JP4008123B2 - Carbon-based ultrafine cold cathode and method for producing the same - Google Patents

Carbon-based ultrafine cold cathode and method for producing the same Download PDF

Info

Publication number
JP4008123B2
JP4008123B2 JP30125998A JP30125998A JP4008123B2 JP 4008123 B2 JP4008123 B2 JP 4008123B2 JP 30125998 A JP30125998 A JP 30125998A JP 30125998 A JP30125998 A JP 30125998A JP 4008123 B2 JP4008123 B2 JP 4008123B2
Authority
JP
Japan
Prior art keywords
substrate
carbon
cold cathode
electric field
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30125998A
Other languages
Japanese (ja)
Other versions
JP2000057934A (en
Inventor
早紀 今田
正明 平川
村上  裕彦
洋幸 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP30125998A priority Critical patent/JP4008123B2/en
Publication of JP2000057934A publication Critical patent/JP2000057934A/en
Application granted granted Critical
Publication of JP4008123B2 publication Critical patent/JP4008123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、冷陰極及びその作製方法に関するものである。特に、真空デバイス用途、ディスプレイ用途などに利用される炭素系超微細冷陰極(以下、冷陰極チップとも称す)及びその作製方法に関するものである。
【0002】
【従来の技術】
冷陰極とは、加熱することなしに電子が放出される陰極である。陰極材料としては今までSiチップやMoチップ、ダイヤモンドチップ、多結晶ダイヤモンド薄膜、あるいはカーボンナノチューブ塗布膜などが検討されてきた。
【0003】
SiチップやMoチップ、ダイヤモンドチップなどは、ICチップなどを作製する薄膜技術を応用して、Si、Mo、ダイヤモンドなどを円錐状やビラミッド状に加工して得られる。たとえば、J. Appl. Phys. Vol.47, No.12, p.5248(1996)に記載されているように、円錐状のMoをSi基板上に形成する場合、まずSi基板上に厚さ1μm程度の絶縁体の膜と厚さ0.5μm程度の金属ゲート膜を形成し、その上にレジスト膜を形成して直径2μm程度のホールパターンをリソグラフィ技術などにより作製し、直下の金属ゲート膜および絶縁体膜をエッチングし、Si基板を露出させる。この基板を基板面の垂線を軸として回転させながら斜め方向から剥離膜の蒸着を行う。斜め方向からの蒸着により、金属ゲート膜の開口部の側面にも剥離膜が堆積する。エミッタ材料であるMoの堆積においては、Mo原子が自ら開口部を徐々にふさぎながらホール内に堆積するように蒸着方向を調整する。この後、剥離膜とともにホール外に堆積した余分なMo膜を除去してエミッタを作製する。この方法で作製したエミッタでディスプレイ用途のものは現在100V/μmの電界で駆動する。
【0004】
また、基板上一面に、プラズマCVD法、熱フィラメント法などにより多結晶ダイヤモンド薄膜を形成させてこれを冷陰極とするものは、複雑な工程はないが、プラズマCVD法では成膜中の投入パワーが非常に大きく(数kW以上)、また良質のダイヤモンド膜を必要な膜厚(数十〜百μm)に成長させるためには数時間から数十時間を要するため、エネルギー消費量も大きい。熱フィラメント法においては、膜質と膜厚分布がフィラメントの形状に敏感であるため、大面積化が困難である。また、いずれの方法も、突起部の密度制御、形状制御が非常に難しいため、電子放出点の高密度化も難しい。
【0005】
また、カーボンナノチューブを電子放出源として利用する冷陰極の場合には、あらかじめカ−ボンナノチューブをアーク放電法やグラファイトへのレーザ照射法により別個に作製し、精製した後、このカーボンナノチューブを導電性の接着剤で金属基板上に固定して使用している。
【0006】
【発明が解決しようとする課題】
このように、既存の技術で冷陰極チップを作製するには、非常に多くの複雑なプロセスと多くの時間を必要とし、駆動電界は100V/μmと高く、また使用する基板自身が非常に高価であるという問題がある。
【0007】
また、上述のような既存技術で冷陰極チップを作製した場合、最も小さいものでもチップ径は1μm程度である。このようなチップを用いてディスプレイを作製した場合、1ドットの映像を数個から数十個のチップで構成することになり、冷陰極チップ一つ一つの信頼性と寿命がきわめて重要になる。言い換えれば、冷陰極チッブが放電や残留ガスによりスパッタされ破損した場合、たとえそれが一つのチッブであっても画像に大きな影響を与える。
【0008】
さらに、いずれの既存の方法も、使用可能な基板は各方法それぞれに制限があり、かつ単結晶Si、Moなど高価なものに限られるため、実用的でないという問題があり、安価な基板を使用できる方法の開発が望まれている。
【0009】
また、カーボンナノチューブを電子放出源として利用する場合、別に形成されたカーボンナノチューブを接着剤を用いて基板上に接着・固定する余分のプロセスを必要とするという問題がある。
【0010】
本発明の目的は、上記のような既存技術の持つ問題点を解決するもので、高密度で微細な、また低電界で駆動できる炭素系超微細冷陰極及びその冷陰極を非常に簡単なプロセスで作製する方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、既存の技術とは異なる非常に簡単な手法で、超微細かつ高密度の電子放出源を基板表面上に作製するものである。
【0012】
本発明の炭素系超微細冷陰極は、基板上の所定の電極形成位置に、該基板上に直接形成せしめたカーボンナノチューブを電子放出源として有するものである。このカーボンナノチューブは、電界印加型プラズマCVD法により形成されたものである。
【0013】
本発明の炭素系超微細冷陰極の作製方法は、プラズマ源を用いて発生させたプラズマを挟むように配置した電極間に電界を形成してCVDを行う電界印加型プラズマCVD法により、基板表面に反応ガスからカーボンナノチューブを形成する触媒作用を持つ金属を助剤として使用して、負電圧を印加した陰極上に載置した基板表面に、カーボンナノチューブを直接に基板表面に対して垂直に形成し、このカーボンナノチューブを電子放出源とする炭素系超微細冷陰極を得るものである。このカーボンナノチューブを形成するために、前記助剤として、高温の水素雰囲気中で触媒作用を持つ金属、例えばNi、Fe、Co又はこれらの金属の少なくとも2種からなる合金を利用する。これらの助剤は、例えばあらかじめ前記基板の表面上に付着された形態で利用されるか、前記カーボンナノチューブの堆積中に同時に前記基板の表面上に付着されるようにして利用されるか、又はあらかじめ前記基板中に含有された形態で利用されるのが望ましい。助剤として、超微粒子の形態を有するものを用いる場合には、この助剤を基板の表面上に一様に散布することによって利用してもよい。
【0014】
高温の水素雰囲気中で触媒作用を持つ金属を助剤として含有する基板の場合は、その基板表面が凹凸を有するものであることが望ましく、また、基板形状は板状のみならずメッシュ状であってもワイヤ状であってもよい。
【0015】
また、上記冷陰極作製方法に従ってカーボンナノチューブを基板上に堆積した後、この基板を真空中で高電界印加処理をして、低電界で効率よく電子を放出せしめる陰極とすることが可能となる。
【0016】
【発明の実施の形態】
以下本発明の実施の形態を説明する。
【0017】
本発明によれば、具体的には、カーボンナノチューブを、電界印加型プラズマCVD法により、基板の表面上の所定の位置に直接形成せしめて、電子放出源とするものである。電界印加型プラズマCVD法により、カーボンナノチューブを高い成長速度で基板表面上に堆積させることができる。使用しうる基板としては特に限定されないが、寿命の観点からは、炭素の拡散係数が小さい基板が好ましい。また、導電性の基板及び絶縁性の基板の両方とも用いることができるが、絶縁性の基板を用いる場合は、あらかじめカーボンナノチューブの層へ電子を注入するための電極及び電流回路を別に形成しておくか、又はカーボンナノチューブの層そのものをパターン加工して電極や電流回路に使用することも可能である。この場合は、使用可能なシート抵抗値となるまで堆積層を成長させなくてはならないが、あらかじめ電極形成した基板を用いる場合は、カーボンナノチューブは島状に点在している状態のものでもよい。基板としては、例えば、石英基板、アルミナ基板、シリコン基板、Mo基板、SUS基板、Ni−Fe合金基板等を使用することができる。
【0018】
本発明の方法においては、カーボンナノチューブの堆積層を形成する際に、助剤として、高温の水素雰囲気中で触媒作用を持つ金属、例えばNi、Fe、Co、又はこれらの金属の少なくとも2種からなる合金を、例えば以下述べるような態様で使用すると、基板表面上に、炭化水素系の原料ガスから該カーボンナノチューブを容易に成長させることができる。
【0019】
例えば、助剤が、あらかじめ基板中に含有された形態で利用される場合には、基板全体にカーボンナノチューブ又はアモルファスカーボンのウイスカーを成長させることができる。この場合、助剤の含有量により、ウイスカーの成長(堆積)密度をコントロールし、高くすることも可能であるが、基板表面に対する垂直成長の割合は低い。
【0020】
また、助剤が、あらかじめ基板の表面上に付着された形態で利用されるか、又はカーボンナノチューブの堆積中に同時に基板の表面上に付着されるようにして利用される場合には、このように基板表面に助剤を付着させることで、カーボンナノチューブの基板に対する垂直成分を増加させることが可能となる。助剤を基板の所定の位置に付着せしめて利用する場合には、反応ガス、印加電圧などの実験条件を適切に選択することにより、マスク材などを一切用いずに、カーボンナノチューブを直接に基板表面に対して垂直に堆積させることができる。これらの条件は、例えば、マイクロ波電力:約600W、基板温度:800〜900℃、反応圧力(堆積圧力):1.33〜2.66×103 Pa、反応時間(堆積時間):約15分、堆積中の基板側の印加電圧:−250Vである。
【0021】
助剤の基板表面への付着方法としては、例えば、スパッタ、メッキ、有機金属化合物の塗布後焼成等の方法がある。例えば、スパッタの初期過程で成膜を止めると、基板上で助剤が島状の分布となり、ウイスカーの成長密度は小さくなるが、基板に対する垂直成長の割合が高くなる。
【0022】
助剤が超微粒子の形態を有するものである場合、該超微粒子を基板上に一様に散布して利用するが、この際に、超微粒子の粒径や粒径分布及び散布密度を制御することで所望の特性を得ることができる。
【0023】
また、堆積時間や触媒金属超微粒子のサイズ、分散密度を適切に設定することで、冷陰極の分散密度やサイズが制御できる。一般的には、堆積時間10〜20分、金属超微粒子の粒径5〜20nmである。さらに、リソグラフィ技術などを用いて、金属超微粒子の堆積位置を制御することで、冷陰極の形成位置を制御することができる。
【0024】
さらに、本発明によれば、超微細かつ高密度の低電界駆動炭素系冷陰極を基板面上に作製することができる。具体的には、上記したように、反応ガス、印加電圧などの堆積条件を適切に選択し、カーボンナノチューブを、Ni、Fe、Co、又はこれらの金属の少なくとも2種からなる合金などの触媒効果を利用して、電界印加型プラズマCVD法等のプラズマCVD法により作製するものであり、基板上に、該カーボンナノチューブを堆積せしめた後、この基板を真空中で高電界印加処理することにより、電子放出特性の経時的変動を低減すると共に、電子放出特性も向上させること、つまり効率よく低電界で電子を放出することが可能となる冷陰極が得られる。ここで、高電界印加処理は、いわゆるエージングであり、通常駆動する電界より高い電界を数分から数時間印加して処理するものであり、一般に4V/μm〜20V/μm、好ましくは5V/μmの電界で、好ましくは1時間処理する。低電界とは、従来の冷陰極の駆動電界(100V/μm)より低い電界であり、本発明の場合、例えば1V/μm〜4V/μmをいう。この方法の場合、高温水素雰囲気中で触媒作用をもつNi、Fe、Co、又はこれらの金属の少なくとも2種からなる合金等を含む基板を使用することが好ましい。かかる基板としては、例えば、SUS304、SUS302、SUS316などのステンレス鋼、NiとFeを含む合金であるアンバー、パーマロイなどを使用することができ、これらは非常に安価である。
【0025】
前記基板としては、表面に凹凸を有していてもよい板状、メッシュ状、ワイヤー状等の各種形状の基板が使用できる。基板表面に凹凸が付いている場合、冷陰極駆動の際の電界印加時に、該基板凸部の先端には電界が集中する。このため、この部分に冷電子放出源があれば、この冷電子放出源から優先的に電子放出が起こるので、同一平面上に冷電子放出源がある場合よりも、さらに駆動電圧を低減することができる。また、メッシュ状、ワイヤー状の場合は、そのサイズ、表面状態を適切に選ぶことで、上記の凹凸処理された表面を有する基板の場合と同じ効果が得られる。本発明の場合、厳密には点放出になるが、例えばディスプレイの画素のパターンと同じピッチの凸部集合体を、板状又はメッシュ状等の冷陰極基板表面に形成して、蛍光体の位置と合わせることで、微小電子銃が任意の個数で各画素に配置されることになる。
【0026】
【実施例】
次に、本発明を実施例により図面を参照してさらに詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
【0027】
以下の実施例でカーボンナノチューブの形成に用いた電界印加型プラズマCVD装置の概略を図1に示す。真空室1内に陰極2及びこれと対抗してカソード電極3を配置せしめ、陰極2上には基板4が載置される。真空室1に反応ガス源(H2、CH4)5、排気用真空ポンプ6、マイクロ波プラズマ発生装置7を接続し、また電極にDC電源8を接続するように構成されている。かかる構成をとることにより電界印加型プラズマCVD法により基板の表面にカーボンナノチューブを堆積せしめることができる。このCVD装置としては、例えば S.Yugo et al. Appl. Phys. Lett.,58(1991)1038に記載されている。
(実施例1)
あらかじめ10〜20nm程度の粒径のNi超微粒子を真空蒸着法により堆積させた、低電気抵抗nタイプSi基板(縦5mm×横5mm×厚さ0.4mm)上に、図1の装置を用いて、電界印加型プラズマCVD法によりカーボンナノチューブを作製した。反応条件としては、マイクロ波電力を600W、基板温度を850℃、反応ガスとしてCH410%/H2、反応圧力を2.6×103Pa、反応時間を15分とした。堆積中は基板側に−250Vの電圧を印加した。形成されたカーボンナノチューブは、直径が10nmから30nm、高さが200nmから500nmの針状で、すべて基板表面に対して垂直であった(図2(A))。また、超微粒子が堆積されていない部分にはカーボンナノチューブが形成されていなかった。この図2(A)は、本実施例で得られた炭素系超微細冷陰極について、カーボンナノチューブの形成状態を示す走査型電子顕微鏡像(40゜傾斜)の写真であり、図2(B)に示すように、該Si基板表面にNi微粒子を堆積する際に基板の一部(X部分)をマスキングして、Ni微粒子の堆積を排除し、基板の他の部分(Y部分)にNi微粒子が堆積するようにしたものである。しかし、実際にはマスキングが不十分であったため、X部分にもNi微粒子が付着して、カーボンナノチューブ形成されてしまった。
【0028】
上記Ni超微粒子の代わりにFe超微粒子、Co超微粒子又はNi−Fe合金超微粒子を真空蒸着法により堆積させた該Si基板を用い、上記と同様に処理したところ、同様のカーボンナノチューブが形成された。
【0029】
このようにしてカーボンナノチューブを形成した基板のうち、Ni超微粒子を用いて得た基板について、この基板と、基板の上方500μmの位置に基板に平行になるように固定したアノードとを、2.6×10-5Paの真空中に置き、アノードに0から2000Vの正電圧をかけて電子放出特性を調べたところ、500V(1.0V/μm)を過ぎると電子の放出が始まり、2000V(4.0V/μm)印加時に100μAの放出電流が得られた(図3)。また、印加電圧2000Vのまま、アノードと基板との距離を300μmまで近づけると(6.7V/μm)、1mAまで放出電流が増加し、I−V特性が基板とアノードとの間の距離に依存することがわかった。
(実施例2)
低電気抵抗nタイプSi基板(縦5mm×横5mm×厚さ0.4mm)側面の周辺にこの基板を囲むように所定の大きさのSUS304板(厚さ0.5mm)を設置し、図1の装置を用いて、基板上に電界印加型プラズマCVD法によりカーボンナノチューブを作製した。カーボンナノチューブ形成のための助剤としてのNi、Feの金属超微粒子の供給は、SUS304板からカーボンナノチューブの堆積中に同時に行われる。即ち、電界により基板方向に引き込まれるイオンにより、SUS304板の表面がスパッタされ、Si基板上に再付着した粒子が助剤として働く。反応条件としては、マイクロ波電力を600W、基板温度を850℃、反応ガスとしてCH410%/H2、反応圧力を2.6×103Pa、反応時間を15分とした。堆積中は基板側に−250Vの電圧を印加した。形成されたカーボンナノチューブは、直径が10nmから30nm、高さが200nmから500nmで、すべて基板表面に対して垂直であった。また、カーボンナノチューブの形成される場所は、基板周囲に置いたSUS304板の配置形状を反映していた。
【0030】
このカーボンナノチューブを形成した基板と、基板の上方400μmの位置に基板に平行になるように固定したアノードとを、2.6×10-5Paの真空中に置き、アノードに0から2000Vの正電圧をかけて電子放出特性を調べたところ、800V(2.0V/μm)から電子放出が始まり、2000V(5.0V/μm)印加時に121μAの放出電流を得た。印加電圧を2000Vにして、基板とアノードとの間の距離を250〜500μmの範囲内で変動させた場合、図4に示すように、放出電流は基板とアノードとの距離に依存することがわかった。
(実施例3)
図1の装置を用い、SUS304基板(縦5mm×横5mm×厚さ0.5mm)上に電界印加型プラズマCVD法によりカーボンナノチューブ、アモルファスカーボンを作製した。反応条件としては、マイクロ波電力を600W、基板温度を850℃、反応ガスとしてCH430%/H2、反応圧力を2.6×103Pa、反応時間を15分とした。堆積中は基板側に−250Vの電圧を印加した。形成された冷陰極は、直径が50nmから200nm、長さが200nmから500nmの針状であった(図5)。SUS基板の代わりにNi−Fe合金であるアンバーを基板として用いて、上記と同様に処理して、同様の針状の超微細冷陰極が得られた。
【0031】
上記のようにして炭素系超微細冷陰極を形成したSUS304基板と、該基板の上方500μmの位置に基板に平行になるように固定したアノードとを、2.6×10-5Paの真空中に置き、アノードに0から2000V以上の正電圧をかけて高電界処理による電子放出特性を調べた。図6に示すように、1100V(2.2V/μm)から電子放出が始まり、1300V(2.6V/μm)印加時で10nA、2500V(5.0V/μm)印加時に46μAの放出電流を得た。この後、この5.0V/μmの状態に1時間保持したところ、放出電流値は46μAから413μAに上昇した。次に、電圧を1600V(3.2V/μm)まで下げると、放出電流は300μAになった。このことから、高電界処理前の超微細冷陰極と比べて、高電界処理した後の冷陰極はその電子放出特性が改善されており、低電界での電流値が上昇し、極めて効率よく電子が放出され得ることが分かった。このことは、基板としてNi−Fe合金基板を使用した場合も同様の傾向を示した。
(実施例4)
SUS304基板(縦5mm×横5mm×厚さ1mm)の表面の半分に、図7に示すように、WC製ペン型ガラス切りにより格子状に傷を付け、次いで、実施例3記載の条件・手順に従って、この基板上に電界印加型プラズマCVD法により針状の冷電子源を堆積した。
【0032】
上記のようにして冷電子源を形成したSUS304基板及び対照として傷つけ処理を施さないで同様に冷陰極を形成したSUS304基板について、実施例1と同様の配置で、アノードとして蛍光体を塗布したTiO2膜付きガラス基板を用いて、基板−アノード間距離500μmの条件で、電子放出による蛍光を観測した。その結果、傷つけ処理を施した基板の場合、傷つけ処理を施した部分からの電子放出による蛍光は2.2V/μmから観測でき、傷つけ処理を施していない部分からの蛍光は5.0V/μm付近から観測された。また、対照としての全面傷付け処理なしの基板の場合、基板中央部からの電子放出による蛍光は4.0V/μmから観測された。図7に示した溝AはWC製ガラスペンの切り傷跡であり、基板内部の切り傷のエッジ部Bで電界集中が起こり、電子が放出し易くなったものであり、傷つけ処理を施していない時は、基板の周辺部で電界集中が起こっており、電子放出は周辺部の寄与が殆どであった。
(実施例5)
SUS304基板(縦5mm×横5mm×厚さ1mm)上にストライプ状の凸部を形成し、上記実施例3と同じ条件で冷電子源を堆積した。この冷陰極基板を、TiO2膜付きガラス基板上にストライプ状に形成した蛍光体付きアノードと交差するように配置すると、2極管型電界放出ディスプレイの表示部構成となり、本発明の冷陰極はディスプレイ用途に利用可能である。
【0033】
【発明の効果】
本発明によれば、炭素系冷陰極チップを作製するプロセスにおいて、従来のような円錐状あるいはピラミッド状チップを作製するための複数のプロセスを不要にし、従来の冷陰極チップの寸法の100分の1程度(直径:数10nm程度)の炭素系超微細冷陰極チップをも高密度で作製することができると共に、低電圧駆動冷陰極チップを非常に高密度で作製することができる。
【0034】
本発明において助剤を基板上に付着せしめた場合は特に、カーボンナノチューブが基板に対して垂直に形成され易いので、電界集中が非常に効率よく起こり、数V/μmという、従来の技術と比較して2桁低い電界で駆動できる低電界駆動冷陰極が作製できる。
【0035】
また、本発明によれば、基板として、高温水素雰囲気中で触媒作用を持つNi、Fe、Co又はこれらの金属の少なくとも2種の合金などを含むもの、例えぱステンレス鋼、Ni−Fe合金からなる基板を用いることができ、これらの基板は非常に安価で取り扱いも容易である。また、かかる基板を用いる場合、表面に凹凸を有する板状基板や、メッシュ状、ワイヤ状の基板を用いて基板上に冷電子源を形成せしめれば、駆動時の電界集中がより効果的に起こり、駆動電圧が低減される冷陰極が作製できる。
【0036】
本発明の上述の特徴の複合的な効果により、従来の冷陰極と比較して、長寿命の低電界駆動炭素系超微細冷陰極が得られる。
【図面の簡単な説明】
【図1】実施例1〜3で使用する電界印加型プラズマCVD装置の概略を示す側面図。
【図2】(A)実施例1で得られた炭素系超微細冷陰極について、カーボンナノチューブの形成状態を示す走査型電子顕微鏡像(40゜傾斜)の写真。
(B)図2(A)の写真のカーボンナノチューブの形成位置を説明するための基板の模式的平面図。
【図3】実施例1で得られた炭素系冷陰極形成基板について、I−V特性の基板−アノード間距離依存性を示すグラフ。
【図4】実施例2で得られた炭素系冷陰極形成基板について、基板−アノード間距離と放出電流との関係を示すグラフ。
【図5】実施例3で得られた炭素系超微細冷陰極について、カーボンナノチューブの形成状態を示す走査型電子顕微鏡像(40゜傾斜)の写真。
【図6】実施例3で得られた高電界処理された炭素系冷陰極形成基板について、印加電界と放出電流との関係を示すグラフ。
【図7】実施例4で用いた切り傷付き基板の表面状態を示す走査型電子顕微鏡像の写真。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold cathode and a manufacturing method thereof. In particular, the present invention relates to a carbon-based ultrafine cold cathode (hereinafter also referred to as a cold cathode chip) used for vacuum device applications, display applications, and the like, and a method for manufacturing the same.
[0002]
[Prior art]
A cold cathode is a cathode from which electrons are emitted without heating. As cathode materials, Si chips, Mo chips, diamond chips, polycrystalline diamond thin films, or carbon nanotube coating films have been studied so far.
[0003]
Si chips, Mo chips, diamond chips and the like are obtained by applying thin film technology for producing IC chips and the like to process Si, Mo, diamond, etc. into a conical shape or a pyramidal shape. For example, as described in J. Appl. Phys. Vol. 47, No. 12, p. 5248 (1996), when conical Mo is formed on a Si substrate, the thickness is first formed on the Si substrate. An insulator film having a thickness of about 1 μm and a metal gate film having a thickness of about 0.5 μm are formed, a resist film is formed thereon, and a hole pattern having a diameter of about 2 μm is formed by a lithography technique. Then, the insulator film is etched to expose the Si substrate. The release film is deposited from an oblique direction while rotating the substrate around the normal of the substrate surface. By vapor deposition from an oblique direction, a release film is deposited also on the side surface of the opening of the metal gate film. In depositing Mo as the emitter material, the vapor deposition direction is adjusted so that Mo atoms are deposited in the holes while gradually closing the openings themselves. Thereafter, an extra Mo film deposited outside the hole together with the release film is removed to produce an emitter. Emitters manufactured by this method and used for displays are currently driven by an electric field of 100 V / μm.
[0004]
In addition, there is no complicated process for forming a polycrystalline diamond thin film on the entire surface of the substrate by plasma CVD method, hot filament method, etc., and using this as a cold cathode. Is very large (several kW or more), and it takes several to several tens of hours to grow a high-quality diamond film to a required film thickness (several tens to hundreds of μm). In the hot filament method, since the film quality and the film thickness distribution are sensitive to the shape of the filament, it is difficult to increase the area. In any method, it is very difficult to control the density and shape of the protrusions, so it is difficult to increase the density of electron emission points.
[0005]
In the case of a cold cathode using carbon nanotubes as an electron emission source, carbon nanotubes are separately prepared in advance by an arc discharge method or a laser irradiation method on graphite and purified, and then the carbon nanotubes are made conductive. It is used by fixing it on a metal substrate with an adhesive.
[0006]
[Problems to be solved by the invention]
As described above, in order to manufacture a cold cathode chip using the existing technology, a large number of complicated processes and a lot of time are required, the driving electric field is as high as 100 V / μm, and the substrate itself to be used is very expensive. There is a problem that.
[0007]
Further, when a cold cathode chip is manufactured by the existing technology as described above, even the smallest chip has a chip diameter of about 1 μm. When a display is manufactured using such a chip, one dot image is composed of several to several tens of chips, and the reliability and life of each cold cathode chip are extremely important. In other words, when a cold cathode chip is sputtered and damaged by discharge or residual gas, even if it is a single chip, the image is greatly affected.
[0008]
Furthermore, any of the existing methods has a problem that the usable substrates are limited to each method, and are limited to expensive ones such as single crystal Si, Mo, etc. The development of a method that can do this is desired.
[0009]
Further, when carbon nanotubes are used as an electron emission source, there is a problem in that an extra process for bonding and fixing separately formed carbon nanotubes on a substrate using an adhesive is required.
[0010]
An object of the present invention is to solve the above-mentioned problems of the existing technology, a carbon-based ultrafine cold cathode that can be driven with high density and fineness, and a low electric field, and a very simple process for the cold cathode. It is in providing the method of producing by.
[0011]
[Means for Solving the Problems]
The present invention is to produce an ultrafine and high-density electron emission source on a substrate surface by a very simple method different from the existing technology.
[0012]
The carbon-based ultrafine cold cathode of the present invention has carbon nanotubes directly formed on a substrate at a predetermined electrode formation position on the substrate as an electron emission source. The carbon nanotube is formed by an electric field application type plasma CVD method.
[0013]
The method for producing a carbon-based ultrafine cold cathode according to the present invention comprises a substrate surface formed by an electric field applied plasma CVD method in which an electric field is formed between electrodes arranged so as to sandwich a plasma generated using a plasma source. The carbon nanotubes are directly formed perpendicular to the substrate surface on the surface of the substrate placed on the cathode to which a negative voltage is applied, using a metal having a catalytic action to form carbon nanotubes from the reaction gas. and it is intended to obtain a carbon-based ultra-fine cold cathode for the carbon nanotube as an electron emission source. To form a carbon nanotube, as the auxiliary agent, a metal having a catalytic action in a high temperature hydrogen atmosphere, for example utilizing Ni, Fe, Co or an alloy of at least two of these metals. These auxiliaries are used, for example, in a form preliminarily deposited on the surface of the substrate, or are used so as to be deposited on the surface of the substrate at the same time during the deposition of the carbon nanotubes , or It is desirable to use it in the form previously contained in the substrate. When an auxiliary agent having a form of ultrafine particles is used, the auxiliary agent may be used by uniformly dispersing the auxiliary agent on the surface of the substrate.
[0014]
In the case of a substrate containing a metal having a catalytic action in a high-temperature hydrogen atmosphere as an auxiliary agent, it is desirable that the substrate surface has irregularities, and the substrate shape is not only a plate shape but also a mesh shape. Alternatively, it may be in the form of a wire.
[0015]
In addition, after carbon nanotubes are deposited on a substrate according to the above-described cold cathode manufacturing method, this substrate can be subjected to a high electric field application process in a vacuum to form a cathode that can efficiently emit electrons in a low electric field.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0017]
Specifically, according to the present invention, carbon nanotubes are directly formed at predetermined positions on the surface of the substrate by an electric field applied plasma CVD method to form an electron emission source. Carbon nanotubes can be deposited on the substrate surface at a high growth rate by the electric field applied plasma CVD method. Although it does not specifically limit as a board | substrate which can be used, From a lifetime viewpoint, a board | substrate with a small diffusion coefficient of carbon is preferable. Although both a conductive substrate and an insulating substrate can be used, when an insulating substrate is used, an electrode and a current circuit for injecting electrons into the carbon nanotube layer are separately formed in advance. Alternatively, the carbon nanotube layer itself can be patterned and used for an electrode or a current circuit. In this case, the deposited layer must be grown until a usable sheet resistance value is obtained. However, when a substrate on which electrodes are formed in advance is used, the carbon nanotubes may be scattered in an island shape. . As the substrate, for example, a quartz substrate, an alumina substrate, a silicon substrate, a Mo substrate, a SUS substrate, a Ni—Fe alloy substrate, or the like can be used.
[0018]
In the method of the present invention, when forming the carbon nanotube deposition layer, as an aid, a metal having a catalytic action in a high-temperature hydrogen atmosphere, such as Ni, Fe, Co, or at least two of these metals is used. When the alloy to be used is used in the following manner, for example, the carbon nanotubes can be easily grown on the substrate surface from the hydrocarbon-based source gas.
[0019]
For example, when the auxiliary is used in the form of being previously contained in the substrate, the carbon nanotube or amorphous carbon whisker can be grown on the entire substrate. In this case, the whisker growth (deposition) density can be controlled and increased by the content of the auxiliary agent, but the rate of vertical growth with respect to the substrate surface is low.
[0020]
This is also the case when the auxiliary is used in a form pre-adhered on the surface of the substrate, or is used in such a manner that it is applied on the surface of the substrate at the same time during the deposition of the carbon nanotubes. By attaching an auxiliary agent to the substrate surface, it is possible to increase the vertical component of the carbon nanotubes relative to the substrate. When using the auxiliary agent attached to a predetermined position on the substrate, the carbon nanotubes can be directly attached to the substrate without using any mask material by selecting the experimental conditions such as reaction gas and applied voltage. It can be deposited perpendicular to the surface. These conditions are, for example, microwave power: about 600 W, substrate temperature: 800 to 900 ° C., reaction pressure (deposition pressure): 1.33 to 2.66 × 10 3 Pa, reaction time (deposition time): about 15 The applied voltage on the substrate side during deposition is -250V.
[0021]
Examples of the method of attaching the auxiliary agent to the substrate surface include sputtering, plating, baking after coating with an organometallic compound, and the like. For example, when film formation is stopped in the initial stage of sputtering, the auxiliary agent has an island-like distribution on the substrate, and whisker growth density is reduced, but the rate of vertical growth with respect to the substrate is increased.
[0022]
When the auxiliary agent is in the form of ultrafine particles, the ultrafine particles are uniformly dispersed on the substrate and used. At this time, the particle size, particle size distribution and distribution density of the ultrafine particles are controlled. Thus, desired characteristics can be obtained.
[0023]
In addition, the dispersion density and size of the cold cathode can be controlled by appropriately setting the deposition time, the size of the catalyst metal ultrafine particles, and the dispersion density. Generally, the deposition time is 10 to 20 minutes, and the particle size of the ultrafine metal particles is 5 to 20 nm. Furthermore, the formation position of the cold cathode can be controlled by controlling the deposition position of the ultrafine metal particles using lithography technology or the like.
[0024]
Furthermore, according to the present invention, an ultrafine and high density low electric field drive carbon-based cold cathode can be produced on the substrate surface. Specifically, as described above, the deposition conditions such as reaction gas and applied voltage are appropriately selected, and the catalytic effect of carbon nanotubes such as Ni, Fe, Co, or an alloy composed of at least two of these metals. Is produced by a plasma CVD method such as an electric field application type plasma CVD method, and after depositing the carbon nanotubes on the substrate, the substrate is subjected to a high electric field application process in a vacuum, It is possible to obtain a cold cathode capable of reducing the temporal variation of the electron emission characteristics and improving the electron emission characteristics, that is, efficiently emitting electrons in a low electric field. Here, the high electric field application process is so-called aging, which is performed by applying an electric field higher than a normal driving electric field for several minutes to several hours, and is generally 4 V / μm to 20 V / μm, preferably 5 V / μm. Treatment with an electric field, preferably for 1 hour. The low electric field is an electric field lower than the driving electric field (100 V / μm) of the conventional cold cathode, and in the case of the present invention, it means, for example, 1 V / μm to 4 V / μm. In the case of this method, it is preferable to use a substrate containing Ni, Fe, Co, or an alloy composed of at least two of these metals having a catalytic action in a high-temperature hydrogen atmosphere. As such a substrate, for example, stainless steel such as SUS304, SUS302, and SUS316, amber that is an alloy containing Ni and Fe, permalloy, and the like can be used, which are very inexpensive.
[0025]
As said board | substrate, the board | substrate of various shapes, such as plate shape, mesh shape, and wire shape which may have an unevenness | corrugation on the surface, can be used. When the surface of the substrate is uneven, the electric field concentrates on the tip of the convex portion of the substrate when an electric field is applied when driving the cold cathode. For this reason, if there is a cold electron emission source in this part, electron emission preferentially occurs from this cold electron emission source, so that the drive voltage can be further reduced as compared with the case where there is a cold electron emission source on the same plane. Can do. Moreover, in the case of mesh shape or wire shape, the same effect as in the case of the substrate having the above-described uneven surface can be obtained by appropriately selecting the size and surface state. Strictly speaking, in the case of the present invention, point emission is performed, but for example, a convex assembly having the same pitch as the pixel pattern of the display is formed on the surface of the cold cathode substrate such as a plate or mesh, and the position of the phosphor As a result, an arbitrary number of micro electron guns are arranged in each pixel.
[0026]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail with reference to drawings, this invention is not limited at all by these Examples.
[0027]
FIG. 1 shows an outline of an electric field application type plasma CVD apparatus used for forming carbon nanotubes in the following examples. A cathode 2 and a cathode electrode 3 are arranged in the vacuum chamber 1 so as to oppose it, and a substrate 4 is placed on the cathode 2. A reaction gas source (H 2 , CH 4 ) 5, an exhaust vacuum pump 6, and a microwave plasma generator 7 are connected to the vacuum chamber 1, and a DC power source 8 is connected to the electrodes. With such a configuration, carbon nanotubes can be deposited on the surface of the substrate by an electric field application type plasma CVD method. This CVD apparatus is described in, for example, S. Yugo et al. Appl. Phys. Lett., 58 (1991) 1038.
Example 1
The apparatus shown in FIG. 1 is used on a low electrical resistance n-type Si substrate (vertical 5 mm × width 5 mm × thickness 0.4 mm) on which ultrafine Ni particles having a particle diameter of about 10 to 20 nm are deposited in advance by vacuum deposition. Thus, carbon nanotubes were produced by an electric field application type plasma CVD method. The reaction conditions were a microwave power of 600 W, a substrate temperature of 850 ° C., a reaction gas of CH 4 10% / H 2 , a reaction pressure of 2.6 × 10 3 Pa, and a reaction time of 15 minutes. During the deposition, a voltage of −250 V was applied to the substrate side. The formed carbon nanotubes had a needle shape with a diameter of 10 nm to 30 nm and a height of 200 nm to 500 nm, and were all perpendicular to the substrate surface (FIG. 2A). Further, carbon nanotubes were not formed in the portion where the ultrafine particles were not deposited. FIG. 2 (A) is a photograph of a scanning electron microscope image (inclination of 40 °) showing the formation state of carbon nanotubes for the carbon-based ultrafine cold cathode obtained in this example. FIG. 2 (B) As shown in FIG. 4, when depositing Ni fine particles on the surface of the Si substrate, part of the substrate (X portion) is masked to eliminate the deposition of Ni fine particles, and Ni fine particles are deposited on the other portion of the substrate (Y portion). Is deposited. However, since the masking was actually insufficient, Ni fine particles adhered to the X portion and carbon nanotubes were formed.
[0028]
When the Si substrate in which Fe ultrafine particles, Co ultrafine particles or Ni-Fe alloy ultrafine particles were deposited by vacuum deposition instead of the Ni ultrafine particles was processed in the same manner as described above, similar carbon nanotubes were formed. It was.
[0029]
1. Of the substrates formed with carbon nanotubes in this way, for the substrate obtained using Ni ultrafine particles, this substrate and an anode fixed parallel to the substrate at a position of 500 μm above the substrate; When it was placed in a vacuum of 6 × 10 −5 Pa and a positive voltage of 0 to 2000 V was applied to the anode and the electron emission characteristics were examined, emission of electrons began after 500 V (1.0 V / μm), and 2000 V ( When a voltage of 4.0 V / μm was applied, an emission current of 100 μA was obtained (FIG. 3). Moreover, when the distance between the anode and the substrate is reduced to 300 μm with the applied voltage of 2000 V (6.7 V / μm), the emission current increases to 1 mA, and the IV characteristics depend on the distance between the substrate and the anode. I found out that
(Example 2)
A low-resistance n-type Si substrate (vertical 5 mm × horizontal 5 mm × thickness 0.4 mm) is provided with a SUS304 plate (thickness 0.5 mm) of a predetermined size so as to surround the substrate, as shown in FIG. Using the apparatus, carbon nanotubes were produced on a substrate by an electric field applied plasma CVD method. The supply of the ultrafine metal particles of Ni and Fe as auxiliary agents for forming the carbon nanotubes is simultaneously performed during the deposition of the carbon nanotubes from the SUS304 plate. That is, the surface of the SUS304 plate is sputtered by ions drawn toward the substrate by the electric field, and the particles reattached on the Si substrate serve as an auxiliary agent. The reaction conditions were a microwave power of 600 W, a substrate temperature of 850 ° C., a reaction gas of CH 4 10% / H 2 , a reaction pressure of 2.6 × 10 3 Pa, and a reaction time of 15 minutes. During the deposition, a voltage of −250 V was applied to the substrate side. The formed carbon nanotubes had a diameter of 10 nm to 30 nm, a height of 200 nm to 500 nm, and were all perpendicular to the substrate surface. Moreover, the place where the carbon nanotube is formed reflected the arrangement shape of the SUS304 plate placed around the substrate.
[0030]
The substrate on which the carbon nanotube is formed and the anode fixed parallel to the substrate at a position of 400 μm above the substrate are placed in a vacuum of 2.6 × 10 −5 Pa, and a positive voltage of 0 to 2000 V is applied to the anode. When the electron emission characteristics were examined by applying a voltage, electron emission started from 800 V (2.0 V / μm), and an emission current of 121 μA was obtained when 2000 V (5.0 V / μm) was applied. When the applied voltage is 2000 V and the distance between the substrate and the anode is varied within a range of 250 to 500 μm, the emission current depends on the distance between the substrate and the anode as shown in FIG. It was.
(Example 3)
Using the apparatus shown in FIG. 1, carbon nanotubes and amorphous carbon were produced on a SUS304 substrate (vertical 5 mm × horizontal 5 mm × thickness 0.5 mm) by an electric field application type plasma CVD method. As reaction conditions, the microwave power was 600 W, the substrate temperature was 850 ° C., the reaction gas was CH 4 30% / H 2 , the reaction pressure was 2.6 × 10 3 Pa, and the reaction time was 15 minutes. During the deposition, a voltage of −250 V was applied to the substrate side. The formed cold cathode had a needle shape with a diameter of 50 nm to 200 nm and a length of 200 nm to 500 nm (FIG. 5). Using amber, which is a Ni—Fe alloy, as the substrate instead of the SUS substrate, the same processing as described above was performed to obtain a similar acicular ultrafine cold cathode.
[0031]
The SUS304 substrate on which the carbon-based ultrafine cold cathode was formed as described above, and the anode fixed so as to be parallel to the substrate at a position of 500 μm above the substrate were in a vacuum of 2.6 × 10 −5 Pa. Then, a positive voltage of 0 to 2000 V or more was applied to the anode, and the electron emission characteristics by the high electric field treatment were examined. As shown in FIG. 6, electron emission starts from 1100 V (2.2 V / μm), and an emission current of 46 μA is obtained when 1300 V (2.6 V / μm) is applied and 10 nA and 2500 V (5.0 V / μm) is applied. It was. Thereafter, when this 5.0 V / μm state was maintained for 1 hour, the emission current value increased from 46 μA to 413 μA. Next, when the voltage was lowered to 1600 V (3.2 V / μm), the emission current became 300 μA. Therefore, compared with the ultrafine cold cathode before the high electric field treatment, the cold cathode after the high electric field treatment has improved electron emission characteristics, and the current value in the low electric field is increased, and the electron efficiency is extremely high. Has been found to be released. This also showed the same tendency when a Ni—Fe alloy substrate was used as the substrate.
(Example 4)
As shown in FIG. 7, a half of the surface of a SUS304 substrate (length 5 mm × width 5 mm × thickness 1 mm) was scratched in a lattice pattern by cutting a WC-made pen glass, and then the conditions and procedures described in Example 3 Accordingly, a needle-like cold electron source was deposited on this substrate by an electric field application type plasma CVD method.
[0032]
For the SUS304 substrate in which the cold electron source was formed as described above and the SUS304 substrate in which the cold cathode was similarly formed without performing the scratching treatment as a control, the TiO3 coated with the phosphor as the anode was arranged in the same manner as in Example 1. Using a glass substrate with two films, fluorescence due to electron emission was observed under the condition of a substrate-anode distance of 500 μm. As a result, in the case of the substrate subjected to the damage treatment, the fluorescence due to the electron emission from the damaged portion can be observed from 2.2 V / μm, and the fluorescence from the portion not subjected to the damage treatment is 5.0 V / μm. Observed from nearby. In addition, in the case of the substrate without the entire scratch treatment as a control, fluorescence due to electron emission from the central portion of the substrate was observed from 4.0 V / μm. The groove A shown in FIG. 7 is a cut mark of a glass pen made of WC, electric field concentration occurs at the edge B of the cut inside the substrate, and electrons are easily emitted. In this case, electric field concentration occurred in the peripheral part of the substrate, and the electron emission was mostly contributed by the peripheral part.
(Example 5)
Striped convex portions were formed on a SUS304 substrate (5 mm long × 5 mm wide × 1 mm thick), and a cold electron source was deposited under the same conditions as in Example 3 above. When the cold cathode substrate is arranged so as to intersect with the anode with a phosphor formed in a stripe shape on a glass substrate with a TiO 2 film, a display section configuration of a bipolar field emission display is obtained. It can be used for display applications.
[0033]
【The invention's effect】
According to the present invention, in the process of producing a carbon-based cold cathode tip, a plurality of processes for producing a conventional conical or pyramidal tip is unnecessary, and the size of the conventional cold cathode tip is 100 minutes. A carbon-based ultrafine cold cathode chip having a diameter of about 1 (diameter: about several tens of nm) can be produced at a high density, and a low-voltage driven cold cathode chip can be produced at a very high density.
[0034]
In the present invention, particularly when the auxiliary agent is deposited on the substrate, since the carbon nanotubes are easily formed perpendicular to the substrate, the electric field concentration occurs very efficiently, and compared with the conventional technique of several V / μm. Thus, a low electric field driven cold cathode that can be driven by an electric field two orders of magnitude lower can be manufactured.
[0035]
Further, according to the present invention, the substrate includes Ni, Fe, Co having at least two kinds of catalysts having a catalytic action in a high-temperature hydrogen atmosphere, or an alloy of these metals, for example, stainless steel, Ni-Fe alloy. Can be used, and these substrates are very inexpensive and easy to handle. In addition, when such a substrate is used, if a cold electron source is formed on the substrate using a plate-like substrate having an uneven surface, or a mesh-like or wire-like substrate, the electric field concentration at the time of driving is more effective. A cold cathode that occurs and the driving voltage is reduced can be produced.
[0036]
Due to the combined effects of the above-described features of the present invention, a low-field-driven carbon-based ultrafine cold cathode having a longer lifetime than that of a conventional cold cathode can be obtained.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing an electric field application type plasma CVD apparatus used in Examples 1 to 3. FIG.
2A is a photograph of a scanning electron microscope image (inclination of 40 °) showing a carbon nanotube formation state of the carbon-based ultrafine cold cathode obtained in Example 1. FIG.
(B) A schematic plan view of a substrate for explaining the formation positions of carbon nanotubes in the photograph of FIG. 2 (A).
3 is a graph showing the substrate-anode distance dependence of IV characteristics for the carbon-based cold cathode formed substrate obtained in Example 1. FIG.
4 is a graph showing the relationship between the substrate-anode distance and emission current for the carbon-based cold cathode formed substrate obtained in Example 2. FIG.
5 is a scanning electron microscopic image (inclination of 40 °) showing a carbon nanotube formation state of the carbon-based ultrafine cold cathode obtained in Example 3. FIG.
6 is a graph showing a relationship between an applied electric field and an emission current with respect to a carbon-based cold cathode forming substrate subjected to a high electric field treatment obtained in Example 3. FIG.
7 is a scanning electron microscope image showing the surface state of the substrate with cuts used in Example 4. FIG.

Claims (8)

プラズマ源を用いて発生させたプラズマを挟むように配置した電極間に電界を形成してCVDを行う電界印加型プラズマCVD法により、基板表面に反応ガスからカーボンナノチューブを形成する触媒作用を持つ金属を助剤として使用して、負電圧を印加した陰極上に載置した基板表面に、カーボンナノチューブを直接に基板表面に対して垂直に形成し、このカーボンナノチューブを電子放出源とすることを特徴とする炭素系超微細冷陰極の作製方法。Metal with catalytic action to form carbon nanotubes from reaction gas on substrate surface by electric field applied plasma CVD method, which performs CVD by forming electric field between electrodes arranged to sandwich plasma generated using plasma source use as aid in placing the substrate surface on the cathode a negative voltage is applied, characterized in that formed vertically to directly to the substrate surface of the carbon nanotubes, the carbon nanotube as an electron emission source A method for producing a carbon-based ultrafine cold cathode. 前記助剤が、Ni、Fe、Co又はこれらの金属の少なくとも2種からなる合金であることを特徴とする請求項1記載の炭素系超微細冷陰極の作製方法。  The method for producing a carbon-based ultrafine cold cathode according to claim 1, wherein the auxiliary is Ni, Fe, Co, or an alloy composed of at least two of these metals. 前記助剤が、あらかじめ前記基板の表面上に付着された形態で利用されるか、又は前記カーボンナノチューブの形成中に同時に前記基板の表面上に付着されるようにして利用されることを特徴とする請求項1又は2記載の炭素系超微細冷陰極の作製方法。The auxiliary is used in a form preliminarily deposited on the surface of the substrate, or is used so as to be deposited on the surface of the substrate simultaneously with the formation of the carbon nanotubes. A method for producing a carbon-based ultrafine cold cathode according to claim 1 or 2. 前記助剤が超微粒子の形態を有するものであり、該超微粒子が前記基板の表面上に一様に散布することによって利用されることを特徴とする請求項1〜3のいずれかに記載の炭素系超微細冷陰極の作製方法。  The said auxiliary | assistant has a form of an ultrafine particle, This ultrafine particle is utilized by spraying uniformly on the surface of the said board | substrate, The Claim 1 characterized by the above-mentioned. A method for producing a carbon-based ultrafine cold cathode. 前記基板が、前記助剤を含有したものであることを特徴とする請求項1又は2記載の炭素系超微細冷陰極の作製方法。  The method for producing a carbon-based ultrafine cold cathode according to claim 1 or 2, wherein the substrate contains the auxiliary. 前記基板が、あらかじめ表面に格子状の傷を付けたものであることを特徴とする請求項5記載の炭素系超微細冷陰極の作製方法。  6. The method for producing a carbon-based ultrafine cold cathode according to claim 5, wherein the substrate has a lattice-shaped scratch on the surface in advance. 前記カーボンナノチューブの形成後、真空中で高電界印加処理を行うことを特徴とする請求項1〜6のいずれかに記載の炭素系超微細冷陰極の作製方法。The method for producing a carbon-based ultrafine cold cathode according to claim 1, wherein a high electric field application treatment is performed in vacuum after the formation of the carbon nanotubes . 請求項1〜7のいずれかの方法で作製したことを特徴とする炭素系超微細冷陰極。  A carbon-based ultrafine cold cathode produced by the method according to claim 1.
JP30125998A 1998-06-04 1998-10-22 Carbon-based ultrafine cold cathode and method for producing the same Expired - Fee Related JP4008123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30125998A JP4008123B2 (en) 1998-06-04 1998-10-22 Carbon-based ultrafine cold cathode and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-155697 1998-06-04
JP15569798 1998-06-04
JP30125998A JP4008123B2 (en) 1998-06-04 1998-10-22 Carbon-based ultrafine cold cathode and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000057934A JP2000057934A (en) 2000-02-25
JP4008123B2 true JP4008123B2 (en) 2007-11-14

Family

ID=26483626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30125998A Expired - Fee Related JP4008123B2 (en) 1998-06-04 1998-10-22 Carbon-based ultrafine cold cathode and method for producing the same

Country Status (1)

Country Link
JP (1) JP4008123B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066523A1 (en) * 1998-06-18 1999-12-23 Matsushita Electric Industrial Co., Ltd. Electron emitting device, electron emitting source, image display, and method for producing them
US7375366B2 (en) 2000-02-25 2008-05-20 Sharp Kabushiki Kaisha Carbon nanotube and method for producing the same, electron source and method for producing the same, and display
JP4531193B2 (en) * 2000-04-10 2010-08-25 株式会社アルバック Carbon nanotube thin film forming ECR plasma CVD apparatus using slot antenna and method of forming the thin film
JP2002025477A (en) * 2000-07-07 2002-01-25 Ise Electronics Corp Surface display and its manufacturing method
JP2002146533A (en) 2000-11-06 2002-05-22 Mitsubishi Electric Corp Carbon thin body, method for forming carbon thin body, and field-emission-type electron source
JP3710436B2 (en) 2001-09-10 2005-10-26 キヤノン株式会社 Electron emitting device, electron source, and manufacturing method of image display device
JP2003086085A (en) * 2001-09-13 2003-03-20 Sony Corp Method of manufacturing cold cathode field electron emission element, and method of manufacturing cold cathode field electron emission display device
KR100480663B1 (en) * 2001-12-21 2005-04-06 한국화학연구원 A method for synthesizing a carbon nanotube by modified inductively coupled plasma chemical vapor deposition
JP3842159B2 (en) 2002-03-26 2006-11-08 株式会社半導体エネルギー研究所 Doping equipment
JP3998241B2 (en) 2002-10-18 2007-10-24 キヤノン株式会社 Manufacturing method of substrate on which carbon fiber is fixed
US7632379B2 (en) 2003-05-30 2009-12-15 Toshio Goto Plasma source and plasma processing apparatus
JP2004356558A (en) * 2003-05-30 2004-12-16 Toshio Goto Apparatus and method for coating
JP2004362960A (en) * 2003-06-05 2004-12-24 Akio Hiraki Electron emitting element and manufacturing method of the same
WO2005047180A1 (en) * 2003-11-17 2005-05-26 Konica Minolta Holdings, Inc. Method for producing nanostructured carbon material, nanostructured carbon material produced by such method, and substrate having such nanostructured carbon material
JP4324078B2 (en) 2003-12-18 2009-09-02 キヤノン株式会社 Carbon-containing fiber, substrate using carbon-containing fiber, electron-emitting device, electron source using the electron-emitting device, display panel using the electron source, and information display / reproduction device using the display panel, And production methods thereof
JP4317779B2 (en) * 2004-03-26 2009-08-19 株式会社日立ハイテクノロジーズ Field emission electron gun and electron beam application apparatus using the same
CN1329936C (en) * 2004-04-19 2007-08-01 东南大学 Method of utilizing powdered metallurgical process for prepn. of nanotube field emitting cold cathode
WO2005102924A1 (en) 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof
EP1605489A3 (en) 2004-06-10 2008-06-11 Dialight Japan Co., Ltd. Field electron emission device and lighting device
JP4864299B2 (en) * 2004-08-04 2012-02-01 株式会社ピュアロンジャパン Field electron-emitting device, method for manufacturing the same, and lighting device
JP2006160592A (en) * 2004-12-10 2006-06-22 Kansai Electric Power Co Inc:The Method of manufacturing carbon nanotube, carbon nanotube manufactured by the method and carbon nanotube manufacturing catalyst
JP2006286563A (en) * 2005-04-05 2006-10-19 Sonac Kk Electron emitter and its manufacturing method
JP4876471B2 (en) * 2005-08-02 2012-02-15 パナソニック株式会社 Field electron emission source and magnetron and microwave application apparatus using the same
JP2007055856A (en) * 2005-08-25 2007-03-08 Dialight Japan Co Ltd Carbon film, electron releasing source, and electric field emission type illumination lamp
JP4578350B2 (en) * 2005-08-10 2010-11-10 株式会社ピュアロンジャパン Carbon film, electron emission source and field emission type lighting lamp
JP2008105922A (en) * 2006-10-24 2008-05-08 Samsung Sdi Co Ltd Carbide-derived carbon, electron-emitting source for cold cathode, and electron-emitting element
JP2010222148A (en) * 2009-03-19 2010-10-07 Ulvac Japan Ltd Apparatus for forming carbon nanotube
DE102014212077A1 (en) 2014-06-24 2015-12-24 Technische Universität Dresden Process for the growth of vertically oriented single-walled carbon nanotubes with the same electronic properties and for the duplication of single-walled carbon nanotubes with the same electronic properties

Also Published As

Publication number Publication date
JP2000057934A (en) 2000-02-25

Similar Documents

Publication Publication Date Title
JP4008123B2 (en) Carbon-based ultrafine cold cathode and method for producing the same
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
US5977697A (en) Field emission devices employing diamond particle emitters
EP1511058B1 (en) Carbon-nano tube structure, method of manufacturing the same, and field emitter and display device each adopting the same
US7448931B2 (en) Method for manufacturing carbon nanotube field emission device
US6780075B2 (en) Method of fabricating nano-tube, method of manufacturing field-emission type cold cathode, and method of manufacturing display device
JP3455380B2 (en) Field emission device using improved emitter on metal foil and method of making such device
US20040192153A1 (en) Method for making a carbon nanotube-based field emission display
KR100702037B1 (en) Electron-emitting device and manufacturing method thereof
JP2000277003A (en) Manufacture of electron emission source and electron emission source
JP3436219B2 (en) Carbon material, method for producing the same, and field emission cold cathode using the same
US20040192152A1 (en) Method for making a carbon nanotube-based field emission display
JP4792625B2 (en) Method for manufacturing electron-emitting device and electronic device
JP2001167721A (en) Electric field discharge display element and manufacturing method of the same
JP2004241295A (en) Electrode material for electron emission element using carbon nanotube and its manufacturing method
US7405092B2 (en) Method of manufacturing electron-emitting device and method of manufacturing image display apparatus
JP2004362960A (en) Electron emitting element and manufacturing method of the same
TW202105432A (en) Carbon nanotube field emitter and making method thereof
JP4579372B2 (en) Electron emitting device, method for manufacturing electron emitting device, and image display device
JP2002093305A (en) Electron emitting negative electrode
JP3890471B2 (en) Method for producing electrode material for electron-emitting device using carbon nanotube
EP1455376B1 (en) Electron-emitting device, electron source, and image display apparatus
JP4829634B2 (en) Method for forming catalyst and method for producing carbon film using the same
JP2005048305A (en) Method for producing carbon fiber and method for producing electron emission element using the same, electron source and image display device
JP2001283715A (en) Electron-emission cathode and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees