-06 Hitachi High-Technologies Corp Field emission type electron gun and electron beam application apparatus using the same
US9682862B2 (en) 2004-04-19 2017-06-20 Taiyo Nippon Sanso Corporation Carbon-based fine structure array, aggregate of carbon-based fine structures, use thereof and method for preparation thereof
US8481158B2 (en) 2004-04-19 2013-07-09 Technology Research Institute Of Osaka Prefecture Carbon-based fine structure array, aggregate of carbon-based fine structures, use thereof and method for preparation thereof
WO2005102924A1 (en) * 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof
CN1329936C (en) * 2004-04-19 2007-08-01 东南大学 Method of utilizing powdered metallurgical process for prepn. of nanotube field emitting cold cathode
KR101150089B1 (en) 2004-06-10 2012-06-01 가부시키가이샤 퓨아론 쟈판 Field electron emission device and lighting device
JP2006049066A (en) * 2004-08-04 2006-02-16 Dialight Japan Co Ltd Field electron emission element, its manufacturing method, and illumination device
JP2006160592A (en) * 2004-12-10 2006-06-22 Kansai Electric Power Co Inc:The Method of manufacturing carbon nanotube, carbon nanotube manufactured by the method and carbon nanotube manufacturing catalyst
JP2006286563A (en) * 2005-04-05 2006-10-19 Sonac Kk Electron emitter and its manufacturing method
JP2007042352A (en) * 2005-08-02 2007-02-15 Matsushita Electric Ind Co Ltd Field electron emitting source, magnetron using it, and microwave applied device
JP2007048603A (en) * 2005-08-10 2007-02-22 Dialight Japan Co Ltd Carbon film, electron emission source, and lighting lamp of field emission type
JP4578350B2 (en) * 2005-08-10 2010-11-10 株式会社ピュアロンジャパン Carbon film, electron emission source and field emission type lighting lamp
JP2007055856A (en) * 2005-08-25 2007-03-08 Dialight Japan Co Ltd Carbon film, electron releasing source, and electric field emission type illumination lamp
JP2008105922A (en) * 2006-10-24 2008-05-08 Samsung Sdi Co Ltd Carbide-derived carbon, electron-emitting source for cold cathode, and electron-emitting element
JP2010222148A (en) * 2009-03-19 2010-10-07 Ulvac Japan Ltd Apparatus for forming carbon nanotube
JP2017528413A (en) * 2014-06-24 2017-09-28 テヒニシュ ウニヴェルズィテート ドレスデン Method for growing vertically aligned single-walled carbon nanotubes having the same electrical characteristics, and method for replicating single-walled carbon nanotubes having the same electrical characteristics
US11649167B2 (en) 2014-06-24 2023-05-16 Smartnanotubes Technologies Gmbh Method for growing vertically oriented single-walled carbon nanotubes with the same electronic properties and for reproducing single-walled carbon nanotubes with the same electronic properties

Also Published As

Publication number Publication date
JP4008123B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4008123B2 (en) Carbon-based ultrafine cold cathode and method for producing the same
US5709577A (en) Method of making field emission devices employing ultra-fine diamond particle emitters
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
US5811916A (en) Field emission devices employing enhanced diamond field emitters
EP1511058B1 (en) Carbon-nano tube structure, method of manufacturing the same, and field emitter and display device each adopting the same
JP3096629B2 (en) Method of manufacturing an electron field emission device
CN100568436C (en) Carbon nanotube emitter and utilize its feds and their manufacture method
US6780075B2 (en) Method of fabricating nano-tube, method of manufacturing field-emission type cold cathode, and method of manufacturing display device
KR100702037B1 (en) Electron-emitting device and manufacturing method thereof
US20080020499A1 (en) Nanotube assembly including protective layer and method for making the same
JP2006224296A (en) Carbon nanotube structure and method of manufacturing the same, and field emission device using the carbon nanotube structure and method of manufacturing the device
JP3436219B2 (en) Carbon material, method for producing the same, and field emission cold cathode using the same
JP4792625B2 (en) Method for manufacturing electron-emitting device and electronic device
JPH08241664A (en) Electric field effect electron source,its preparation and cathode luminescence display
US20020053864A1 (en) Carbon body, process for producing the carbon body, and electric field emission electron source using the carbon body.
JP2001167721A (en) Electric field discharge display element and manufacturing method of the same
JP3903577B2 (en) Diamond member for electron-emitting device, manufacturing method thereof, and electronic device
EP1505622A2 (en) Method of manufacturing electron-emitting device and method of manufacturing image display apparatus
JP3502804B2 (en) Method for growing carbon nanotubes and method for manufacturing electron gun and probe using the same
JP2004362960A (en) Electron emitting element and manufacturing method of the same
US6184611B1 (en) Electron-emitting element
KR20010006238A (en) Electron emitting device and method of manufacturing the same
EP1455376B1 (en) Electron-emitting device, electron source, and image display apparatus
US20030160556A1 (en) Cold cathode electron source
JP2001283715A (en) Electron-emission cathode and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees