JP2010222148A - Apparatus for forming carbon nanotube - Google Patents

Apparatus for forming carbon nanotube Download PDF

Info

Publication number
JP2010222148A
JP2010222148A JP2009068043A JP2009068043A JP2010222148A JP 2010222148 A JP2010222148 A JP 2010222148A JP 2009068043 A JP2009068043 A JP 2009068043A JP 2009068043 A JP2009068043 A JP 2009068043A JP 2010222148 A JP2010222148 A JP 2010222148A
Authority
JP
Japan
Prior art keywords
reaction chamber
pressure regulator
trap
carbon nanotube
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009068043A
Other languages
Japanese (ja)
Inventor
Minao Nakano
美尚 中野
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2009068043A priority Critical patent/JP2010222148A/en
Publication of JP2010222148A publication Critical patent/JP2010222148A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for forming carbon nanotubes which has a reaction chamber 2 housing inside a stage 3 placing a substrate W, where the carbon nanotubes are formed by introducing a raw material gas containing carbon into the reaction chamber and are formed on the substrate placed on the stage by a thermal CVD method and where the maintenance cycle of a pressure regulator 62 is extended by trapping a by-product produced by the thermal decomposition of the raw material gas at the upstream side of the pressure regulator in the case that the pressure regulator located at the upstream side of the a vacuum pump 61 is set in an exhausting line 6 exhausting the reaction chamber by the vacuum pump. <P>SOLUTION: A trap 63 locating at the upstream side of the pressure regulator 62 and having at least one U-tube 64 curved to be a U shape in a downward vertical direction is arranged in the exhausting line 6 and is set to be freely attachable and detachable. A cooling means 66 to cool the trap 63 is equipped. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱CVD法でカーボンナノチューブを形成するカーボンナノチューブの形成装置に関する。   The present invention relates to a carbon nanotube forming apparatus for forming carbon nanotubes by a thermal CVD method.

従来、カーボンナノチューブの形成装置として、基板を載置するステージを内蔵する反応室を備え、反応室内に炭素を含有する原料ガスを導入して、ステージに載置した基板上に熱CVD法でカーボンナノチューブを形成するものは知られている(例えば、特許文献1参照)。このものでは、反応室を真空ポンプにより排気する排気系に、真空ポンプの上流側に位置する圧力調整器を設けている。そして、真空ポンプにより反応室を真空排気した後、反応室を所定温度に加熱すると共に、窒素等の希釈ガスを反応室に導入し、反応室の圧力が所定圧に上昇したところで希釈ガスの導入を停止し、その後、圧力調整器により反応室の圧力を所定圧に維持しつつ反応室に原料ガスを導入するようにしている。これにより、基板に原料ガスが接触して熱分解し、基板上にカーボンナノチューブが形成される。   Conventionally, as a device for forming carbon nanotubes, a reaction chamber having a stage on which a substrate is placed is provided, a source gas containing carbon is introduced into the reaction chamber, and carbon is formed on the substrate placed on the stage by a thermal CVD method. Those that form nanotubes are known (see, for example, Patent Document 1). In this system, a pressure regulator located upstream of the vacuum pump is provided in an exhaust system for exhausting the reaction chamber with a vacuum pump. Then, after evacuating the reaction chamber with a vacuum pump, the reaction chamber is heated to a predetermined temperature, and a diluent gas such as nitrogen is introduced into the reaction chamber, and the dilution gas is introduced when the pressure in the reaction chamber rises to a predetermined pressure. After that, the raw material gas is introduced into the reaction chamber while maintaining the pressure in the reaction chamber at a predetermined pressure by a pressure regulator. As a result, the source gas contacts the substrate and thermally decomposes, and carbon nanotubes are formed on the substrate.

ところで、反応室からの排気ガス中には、原料ガスの熱分解で生ずる副生成物が含まれる。副生成物の中には、冷却されるとタール状(粘性の高い液体状)になるものがある。そして、排気ガスが圧力調整器に流入して冷却されることで、タール状の副生成物が圧力調整器の内蔵部品に付着してしまい、圧力調整器が正常に作動しなくなる。そのため、圧力調整器を頻繁に分解掃除することが必要になり、生産性の向上を図る上で問題になっている。   By the way, the exhaust gas from the reaction chamber contains by-products generated by thermal decomposition of the raw material gas. Some by-products become tar-like (highly viscous liquid) when cooled. Then, when the exhaust gas flows into the pressure regulator and is cooled, tar-like by-products adhere to the built-in components of the pressure regulator, and the pressure regulator does not operate normally. Therefore, it is necessary to frequently disassemble and clean the pressure regulator, which is a problem in improving productivity.

特開2006−182640号公報JP 2006-182640 A

本発明は、以上の点に鑑み、副生成物を圧力調整器の上流側で捕捉して、圧力調整器のメンテナンスサイクル(圧力調整器の分解掃除を行ってから次の分解掃除が必要になるまでの期間)を引き延ばすことができるようにしたカーボンナノチューブの形成装置を提供することをその課題としている。   In view of the above points, the present invention captures by-products upstream of the pressure regulator, and requires a maintenance cycle of the pressure regulator (after the pressure regulator is disassembled and cleaned, the next disassembly and cleaning are required. It is an object of the present invention to provide an apparatus for forming carbon nanotubes that can extend the period of time up to.

上記課題を解決するために、本発明は、基板を載置するステージを内蔵する反応室を備え、前記反応室内に炭素を含有する原料ガスを導入して、前記ステージに載置した基板上に熱CVD法によりカーボンナノチューブを形成するカーボンナノチューブの形成装置であって、前記反応室を真空ポンプにより排気する排気系に、前記真空ポンプの上流側に位置する圧力調整器が設けられるものにおいて、前記排気系に、前記圧力調整器より上流側に位置させて、鉛直方向下方にU字状に湾曲する少なくとも1つのU字管部を有するトラップが介設されることを特徴とする。   In order to solve the above-described problems, the present invention includes a reaction chamber containing a stage on which a substrate is placed, and introduces a source gas containing carbon into the reaction chamber, on the substrate placed on the stage. An apparatus for forming carbon nanotubes for forming carbon nanotubes by a thermal CVD method, wherein an exhaust system for exhausting the reaction chamber by a vacuum pump is provided with a pressure regulator located upstream of the vacuum pump, The exhaust system is provided with a trap having at least one U-shaped pipe portion that is positioned upstream of the pressure regulator and curved in a U-shape downward in the vertical direction.

本発明によれば、反応室からの排気ガスに含まれる副生成物がトラップのU字管部で捕捉される。そのため、トラップより下流側の圧力調整器に流入する副生成物の割合が減少し、圧力調整器の内蔵部品へのタール状の副生成物の付着が抑制される。従って、圧力調整器のメンテナンスサイクルを引き延ばすことができ、生産性が向上する。   According to the present invention, the by-product contained in the exhaust gas from the reaction chamber is captured by the U-shaped tube portion of the trap. Therefore, the ratio of the by-product flowing into the pressure regulator downstream from the trap is reduced, and adhesion of tar-like by-products to the built-in components of the pressure regulator is suppressed. Therefore, the maintenance cycle of the pressure regulator can be extended and productivity is improved.

ところで、或る程度使用すると、トラップのU字管部にタール状の副生成物が溜まり、目詰まりする。この場合、トラップが着脱自在に設けられていれば、トラップを交換することで、目詰まりに対処できる。尚、U字管部の最下部に液溜り部を設けておけば、液溜り部にその容量分の副生成物が溜まるまで、U字管部の流路面積は減少せず、トラップの交換頻度を低減できる。   By the way, if it is used to some extent, tar-like by-products accumulate in the U-shaped tube portion of the trap and clog. In this case, if the trap is detachably provided, clogging can be dealt with by replacing the trap. If a liquid reservoir is provided at the lowermost part of the U-shaped tube, the flow area of the U-shaped tube does not decrease until the by-product corresponding to the volume accumulates in the liquid reservoir, and the trap can be replaced. The frequency can be reduced.

また、U字管部の最下部に、開閉自在な開口が形成されていれば、開口からタール状の副生成物を排出することで、目詰まりに対処できる。尚、U字管部の最下部に液溜り部を設ける場合は、この液溜り部の底部に、開閉自在な開口を形成すればよい。   Moreover, if the opening which can be opened and closed is formed in the lowest part of a U-shaped pipe part, clogging can be coped with by discharging tar-like by-products from the opening. When a liquid reservoir is provided at the lowermost part of the U-shaped tube, an openable and closable opening may be formed at the bottom of the liquid reservoir.

また、本発明においては、トラップを冷却する冷却手段を備えることが望ましい。これによれば、冷却でタール状になる副生成物をトラップで効率良く捕捉でき、圧力調整器のメンテナンスサイクルを一層引き延ばすことができる。   In the present invention, it is desirable to provide a cooling means for cooling the trap. According to this, the by-product which becomes tar-like by cooling can be efficiently captured by the trap, and the maintenance cycle of the pressure regulator can be further extended.

尚、反応室内にも副生成物が溜まる可能性がある。そして、反応室を加熱したときに、副生成物が気化して、カーボンナノチューブの成長に悪影響が及ぶ。そのため、本発明において、反応室の排気口は、反応室の端面の最下部又は底面に開設されることが望ましい。これによれば、反応室内でタール状に液化した副生成物が排気口から排気系に排出され、反応室内に副生成物が溜まることを防止できる。   By-products may accumulate in the reaction chamber. And when a reaction chamber is heated, a by-product evaporates and it has a bad influence on the growth of a carbon nanotube. Therefore, in the present invention, the exhaust port of the reaction chamber is desirably opened at the lowermost or bottom surface of the end surface of the reaction chamber. According to this, the by-product liquefied in tar in the reaction chamber is discharged from the exhaust port to the exhaust system, and the by-product can be prevented from accumulating in the reaction chamber.

本発明の第1実施形態のカーボンナノチューブの形成装置の構成を示す説明図。Explanatory drawing which shows the structure of the carbon nanotube formation apparatus of 1st Embodiment of this invention. 第2実施形態のU字管部の下部の断面図。Sectional drawing of the lower part of the U-shaped pipe part of 2nd Embodiment. 第3実施形態のU字管部の下部の断面図。Sectional drawing of the lower part of the U-shaped pipe part of 3rd Embodiment.

以下、本発明の実施形態のカーボンナノチューブの形成装置について説明する。この装置は、図1に示す如く、透明な材料(例えば、石英ガラス)により形成される筒状ケース1で囲われる反応室2を備えている。反応室2は、ステージ3を内蔵しており、このステージ3に基板Wが載置される。   Hereinafter, a carbon nanotube forming apparatus according to an embodiment of the present invention will be described. As shown in FIG. 1, this apparatus includes a reaction chamber 2 surrounded by a cylindrical case 1 formed of a transparent material (for example, quartz glass). The reaction chamber 2 includes a stage 3 on which a substrate W is placed.

ケース1の一端には開閉自在な扉1aが設けられており、この扉1aを開放した状態でステージ3への基板Wの搬入、搬出が行われる。尚、基板Wとしては、表面にFe、Co、Ni等の遷移金属から成る触媒膜をスパッタ等によって成膜したシリコン基板を用いることができる。   An openable / closable door 1a is provided at one end of the case 1, and the substrate W is carried into and out of the stage 3 with the door 1a opened. As the substrate W, a silicon substrate having a catalyst film made of a transition metal such as Fe, Co, or Ni formed on the surface by sputtering or the like can be used.

ケース1の外側には、赤外線ランプ4が複数配置されており、赤外線ランプ4により反応室2、特に、ステージ3及び基板Wが加熱される。尚、図示しないが、赤外線ランプ4の配置部の外側は金属製の外ケースで囲われている。そして、外ケースの内面で反射した赤外線がステージ3及び基板Wに集光照射されるようにしている。   A plurality of infrared lamps 4 are arranged outside the case 1, and the reaction chamber 2, particularly the stage 3 and the substrate W are heated by the infrared lamps 4. Although not shown, the outside of the arrangement portion of the infrared lamp 4 is surrounded by a metal outer case. The infrared rays reflected by the inner surface of the outer case are condensed and irradiated on the stage 3 and the substrate W.

また、反応室2の一端には、反応室2内に炭素を含有する原料ガスと原料ガスを希釈する希釈ガスとを導入するガス導入系5が接続されている。ガス導入系5は、原料ガス導入系51と希釈ガス導入系52とで構成されている。原料ガス導入系51及び希釈ガス導入系52は、夫々、バルブ511,521、マスフローコントローラ512,522及びバルブ513,523を備えている。原料ガス導入系51及び希釈ガス導入系52の上流端は、夫々、原料ガスタンク514と希釈ガスタンク524に接続される。   A gas introduction system 5 is connected to one end of the reaction chamber 2 to introduce a source gas containing carbon and a dilution gas for diluting the source gas into the reaction chamber 2. The gas introduction system 5 includes a source gas introduction system 51 and a dilution gas introduction system 52. The source gas introduction system 51 and the dilution gas introduction system 52 include valves 511 and 521, mass flow controllers 512 and 522, and valves 513 and 523, respectively. The upstream ends of the source gas introduction system 51 and the dilution gas introduction system 52 are connected to a source gas tank 514 and a dilution gas tank 524, respectively.

尚、原料ガスとしては、アセチレン、メタン等の炭化水素ガス、気化させたアルコール、一酸化炭素等が用いられる。また、希釈ガスとしては、窒素、水素、ヘリウム、アルゴン等のガス又はこれらの混合ガスが用いられる。   In addition, as source gas, hydrocarbon gas, such as acetylene and methane, vaporized alcohol, carbon monoxide, etc. are used. As the dilution gas, a gas such as nitrogen, hydrogen, helium, argon, or a mixed gas thereof is used.

反応室2の他端面に開設した排気口2aには、反応室2を油回転ポンプ等から成る真空ポンプ61により排気する排気系6が接続されている。排気系6には、真空ポンプ61の上流側に位置する圧力調整器62が設けられている。圧力調整器62は、反応室2からの排気量を調整することで反応室2の圧力を制御するものであり、例えば、コンダクタンスバルブやリーク弁で構成される。また、反応室2には、反応室2の圧力を計測する圧力計7が接続されている。   An exhaust system 6 for exhausting the reaction chamber 2 by a vacuum pump 61 such as an oil rotary pump is connected to an exhaust port 2 a opened at the other end surface of the reaction chamber 2. The exhaust system 6 is provided with a pressure regulator 62 located on the upstream side of the vacuum pump 61. The pressure regulator 62 controls the pressure in the reaction chamber 2 by adjusting the exhaust amount from the reaction chamber 2, and is constituted by, for example, a conductance valve or a leak valve. In addition, a pressure gauge 7 for measuring the pressure in the reaction chamber 2 is connected to the reaction chamber 2.

カーボンナノチューブの形成に際しては、先ず、真空ポンプ61により反応室2を所定の真空度(例えば、2×10−3Torr)まで排気した後、赤外線ランプ4を点灯すると共に、希釈ガスを所定流量(例えば、1000sccm)で反応室2に導入する。この際、圧力調整器62により排気量を調整し、反応室2の圧力が所定圧(例えば、1気圧)に昇圧したところで、希釈ガスの導入を停止する。そして、原料ガスが熱分解する所定温度(例えば、750℃)に基板Wの温度が昇温して安定した後、圧力調整器62により反応室2の圧力を上記所定圧に維持しつつ、原料ガスを所定流量(例えば、200sccm)で所定時間(例えば、1分間)反応室2に導入する。これにより、基板Wに原料ガスが接触して熱分解し、基板W上にカーボンナノチューブが形成される。 In forming the carbon nanotubes, first, after evacuating the reaction chamber 2 to a predetermined degree of vacuum (for example, 2 × 10 −3 Torr) by the vacuum pump 61, the infrared lamp 4 is turned on and a dilution gas is supplied at a predetermined flow rate ( For example, it is introduced into the reaction chamber 2 at 1000 sccm). At this time, the amount of exhaust gas is adjusted by the pressure regulator 62, and the introduction of the dilution gas is stopped when the pressure in the reaction chamber 2 is increased to a predetermined pressure (for example, 1 atm). Then, after the temperature of the substrate W is raised and stabilized to a predetermined temperature (for example, 750 ° C.) at which the source gas is thermally decomposed, the pressure regulator 62 maintains the pressure in the reaction chamber 2 at the predetermined pressure, while The gas is introduced into the reaction chamber 2 at a predetermined flow rate (for example, 200 sccm) for a predetermined time (for example, 1 minute). As a result, the source gas comes into contact with the substrate W and thermally decomposes, and carbon nanotubes are formed on the substrate W.

ここで、反応室2からの排気ガス中には、原料ガスの熱分解で生ずる副生成物が含まれる。副生成物の中には、冷却されるとタール状になるものがある。そして、後述するトラップ63が無い場合、タール状の副生成物が短期間のうちに圧力調整器62の内蔵部品に付着して、圧力調整器62が正常に作動しなくなってしまう。   Here, the exhaust gas from the reaction chamber 2 contains by-products generated by thermal decomposition of the raw material gas. Some by-products become tar when cooled. And when there is no trap 63 mentioned later, a tar-like by-product adheres to the built-in component of the pressure regulator 62 within a short period of time, and the pressure regulator 62 does not operate normally.

そこで、本実施形態では、排気系6に、圧力調整器62の上流側に位置させて、トラップ63を介設している。トラップ63には、鉛直方向下方にU字状に湾曲するU字管部64が直列に3個設けられている。また、トラップ63は、反応室2側の配管部材と圧力調整器62側の配管部材との間にジョイント65を介して着脱自在に設けられている。更に、本実施形態では、トラップ63に向けて空気を送風する冷却手段たる空冷ファン66を設けている。   Therefore, in the present embodiment, the trap 63 is interposed in the exhaust system 6 so as to be positioned upstream of the pressure regulator 62. The trap 63 is provided with three U-shaped pipe portions 64 that are curved in a U-shape in the vertical direction downward in series. The trap 63 is detachably provided via a joint 65 between the piping member on the reaction chamber 2 side and the piping member on the pressure regulator 62 side. Further, in the present embodiment, an air cooling fan 66 is provided as a cooling unit that blows air toward the trap 63.

これによれば、排気ガス中の副生成物がトラップ63を流れる間に冷却され、冷却によりタール状になる副生成物がトラップ63に捕捉される。そのため、トラップ63よりも下流側の圧力調整器62に流入する副生成物の割合が減少し、圧力調整器62の内蔵部品へのタール状の副生成物の付着が抑制される。   According to this, the by-product in the exhaust gas is cooled while flowing through the trap 63, and the by-product that becomes tar-like by cooling is captured by the trap 63. Therefore, the ratio of by-products flowing into the pressure regulator 62 on the downstream side of the trap 63 is reduced, and adhesion of tar-like by-products to the built-in components of the pressure regulator 62 is suppressed.

このことを確かめるため、希釈ガスとして窒素ガス、原料ガスとしてアセチレンガスを用い、本実施形態の装置とトラップ63を省略した比較装置とで上記の如くカーボンナノチューブを形成する試験を行った。比較装置では、カーボンナノチューブの形成を50回行うと、圧力調整器62の内蔵部品にタール状の副生成物が付着し始めたが、本実施形態の装置では、カーボンナノチューブの形成を100回行っても、圧力調整器62の内蔵部品へのタール状の副生成物の付着は認められなかった。尚、トラップ63のU字管部64は、内径が11.7mmで、高低差が15.0cmのものとした。   In order to confirm this, a test for forming carbon nanotubes as described above was performed using the apparatus of the present embodiment and the comparison apparatus in which the trap 63 was omitted, using nitrogen gas as the dilution gas and acetylene gas as the source gas. In the comparative apparatus, when carbon nanotubes were formed 50 times, tar-like by-products began to adhere to the built-in components of the pressure regulator 62. However, in the apparatus of this embodiment, carbon nanotubes were formed 100 times. However, adhesion of tar-like by-products to the built-in components of the pressure regulator 62 was not recognized. Note that the U-shaped pipe portion 64 of the trap 63 had an inner diameter of 11.7 mm and a height difference of 15.0 cm.

このように、トラップ63を設けることで圧力調整器62の内蔵部品へのタール状の副生成物の付着が抑制されるため、圧力調整器62のメンテナンスサイクルを引き延ばすことができる。従って、手間のかかる圧力調整器62の分解掃除の頻度が減少し、生産性が向上する。   In this manner, by providing the trap 63, adhesion of tar-like by-products to the built-in components of the pressure regulator 62 is suppressed, so that the maintenance cycle of the pressure regulator 62 can be extended. Therefore, the frequency of dismantling and cleaning of the pressure regulator 62, which is time-consuming, is reduced, and productivity is improved.

ところで、或る程度使用すると、トラップ63のU字管部64にタール状の副生成物が溜まり、目詰まりする。本実施形態では、トラップ63が着脱自在に設けられているため、トラップ63を交換することで、目詰まりに対処できる。尚、トラップ63は、空気中で焼くことにより、捕捉した副生成物を燃焼或いは蒸発させ、再生することができる。   By the way, if it is used to some extent, tar-like by-products accumulate in the U-shaped pipe portion 64 of the trap 63 and clog. In this embodiment, since the trap 63 is detachably provided, clogging can be dealt with by replacing the trap 63. The trap 63 can be regenerated by burning or evaporating the trapped by-product by baking in air.

また、目詰まり対策として、トラップ63の各U字管部64の最下部に、図2に示す第2実施形態の如く、開口64aを形成してもよい。この場合、常時は開口64aをこれに螺入する栓体64bで閉塞しておき、U字管部64にタール状の副生成物が溜まったときに、栓体64bを取り外して開口64aを開く。これにより、タール状の副生成物を開口64aから排出し、目詰まりを解消できる。   Further, as a countermeasure against clogging, an opening 64a may be formed at the bottom of each U-shaped pipe portion 64 of the trap 63 as in the second embodiment shown in FIG. In this case, the opening 64a is normally closed with a plug 64b screwed into the opening 64a, and when a tar-like by-product accumulates in the U-shaped pipe portion 64, the plug 64b is removed to open the opening 64a. . Thereby, a tar-like by-product is discharged | emitted from the opening 64a, and clogging can be eliminated.

ところで、U字管部64にタール状の副生成物が付き始めると、U字管部64の流路面積が減少して、排気速度が変わってしまう。そのため、所定の排気速度を確保するには、トラップ63を頻繁に交換し、或いは、副生成物を開口64aから頻繁に排出することが必要になる。   By the way, when a tar-like by-product starts to be attached to the U-shaped tube portion 64, the flow passage area of the U-shaped tube portion 64 decreases, and the exhaust speed changes. Therefore, in order to ensure a predetermined exhaust speed, it is necessary to frequently replace the trap 63 or to frequently discharge the by-product from the opening 64a.

そこで、図3に示す第3実施形態では、各U字管部64の最下部に液溜り部64cを設け、この液溜り部64cの底部に、栓体64bを装着した開口64aを形成している。これによれば、液溜り部64cにその容量分の副生成物が溜まるまで、U字管部64の所定の流路面積を確保でき、開口64aからの副生成物の排出頻度を低減できる。尚、開口64aを形成しない場合も、各U字管部64の最下部に液溜り部64cを設けておけば、トラップ63の交換頻度を低減でき有利である。   Therefore, in the third embodiment shown in FIG. 3, a liquid reservoir 64c is provided at the bottom of each U-shaped pipe portion 64, and an opening 64a in which a plug 64b is attached is formed at the bottom of the liquid reservoir 64c. Yes. According to this, a predetermined flow path area of the U-shaped pipe portion 64 can be secured until a by-product amount corresponding to the volume is accumulated in the liquid reservoir portion 64c, and the discharge frequency of the by-product from the opening 64a can be reduced. Even when the opening 64a is not formed, it is advantageous to reduce the frequency of replacement of the trap 63 by providing the liquid reservoir 64c at the lowermost part of each U-shaped pipe portion 64.

ところで、赤外線ランプ4でステージ3及び基板Wを集中的に加熱するものでは、反応室2の排気口2a部分での排気温度が100℃程度にまで低下し、反応室2内にタール状の副生成物が溜まる可能性がある。そして、高温になる反応室2の部分にまでタール状の副生成物が流動すると、加熱時に副生成物が蒸発して、カーボンナノチューブの形成に悪影響が及ぶ。   By the way, in the case where the stage 3 and the substrate W are intensively heated by the infrared lamp 4, the exhaust temperature at the exhaust port 2a portion of the reaction chamber 2 is reduced to about 100 ° C. Product may accumulate. And when a tar-like by-product flows to the part of the reaction chamber 2 which becomes high temperature, a by-product evaporates at the time of a heating, and it will have a bad influence on formation of a carbon nanotube.

そこで、本実施形態では、排気口2aを反応室2の端面の最下部に開設している。これによれば、反応室2内でタール状に液化した副生成物が排気口2aから排出され、反応室2内に副生成物が溜まることを防止できる。尚、排気口2aの近傍の排気管の部分に副生成物が溜まると、副生成物が反応室2に逆流する恐れがあるため、トラップ63より上流の排気管は、温度が高くなるように必要に応じて加熱することが望ましい。   Therefore, in the present embodiment, the exhaust port 2 a is opened at the lowermost portion of the end surface of the reaction chamber 2. According to this, the by-product liquefied in tar form in the reaction chamber 2 can be discharged from the exhaust port 2a, and the by-product can be prevented from accumulating in the reaction chamber 2. In addition, if a by-product accumulates in the portion of the exhaust pipe near the exhaust port 2a, the by-product may flow back into the reaction chamber 2, so that the temperature of the exhaust pipe upstream from the trap 63 is increased. It is desirable to heat as necessary.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、上記実施形態では、排気口2aを反応室2の端面の最下部に開設しているが、反応室2の底面に排気口を開設してもよい。また、上記実施形態では冷却手段として空冷ファン66を用いているが、U字管部64に冷却水を流す水管を巻回し、この水管で冷却手段を構成することも可能である。更に、上記実施形態では、トラップ63に設けるU字管部64の数を3個としているが、U字管部64の数は1個又は2個、或いは4個以上であってもよい。また、上記実施形態では、反応室2を加熱する加熱手段として赤外線ランプ4を用いているが、ケース1の外周に卷回する電熱ヒータで加熱手段を構成してもよい。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, in the above embodiment, the exhaust port 2 a is opened at the bottom of the end surface of the reaction chamber 2, but an exhaust port may be opened at the bottom surface of the reaction chamber 2. In the above embodiment, the air cooling fan 66 is used as the cooling means. However, it is also possible to wind a water pipe for flowing cooling water around the U-shaped pipe portion 64 and configure the cooling means with this water pipe. Furthermore, in the said embodiment, although the number of the U-shaped pipe parts 64 provided in the trap 63 is 3, the number of the U-shaped pipe parts 64 may be one, two, or four or more. Moreover, in the said embodiment, although the infrared lamp 4 is used as a heating means which heats the reaction chamber 2, you may comprise a heating means with the electric heater wound around the outer periphery of the case 1. FIG.

W…基板、2…反応室、2a…排気口、3…ステージ、6…排気系、61…真空ポンプ、62…圧力調整器、63…トラップ、64…U字管部、64a…開口、64c…液溜り部。   W ... substrate, 2 ... reaction chamber, 2a ... exhaust port, 3 ... stage, 6 ... exhaust system, 61 ... vacuum pump, 62 ... pressure regulator, 63 ... trap, 64 ... U-tube, 64a ... opening, 64c ... the liquid reservoir.

Claims (7)

基板を載置するステージを内蔵する反応室を備え、前記反応室内に炭素を含有する原料ガスを導入して、前記ステージに載置した基板上に熱CVD法によりカーボンナノチューブを形成するカーボンナノチューブの形成装置であって、前記反応室を真空ポンプにより排気する排気系に、前記真空ポンプの上流側に位置する圧力調整器が設けられるものにおいて、
前記排気系に、前記圧力調整器より上流側に位置させて、鉛直方向下方にU字状に湾曲する少なくとも1つのU字管部を有するトラップが介設されることを特徴とするカーボンナノチューブの形成装置。
A reaction chamber having a stage on which a substrate is placed; a source gas containing carbon is introduced into the reaction chamber; and a carbon nanotube is formed on the substrate placed on the stage by a thermal CVD method. In the forming apparatus, the exhaust system for exhausting the reaction chamber with a vacuum pump is provided with a pressure regulator located on the upstream side of the vacuum pump.
The carbon nanotube is characterized in that a trap having at least one U-shaped tube portion which is positioned in the exhaust system and is located on the upstream side of the pressure regulator and is curved in a U-shape vertically below is interposed. Forming equipment.
前記トラップが着脱自在に設けられることを特徴とする請求項1記載のカーボンナノチューブの形成装置。   2. The carbon nanotube forming apparatus according to claim 1, wherein the trap is detachably provided. 前記U字管部の最下部に液溜り部が設けられることを特徴とする請求項2記載のカーボンナノチューブの形成装置。   The carbon nanotube forming apparatus according to claim 2, wherein a liquid reservoir is provided at a lowermost portion of the U-shaped tube. 前記U字管部の最下部に、開閉自在な開口が形成されることを特徴とする請求項1記載のカーボンナノチューブの形成装置。   The carbon nanotube forming apparatus according to claim 1, wherein an opening that can be opened and closed is formed at a lowermost portion of the U-shaped tube portion. 前記U字管部の最下部に液溜り部が設けられ、この液溜り部の底部に、開閉自在な開口が形成されることを特徴とする請求項1記載のカーボンナノチューブの形成装置。   2. The carbon nanotube forming apparatus according to claim 1, wherein a liquid reservoir is provided at a lowermost portion of the U-shaped tube, and an openable and closable opening is formed at a bottom of the liquid reservoir. 前記トラップを冷却する冷却手段を備えることを特徴とする請求項1〜5の何れか1項記載のカーボンナノチューブの形成装置。   The carbon nanotube forming apparatus according to claim 1, further comprising a cooling unit that cools the trap. 前記反応室の排気口は、前記反応室の端面の最下部又は底面に開設されることを特徴とする請求項1〜6の何れか1項記載のカーボンナノチューブの形成装置。   The carbon nanotube forming apparatus according to any one of claims 1 to 6, wherein an exhaust port of the reaction chamber is opened at a lowermost portion or a bottom surface of an end surface of the reaction chamber.
JP2009068043A 2009-03-19 2009-03-19 Apparatus for forming carbon nanotube Pending JP2010222148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068043A JP2010222148A (en) 2009-03-19 2009-03-19 Apparatus for forming carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009068043A JP2010222148A (en) 2009-03-19 2009-03-19 Apparatus for forming carbon nanotube

Publications (1)

Publication Number Publication Date
JP2010222148A true JP2010222148A (en) 2010-10-07

Family

ID=43039757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068043A Pending JP2010222148A (en) 2009-03-19 2009-03-19 Apparatus for forming carbon nanotube

Country Status (1)

Country Link
JP (1) JP2010222148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213503A1 (en) 2019-04-15 2020-10-22 株式会社ニューフレアテクノロジー SiC EPITAXIAL GROWTH APPARATUS

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000057934A (en) * 1998-06-04 2000-02-25 Ulvac Japan Ltd Carbon-based super fine cold-cathode and manufacture thereof
JP2003045861A (en) * 2001-07-30 2003-02-14 Nec Kansai Ltd System for manufacturing semiconductor
JP2004346378A (en) * 2003-05-22 2004-12-09 Hitachi Kokusai Electric Inc Substrate treatment apparatus
JP2005248250A (en) * 2004-03-04 2005-09-15 Teijin Ltd Chemical vapor deposition system provided with selective pump group connected in cascaded way and monitoring device for selective pump group connected in cascated way
JP2006143496A (en) * 2004-11-17 2006-06-08 Sharp Corp Method of producing carbon nanotube and apparatus for producing carbon nanotube
JP2008081810A (en) * 2006-09-28 2008-04-10 Ulvac Japan Ltd Exhaust system and exhaust method
JP2008137831A (en) * 2006-11-30 2008-06-19 Nikon Corp Device and method for manufacturing carbon nanotubes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000057934A (en) * 1998-06-04 2000-02-25 Ulvac Japan Ltd Carbon-based super fine cold-cathode and manufacture thereof
JP2003045861A (en) * 2001-07-30 2003-02-14 Nec Kansai Ltd System for manufacturing semiconductor
JP2004346378A (en) * 2003-05-22 2004-12-09 Hitachi Kokusai Electric Inc Substrate treatment apparatus
JP2005248250A (en) * 2004-03-04 2005-09-15 Teijin Ltd Chemical vapor deposition system provided with selective pump group connected in cascaded way and monitoring device for selective pump group connected in cascated way
JP2006143496A (en) * 2004-11-17 2006-06-08 Sharp Corp Method of producing carbon nanotube and apparatus for producing carbon nanotube
JP2008081810A (en) * 2006-09-28 2008-04-10 Ulvac Japan Ltd Exhaust system and exhaust method
JP2008137831A (en) * 2006-11-30 2008-06-19 Nikon Corp Device and method for manufacturing carbon nanotubes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213503A1 (en) 2019-04-15 2020-10-22 株式会社ニューフレアテクノロジー SiC EPITAXIAL GROWTH APPARATUS
KR20210095686A (en) 2019-04-15 2021-08-02 가부시키가이샤 뉴플레어 테크놀로지 SiC epitaxial growth apparatus

Similar Documents

Publication Publication Date Title
CN1967776B (en) Semiconductor processing system and vaporizer
KR101160724B1 (en) Vaporizer and semiconductor processing system
JP5590603B2 (en) Equipment for producing aligned carbon nanotubes
JP5727362B2 (en) System and method for flowing gas through a chemical vapor deposition reactor
TWI567220B (en) Capture device and film forming device
JP2021143125A (en) Method
CN103569998B (en) Carbon nanotube preparing apparatus and method
JP2009537993A5 (en)
US9815698B2 (en) Method of manufacturing carbon nanotubes
JP5678711B2 (en) Method for producing glass particulate deposit
US7572413B2 (en) Apparatus for manufacturing carbon nanotubes
Nakazawa et al. Flame synthesis of carbon nanotubes in a wall stagnation flow
JP2010222148A (en) Apparatus for forming carbon nanotube
TWI410372B (en) Apparatus for synthesizing carbon nanotubes
ATE437253T1 (en) APPARATUS FOR GAS PHASE DEPOSITION
CN102171455B (en) Vacuum pumping device, vacuum processing device, and vacuum processing method
JP5582978B2 (en) Gas discharge device for reaction chamber
JP2005350843A (en) Carbon fiber production furnace, carbon fiber producing method using the same, and fiber
CN101250692B (en) Atmosphere opening method for treatment container
JP2008214688A (en) Thermal cvd system and film deposition method
TW200611319A (en) Method for rapidly fabricating aligned carbon nanotube under low temperature
JP5574857B2 (en) Thermal CVD equipment
Peltekis et al. Remote plasma‐assisted CVD growth of carbon nanotubes in an optimised rapid thermal reactor
JP2020180692A (en) Pressure control valve
KR100982984B1 (en) Apparatus for chemical vapor deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924