HUE035182T2 - Anti-HER2 antitest-hatóanyag-konjugátum és pertuzumab kombinációi - Google Patents

Anti-HER2 antitest-hatóanyag-konjugátum és pertuzumab kombinációi Download PDF

Info

Publication number
HUE035182T2
HUE035182T2 HUE13158391A HUE13158391A HUE035182T2 HU E035182 T2 HUE035182 T2 HU E035182T2 HU E13158391 A HUE13158391 A HU E13158391A HU E13158391 A HUE13158391 A HU E13158391A HU E035182 T2 HUE035182 T2 HU E035182T2
Authority
HU
Hungary
Prior art keywords
trastuzumab
mcc
pertuzumab
therapeutic combination
combination
Prior art date
Application number
HUE13158391A
Other languages
English (en)
Inventor
Leanne Berry
Gail Phillips
Mark X Sliwkowski
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40858064&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=HUE035182(T2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of HUE035182T2 publication Critical patent/HUE035182T2/hu

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/5365Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/4161,2-Diazoles condensed with carbocyclic ring systems, e.g. indazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/5355Non-condensed oxazines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6855Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from breast cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • A61K2039/507Comprising a combination of two or more separate antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/71Assays involving receptors, cell surface antigens or cell surface determinants for growth factors; for growth regulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) IntCI.: of the grant of the patent: A61K 391395 <2006 01> A61K 47150 <2017 01> 19.04.2017 Bulletin 2017/16 A61K 45106 <2006 01> A61P 35100 <2006 01> (21) Application number: 13158391.6 (22) Date of filing: 10.03.2009 (54) Combinations of an Anti-HER2 antibody-drug conjugate and pertuzumab Kombination aus einem Anti-HER2-Antikorperwirkstoffkonjugat und Pertuzumab Combinaisons de conjugue de medicament-anticorps anti-HER2 et du pertuzumab (84) Designated Contracting States: · PHILLIPS GAIL D LEWIS ET AL: "Potent AT BE BG CH CY CZ DE DK EE ES FI FR GB GR anti-tumor activity of trastuzumab-DM1 HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL antibody-drug conjugate in combination with PT RO SE SI SK TR cytotoxic chemotherapeutic agents, antibodies
Designated Extension States: or small molecule kinase inhibitors",
ALBARS PROCEEDINGS OF THE AMERICAN
ASSOCIATION FOR CANCER RESEARCH (30) Priority: 18.03.2008 US 37410 P ANNUAL MEETING, vol. 49, April 2008 (2008-04),
page 502, XP001538788, &amp; 99TH ANNUAL
(43) Date of publication of application: MEETING OF THE
02.10.2013 Bulletin 2013/40 AMERICAN-ASSOCIATION-FOR-CANCER-RESE ARCH; SAN DIEGO, CA, USA; APRIL 12-16, 2008
(62) Document number(s) of the earlier application(s) in ISSN: 0197-016X accordance with Art. 76 EPC: · FIELDS CARTER ET AL: "Enhanced in vitro and 09721522.2 / 2 254 571 in vivo activity of trastuzumab-DM1 antibody-drug conjugate combined with (73) Proprietor: Genentech, Inc. GDC-0941, a small molecule inhibitor of PI3
South San Francisco, CA 94080 (US) kinase", PROCEEDINGS OF THE ANNUAL
MEETING OF THE AMERICAN ASSOCIATION
(72) Inventors: FOR CANCER RESEARCH; 100TH ANNUAL
• Berry, Leanne MEETING OF THE
South San Francisco, CA California 94080 (US) AMERICAN-ASSOCIATION-FOR-CANCER-RESE
• Phillips, Gail, Lewis ARCH, AMERICAN ASSOCIATION FOR CANCER
San Carlos, CA California 94070 (US) RESEARCH, US; DENVER, CA, USA, vol. 50,1 • Sliwkowski Mark, X. April 2009 (2009-04-01), page 784, XP008117331,
San Carlos, CA California 94070 (US) ISSN: 0197-016X
• JUNTTILAT ETAL: "515 POSTER (74) Representative: Kiddle, Simon John Trastuzumab-mertansine (T-DM1) retains all the
Mewburn Ellis LLP mechanisms of action (MOA) of trastuzumab and
City Tower is extremely effective in combination with 40 Basinghall Street docetaxel", EUROPEAN JOURNAL OF CANCER.
London EC2V 5DE (GB) SUPPLEMENT, PERGAMON, OXFORD, GB, vol. 6, no. 12,1 October 2008 (2008-10-01), page 163, (56) References cited: XP025534579, ISSN: 1359-6349 [retrieved on US-A1-2005 276 812 US-B2- 7 097 840 2008-10-01]
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This non-provisional application filed under 37 CFR § 1.53(b), claims the benefit under 35 USC §119(e) of U.S. Provisional Application Serial No. 61/037,410 filed on 18 March 2008.
FIELD OF THE INVENTION
[0002] The invention relates generally to pharmaceutical combinations of compounds with activity against cancer expressing ErbB2.
BACKGROUND OF THE INVENTION
[0003] The HER2 (ErbB2) receptor tyrosine is a member of the epidermal growth factor receptor (EGFR) family of transmembrane receptors. Overexpression of HER2 is observed in approximately 20% of human breast cancers and is implicated in the aggressive growth and poor clinical outcomes associated with these tumors (Slamon et al (1987) Science 235:177-182).
[0004] Trastuzumab (CAS 180288-69-1, HERCEPTIN®, huMAb4D5-8, rhuMAb HER2, Genentech) is a recombinant DNA-derived humanized, IgG 1 kappa, monoclonal antibody version of the murine HER2 antibody which selectively binds with high affinity in a cell-based assay (Kd = 5 nM) to the extracellular domain of the human epidermal growth factor receptor2 protein, HER2 (ErbB2) (US 5677171; US 5821337; US 6054297; US 6165464; US 6339142; US 6407213; US 6639055; US 6719971; US 6800738; US 7074404; Coussens et al (1985) Science 230:1132-9; Slamon et al (1989) Science 244:707-12; Slamon et al (2001) New Engl. J. Med. 344:783-792). Trastuzumab contains human framework regions with the complementarity-determining regions of a murine antibody (4D5) that binds to HER2. Trastuzumab binds to the HER2 antigen and thus inhibits the growth of cancerous cells. Trastuzumab has been shown, in both in vitro assays and in animals, to inhibit the proliferation of human tumor cells that overexpress HER2 (Hudziak et al (1989) Mol Cell Biol 9:1165-72; Lewis et al (1993) Cancer Immunol Immunother; 37:255-63; Baselga et al (1998) Cancer Res. 58:2825-2831). Trastuzumab is a mediator of antibody-dependent cellular cytotoxicity, ADCC (Lewis et al (1993) Cancer Immunol Immunother 37(4):255-263; Hotaling et al (1996) [abstract], Proc. Annual Meeting Am Assoc Cancer Res; 37:471; Pegram MD, et al (1997) [abstract], Proc Am Assoc Cancer Res; 38:602; Sliwkowski et al (1999) Seminars in Oncology 26(4), Suppl 12:60-70; Yarden Y. and Sliwkowski, M. (2001) Nature Reviews: Molecular Cell Biology, Macmillan Magazines, Ltd., Vol. 2:127-137).
[0005] HERCEPTIN® was approved in 1998 for the treatment of patients with ErbB2-overexpressing metastatic breast cancers (Baselga et al, (1996) J. Clin. Oncol. 14:737-744) that have received extensive prior anti-cancer therapy, and has since been used in over 300,000 patients (Slamon DJ, et al. N Engl J Med 2001 ;344:783-92; Vogel CL, et al. J Clin Oncol 2002;20:719-26; Marty M, et al. J Clin Oncol 2005;23:4265-74; Romond EH, et al. T N Engl J Med 2005;353:1673-84; Piccart-Gebhart MJ, etal. N Engl J Med 2005;353:1659-72; Slamon D, etal. [abstract]. Breast Cancer Res Treat 2006, 100 (Suppl 1): 52). In 2006, the FDA approved HERCEPTIN® (trastuzumab, Genentech Inc.) as part of a treatment regimen containing doxorubicin, cyclophosphamide and paclitaxel for the adjuvant treatment of patients with HER2-positive, node-positive breast cancer. While the development of HERCEPTIN® provided patients with HER2-positive tumors a markedly better outcome than with chemotherapy alone, virtually all HER2-positive, metastatic breast cancer (MBC) patients will eventually progress on available therapies. Opportunities remain to improve outcomes for patients with MBC. Despite trastuzumab’s diverse mechanisms of action, a number of patients treated with trastuzumab show either no response or stop responding after a period of treatment benefit. Some HER2+ (HER2 positive) tumors fail to respond to HERCEPTIN® and the majority of patients whose tumors respond eventually progress. There is a significant clinical need for developing further HER2-directed cancer therapies for patients with HER2-overexpressing tumors or other diseases associated with HER2 expression that do not respond, or respond poorly, to HERCEPTIN® treatment.
[0006] An alternative approach to antibody-targeted therapy is to utilize antibodies for delivery of cytotoxic drugs specifically to antigen-expressing cancer cells. Maytansinoids, derivatives of the anti-mitotic drug maytansine, bind to microtubules in a manner similar to vinca alkaloid drugs (Issell BF et al (1978) Cancer Treat. Rev. 5:199-207; Cabanillas F et al. (1979) Cancer Treat Rep, 63:507-9. Antibody-drug conjugates (ADCs) composed of the maytansinoid DM1 linked to trastuzumab show potent anti-tumor activity in HER2-overexpressing trastuzumab-sensitive and trastuzumab-resistant tumor cell lines, and xenograft models of human breast cancer. A conjugate of maytansinoids linked to the anti-HER2 murine breast cancer antibody TA.1 via the MCC linker was 200-fold less potent than the corresponding conjugate with a disulfide linker (Chari et al (1992) Cancer Res. 127-133). Antibody-drug conjugates (ADCs) composed of the maytansinoid, DM1, linked to trastuzumab show potent anti-tumor activity in HER2-overexpressing trastuzumab- sensitive and -resistant tumor cell lines and xenograft models of human cancer. Trastuzumab-MCC-DM1 (T-DM1) is currently undergoing evaluation in phase II clinical trials in patients whose disease is refractory to HER2-directed therapies (Beeram etal (2007) "A phase I study of trastuzumab-MCC-DM1 (T-DM1), a first-in-class HER2 antibody-drug conjugate (ADC), in patients (pts) with HER2+ metastatic breast cancer (BC)", American Society of Clinical Oncology 43rd:June 02 (Abs 1042; Krop et al, European Cancer Conference ECCO, Poster 2118, September 23-27, 2007, Barcelona;US 7097840; US 2005/0276812; US 2005/0166993).
[0007] Combination therapy in which two or more drugs are used together in some dosing regimen or administration form, typically has one or more goals of: (i) reducing the frequency at which acquired resistance arises by combining drugs with minimal cross-resistance, (ii) lowering the doses of drugs with non-overlapping toxicity and similar therapeutic profile so as to achieve efficacy with fewer side effects, i.e. increase therapeutic index, (iii) sensitizing cells to the action of one drug through use of another drug, such as altering cell-cycle stage or growth properties, and (iv) achieving enhanced potency by exploiting additivity, or greater than additivity, effects in the biological activity of two drugs (Pegram, M., et al (1999) Oncogene 18:2241-2251; Konecny, G., et al (2001) Breast Cancer Res. and Treatment 67:223-233; Pegram, M., et al (2004) J. of the Nat. Cancer Inst. 96(10):739-749; Fitzgerald et al (2006) Nature Chem. Biol. 2(9):458-466; Borisy et al (2003) Proc. Natl. Acad. Sci 100(13):7977-7982).
[0008] Loewe additivity (Chou, T.C. and Talalay, P. (1977) J. Biol. Chem. 252:6438-6442; Chou, T.C. and Talalay, P. (1984) Adv. Enzyme Regul. 22:27-55; Berenbaum, M.C. (1989) Pharmacol. Rev. 41:93-141) and Bliss independ-ence/synergy (Bliss, C.l. (1956) Bacteriol. Rev. 20:243-258; Greco etal (1995) Pharmacol. Rev. 47:331-385) are methods used for calculating the expected dose-response relationship for combination therapy compared to monotherapy based on parameters such as IC50, the dose of drug needed to achieve 50% target inhibition and equal to Ki in the simplest case. [0009] HER2 dimerization inhibitor antibodies and EGFR inhibitors have been reported for combination therapy against cancer (US 2007/0020261). Trastuzumab-MCC-DM1 (T-DM1) and pertuzumab have individually demonstrated activity in MBC patients, and a combination of pertuzumab and trastuzumab has been shown to be active in HER-positive MBC patients (Baselga J, et al. "A Phase II trial of trastuzumab and pertuzumab in patients with HER2-positive metastatic breast cancer that had progressed during trastuzumab therapy: full response data", European Society of Medical Oncology, Stockholm, Sweden, September 12-16, 2008).
SUMMARY OF THE INVENTION
[0010] The invention relates generally to the anti-HER2 antibody-drug conjugate, trastuzumab-MCC-DM1, administered in combination with pertuzumab to inhibit the growth of cancer cells repressing ErbB2. Combination oftrastuzumab-MCC-DM1 and pertuzumab shows synergistic effects in inhibiting the growth of cancer cells in vitro and in vivo. The combinations of the invention may be useful in the treatment of cancer expressing ErbB2. The combinations may inhibit tumor growth in mammals and may be useful for treating human cancer patients.
[0011] In one aspect, the invention includes a therapeutic combination as a combined formulation or by alternation to a mammal, wherein the therapeutic combination comprises a therapeutically effective amount of trastuzumab-MCC-DM1, and a therapeutically effective amount of pertuzumab for use in a method for the treatment of a cancer expressing ErbB2.
[0012] The therapeutically effective amount of trastuzumab-MCC-DM1 and the therapeutically effective amount of pertuzumab may be administered as a combined formulation or by alternation.
[0013] The invention also relates to a recombination as defined in the claims wherein administration of the therapeutic combination results in a synergistic effect.
[0014] Another aspect of the invention are pharmaceutical compositions comprising trastuzumab-MCC-DM1, pertuzumab and one or more pharmaceutically acceptable carrier, glidant, diluent, or excipient.
[0015] Another aspect of the invention provides combinations for treating a cancer expressing ErbB2, comprising administering to a mammal in need of such treatment effective amounts of trastuzumab-MCC-DMI and pertuzumab. Trastuzumab-MCC-DM1 and pertuzumab may be co-formulated for administration in a combination as a pharmaceutical formulation or they may be administered separately in alternation (alternating, sequential dosages) as a therapeutic combination.
[0016] The present disclosure also provides methods to predict effective drug combinations for in vivo efficacy where the combinations include trastuzumab-MCC-DM1 and an anti cancer, standard-of-care, chemotherapeutic agent. Efficacy data from in vitro cell proliferation and in vivo tumor xenograft experiments are analyzed qualitatively and quantitatively. Quantitative analysis methods may be based on the Chou &amp; Talalay median effect and isobolograms generating a combination index (Cl) value to denote synergy, antagonism, or additivity, or on the Bliss Independence ribbon graph deflection.
[0017] Another aspect of the invention is a therapeutic combination of the invention for use to treat a disease or condition such as cancer, including one modulated by HER2 in a mammal.
[0018] Another aspect of the invention is the use of a therapeutic combination of the invention in the preparation of a medicament for the treatment of a disease or condition such as cancer, including one modulated by HER2 in a mammal. [0019] Another aspect of the invention includes articles of manufacture or kits comprising trastuzumab-MCC-DM1, pertuzumab a container, and optionally a package insert or label indicating a treatment.
[0020] Another aspect of the disclosure includes a method for determining compounds to be used in combination for the treatment of cancer comprising: a) administering a therapeutic combination of trastuzumab-MCC-DM1, and a chemotherapeutic agent selected from a HER2 dimerization inhibitor antibody, an anti-VEGF antibody, 5-FU, carboplatin, lapatinib, ABT-869, docetaxel, GDC-0941, and GNE-390 to an in vitro tumor cell line, and b) measuring a synergistic or non-synergistic effect.
BRIEF DESCRIPTION OF THE DRAWINGS
[0021]
Figure 1 shows a plot of SK-BR-3 in vitro cell viability at 3 days versus IC50 multiple concentrations of trastuzumab, trastuzumab-MCC-DM1 (T-DM1), and the combination of trastuzumab and T-DM1.
Figure 2 shows a plot of BT-474 EEI in vitro cell viability at 3 days versus IC50 multiple concentrations of trastuzumab, trastuzumab-MCC-DM1 (T-DM1), and the combination of trastuzumab and T-DM1.
Figure 3 shows a plot of MDA-MB-175 in vitro cell viability at 5 days versus IC50 multiple concentrations of pertuzumab, trastuzumab-MCC-DM1 (T-DM1), and the combination of pertuzumab and T-DM1.
Figure 3a shows a plot of MDA-MB-175 in vitro cell viability at 5 days versus IC50 multiple concentrations of pertuzumab, trastuzumab-MCC-DM1 (T-DM1), and the combination of pertuzumab and T-DM1.
Figure 4 shows a plot of BT-474 in vitro cell viability at 5 days versus various fixed doses of pertuzumab in combination with dose response of trastuzumab-MCC-DM1 (T-DM1), and various doses of T-DM1 alone.
Figure 5 shows a plot of BT-474 in vitro cell viability at 5 days versus various fixed doses of trastuzumab-MCC-DM1 (T-DM1) in combination with dose response of pertuzumab, and various doses of pertuzumab alone.
Figure 6 shows a plot of BT-474 in vitro cell viability at 5 days versus IC50 multiple concentrations of pertuzumab, trastuzumab-MCC-DM1 (T-DM1), and the combination of pertuzumab and T-DM1.
Figure 7 shows a plot of SK-BR-3 in vitro cell viability at 3 days versus varying doses of T-DM1 in combination with fixed doses of lapatinib (4.5 nM, 14 nM, 41 nM, 123 nM), and varying doses of T-DM1 alone (0-1000 ng/ml). Figure 7a shows a plot of SK-BR-3 in vitro cell viability at 3 days versus T-DM1, lapatinib, and fixed dose ratio combinations ofT-DM1 and lapatinib.
Figure 8a shows a plot of BT-474 in vitro cell viability at 3 days versus T-DM1, lapatinib, and fixed dose ratio combinations ofT-DM1 and lapatinib.
Figure 8 shows a plot of BT-474 in vitro cell viability at 3 days versus varying doses of T-DM1 in combination with fixed doses of lapatinib (1.5nM,4.5nM,14nM,41 nM,123nM), and varying doses of T-DM1 alone (0-1000 ng/ml). Figure 9 shows a plot of BT-474-EEI in vitro cell viability at 3 days versus varying doses of T-DM1 in combination with fixed doses of lapatinib (14 nM, 41 nM, 123 nM, 370 nM, 1111 nM), and varying doses of T-DM1 alone (0-1000 ng/ml).
Figure 10 shows a plot of the in vivo mean tumor volume change over time in KPL-4 tumors inoculated into the mammary fat pad of SCID beige mice (3 million cells in matrigel per mouse) after dosing with: (1) ADC buffer, (2) pertuzumab 15 mg/kg, (3) T-DM1 0.3 mg/kg, (4) T-DM1 1 mg/kg, (5) T-DM1 3 mg/kg, (6) pertuzumab 15 mg/kg + T-DM1 0.3 mg, (7) pertuzumab 15 mg/kg + T-DM1 1 mg/kg, (8) pertuzumab 15 mg/kg + T-DM1 3 mg/kg. ADC buffer and T-DM1 were dosed once on day 0. Pertuzumab was dosed on days 0, 7, and 14.
Figure 11 shows a plot of the in vivo mean tumor volume change over time in KPL-4 tumors inoculated into the mammary fat pad of SCID beige mice (3 million cells in matrigel per mouse) after dosing with: (1) ADC buffer, (2) 5-FU 100 mg/kg, (3) pertuzumab 40 mg/kg, the first pertuzumab dose (groups 5, 7, and 9) was a 2x loading dose, (4) B20-4.1,5 mg/kg, (5) T-DM1,5 mg/kg, (6) 5-FU, 100 mg/kg + T-DM1,5 mg, (7) pertuzumab 40 mg/kg + T-DM1, 5 mg/kg, (8) B20-4.1,5 mg/kg + T-DM1,5 mg/kg, (9) B20-4.1,5 mg/kg + pertuzumab, 40 mg/kg. ADC buffer and T-DM1 were dosed once on day 0 by single iv injection. Pertuzumab was dosed on days 0, 7, 14, 21 (qwk x4. 5-FU was dosed on days 0, 7 and 14 (qwkx3). B20-4.1 was dosed on days 0, 3, 7, 10, 14, 17, 21 and 24 (2X/wkx8 total). Figure 12 shows a plot of the in vivo mean tumor volume change overtime in MMTV-HER2 Fo5 transgenic mammary tumors inoculated into the mammary fat pad of CRL nu/nu mice after dosing with: (1) Vehicle (ADC buffer), (2) B20-4.1,5 mg/kg, (3) T-DM1,3 mg/kg, (4) T-DM1,5 mg/kg, (5) T-DM1, 10 mg/kg, (6) B20-4.1,5 mg/kg + T-DM1 3 mg/kg, (7) B20-4.1,5 mg/kg + T-DM1 5 mg/kg, (8) B20-4.1,5 mg/kg + T-DM1, 10 mg/kg. ADC buffer and T-DM1 were dosed on days 0 and 21; . B20-4.1 was dosed on days 0, 3, 7, 10, 14, 17, 21 and 24 (2X/wk x4 for 8 total). Figure 13 shows a plot of the in vivo mean tumor volume change overtime in MMTV-HER2 Fo5 transgenic mammary tumors inoculated into the mammary fat pad of CRL nu/nu mice after dosing with: (1) Vehicle (ADC buffer), (2) T-DM1 10 mg/kg, (3) 5-FU 100 mg/kg, (4) gemcitabine 120 mg/kg, (5) carboplatin 100 mg/kg, (6) 5-FU 100 mg/kg + T-DM1 10 mg/kg, (7) gemcitabine 120 mg/kg + T-DM1 10 mg/kg, (8) carboplatin 100 mg/kg + T-DM1 10 mg/kg. ADC buffer, T-DM1 and carboplatin were dosed on day 0; single injection. 5-FU was dosed on day 0, 7 and 14 (qwk x3). Gemcitabine was dosed on days 0, 3, 6 and 9 (q3d x4).
Figure 14 shows a plot of the in vivo mean tumor volume change overtime in MMTV-Her2 Fo5 transgenic mammary tumors inoculated into the mammary fat pad of Harlan athymic nude mice after dosing with: (1) Vehicle (PBS buffer) iv, qwkx4, (2) lapatinib 101 mg/kg, po, bidx21, (3) pertuzumab40 mg/kg, iv, qwkx4, (4) B20-4.1 5 mg/kg, ip, 2x/wk x4, (5) T-DM1 15 mg/kg, iv, q3wk to end, (6) lapatinib 101 mg/kg, po, bid x21 + T-DM1 15 mg/kg, iv, q3wk to end (7) pertuzumab 40 mg/kg, iv, qwk x4 + T-DM1 15 mg/kg, iv, q3wk to end, (8) B20-4.1 5 mg/kg, ip, 2x/wk x4 + T-DM1 15 mg/kg, iv, q3wk to end.
Figure 15 shows a plot of the in vivo mean tumor volume change overtime on MMTV-Her2 Fo5 transgenic mammary tumor inoculated into the mammary fat pad of Harlan athymic nude mice after dosing with: (1) Vehicle (PBS buffer) po, bid x21 (2) T-DM1, 7.5 mg/kg, iv, qd x1 (3) T-DM1, 15 mg/kg, iv, qd x1 (4) ABT-869, 5 mg/kg, po, bid x21 (5) ABT-869, 15 mg/kg, po, bid x21 (6) T-DM1, 7.5 mg/kg, iv, qd x1 + ABT-869, 5 mg/kg, po, bid x21 (7) T-DM1 7.5 mg/kg, iv, qd x1 + ABT-869, 15 mg/kg, po, bid x21 (8) T-DM1, 15 mg/kg, iv, qd x1 + ABT-869, 5 mg/kg, po, bid x21 (9) T-DM1, 15 mg/kg, iv, qd x1 + ABT-869, 15 mg/kg, po, bid x21.
Figure 16 shows a plot of the in vivo mean tumor volume change overtime on MMTV-Her2 Fo5 transgenic mammary tumor inoculated into the mammary fat pad of Harlan athymic nude mice after dosing with: (1) Vehicle, iv, qwkx3 (2) T-DM1,7.5 mg/kg, iv, q3wkx2 (3) T-DM1, 15 mg/kg, iv, q3wkx2 (4) docetaxel, 30 mg/kg, iv, qwkx3 (5) T-DM1, 7.5 mg/kg, iv, q3wk x2 + docetaxel, 30 mg/kg, iv, qwk x3 (6) T-DM1, 15 mg/kg, iv, q3wk x2 + docetaxel, 30 mg/kg, iv, qwk x3
Figure 17 shows a plot of the in vivo mean tumor volume change overtime on MMTV-Her2 Fo5 transgenic mammary tumor inoculated into the mammary fat pad of Harlan athymic nude mice after dosing with: (1) Vehicle, po, qd x21 (2) T-DM1, 7.5 mg/kg, iv, q3wkx2, (3) T-DM1, 15 mg/kg, iv, q3wk x2 (4) lapatinib, 100 mg/kg, po, bid x21, (5) T-DM1,7.5 mg/kg, iv, q3wk x2 + lapatinib, 100 mg/kg, po, bid x21, (6) T-DM1, 15 mg/kg, iv, q3wk x2 + lapatinib, 100 mg/kg, po, bid x21
Figure 18 shows a plot of SK-BR-3 in vitro cell viability at 3 days versus IC50 multiple concentrations of 5-FU, trastuzumab-MCC-DM1 (T-DM1), and fixed dose ratio combinations of 5-FU and T-DM1.
Figure 19 shows a plot of BT-474 in vitro cell viability at 3 days versus IC50 multiple concentrations of 5-FU, trastuzumab-MCC-DM1 (T-DM1), and fixed dose ratio combinations of 5-FU and T-DM1.
Figure 20 shows a plot of SK-BR-3 in vitro cell viability at 3 days versus IC50 multiple concentrations of gemcitabine, trastuzumab-MCC-DM1 (T-DM1), and fixed dose ratio combinations of gemcitabine and T-DM1.
Figure 21 shows a plot of MDA-MD-361 in vitro cell viability at 3 days versus IC50 multiple concentrations of gemcitabine, trastuzumab-MCC-DM1 (T-DM1), and fixed dose ratio combinations of gemcitabine and T-DM1. Figure 22 shows a plot of KPL4 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and 1:10 fixed dose ratio combinations of T-DM1 and GDC-0941 (62.5 nM to 1 μΜ) at IC50 multiple concentrations from 0.25x to 4x. The Bliss prediction of additivity is plotted as the dotted line.
Figure 23 shows a plot of KPL4 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and 1:25 fixed dose ratio combinations of T-DM1 (1.25 to 80 ng/ml) and GDC-0941 (31.25 nM to 2 μΜ) at IC50 multiple concentrations from 0.0625x to 16x. The Bliss prediction of additivity is plotted as the dotted line.
Figure 24 shows a plot of Her2 amplified, HERCEPTIN® resistant, PIK3CA (H1047R) mutant, KPL-4 cells in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, P1103, GDC-0941, and fixed dose ratio combinations of T-DM1 + PH 03, and T-DM1 + GDC-0941, at IC50 multiple concentrations from 0 to 16x.
Figure 25 shows a plot of KPL4 Caspase 3/7 in vitro cell viability (proliferation) at 24 hours after treatment with T-DM1, GDC-0941, and fixed dose ratio T-DM1 and GDC-0941 combinations atT-DM1 concentrations up to 160 ng/ml. Figure 26 shows a plot of KPL4 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and fixed dose ratio combinations of T-DM1 and GDC-0941 at T-DM1 concentrations from 0 to 200 ng/ml.
Figure 27 shows a plot of MDA-OMB-361 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and 1:20 fixed dose ratio combinations of T-DM1 (3.125 to 50 ng/ml) and GDC-0941 (62.5 nM to 1 μΜ) at IC50 multiple concentrations from 0.125x to 8x. The Bliss prediction of additivity is plotted as the dotted line. Figure 28 shows a plot of MDA-OMB-361 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and 1:20 fixed dose ratio combinations of T-DM1 (3.125 to 100 ng/ml) and GDC-0941 (62.5 nM to 2 μΜ) at IC50 multiple concentrations from 0.125x to 8x. The Bliss prediction of additivity is plotted as the dotted line. Figure 29 shows a plot of BT-474 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and 1:10fixed dose ratio combinations of T-DM1 (3.125 to 100 ng/ml) and GDC-0941 (31.25 nM to 1 μΜ) at IC50 multiple concentrations from 0.125x to 4x. The Bliss prediction of additivity is plotted as the dotted line. Figure 30 shows a plot of BT-474 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and 1:10 fixed dose ratio combinations of T-DM1 (6.25 to 100 ng/ml) and GDC-0941 (62.5 nM to 1 μΜ) at IC50 multiple concentrations from 0.25x to 4x. The Bliss prediction of additivity is plotted as the dotted line.
Figure 31 shows a plot of Her2 amplified, non-PI3K mutant, AU565 cells in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, P1103, GDC-0941, and fixed dose ratio combinations of T-DM1 + P1103, and T-DM1 + GDC-0941 at IC50 multiple concentrations from 0 to 16x.
Figure 32 shows a plot of Her2 amplified, PIK3CA (C420R) mutant, EFM192A cells in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, PI103, GDC-0941, and fixed dose ratio combinations of T-DM1 + PI103, and T-DM1 + GDC-0941, at IC50 multiple concentrations from 0 to 16x.
Figure 33 shows a plot of Her2 amplified, HERCEPTIN® resistant, PIK3CA (H1047R) mutant, HCC1954 cells in vitro cell viability (proliferation) after treatment with T-DM1, P1103, GDC-0941, and fixed dose ratio combinations of T-DM1 + PI103, and T-DM1 + GDC-0941, at IC50 multiple concentrations from 0 to 16x.
Figure 34 shows a plot of the in vivo mean tumorvolume change overtime on MMTV-Her2 Fo5 transgenic mammary tumor inoculated into CRL nu/nu mice after dosing with: (1) Vehicle, po, qd x21 (2) T-DM1, 10 mg/kg, iv, q3wk, (3) 5-FU, 100 mg/kg, po, qwkx2, (4) T-DM1,5 mg/kg, iv, q3wk + 5-FU, 100 mg/kg, po, qwkx2
Figure 35 shows a plot of the in vivo mean tumorvolume change overtime on MMTV-Her2 Fo5 transgenic mammary tumor inoculated into CRL nu/nu mice after dosing with: (1) Vehicle, po, qd x21 (2) T-DM1,5 mg/kg, iv, qd x1, (3) GDC-0941, 100 mg/kg, po, qd x21, (4) GDC-0152, 50 mg/kg, po, qwk x3, (5) T-DM1, 5 mg/kg, iv, qd x1 + GDC-0941 , 100 mg/kg, po, qd x21, (6) T-DM1,5 mg/kg, iv, qd x1 + GDC-0152, 50 mg/kg, po, qwk x3
Figure 36 shows a plot of the in vivo mean tumor volume change over time on MDA-MB-361.1 mammary tumor inoculated into CRL nu/nu mice after dosing with: (1) Vehicle, po, qd x21 (2) GDC-0941,25 mg/kg, po, qd x21, (3) GDC-0941,50 mg/kg, po, qd x21, (4) GDC-0941,100 mg/kg, po, qd x21, (5) T-DM1,3 mg/kg, iv, qdx1, (6) T-DM1, 10 mg/kg, iv, qd x1, (7) GDC-0941, 25 mg/kg, po, qd x21 + T-DM1, 3 mg/kg, iv, qd x1, (8) GDC-0941, 50 mg/kg, po, qd x21 + T-DM1, 3 mg/kg, iv, qd x1, (9) GDC-0941, 100 mg/kg, po, qd x21 + T-DM1, 3 mg/kg, iv, qd x1, (10) GDC-0941,25 mg/kg, po, qd x21 + T-DM1, 10 mg/kg, iv, qd x1, (11) GDC-0941, 50 mg/kg, po, qd x21 + T-DM1, 10 mg/kg, iv, qd x1, (12) GDC-0941, 100 mg/kg, po, qd x21 + T-DM1, 10 mg/kg, iv, qd x1
Figure 37 shows a plot of the in vivo mean tumor volume change over time on MDA-MB-361.1 mammary tumor inoculated into CRL nu/nu mice after dosing with: (1) Vehicles [MCT (0.5% methylcellulose/0.2% TWEEN 80™) + succinate buffer (100mM sodium succinate, 100 mg/ml trehalose, 0.1% TWEEN 80, pH 5.0)], po + IV, qd x21 and qd (2) GNE-390, 1.0 mg/kg, po, qd x21, (3) GNE-390, 2.5 mg/kg, po, qd x21, (4) T-DM1,3 mg/kg, iv, qd, (5) GNE-390, 1.0 mg/kg, po, qd x21 + T-DM1,3 mg/kg, iv, qd, (6) GNE-390, 2.5 mg/kg, po, qd x21 + T-DM1,3 mg/kg, iv, qd
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
[0022] Reference will now be made in detail to certain embodiments of the invention, examples of which are illustrated in the accompanying structures and formulas. One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention.
DEFINITIONS
[0023] The words "comprise," "comprising," "include," "including," and "includes" when used in this specification and claims are intended to specify the presence of stated features, integers, components, or steps, but they do not preclude the presence or addition of one or more other features, integers, components, steps, or groups thereof.
[0024] The terms "treat" and "treatment" refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as the growth, development or spread of a hyperproliferative condition, such as cancer. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the condition or disorder as well as those prone to have the condition or disorder or those in which the condition or disorder is to be prevented.
[0025] The phrase "therapeutically effective amount" means an amount of a compound of the present invention that (i) treats the particular disease, condition, or disorder, (ii) attenuates, ameliorates, or eliminates one or more symptoms of the particular disease, condition, or disorder, or (iii) prevents or delays the onset of one or more symptoms of the particular disease, condition, or disorder described herein. In the case of cancer, the therapeutically effective amount of the drug may reduce the numberof cancer cells; reduce the tumor size; inhibit (i.e., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (i.e., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer. To the extent the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. For cancer therapy, efficacy can be measured, for example, by assessing the time to disease progression (TTP) and/or determining the response rate (RR).
[0026] "Hyperproliferative disorder" is indicated by tumors, cancers, and neoplastic tissue, including pre-malignant and non-neoplastic stages, and also include psoriasis, endometriosis, polyps and fibroadenoma.
[0027] The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. A "tumor" comprises one or more cancerous cells. Examples of cancer include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia or lymphoid malignancies. More particular examples of such cancers include squamous cell cancer (e.g., epithelial squamous cell cancer), lung cancer including small- cell lung cancer, non-small cell lung cancer ("NSCLC"), adenocarcinoma of the lung and squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastric or stomach cancer including gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, rectal cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney or renal cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, anal carcinoma, penile carcinoma, as well as head and neck cancer.
[0028] A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer, regardless of mechanism of action. Classes of chemotherapeutic agents include, but are not limited to: alkylating agents, antimetabolites, spindle poison plant alkaloids, cytotoxic/antitumor antibiotics, topoisomerase inhibitors, antibodies, photosensitizers, and kinase inhibitors. Chemotherapeutic agents include compounds used in "targeted therapy" and conventional chemotherapy. Examples of chemotherapeutic agents include: erlotinib (TARCEVA®, Genentech/OSI Pharm.), docetaxel (TAXOTERE®, Sanofi-Aventis), 5-FU (fluorouracil, 5-fluorouracil, CAS No. 51-21-8), gemcitabine (GEMZAR®, Lilly), PD-0325901 (CAS No. 391210-10-9, Pfizer), cisplatin (cis-diamine,dichloroplatinum(ll), CAS No. 15663-27-1), carboplatin (CAS No. 41575-94-4), paclitaxel (TAXOL®, Bristol-Myers Squibb Oncology, Princeton, N.J.), trastuzumab (HERCEP-TIN®, Genentech), temozolomide (4-methyl-5-oxo- 2,3,4,6,8-pentazabicyclo [4.3.0] nona-2,7,9-triene- 9-carboxamide, CAS No. 85622-93-1, TEMODAR®, TEMODAL®, Schering Plough), tamoxifen ((Z)-2-[4-(1,2-diphenylbut-1-enyl)phe-noxy]-N,N-dimethyl-ethanamine, NOLVADEX®, ISTUBAL®, VALODEX®), and doxorubicin (ADRIAMYCIN®), Akti-1/2, HPPD, and rapamycin.
[0029] More examples of chemotherapeutic agents include: oxaliplatin (ELOXATIN®, Sanofi), bortezomib (VEL-CADE®, Millennium Pharm.), sutent (SUNITINIB®, SU11248, Pfizer), letrozole (FEMARA®, Novartis), imatinib mesylate (GLEEVEC®, Novartis), XL-518 (MEK inhibitor, Exelixis, WO 2007/044515), ARRY-886 (Mek inhibitor, AZD6244, Array BioPharma, Astra Zeneca), SF-1126 (PI3K inhibitor, Semafore Pharmaceuticals), BEZ-235 (PI3K inhibitor, Novartis), XL-147 (PI3K inhibitor, Exelixis), PTK787/ZK 222584 (Novartis), fulvestrant (FASLODEX®, AstraZeneca), leucovorin (folinic acid), rapamycin (sirolimus, RAPAMUNE®, Wyeth), lapatinib (TYKERB®, GSK572016, Glaxo Smith Kline), lona-farnib (SARASAR™, SCH 66336, Schering Plough), sorafenib (NEXAVAR®, BAY43-9006, Bayer Labs), gefitinib (IRES-SA®, AstraZeneca), irinotecan (CAMPTOSAR®, Cut-11, Pfizer), tipifarnib (ZARNESTRA™, Johnson &amp; Johnson), ABRAXANE™ (Cremophor-free), albumin-engineered nanoparticle formulations of paclitaxel (American Pharmaceutical Partners, Schaumberg, 11), vandetanib (rINN, ZD6474, ZACTIMA®, AstraZeneca), chloranmbucil, AG1478, AG1571 (SU 5271; Sugen), temsirolimus (TORISEL®, Wyeth), pazopanib (GlaxoSmithKline), canfosfamide (TELCYTA®, Telik), thiotepa and cyclosphosphamide (CYTOXAN®, NEOSAR®); alkyl sulfonates such as busulfan, improsulfan and pipo-sulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylom-elamine; acetogenins (especially bullatacin and bullatacinone); a camptothecin (including the synthetic analog topote-can); bryostatin; callystatin; CC-1065 (including itsadozelesin, carzelesin and bizelesin synthetic analogs); cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogs, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornap-hazine, chlorophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, mel-phalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosoureas such as carmustine, chlo-rozotocin, fotemustine, lomustine, nimustine, and ranimnustine; antibiotics such as the enediyne antibiotics (e.g., cali-cheamicin, calicheamicingammal I, calicheamicinomegall (AngewChem. Inti. Ed. Engl. (1994) 33:183-186); dynemicin, dynemicin A; bisphosphonates, such as clodronate; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antibiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, porfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogs such as denopterin, methotrexate, pteropterin, trimetrexate; purine analogs such as fludarabine, 6-mercaptop-urine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epi-tiostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as frolinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; elfornithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; podophyllinic acid; 2-ethylhy-drazide; procarbazine; PSK® polysaccharide complex (J HS Natural Products, Eugene, OR); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2’,2"-trichlorotriethylamine; trichothecenes (T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine; dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacy-tosine; arabinoside (Ara-C); cyclophosphamide; thiotepa; 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine; vinorelbine (NAVELBINE®); novantrone; teniposide; edatrexate; daunomycin; aminopterin; capecitabine (XELODA®, Roche); iban-dronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; and pharmaceutically acceptable salts, acids and derivatives of any of the above.
[0030] Also included in the definition of "chemotherapeutic agent" are: (i) anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (NOLVADEX®; tamoxifen citrate), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, ke-oxifene, LY117018, onapristone, and FARESTON® (toremifine citrate); (ii) aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglu-tethimide, MEGASE® (megestrol acetate), AROMASIN® (exemestane; Pfizer), formestanie, fadrozole, RIVISOR® (vo-rozole), FEMARA® (letrozole; Novartis), and ARIMIDEX® (anastrozole; AstraZeneca); (iii) anti-androgens such as fluta-mide, nilutamide, bicalutamide, leuprolide, and goserelin; as well as troxacitabine (a 1,3-dioxolane nucleoside cytosine analog); (iv) protein kinase inhibitors such as MEK inhibitors (WO 2007/044515); (v) lipid kinase inhibitors; (vi) antisense oligonucleotides, particularly those which inhibit expression of genes in signaling pathways implicated in aberrant cell proliferation, for example, PKC-alpha, Rafand H-Ras, such asoblimersen (GENASENSE®, Genta Inc.); (vii) ribozymes such as VEGF expression inhibitors (e.g., ANGIOZYME®) and HER2 expression inhibitors; (viii) vaccines such as gene therapy vaccines, for example, ALLOVECTIN®, LEUVECTIN®, and VAXID®; PROLEUKIN® rlL-2; topoisomerase 1 inhibitors such as LURTOTECAN®; ABARELIX® rmRH; (ix) anti-angiogenic agents such as bevacizumab (AVASTIN®, Genentech); and pharmaceutically acceptable salts, acids and derivatives of any of the above.
[0031] Also included in the definition of "chemotherapeutic agent" are therapeutic antibodies such as alemtuzumab (Campath), bevacizumab (AVASTIN®, Genentech); cetuximab (ERBITUX®, Imclone); panitumumab (VECTIBIX®, Amgen), rituximab (RITUXAN®, Genentech/Biogen Idee), pertuzumab (OMNITARG™, 2C4, Genentech), trastuzumab (HERCEPTIN®, Genentech), tositumomab (Bexxar, Corixia), and the antibody drug-conjugate, gemtuzumabozogamicin (MYLOTARG®, Wyeth).
[0032] Humanized monoclonal antibodies with therapeutic potential as chemotherapeutic agents in combination with trastuzumab-MCC-DM1 include: alemtuzumab, apolizumab, aselizumab, atlizumab, bapineuzumab, bevacizumab, bi-vatuzumab mertansine, cantuzumab mertansine, cedelizumab, certolizumab pegol, cidfusituzumab, cidtuzumab, dacli-zumab, eculizumab, efalizumab, epratuzumab, erlizumab, felvizumab, fontolizumab, gemtuzumab ozogamicin, inotu-zumab ozogamicin, ipilimumab, labetuzumab, lintuzumab, matuzumab, mepolizumab, motavizumab, motovizumab, na-talizumab, nimotuzumab, nolovizumab, numavizumab, ocrelizumab, omalizumab, palivizumab, pascolizumab, peefusitu-zumab, pectuzumab, pertuzumab, pexelizumab, ralivizumab, ranibizumab, reslivizumab, reslizumab, resyvizumab, rovelizumab, ruplizumab, sibrotuzumab, siplizumab, sontuzumab, tacatuzumab tetraxetan, tadocizumab, talizumab, tefibazumab, tocilizumab, toralizumab, trastuzumab, tucotuzumab celmoleukin, tucusituzumab, umavizumab, urtoxa-zumab, and visilizumab.
[0033] A "metabolite" is a product produced through metabolism in the body of a specified compound or salt thereof. Metabolites of a compound may be identified using routine techniques known in the art and their activities determined using tests such as those described herein. Such products may result for example from the oxidation, reduction, hydrolysis, amidation, deamidation, esterification, deesterification, enzymatic cleavage, and the like, of the administered compound. Accordingly, the invention includes metabolites of compounds of the invention, including compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof.
[0034] The term "package insert" is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.
[0035] The phrase "pharmaceutically acceptable salt" as used herein, refers to pharmaceutically acceptable organic or inorganic salts of a compound of the invention. Exemplary salts include, but are not limited, to sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate, isonicotinate, lactate, salicylate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucuronate, saccharate, formate, benzoate, glutamate, methanesulfonate "mesylate", ethanesulfonate, benzenesul-fonate, p-toluenesulfonate, and pamoate (i.e., 1,1’-methylene-bis -(2-hydroxy-3-naphthoate)) salts. A pharmaceutically acceptable salt may involve the inclusion of another molecule such as an acetate ion, a succinate ion or other counter ion. The counter ion may be any organic or inorganic moiety that stabilizes the charge on the parent compound. Furthermore, a pharmaceutically acceptable salt may have more than one charged atom in its structure. Instances where multiple charged atoms are part of the pharmaceutically acceptable salt can have multiple counter ions. Hence, a pharmaceutically acceptable salt can have one or more charged atoms and/or one or more counter ion.
[0036] The desired pharmaceutically acceptable salt may be prepared by any suitable method available in the art, for example, treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, methanesulfonic acid, phosphoric acid and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelicacid, fumaricacid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, a pyranosidyl acid, such as glucuronic acid or galacturonic acid, an alpha hydroxy acid, such as citric acid or tartaric acid, an amino acid, such as aspartic acid or glutamic acid, an aromatic acid, such as benzoic acid or cinnamic acid, a sulfonic acid, such as p-toluenesulfonic acid or ethanesulfonic acid, or the like. Acids which are generally considered suitable for the formation of pharmaceutically useful or acceptable salts from basic pharmaceutical compounds are discussed, for example, by P. Stahl et al, Camille G. (eds.) Handbook of Pharmaceutical Salts. Properties, Selection and Use. (2002) Zurich: Wiley-VCH; S. Berge et al, Journal of Pharmaceutical Sciences (1977) 66(1) 1 19; P. Gould, International J. of Pharmaceutics (1986) 33 201 217; Anderson et al, The Practice of Medicinal Chemistry (1996), Academic Press, New York; Remington’s Pharmaceutical Sciences, 18th ed., (1995) Mack Publishing Co., Easton PA; and in The Orange Book (Food &amp; Drug Administration, Washington, D.C. on their web site).
[0037] The desired pharmaceutically acceptable salt may be prepared by any suitable method, for example, treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), an alkali metal hydroxide or alkaline earth metal hydroxide, or the like. Illustrative examples of suitable salts include, but are not limited to, organic salts derived from amino acids, such as glycine and arginine, ammonia, primary, secondary, and tertiary amines, and cyclic amines, such as piperidine, morpholine and piperazine, and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum and lithium.
[0038] The phrase "pharmaceutically acceptable" indicates that the substance or composition must be compatible chemically and/or toxicologically, with the other ingredients comprising a formulation, and/or the mammal being treated therewith.
[0039] A "solvate" refers to a physical association or complex of one or more solvent molecules and a compound of the invention. The compounds of the invention may exist in unsolvated as well as solvated forms. Examples of solvents that form solvates include, but are not limited to, water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, and ethanolamine. The term "hydrate" refers to the complex where the solvent molecule is water. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. Preparation of solvates is generally known, for example, M. Caira et al, J. Pharmaceutical Sci., 93(3), 601 611 (2004). Similar preparations of solvates, hemisolvate, hydrates and the like are described by E. C. van Tonder et al, AAPS PharmSciTech., 5(1), article 12 (2004); and A. L. Bingham et al, Chem. Commun., 603 604 (2001). A typical, nonlimiting, process involves dissolving the inventive compound in desired amounts of the desired solvent (organic or water or mixtures thereof) at a higher than ambient temperature, and cooling the solution at a rate sufficient to form crystals which are then isolated by standard methods. Analytical techniques such as, for example I.R. spectroscopy, show the presence of the solvent (or water) in the crystals as a solvate (or hydrate).
[0040] The term "synergistic" as used herein refers to a therapeutic combination which is more effective than the additive effects of the two or more single agents. A determination of a synergistic interaction between trastuzumab-MCC-DM1, and one or more chemotherapeutic agent may be based on the results obtained from the assays described herein. The results of these assays are analyzed using the Chou and Talalay combination method and Dose-Effect Analysis with CalcuSyn software in order to obtain a Combination Index "Cl" (Chou and Talalay (1984) Adv. Enzyme Regul. 22:27-55). The combinations provided by this invention have been evaluated in several assay systems, and the data can be analyzed utilizing a standard program for quantifying synergism, additivism, and antagonism among anticancer agents. The program preferably utilized is that described by Chou and Talalay, in "New Avenues in Developmental Cancer Chemotherapy," Academic Press, 1987, Chapter2. Combination Index (Cl) values less than 0.8 indicate synergy, values greater than 1.2 indicate antagonism and values between 0.8 to 1.2 indicate additive effects. The combination therapy may provide "synergy" and prove "synergistic", i.e., the effect achieved when the active ingredients used together is greater than the sum of the effects that results from using the compounds separately. A synergistic effect may be attained when the active ingredients are: (1) co-formulated and administered ordelivered simultaneously in a combined, unit dosage formulation; (2) delivered by alternation as separate formulations; or (3) by some other regimen. When delivered in alternation therapy, a synergistic effect may be attained when the compounds are administered or delivered sequentially, e.g., by different injections in separate syringes. In general, during alternation therapy, an effective dosage of each active ingredient is administered sequentially, i.e., serially in time.
TRASTUZUMAB-MCC-DM1 [0041] The present invention includes therapeutic combinations comprising trastuzumab-MCC-DM1 (T-DM1), an antibody-drug conjugate (CAS Reg. No. 139504-50-0), which has the structure:
where Tr is trastuzumab, linked through linker moiety MCC, to the maytansinoid drug moiety, DM1 (US 5208020; US 6441163). The drug to antibody ratio or drug loading is represented by p in the above structure of trastuzumab-MCC-DM1, and ranges in integer values from 1 to about 8. The drug loading value p is 1 to 8. Trastuzumab-MCC-DM1 includes all mixtures of variously loaded and attached antibody-drug conjugates where 1,2,3, 4, 5, 6, 7, and 8 drug moieties are covalently attached to the antibody trastuzumab (US 7097840; US 2005/0276812; US 2005/0166993). Trastuzumab-MCC-DM1 may be prepared according to Example 1.
[0042] Trastuzumab is produced by a mammalian cell (Chinese Hamster Ovary, CHO) suspension culture. The HER2 (or c-erbB2) proto-oncogene encodes a transmembrane receptor protein of 185kDa, which is structurally related to the epidermal growth factor receptor. HER2 protein overexpression is observed in 25%-30% of primary breast cancers and can be determined using an immunohistochemistry based assessment of fixed tumor blocks (Press MF, et al (1993) Cancer Res 53:4960-70. Trastuzumab is an antibody that has antigen binding residues of, or derived from, the murine 4D5 antibody (ATCC CRL 10463, deposited with American Type Culture Collection, 12301 Parklawn Drive, Rockville, Md. 20852 under the Budapest Treaty on May 24, 1990). Exemplary humanized 4D5 antibodies include huMAb4D5-1, huMAb4D5-2, huMAb4D5-3, huMAb4D5-4, huMAb4D5-5, huMAb4D5-6, huMAb4D5-7 and huMAb4D5-8 (HERCEP-TIN®) as in US 5821337.
[0043] In a Phase I Study, the maximum tolerated dose (MTD) of T-DM1 administered by IV infusion every 3 weeks was 3.6 mg/kg. A DLT (Dose-Limiting Toxicity) consisted of Grade 4 thrombocytopenia in 2 of 3 patients treated at 4.8 mg/kg. Related Grade >2 adverse events at 3.6 mg/kg were infrequent and manageable. This treatment schedule was well tolerated and associated with significant clinical activity as described previously. A Phase II study has shown similar tolerability at the 3.6 mg/kg dose level administered every 3 weeks, with only a small percentage of patients (3 out of 112 patients) requiring dose reduction. Thus, the T-DM1 dose of 3.6 mg/kg administered every 3 weeks was selected for testing in this study based on 1) the demonstrated efficacy and safety of T-DM1 at 3.6 mg/kg every 3 weeks, and 2) the convenience of a 3-week regimen for this patient population.
CHEMOTHERAPEUTIC AGENTS
[0044] Certain chemotherapeutic agents have demonstrated surprising and unexpected properties in combination with trastuzumab-MCC-DM1 in inhibiting cellular proliferation in vitro and in vivo. Such chemotherapeutic agents include a HER2 dimerization inhibitor antibody, an anti-VEGF antibody, 5-FU, carboplatin, lapatinib, ABT-869, docetaxel, GDC-0941, and GNE-390. Note that subject-matter which is not encompassed by the scope of the claims does not form part of the presently claimed invention.
[0045] Pertuzumab (CAS Reg. No. 380610-27-5, OMNITARG®, 2C4, Genentech) is a recombinant, humanized monoclonal antibody that inhibits dimerization of HER2 (US 6054297; US 6407213; US 6800738; US 6627196, US 6949245; US 7041292). Pertuzumab and trastuzumab target different extracellular regions of the HER-2 tyrosine kinase receptor (Nahta et al (2004) Cancer Res. 64:2343-2346). The hybridoma cell line expressing 2C4 (pertuzumab) was deposited with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, USA as ATCC HB-12697 on April 8, 1999. Pertuzumab blocks the ability of the HER2 receptor to collaborate with other HER receptor family members, i.e. HER1/EGFR, HER3, and HER4 (Agus et al (2002) Cancer Cell 2:127-37; Jackson et al (2004) Cancer Res 64:2601-9; Takai et al (2005) Cancer 104:2701-8; US 6949245). In cancer cells, interfering with the ability of HER2 to collaborate with other HER family receptors blocks cell signaling and may ultimately lead to cancer cell growth inhibition and death of the cancer cell. HDIs, because of their unique mode of action, have the potential to work in a wide variety of tumors, including those that do not overexpress HER2 (Mullen et al (2007) Molecular Cancer Therapeutics 6:93-100).
[0046] Pertuzumab is based on the human IgG 1 (K) framework sequences. It consists of two heavy chains and two light chains. Like trastuzumab, pertuzumab is directed against the extracellular domain of HER2. However, it differs from trastuzumab in the epitope-binding regions of the light chain and heavy chain. As a result, pertuzumab binds to an epitope within what is known as a sub-domain 2 of HER2, while the epitope from trastuzumab is localized to sub-domain 4 (Cho et al. 2003; Franklin et al. 2004). Pertuzumab acts by blocking the association of HER2 with other HER family members, including HER1 (epidermal growth factor receptor; EGFR), HER3, and HER4. This association is required for signaling in the presence of ligand via MAP-kinase and PI3-kinase. As a result, pertuzumab inhibits ligand-initiated intracellular signaling. Inhibition of these signaling pathways can result in growth arrest and apoptosis, respectively (Hanahan and Weinberg 2000). Because pertuzumab and trastuzumab bind at distinct epitopes on the HER2 receptor, ligand-activated downstream signaling is blocked by pertuzumab but not by trastuzumab. Pertuzumab, therefore, may not require HER2 overexpression to exert its activity as an anti-tumor agent. In addition, because of their complementary modes of action, the combination of pertuzumab and T-DM1 may have a potential role in HER2-overexpressing diseases. [0047] Pertuzumab has been evaluated as a single agent in five Phase II studies conducted in various cancer types, including MBC expressing low levels of HER2, non-small cell lung cancer, hormone-refractory prostate cancer, and ovarian cancer. A Phase II trial evaluated pertuzumab as a single agent in thesecond-orthird-line treatment of metastatic breast cancer (MBC) patients with normal HER2 expression (Cortes et al. (2005) J. Clin. Oncol. 23:3068). Pertuzumab has been evaluated in two Phase II studies in combination with trastuzumab (Baselga J, et al. "A Phase II trial of trastuzumab and pertuzumab in patients with HER2-positive metastatic breast cancer that had progressed during trastuzumab therapy: full response data", European Society of Medical Oncology, Stockholm, Sweden, September 12-16, 2008; Gelmon et al (2008) J. Clin. Oncol. 26:1026). The first study enrolled 11 patients with HER2-positive MBC who previously received up to three prior trastuzumab-containing regimens (Portera et al. 2007).
[0048] Bevacizumab (CAS Reg. No. 216974-75-3, AVASTIN®, Genentech) is an anti-VEGF monoclonal antibody against vascular endothelial growth factor (US 7227004; US 6884879; US 7060269; US 7169901; US 7297334) used in the treatment of cancer, where it inhibits tumor growth by blocking the formation of new blood vessels. Bevacizumab was the first clinically available angiogenesis inhibitor in the United States, approved by the FDA in 2004 for use in combination with standard chemotherapy in the treatment of metastatic colon cancer and most forms of metastatic nonsmall cell lung cancer. Several late-stage clinical studies are underway to determine its safety and effectiveness for patients with: adjuvant / non-metastatic colon cancer, metastatic breast cancer, metastatic renal cell carcinoma, metastatic glioblastoma multiforme, metastatic ovarian cancer, metastatic hormone-refractory prostate cancer, and metastatic metastatic or unresectable locally advanced pancreatic cancer.
[0049] An anti-VEGF antibody will usually not bind to other VEGF homologues such as VEGF-B or VEGF-C, nor other growth factors such as PIGF, PDGF or bFGF. Preferred anti-VEGF antibodies include a monoclonal antibody that binds to the same epitope as the monoclonal anti-VEGF antibody A4.6.1 produced by hybridoma ATCC HB 10709; a recombinant humanized anti-VEGF monoclonal antibody generated according to Presta et al. (1997) Cancer Res. 57:4593-4599, including but not limited to bevacizumab. Bevacizumab includes mutated human IgG 1 framework regions and antigen-binding complementarity-determining regions from the murine anti-hVEGF monoclonal antibody A.4.6.1 that blocks binding of human VEGF to its receptors. Approximately 93% of the amino acid sequence of bevacizumab, including most of the framework regions, is derived from human lgG1, and about 7% of the sequence is derived from the murine antibody A4.6.1. Bevacizumab has a molecular mass of about 149,000 daltons and is glycosylated. Bevacizumab and other humanized anti-VEGF antibodies are further described in US 6884879. Additional anti-VEGF antibodies include the G6 or B20 series antibodies (e.g., G6-31, B20-4.1), as described in any one of Figures 27-29 of W02005/012359. In one embodiment, the B20 series antibody binds to a functional epitope on human VEGF comprising residues F17, M18, D19, Y21, Y25, Q89, 191, K101, E103, and C104 [0050] The A4.6.1 (ATCCHB 10709) and B 2.6.2 (ATCC HB 10710) anti-VEGF expressing hybridoma cell lines have been deposited and maintained with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, VA 20110-2209 USA. The clone expressing VEGF-E polypeptide (US 6391311) encoded by the nucleotide sequence insert of the ATCC deposit identified as DNA29101-1276 was deposited on March 5, 1998 and maintained as ATCC 209653 with the American Type Culture Collection, 10801 University Boulevard, Manassas, Va. 20110-2209, USA.
[0051] 5-FU (fluorouracil, 5-fluorouracil, CAS Reg. No. 51-21-8) is a thymidylate synthase inhibitor and has been used for decades in the treatment of cancer, including colorectal and pancreatic cancer (US 2802005, US 2885396; Barton
et al (1972) Jour. Org. Chem. 37:329; Hansen, R.M. (1991) Cancer Invest. 9:637-642). 5-FU is named as 5-fluoro-1/-/-pyrimidine-2,4-dione, and has the structure:
[0052] Carboplatin (CAS Reg. No. 41575-94-4) is a chemotherapeutic drug used against ovarian carcinoma, lung, head and neck cancers (US 4140707). Carboplatin is named as azanide; cyclobutane-1,1-dicarboxylic acid platinum, and has the structure:
[0053] Lapatinib (CAS Reg. No. 388082-78-8, TYKERB®, GW572016, Glaxo SmithKline) has been approved for use in combination with capecitabine (XELODA®, Roche) for the treatment of patients with advanced or metastatic breast cancer whose tumors over-express HER2 (ErbB2) and who have received prior therapy including an anthracycline, a taxane and trastuzumab. Lapatinib is an ATP-competitive epidermal growth factor (EGFR) and HER2/neu (ErbB-2) dual tyrosine kinase inhibitor (US 6727256; US 6713485; US 7109333; US 6933299; US 7084147; US 7157466; US 7141576) which inhibits receptor autophosphorylation and activation by binding to the ATP-binding pocket of the EGFR/HER2 protein kinase domain. Lapatinib is named as N-(3-chloro-4-(3-fluorobenzyloxy)phenyl)-6-(5-((2-(methylsulfonyl)ethyl-amino)methyl)furan-2-yl)quinazolin-4-amine, and has the structure:
[0054] ABT-869 (Abbott and Genentech) is a multi-targeted inhibitor of VEGF and PDGF family receptor tyrosine kinases, for the potential oral treatment of cancer (US 7297709; US 2004/235892; US 2007/104780). Clinical trials have been initiated, treating non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), and renal cell carcinoma (RCC). ABT-869 is named as 1-(4-(3-amino-1 H-indazol-4-yl)phenyl)-3-(2-fluoro-5-methylphenyl)urea (CAS No. 796967-16-3), and has the structure:
[0055] Docetaxel (TAXOTERE®, Sanofi-Aventis) is used to treat breast, ovarian, and NSCLC cancers (US 4814470;
US 5438072; US 5698582; US 5714512; US 5750561). Docetaxel is named as (2R,3S)-/V-carboxy-3-phenylisoserine, A/-tert-butyl ester, 13-ester with 5, 20-epoxy-1,2, 4, 7, 10, 13-hexahydroxytax-11-en-9-one 4-acetate 2-benzoate, trihydrate (US 4814470; EP 253738; CAS Reg. No. 114977-28-5) and has the structure:
[0056] GDC-0941 (Genentech Inc.), is a selective, orally bioavailable thienopyrimidine inhibitor of PI3K with promising pharmacokinetic and pharmaceutical properties (Folkes et al (2008) Jour, of Med. Chem. 51(18):5522-5532; US 2008/0076768; US 2008/0207611; Belvin et al, American Association for Cancer Research Annual Meeting 2008, 99th:April 15, Abstract 4004; Folkes et al, American Association for Cancer Research Annual Meeting 2008, 99th:April 14, Abstract LB-146; Friedman et al, American Association for Cancer Research Annual Meeting 2008, 99th:April 14, Abstract LB-110). GDC-0941, shows synergistic activity in vitro and in vivo in combination with certain chemotherapeutic agents against solid tumor cell lines (US Ser. No. 12/208,227, Belvin et al "Combinations Of Phosphoinositide 3-Kinase Inhibitor Compounds And Chemotherapeutic Agents, And Methods Of Use", filed 10 Sept 2008). GDC-0941 is named as 4-(2-(1 H-indazol-4-yl)-6-((4-(methylsulfonyl)piperazin-1-yl)methyl)thieno[3,2-d]pyrimidin-4-yl)morpholine (CAS Reg. No. 957054-30-7), and has the structure:
[0057] GNE-390 (Genentech Inc.), is a selective, orally bioavailable thienopyrimidine inhibitor of PI3K with promising pharmacokinetic and pharmaceutical properties (US 2008/0242665; WO 2008/070740). GNE-390 shows synergistic activity in vitro and in vivo in combination with certain chemotherapeutic agents against solid tumor cell lines (US Ser. No. 12/208,227, Belvin et al "Combinations Of Phosphoinositide 3-Kinase Inhibitor Compounds And Chemotherapeutic Agents, And Methods Of Use", filed 10 Sept2008). GNE-390 is named as (S)-1-(4-((2-(2-aminopyrimidin-5-yl)-7-methyl-4-morpholinothieno[3,2-d]pyrimidin-6-yl)methyl)piperazin-1-yl)-2-hydroxypropan-1-one, and has the structure:
BIOLOGICAL EVALUATION
[0058] In vitro cell culture studies using trastuzumab-MCC DM1 T-DM1) combined with different chemotherapeutic or biologically targeted agents were performed on a number of HER2-amplified cell lines. Data were analyzed using the Chou &amp; Talalay method to determine the Combination Index (Cl) value for each combination, set up in multiples of the IC50 for each drug. Cl values less than 0.7 denote synergy; Cl values between 0.7-1.3 denote additivity; and Cl values greater than 1.3 denote antagonism. For combinations with chemotherapeutic agents, T-DM1 combined with docetaxel or 5-FU resulted in additive or synergistic anti-proliferative activity, while combinations with either gemcitabine or car-boplatin had no effect or were antagonistic with T-DM1. Mouse xenograft studies showed similar results where T-DM1 combined with docetaxel or 5-FU resulted in greatly enhanced anti-tumor efficacy compared to treatment with individual agents. T-DM1 combined with carboplatin resulted in enhanced efficacy compared to either drug alone whereas the combination of T-DM1 with gemcitabine was not more efficacious than T-DM1 alone. T-DM1 combined with either pertuzumab, lapatinib or GDC-0941 resulted in additive or synergistic anti-proliferative activity in cell culture experiments, and in greatly enhanced anti-tumorefficacy in vivo compared to treatment with individual agents. In contrast, unconjugated trastuzumab antagonized the activity of T-DM1 due to binding of the same epitope on HER2. In vivo studies using combinations of T-DM1 with anti-angiogenic agents such as the antibody B20-4.1 or the small molecule inhibitor ABT-869 resulted in enhanced anti-tumor efficacy with all combinations tested, with the exception of the highest dose of T-DM1 (10 or 15 mg/kg) given with B20-4.1.
[0059] Combinations oftrastuzumab-MCC-DM1 (T-DM1) with numerous anti-cancerdrugs were studied by measuring both the in vitro anti-proliferative activity in HER2-overexpressing breast tumor cells and in vivo anti-tumor efficacy in breast cancer xenograft models. In these studies, trastuzumab-MCC-DM1 was added to either cytotoxic chemotherapeutic agents, antibodies, or small molecule kinase inhibitors.
[0060] The combination of anti-VEGF murine antibody B20-4.1 (Liang et al (2006) Jour. Biol. Chem. 281:951-961), a bevacizumab surrogate, and trastuzumab-MCC-DM1 in breast cancer mouse xenograft models resulted in greater antitumor activity than B20-4.1 alone. The results of these studies provide predictive basis of synergistic effects and rationale for future clinical evaluation of treatment regimens which include trastuzumab-MCC-DM1 in combination with different anti-tumor therapies in HER2-positive breast cancer.
[0061] Synergistic drug effects were observed with combinations of HER2-targeted agents, such as trastuzumab-DM1 plus lapatinib, or trastuzumab-DM1 combined with the HER2 antibody pertuzumab (a HER2 dimerization inhibitor). [0062] Trastuzumab-MCC-DM1 combined with carboplatin or 5-FU showed enhanced activity compared to treatment with individual agents alone, whereas combination treatment with gemcitabine did not result in increased anti-tumor activity.
[0063] Blockade of the PI3 kinase pathway with GDC-0941, a small molecule kinase pan inhibitor of p110 isoforms (WO 2007/129161), potentiated the activity of trastuzumab-DM1.
[0064] T-DM1 combined with the PI3K inhibitor GDC-0941enhanced anti-tumor activity of, in HER2-amplified breast cancer lines with mutated PI3K: BT-474 (K111N), MDA-361.1 (E545K), and KPL4 (H1047R). Combination treatment in vitro resulted in additive or synergistic inhibition of cell proliferation, as well as increased apoptosis. Similarly, in vivo efficacy was augmented with combined drug treatment compared to single agent activity in the MDA-MB-361.1 and Fo5 HER2-amplified xenograft models. Biochemical analyses of biomarkers for each agent showed inhibition of phospho-Akt and phospho-ERK by both T-DM1 and GDC-0941, decreased phosphorylation of Rb and PRAS40 by GDC-0941, and increased levels of the mitotic markers phospho-histone H3 and cyclin B1 after treatment with T-DM1. In addition, T-DM1 treatment resulted in apoptosis in these breast cancer models as determined by appearance of the 23 kDa PARP-cleavage fragment, decreased levels of Bcl-XL, as well as activation of caspases 3 and 7. Addition of GDC-0941 to T-DM1 further enhanced apoptosis induction. These studies provide evidence for the use of rational drug combinations in HER2-amplified breast cancer and offer additional therapeutic approaches for patients whose disease progresses on trastuzumab or lapatinib-based therapy.
IN VITRO CELL PROLIFERATION ASSAYS
[0065] The in vitro potency of the combinations of trastuzumab-MCC-DM1 with chemotherapeutic agents was measured by the cell proliferation assay of Example 2; the CellTiter-Glo® Luminescent Cell Viability Assay, commercially available from Promega Corp., Madison, Wl. This homogeneous assay method is based on the recombinant expression of Coleoptera luciferase (US 5583024; US 5674713; US 5700670) and determines the number of viable cells in culture based on quantitation of the ATP present, an indicator of metabolically active cells (Crouch et al (1993) J. Immunol. Meth. 160:81-88; US 6602677). The CellTiter-Glo® Assay was conducted in 96 or 384 well format, making it amenable to automated high-throughput screening (HTS) (Cree et al (1995) AntiCancer Drugs 6:398-404). The homogeneous assay procedure involves adding the single reagent (CellTiter-Glo® Reagent) directly to cells cultured in serum-supplemented medium. Cell washing, removal of medium and multiple pipetting steps are not required. The system detects
as few as 15 cells/well in a 384-well format in 10 minutes after adding reagent and mixing.
[0066] The homogeneous "add-mix-measure" format results in cell lysis and generation of a luminescent signal proportional to the amount of ATP present. The amount of ATP is directly proportional to the number of cells present in culture. The CellTiter-Glo® Assay generates a "glow-type" luminescent signal, produced by the luciferase reaction, which has a half-life generally greater than five hours, depending on cell type and medium used. Viable cells are reflected in relative luminescence units (RLU). The substrate, Beetle Luciferin, is oxidatively decarboxylated by recombinant firefly luciferase with concomitant conversion of ATP to AMP and generation of photons. The extended half-life eliminates the need to use reagent injectors and provides flexibility for continuous or batch mode processing of multiple plates. This cell proliferation assay can be used with various multiwell formats, e.g. 96 or 384 well format. Data can be recorded by luminometer or CCD camera imaging device. The luminescence output is presented as relative light units (RLU), measured over time.
[0067] The anti-proliferative effects of trastuzumab-MCC-DM1 and combinations with chemotherapeutic agents were measured by the CellTiter-Glo® Assay (Example 2) against the tumor cell lines in Figures 1-9 and 18-33.
[0068] Exemplary embodiments include a method for determining compounds to be used in combination for the treatment of cancer comprising: a) administering a therapeutic combination of trastuzumab-MCC-DM1 (T-DM1) and a chemotherapeutic agent to an in vitro tumor cell line, and b) measuring a synergistic or non-synergistic effect. A combination index (Cl) value greater than 1.3 denotes antagonism; Cl values between 0.7-1.3 denote additivity, and Cl values less than 0.7 denote synergistic drug interactions.
[0069] Figure 1 shows the antagonistic effect of trastuzumab in combination with trastuzumab-MCC-DM1 (T-DM1) at various concentrations in multiples of the individual IC50 values (Table 1) in SK-BR-3 cells which are trastuzumab-sensitive. The viable cell number is plotted relative to the IC50 multiple values. The combination index (Cl) over IC10 to ICgQ for each combination is greater than 2, indicating antagonism in vitro. However the combination of T-DM1 + trastuzumab in vivo does not show an antagonistic effect.
Table 1 SK-BR-3 Proliferation - 3 days
[0070] Figure 2 shows the antagonistic effect of trastuzumab in combination with trastuzumab-MCC-DM1 (T-DM1) at various concentrations in multiples of the individual IC50 values (Table 2) in BT-474 EEI cells which are trastuzumab-resistant. The viable cell number is plotted relative to the IC50 multiple values. The combination index (Cl) over IC10 to ICgg for each combination is great than 2, indicating antagonism.
Table 2 BT-474-EEI Proliferation - 3 days
[0071] Figure 3 shows the synergistic effect of pertuzumab in combination with trastuzumab-MCC-DM1 (T-DM1) at various concentrations in multiples of the individual IC50 values (Table 3) in MDA-MB-175 cells. The viable cell number
is plotted relative to the IC50 multiple values. The combination index (Cl) over IC10 to ICgo for each combination is under 1, with the average Cl = 0.387, indicating synergism (Table 3).
Table 3 MDA-MB-175 Proliferation - 5 days
[0072] Figure 3a shows a plot of MDA-MB-175 in vitro cell viability at 5 days versus IC50 multiple concentrations of pertuzumab, trastuzumab-MCC-DM1 (T-DM1), and the combination of pertuzumab and T-DM1. The viable cell number is plotted relative to the IC50 multiple values. The combination index (Cl) over IC10 to ICgo for each combination is under 1, with the average Cl = 0.096, indicating synergism (Table 3a).
Table 3a MDA-MB-175 Proliferation - 5days
[0073] Figure 4 shows a plot of BT-474 in vitro cell viability at 5 days versus various fixed doses of pertuzumab in combination with dose response oftrastuzumab-MCC-DM1 (T-DM1), and various doses ofT-DM1 alone. Figure 4 shows the effects of fixed doses of T-DM1 in combination with various dosages of pertuzumab. Addition of pertuzumab to T-DM1 results in slightly greater anti-proliferative activity than T-DM1 alone.
[0074] Figure 5 shows a plot of BT-474 in vitro cell viability at 5 days versus various fixed doses of trastuzumab-MCC-DM1 (T-DM1) in combination with dose response of pertuzumab, and various doses of pertuzumab alone. Figure 5 shows the effects of fixed doses of pertuzumab in combination with various dosages of T-DM1 on BT-474 cell proliferation. Addition of T-DM1 to pertuzumab enhances the effect of pertuzumab alone.
[0075] Figure 6 shows the synergistic effect of pertuzumab in combination with trastuzumab-MCC-DM1 (T-DM1) at various concentrations in multiples of the individual IC50 values (Table 4) in BT-474 cells. The viable cell number is plotted relative to the IC50 multiple values. Combination index (Cl) values from IC10 to ICgo range from 0.198 to 1.328. The average Cl for this range = 0.658 indicating synergy.
Table 4 BT-474 Proliferation - 5 days
(continued)
[0076] Figure 7 shows a plot of SK-BR-3 in vitro cell viability at 3 days versus varying doses of T-DM1 in combination with fixed doses of lapatinib (4.5 nM, 14 nM, 41 nM, 123 nM), and varying doses of T-DM1 alone (0-1000 ng/ml). Addition of lapatinib to T-DM1 results in slightly greater anti-proliferative activity than T-DM1 alone.
[0077] Figure 7a shows a plot of SK-BR-3 in vitro cell viability at 3 days versus T-DM1, lapatinib, and fixed dose ratio combinations of T-DM1 and lapatinib as shown in Table 7a. The average Cl value between the IC10 and IC90 = 0.793, indicating additivity.
Table 7a SK-BR-3 Proliferation - 3 days
[0078] Figure 8a shows a plot of BT-474 in vitro cell viability at 3 days versus T-DM1, lapatinib, and fixed dose ratio combinations of T-DM1 and lapatinib as shown in Table 8a. The average Cl value between the IC10 and IC90 = 0.403, indicating synergy.
Table 8a BT-474 Proliferation - 3 days
[0079] Figure 8 shows a plot of BT-474 in vitro cell viability at 3 days versus varying doses of T-DM1 in combination with fixed doses of lapatinib (1.5 nM, 4.5 nM, 14 nM, 41 nM, 123 nM), and varying doses of T-DM1 alone (0-1000 ng/ml). Addition of lapatinib to T-DM1 results in greater anti-proliferative activity compared to either drug alone.
[0080] Figure 9 shows a plotof BT-474-EEI in vitro cell viability at 3 days versus varying doses ofT-DM1 in combination with fixed doses of lapatinib (14 nM, 41 nM, 123 nM, 370 nM, 1111 nM), and varying doses of T-DM1 alone (0-1000 ng/ml). Addition of lapatinib to T-DM1 results in greater anti-proliferative activity compared to either drug alone.
[0081] Figure 18 shows a plot of SK-BR-3 in vitro cell viability at 3 days versus IC50 multiple concentrations of 5-FU, trastuzumab-MCC-DM1 (T-DM1), and fixed dose ratio combinations of 5-FU and T-DM1 (Table 18). The combination of 5-FU and T-DM1 is additive on SK-BR-3 cells, with the average Cl between the IC10 and IC90 = 0.952.
Table 18 5-FU + T-DM 1: SK-BR-3 Proliferation - 3 days
(continued)
[0082] Figure 19 shows a plot of BT-474 in vitro cell viability at 3 days versus IC50 multiple concentrations of 5-FU, trastuzumab-MCC-DM1 (T-DM1), and fixed dose ratio combinations of 5-FU and T-DM1 (Table 19). The combination of 5-FU and T-DM1 is synergistic on BT-474 cells, with average Cl value = 0.623.
Table 19 5-FU + T-DM1: BT-474 Proliferation - 3 days
[0083] Figure 20 shows a plot of SK-BR-3 in vitro cell viability at 3 days versus IC50 multiple concentrations of gem-citabine, trastuzumab-MCC-DM1 (T-DM1), and fixed dose ratio combinations of gemcitabine and T-DM1 (Table 20). Gemcitabine combined with T-DM1 results in an antagonistic drug interaction, with Cl values > 1.3 at all combinations tested.
Table 20 gemcitabine (GEM) + T-DM1: SK-BR-3 Proliferation - 3 days
[0084] Figure 21 shows a plot of MDA-MD-361 in vitro cell viability at 3 days versus IC50 multiple concentrations of gemcitabine, trastuzumab-MCC-DM1 (T-DM1), and fixed dose ratio combinations of gemcitabine and T-DM1 (Table 21). The drug combination gives an antagonistic effect with the average Cl = 1.706.
Table 21 gemcitabine (GEM) + T-DM1: MDA-MD-361 Proliferation - 3 days
[0085] Figure 22 shows a plot of KPL4 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and fixed dose ratio combinations of T-DM1 (6.25 to 100 ng/ml) and GDC-0941 (62.5 nM to 1 μΜ) at IC50 multiple concentrations from 0.25x to 4x. Table 22 shows the effect in the 10-90% inhibition range with calculated Cl values and
average Cl of 1.111.
The Bliss prediction of additivity is plotted as the dotted line in Figure 22. The Bliss independence plot shows the calculated additivity response from combination of two single compounds.
Table 22 GDC-0941 + T-DM1: KPL4 Proliferation - 3 days
[0086] Figure 23 shows a plot of KPL4 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941 , and fixed dose ratio combinations of T-DM1 (1.25 to 80 ng/ml) and GDC-0941 (31.25 nM to 2 μΜ) at IC50 multiple concentrations from 0.0625x to 16x. The Bliss prediction of additivity is plotted as the dotted line. Table 23 shows the effect in the 10-90% inhibition range with calculated Cl values and average Cl of 0.802. The combination ofT-DM1 and GDC-0941 is additive in the KPL4 cell line
Table 23 GDC-0941 + T-DM1: KPL4 Proliferation - 3 days
[0087] Figure 24 shows a plot of Her2 amplified, HERCEPTIN® resistant, PIK3CA (H1047R) mutant, KPL-4 cells in vitro cell viability (proliferation) after treatment with T-DM1, P1103, GDC-0941, and fixed dose ratio combinations of T-DM1 + P1103, and T-DM1 + GDC-0941, at IC50 multiple concentrations from 0 to 16x. Table 24 shows the Combination Index values. The results suggest moderate in vitro synergy between T-DM-1 and GDC-0941 since the Cl values are between 0.5 and 1, and additivity between T-DM-1 and PI103 since Cl values are near 1.
Table 24 Combinations: KPL4 Proliferation
[0088] The PI3K selective inhibitor, PI103 (Hayakawa et al (2007) Bioorg. Med. Chem. Lett. 17:2438-2442; Raynaud et al (2007) Cancer Res. 67:5840-5850; Fan et al (2006) Cancer Cell 9:341-349; US 6608053), and has the structure:
[0089] Figure 25 shows a plot of KPL4 Caspase 3/7 in vitro cell apoptosis (programmed cell death) at 24 hours after treatment with T-DM1, GDC-0941, and fixed dose ratio combinations ofT-DM1 and GDC-0941. The combination of T-DM1 and GDC-0941 results in greatly enhanced apoptosis compared to either agent alone.
[0090] Figure 26 shows a plot of KPL4 in vitro cell apoptosis (programmed cell death) at 3 days after treatment with T-DM1, GDC-0941, and fixed dose ratio combinations of T-DM1 and GDC-0941. The combination of T-DM1 and GDC-0941 results in greatly enhanced apoptosis compared to either agent alone.
[0091] Figure 27 shows a plot of MDA-MB-361 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and fixed dose ratio combinations of T-DM1 (3.125 to 50 ng/ml) and GDC-0941 (62.5 nM to 1 μΜ) at IC50 multiple concentrations from 0.125x to 8x. The Bliss prediction of additivity is plotted as the dotted line. Table 27 shows the effect in the 10-90% inhibition range with calculated Cl values and average Cl of 0.888. T-DM1 combined with GDC-0941 results in additive anti-proliferative activity in the MDA-MB-361 cells, with the average Cl = 0.889.
Table 27 GDC-0941 + T-DM1: MDA-MB-361 Proliferation - 3 days
[0092] Figure 28 shows a plot of MDA-MB-361 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and fixed dose ratio combinations of T-DM1 (3.125 to 100 ng/ml) and GDC-0941 (62.5 nM to 2 μΜ) at IC50 multiple concentrations from 0.125x to 8x. The Bliss prediction of additivity is plotted as the dotted line. Table 28 shows the Effect in the 10-90% inhibition range with calculated Cl values and average Cl of 0.813. T-DM1 combined with GDC-0941 results in additive anti-proliferative activity in the MDA-MB-361 cells, with the average Cl = 0.813.
Table 28 GDC-0941 + T-DM1: MDA-MB-361 Proliferation - 3 days
[0093] Figure 29 shows a plot of BT-474 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941, and fixed dose ratio combinations of T-DM1 (3.125 to 100 ng/ml) and GDC-0941 (31.25 nM to 1 μΜ) at IC50 multiple concentrations from 0.125x to 4x. The Bliss prediction of additivity is plotted as the dotted line. Table 29 shows the effect in the 10-90% inhibition range with calculated Cl values and average Cl of 1.2122. GDC-0941 and T-DM1 do not have a combination effect on BT-474, using these dose ratios.
Table 29 GDC-0941 + T-DM1:
BT-474 Proliferation - 3 days [0094] Figure 30 shows a plot of BT-474 in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, GDC-0941 , and fixed dose ratio combinations of T-DM1 (6.25 to 100 ng/ml) and GDC-0941 (62.5 nM to 1 μΜ) at IC50 multiple concentrations from 0.25x to 4x. The Bliss prediction of additivity is plotted as the dotted line. Table 30 shows the effect in the 10-90% inhibition range with calculated Cl values and average Cl of 0. 997, indicating additivity.
Table 30 GDC-0941 + T-DM1: BT-474 Proliferation - 3 days
[0095] Figure 31 shows a plot of Her2 amplified, non-PI3K mutant, AU565 cells in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, P1103, GDC-0941, and fixed dose ratio combinations of T-DM1 + P1103, and T-DM1 + GDC-0941 at IC50 multiple concentrations from 0 to 16x. Table 31 shows the Combination Index values. The results suggest in vitro antagonism between T-DM-1 and GDC-0941 since the Cl values are between >1, and additivity or slight antagonism between T-DM-1 and P1103 since Cl values are near or slightly greater than 1.
Table 31 Combinations: AU565 Proliferation
[0096] Figure 32 shows a plot of Her2 amplified, PIK3CA (C420R) mutant, EFM192A cells in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, P1103, GDC-0941, and fixed dose combinations of T-DM1 + P1103, and T-DM1 + GDC-0941, at IC50 multiple concentrations from 0 to 16x. Table 32 shows the Combination Index values. The results suggest moderate in vitro synergy between T-DM-1 and GDC-0941 since the Cl values are between between 0.5 and 1, and synergy between T-DM-1 and P1103 since Cl values are near 0.5.
Table 32 Combinations: EFM192A Proliferation
[0097] Figure 33 shows a plot of Her2 amplified, HERCEPTIN® resistant, PIK3CA (H1047R) mutant, HCC1954 cells in vitro cell viability (proliferation) at 3 days after treatment with T-DM1, PI103, GDC-0941, and fixed dose ratio combinations of T-DM1 + P1103, and T-DM1 + GDC-0941, at IC50 multiple concentrations from 0 to 16x. Table 33 shows the Combination Index values. The results suggest additivity or slight in vitro synergy between T-DM-1 and GDC-0941 since the Cl values are close to 1, and slight synergy between T-DM-1 and PI103 since Cl values are <1.
Table 33 Combinations: HCC1954 Proliferation
IN VIVO TUMOR XENOGRAFT EFFICACY
[0098] The efficacy of the combinations of the invention may be measured in vivo by implanting allografts orxenografts of cancer cells in rodents and treating the tumors with the combinations. Variable results are to be expected depending on the cell line, the presence or absence of certain mutations in the tumor cells, the sequence of administration of trastuzumab-MCC-DM1 and chemotherapeutic agent, dosing regimen, and other factors. Subject mice were treated with drug(s) or control (Vehicle) and monitored over several weeks or more to measure the time to tumor doubling, log cell kill, and tumor inhibition (Example 3). Figures 10-17 and 34-37 show the efficacy of trastuzumab-MCC-DM1 in combinations with chemotherapeutic agents by xenograft tumor inhibition in mice.
[0099] Figure 10 shows a plot of the in vivo mean tumor volume change over time on KPL-4 tumors inoculated into the mammary fat pad of SCID beige mice after dosing with: (1) ADC buffer, (2) pertuzumab 15 mg/kg, (3) T-DM1 0.3 mg/kg, (4) T-DM1 1 mg/kg, (5) T-DM1 3 mg/kg, (6) pertuzumab 15 mg/kg + T-DM1 0.3 mg, (7) pertuzumab 15 mg/kg + T-DM1 1 mg/kg, (8) pertuzumab 15 mg/kg + T-DM1 3 mg/kg. Animals dosed with ADC buffer (1) gave 0 PR and 0 CR. Animals dosed with pertuzumab (2) at 15 mg/kg gave 0 PR and 0 CR. Animals dosed with T-DM1 at 0.3 mg/kg (3) alone gave 0 PR and 0 CR. Animals dosed with T-DM1 at 1 mg/kg (4) alone gave 1 PR and 0 CR. Animals dosed with T-DM1 at 3 mg/kg (5) alone gave 7 PR and 0 CR. Animals dosed with the combination of pertuzumab at 15 mg/kg and T-DM1 at 0.3 mg/kg (6) gave 5 PR and 0 CR. Animals dosed with the combination of pertuzumab at 15 mg/kg and T-DM1 at 1 mg/kg (7) gave 8 PR and 0 CR. Animals dosed with the combination of pertuzumab at 15 mg/kg and T-DM1 at 3 mg/kg (8) gave 8 PR and 0 CR. The combination of pertuzumab and T-DM1 results in greater anti-tumor activity in KPL4 xenografts than either agent alone.
[0100] Figure 11 shows a plot of the in vivo mean tumor volume change over time on KPL-4 tumors inoculated into the mammary fat pad of SCID beige mice after dosing with: (1) ADC buffer, (2) 5-FU 100 mg/kg, (3) pertuzumab, 40 mg/kg, (4) B20-4.1,5 mg/kg, (5) T-DM1,5 mg/kg, (6) 5-FU, 100 mg/kg + T-DM1,5 mg, (7) pertuzumab, 40 mg/kg + T-DM1, 5 mg/kg, (8), -4.1 5 mg/kg + T-DM1, 5 mg/kg, (9) B20-4.1, 5 mg/kg + pertuzumab, 40 mg/kg. At the end of the study, all remaining tumors less than 50 mm3 volume were histologically evaluated and determined that 8 samples in single agent (5) T-DM1,5 mg/kg, 5 samples in combination group (6) 5-FU, 100 mg/kg + T-DM1,5 mg, and 8 samples in combination group (7) pertuzumab, 40 mg/kg + T-DM1,5 mg/kg had no evidence of viable tumor cells.
[0101] Figure 12 shows a plot of the in vivo mean tumor volume change over time on MMTV-HER2 Fo5 transgenic mammary tumor inoculated into the mammary fat pad of CRL nu/nu mice after dosing with: (1) Vehicle (ADC buffer), (2) B20-4.1,5 mg/kg, (3) T-DM1, 3 mg/kg, (4) T-DM1,5 mg/kg, (5) T-DM1, 10 mg/kg, (6) B20-4.1,5 mg/kg + T-DM1,3 mg/kg, (7) B20-4.1,5 mg/kg + T-DM1,5 mg/kg, (8) B20-4.1,5 mg/kg + T-DM1 ,,10 mg/kg. The combination of T-DM1 and B20-4.1 results in enhanced tumor growth inhibition with T-DM1 of 3 and 5 mg/kg, but not 10 mg/kg.
[0102] Figure 13 shows a plot of the in vivo mean tumor volume change over time on MMTV-HER2 Fo5 transgenic mammary tumor inoculated into the mammary fat pad of CRL nu/nu mice after dosing with: (1) Vehicle (ADC buffer), (2) T-DM1,10 mg/kg, (3) 5-FU, 100 mg/kg, (4) gemcitabine, 120 mg/kg, (5) carboplatin, 100 mg/kg, (6) 5-FU, 100 mg/kg + T-DM1, 10 mg/kg, (7) gemcitabine, 120 mg/kg + T-DM1, 10 mg/kg, (8) carboplatin, 100 mg/kg + T-DM1, 10 mg/kg. T-DM1 combined with either 5-FU, carboplatin or gemcitabine results in enhanced anti-tumor efficacy compared to single agent treatment.
[0103] Figure 14 shows a plot of the in vivo mean tumor volume change over time on MMTV-Her2 Fo5 transgenic mammary tumor xenografts inoculated into the mammary fat pad of Harlan athymic nude mice after dosing with: (1) Vehicle (PBS buffer) iv, qwkx4, (2) lapatinib, 101 mg/kg, po, bid x21, (3) pertuzumab, 40 mg/kg, iv, qwkx4, (4) B20-4.1, 5 mg/kg, ip, 2x/wk x4, (5) T-DM1, 15 mg/kg, iv, q3wk to end, (6) lapatinib, 101 mg/kg, po, bid x21 + T-DM1, 15 mg/kg, iv, q3wk to end (7) pertuzumab, 40 mg/kg, iv, qwk x4 + T-DM1, 15 mg/kg, iv, q3wk to end, (8) B20-4.1, 5 mg/kg, ip, 2x/wk x4 + T-DM1, 15 mg/kg, iv, q3wk to end.
[0104] The single agent T-DM1 at 15 mg/kg dose (5) is not significantly different from the combination of T-DM1 at 15 mg/kg and B20-4.1 at 5 mg/kg (8). Lapatinib and pertuzumab were not different from vehicle in this study. B20-4.1 showed a trend towards increased efficacy compared to vehicle. T-DM1 was efficacious as a single agent (p<0.01). The combination ofT-DM1 with lapatinib was significantly better than lapatinib alone (p<0.01), but not different than T-DM1 alone. The combination of T-DM1 with pertuzumab was significantly better than pertuzumab alone (p<0.01), but not different than T-DM1 alone. The combination ofT-DM1 with B20-4.1 was significantly better than B20-4.1 alone (p<0.01), but not different than T-DM1 alone.
[0105] Figure 15 shows a plot of the in vivo efficacy by mean tumor volume change over time on MMTV-Her2 Fo5 transgenic mammary tumor xenografts inoculated into the mammary fat pad of Harlan athymic nude mice after dosing with: (1) Vehicle (PBS buffer) po, bid x21 (2) T-DM1, 7.5 mg/kg, iv, qd x1 (3) T-DM1, 15 mg/kg, iv, qd x1 (4) ABT-869, 5 mg/kg, po, bid x21 (5) ABT-869, 15 mg/kg, po, bid x21 (6) T-DM1, 7.5 mg/kg, iv, qd x1 + ABT-869, 5 mg/kg, po, bid x21 (7) T-DM1 7.5 mg/kg, iv, qd x1 + ABT-869, 15 mg/kg, po, bid x21 (8) T-DM1, 15 mg/kg, iv, qd x1 + ABT-869, 5 mg/kg, po, bid x21 (9) T-DM1, 15 mg/kg, iv, qd x1 + ABT-869, 15 mg/kg, po, bid x21.
[0106] The combination of T-DM1 and ABT-869, 5 mg/kg showed two partial responses (8), and is not significantly more efficacious than single agent ABT-869, 5 mg/kg (4). The combination of T-DM1 and ABT-869, 15 mg/kg (9) is slightly more efficacious than single agent ABT-869, 15 mg/kg (5). ABT-869 dosed at 5 mg/kg was significantly better than vehicle by time to endpoint (p<0.01), but was not different than vehicle by time to tumor doubling. ABT-869 dosed at 15 mg/kg and T-DM1 dosed at either 7.5 or 15 mg/kg were significantly better than vehicle by both time to tumor doubling and time to tumor endpoint (p<0.01). The combination of 7.5 mg/kg T-DM1 and 5 mg/kg ABT-869 was not different than the single agent of 7.5 mg/kg T-DM1. Compared to single agent 5 mg/kg ABT-869, the combination of 7.5 mg/kg T-DM1 + 5 mg/kg ABT-869 was significantly better by time to tumor doubling (p<0.01), but was not different by time to endpoint. The combination of 7.5 mg/kg T-DM1 and 15 mg/kg ABT-869 was significantly better than either single agent (p<0.01). The combination of 15 mg/kg T-DM1 + 5 mg/kg ABT-869 was not different than 15 mg/kg T-DM1 single agent. Compared to 5 mg/kg ABT-869 single agent, the combination of 15 mg/kg T-DM1 and 5 mg/kg ABT-869 was not different by time to endpoint, but was significantly different by time to tumor doubling (p<0.01). The combination of 15 mg/kg T-DM1 + 15 mg/kg ABT-869 was significantly better than 15 mg/kg ABT-869 alone and was better than 15 mg/kg T-DM1 alone by time to tumor doubling (p<0.01). The time to endpoint of 15 mg/kg T-DM1 and 15 mg/kg T-DM1 + 15 mg/kg ABT-869 was not different.
[0107] Figure 16 shows a plot of the in vivo mean tumor volume change over time on MMTV-Her2 Fo5 transgenic mammary tumor xenografts inoculated into the mammary fat pad of Harlan athymic nude mice after dosing with: (1) Vehicle, iv. qwk x3 (2) T-DM1,7.5 mg/kg, iv, q3wk x2 (3) T-DM1, 15 mg/kg, iv, q3wk x2 (4) docetaxel, 30 mg/kg, iv, qwk x3 (5) T-DM1, 7.5 mg/kg, iv, q3wkx2 + docetaxel, 30 mg/kg, iv, qwkx3 (6) T-DM1, 15 mg/kg, iv, q3wkx2 + docetaxel, 30 mg/kg, iv, qwk x3.
[0108] Animals dosed with T-DM1 at 15 mg/kg (3) alone gave 6 partial responses (PR) and 1 complete response (CR). Animals dosed with docetaxel alone at 30 mg/kg (4) gave 2 PR. Animals dosed with the combination of T-DM1 at 7.5 mg/kg and docetaxel at 30 mg/kg (5) gave 10 PR. Animals dosed with the combination of T-DM1 at 15 mg/kg and docetaxel at 30 mg/kg (6) showed a dose response with 7 PR and 3 CR. All single agent groups were significantly different than the vehicle group (p<0.01). The combination of 7.5 mg/kg T-DM1 + docetaxel was significantly better than either single agent by both time to tumor doubling and time to endpoint (p<0.01). There were no objective responses in the 7.5 mg/kg T-DM1 group and 2 partial responses (PR) in the docetaxel single agent group. The combination of 7.5 mg/kg T-DM1 and docetaxel resulted in 9 PRs and 1 complete response (CR). The combination of 15 mg/kg T-DM1 + docetaxel was significantly better than either single agent by time to tumor doubling and time to endpoint (p<0.01). The single agent 15 mg/kg T-DM1 treatment resulted in 5 PRs and 2 CRs. The combination of 15 mg/kg T-DM1 + docetaxel increased the objective response rate to 7 PRs and 3 CRs. All mice in this combination group had an objective response to treatment.
[0109] Figure 17 shows a plot of the in vivo mean tumor volume change over time on MMTV-Her2 Fo5 transgenic mammary tumor xenografts inoculated into the mammary fat pad of Harlan athymic nude mice after dosing with: (1) Vehicle, po, qd x21 (2) T-DM1,7.5 mg/kg, iv, q3wkx2, (3) T-DM1, 15 mg/kg, iv, q3wkx2 (4) lapatinib, 100 mg/kg, po, bid x21, (5) T-DM1, 7.5 mg/kg, iv, q3wk x2 + lapatinib, 100 mg/kg, po, bid x21, (6) T-DM1, 15 mg/kg, iv, q3wk x2 + lapatinib, 100 mg/kg, po, bid x21.
[0110] Animals dosed with T-DM1 at 15 mg/kg (3) alone gave 6 partial responses (PR) and 3 complete responses (CR). Animals dosed with the combination of T-DM1 at 7.5 mg/kg and lapatinib at 100 mg/kg (5) gave 4 PR and 5 CR. Animals dosed with the combination of T-DM1 at 15 mg/kg and lapatinib at 100 mg/kg (6) showed a dose response with 8 CR. All single agent groups were significantly different from vehicle (p<0.01) by both time to tumor doubling and time to endpoint. T-DM1 dosed at 7.5 mg/kg in combination with lapatinib was significantly better than either lapatinib or T-DM1 at 7.5 mg/kg as a single agent (p<0.01). T-DM1 dosed at 15 mg/kg in combination with lapatinib was significantly better than lapatinib single agent (p<0.01). This combination was not different than 15 mg/kg of T-DM1 dosed as a single agent.
[0111] The time to tumor doubling was measured by Kaplan-Meier statistical analysis as 2 X Vo. Time to tumor doubling and survival analysis were quantified by Log-rank-p values. Time to progression is measured as the elapsed time for tumor volume to reach 1000 mm3, or the survival time if 1000 mm3 tumor volume is not reached. T-DM1 combined with lapatinib resulted in greatly enhanced anti-tumor efficacy compared to single agent treatment.
[0112] Figure 34 shows a plot of the in vivo mean tumor volume change over time on MMTV-Her2 Fo5 transgenic mammary tumor inoculated into CRL nu/nu mice after dosing with: (1) Vehicle, po, qd x21 (2) T-DM1, 10 mg/kg, iv, q3wk, (3) 5-FU, 100 mg/kg, po, qwk x2, (4) (5) T-DM1,5 mg/kg, iv, q3wk + 5-FU, 100 mg/kg, po, qwkx2. Animals dosed with Vehicle gave 0 partial responses (PR) and 0 complete responses (CR). Animals dosed with T-DM1 gave 1 PR and 0 CR. Animals dosed with 5-FU gave 0 PR and 0 CR. Animals dosed with the combination of T-DM1 and 5-FU gave 3 PR and 0 CR at the 42 day time point. Treatment with T-DM1 and 5-FU results in enhanced anti-tumor activity compared to either agent alone.
[0113] Figure 35 shows a plot of the in vivo mean tumor volume change over time on MMTV-Her2 Fo5 transgenic mammary tumor inoculated into CRL nu/nu mice after dosing with: (1) Vehicle, po, qd x21 (2) T-DM1,5 mg/kg, iv, q3wk, (3) GDC-0941, 100 mg/kg, po, bid x21, (4) GDC-0152, 50 mg/kg, po, qwk x2, (5) T-DM1, 5 mg/kg, iv, q3wk + GDC-0941, 100 mg/kg, po, bid x21, (6) T-DM1,5 mg/kg, iv, q3wk + GDC-0152, 50 mg/kg, po, qwk x2. Treatment with T-DM1 and GDC-0941 results in enhanced anti-tumor activity compared to single agent treatment, while the combination of T-DM1 and GDC-0152 was not more efficacious than T-DM1 alone.
[0114] GDC-0152 is an inhibitor of caspases which are inhibitors of apoptosis proteins (Call et al (2008) The Lancet
Oncology, 9(10):1002-1011; Deveraux et al (1999) J Clin Immunol 19:388-398).
[0115] Figure 36 shows a plot of the in vivo mean tumor volume change overtime on MDA-MB-361.1 mammary tumor inoculated into CRL nu/nu mice after dosing with: (1) Vehicle, po, qd x21, (2) GDC-0941,25 mg/kg, po, qd x21, (3) GDC-0941, 50 mg/kg, po, qd x21, (4) GDC-0941, 100 mg/kg, po, qd x21, (5) T-DM1,3 mg/kg, iv, q3wk, (6) T-DM1, 10 mg/kg, iv, q3wk, (7) GDC-0941,25 mg/kg, po, qd x21 + T-DM1,3 mg/kg, iv, q3wk, (8) GDC-0941,50 mg/kg, po, qd x21 + T-DM1,3 mg/kg, iv, q3wk, (9) GDC-0941, 100 mg/kg, po, qd x21 + T-DM1,3 mg/kg, iv, q3wk, (10) GDC-0941,25 mg/kg, po, qd x21 + T-DM1, 10 mg/kg, iv, q3wk, (11) GDC-0941,50 mg/kg, po, qd x21 + T-DM1, 10 mg/kg, iv, q3wk, (12) GDC-0941, 100 mg/kg, po, qd x21 + T-DM1, 10 mg/kg, iv, q3wk.
[0116] Animals dosed with Vehicle (1) gave 0 partial responses (PR) and 0 complete response (CR). Animals dosed with GDC-0941 at 25 mg/kg alone (2) gave 0 PR and 0 CR. Animals dosed with GDC-0941 at 50 mg/kg alone (3) gave 1 PR and 0 CR. Animals dosed with GDC-0941 at 100 mg/kg alone (4) gave 0 PR and 0 CR. Animals dosed with T-DM1 at 3 mg/kg (5) alone gave 1 (PR) and 1 CR). Animals dosed with T-DM1 at 10 mg/kg (6) alone gave 8 (PR) and 1 CR). Animals dosed with the combination of T-DM1 at 3 mg/kg and GDC-0941 at 25 mg/kg (7) gave 5 PR and 0 CR. Animals dosed with the combination of T-DM1 at 3 mg/kg and GDC-0941 at 50 mg/kg (8) gave 3 PR and 0 CR. Animals dosed with the combination of T-DM1 at 3 mg/kg and GDC-0941 at 100 mg/kg (9) gave 3 PR and 1 CR. Animals dosed with the combination of T-DM1 at 10 mg/kg and GDC-0941 at 50 mg/kg (10) gave 9 PR and 0 CR. Animals dosed with the combination of T-DM1 at 10 mg/kg and GDC-0941 at 50 mg/kg (11) gave 7 PR and 2 CR. Animals dosed with the combination of T-DM1 at 10 mg/kg and GDC-0941 at 100 mg/kg (12) gave 9 PR and 1 CR.
[0117] Figure 37 shows a plot of the in vivo mean tumor volume change overtime on MDA-MB-361.1 mammary tumor inoculated into CRL nu/nu mice after dosing with: (1) Vehicles [MCT (0.5% methylcellulose/0.2% TWEEN 80) + succinate buffer (100mM sodium succinate, 100 mg/ml trehalose, 0.1% TWEEN 80, pH 5.0)], po + IV, qd x21 and qd (2) GNE-390, 1.0 mg/kg, po, qd x21, (3) GNE-390, 2.5 mg/kg, po, qd x21, (4) T-DM1,3 mg/kg, iv, qd, (5) GNE-390, 1.0 mg/kg, po, qd x21 + T-DM1,3 mg/kg, iv, qd, (6) GNE-390, 2.5 mg/kg, po, qd x21 + T-DM1,3 mg/kg, iv, qd [0118] Animals dosed with Vehicle (1) gave 0 partial responses (PR) and 0 complete response (CR). Animals dosed with GNE-390 at 1.0 mg/kg alone (2) gave 0 PR and 0 CR. Animals dosed with GNE-390 at 2.5 mg/kg alone (3) gave 1 PR and 0 CR. Animals dosed with T-DM1 at 3 mg/kg (5) alone gave 1 (PR) and 1 CR). Animals dosed with T-DM1 at 3 mg/kg (4) alone gave 0 PR and 0 CR. Animals dosed with the combination of T-DM1 at 3 mg/kg and GNE-390 at 25 mg/kg (5) gave 3 PR and 0 CR. Animals dosed with the combination of T-DM1 at 3 mg/kg and GNE-390 at 2.5 mg/kg (6) gave 5 PR and 1 CR. Combination of GNE-390 with T-DM1 significantly increased the number of partial and complete anti-tumor responses when compared to GNE-390 orT-DM1 alone in the MDA-MB-361.1 breast cancer xenograft model.
PHARMACEUTICAL COMPOSITIONS
[0119] Pharmaceutical compositions or formulations of the present invention include combinations of trastuzumab-MCC-DM1, pertuzumab and one or more pharmaceutically acceptable carrier, glidant, diluent, or excipient.
[0120] Trastuzumab-MCC-DM1 and chemotherapeutic agents of the present invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms.
[0121] Trastuzumab-MCC-DM1 and chemotherapeutic agents of the present invention may also exist in different tautomeric forms, and all such forms are embraced within the scope of the invention. The term "tautomer" or "tautomeric form" refers to structural isomers of different energies which are interconvertible via a low energy barrier. For example, proton tautomers (also known as prototropic tautomers) include interconversions via migration of a proton, such as ketoenol and imine-enamine isomerizations. Valence tautomers include interconversions by reorganization of some of the bonding electrons.
[0122] Pharmaceutical compositions encompass both the bulk composition and individual dosage units comprised of more than one (e.g., two) pharmaceutically active agents including trastuzumab-MCC-DM1 and a chemotherapeutic agent selected from the lists of the additional agents described herein, along with any pharmaceutically inactive excipients, diluents, carriers, or glidants. The bulk composition and each individual dosage unit can contain fixed amounts of the aforesaid pharmaceutically active agents. The bulk composition is material that has not yet been formed into individual dosage units. An illustrative dosage unit is an oral dosage unit such as tablets, pills, capsules, and the like. Similarly, the herein-described method of treating a patient by administering a pharmaceutical composition of the present invention is also intended to encompass the administration of the bulk composition and individual dosage units.
[0123] Pharmaceutical compositions also embrace isotopically-labeled compounds of the present invention which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. All isotopes of any particular atom or element as specified are contemplated within the scope of the compounds of the invention, and their uses. Exemplary isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, chlorine and iodine, such as 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 32P, 33P, 35S, 18F, 36CI, 123l and 125l. Certain isotopically-labeled compounds of the present invention (e.g., those labeled with 3H and 14C) are useful in compound and/or substrate tissue distribution assays. Tritiated (3H) and carbon-14 (14C) isotopes are useful for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (2H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances. Positron emitting isotopes such as 15Q, 13N, 11C and 18F are useful for positron emission tomography (PET) studies to examine substrate receptor occupancy. Isotopically labeled compounds of the present invention can generally be prepared by following procedures analogous to those disclosed in the Schemes and/or in the Examples herein below, by substituting an isotopically labeled reagent for a non-isotopically labeled reagent.
[0124] Trastuzumab-MCC-DM1 and chemotherapeutic agents may be formulated in accordance with standard pharmaceutical practice for use in a therapeutic combination for therapeutic treatment (including prophylactic treatment) of hyperproliferative disorders in mammals including humans. The invention provides a pharmaceutical composition comprising trastuzumab-MCC-DM1 in association with one or more pharmaceutically acceptable carrier, glidant, diluent, or excipient.
[0125] Suitable carriers, diluents and excipients are well known to those skilled in the art and include materials such as carbohydrates, waxes, water soluble and/or swellable polymers, hydrophilic or hydrophobic materials, gelatin, oils, solvents, water and the like. The particular carrier, diluent or excipient used will depend upon the means and purpose for which the compound of the present invention is being applied. Solvents are generally selected based on solvents recognized by persons skilled in the art as safe (GRAS) to be administered to a mammal. In general, safe solvents are non-toxic aqueous solvents such as water and other non-toxic solvents that are soluble or miscible in water. Suitable aqueous solvents include water, ethanol, propylene glycol, polyethylene glycols (e.g., PEG 400, PEG 300), etc. and mixtures thereof. The formulations may also include one or more buffers, stabilizing agents, surfactants, wetting agents, lubricating agents, emulsifiers, suspending agents, preservatives, antioxidants, opaquing agents, glidants, processing aids, colorants, sweeteners, perfuming agents, flavoring agents and other known additives to provide an elegant presentation of the drug (i.e., a compound of the present invention or pharmaceutical composition thereof) or aid in the manufacturing of the pharmaceutical product (i.e., medicament).
[0126] The formulations may be prepared using conventional dissolution and mixing procedures. For example, the bulk drug substance (i.e., compound of the present invention or stabilized form of the compound (e.g., complex with a cyclodextrin derivative or other known complexation agent) is dissolved in a suitable solvent in the presence of one or more of the excipients described above. The compound of the present invention is typically formulated into pharmaceutical dosage forms to provide an easily controllable dosage of the drug and to enable patient compliance with the prescribed regimen.
[0127] The pharmaceutical composition (orformulation) for application may be packaged in a variety of ways depending upon the method used for administering the drug. Generally, an article for distribution includes a container having deposited therein the pharmaceutical formulation in an appropriate form. Suitable containers are well known to those skilled in the art and include materials such as bottles (plastic and glass), sachets, ampoules, plastic bags, metal cylinders, and the like. The container may also include a tamper-proof assemblage to prevent indiscreet access to the contents of the package. In addition, the container has deposited thereon a label that describes the contents of the container. The label may also include appropriate warnings.
[0128] Pharmaceutical formulations of the compounds of the present invention may be prepared for various routes and types of administration with pharmaceutically acceptable diluents, carriers, excipients or stabilizers (Remington’s Pharmaceutical Sciences (1995) 18th edition, Mack Publ. Co., Easton, PA), in the form of a lyophilized formulation, milled powder, or an aqueous solution. Formulation may be conducted by mixing at ambient temperature at the appropriate pH, and atthedesireddegreeof purity, with physiologically acceptable carriers, i.e., carriers that are non-toxic to recipients at the dosages and concentrations employed. The pH of the formulation depends mainly on the particular use and the concentration of compound, but may range from about 3 to about 8.
[0129] The pharmaceutical formulation is preferably sterile. In particular, formulations to be used for in vivo administration must be sterile. Such sterilization is readily accomplished by filtration through sterile filtration membranes. [0130] The pharmaceutical formulation ordinarily can be stored as a solid composition, a lyophilized formulation or as an aqueous solution.
[0131] The pharmaceutical formulations of the invention will be dosed and administered in a fashion, i.e., amounts, concentrations, schedules, course, vehicles and route of administration, consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The "therapeutically effective amount" of the compound to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat the coagulation factor mediated disorder. Such amount is preferably below the amount that is toxic to the host or renders the host significantly more susceptible to bleeding.
[0132] As a general proposition, the initial pharmaceutically effective amount of trastuzumab-MCC-DM1 administered per dose will be in the range of about 0.01-100 mg/kg, namely about 0.1 to 20 mg/kg of patient body weight per day, with the typical initial range of compound used being 0.3 to 15 mg/kg/day.
[0133] Acceptable diluents, carriers, excipients and stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl, ethanol, or benzylalcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides and other carbohydrates including glucose, mannose, ordextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, including Tween 80, PLURONICS™ or polyethylene glycol (PEG), including PEG400. The active pharmaceutical ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington’s Pharmaceutical Sciences 18th edition, (1995) Mack Publ. Co., Easton, PA.
[0134] The pharmaceutical formulations include those suitable for the administration routes detailed herein. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Techniques and formulations generally are found in Remington’s Pharmaceutical Sciences 18th Ed. (1995) Mack Publishing Co., Easton, PA. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
[0135] Formulations of a chemotherapeutic agent suitable for oral administration may be prepared as discrete units such as pills, hard or soft e.g., gelatin capsules, cachets, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, syrups or elixirs each containing a predetermined amount of a compound oftrastuzumab-MCC-DM1 and/or a chemotherapeutic agent. Such formulations may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents including sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide a palatable preparation. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent. The tablets may optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient therefrom.
[0136] Tablet excipients of a pharmaceutical formulation of the invention may include: Filler (or diluent) to increase the bulk volume of the powdered drug making up the tablet; Disintegrants to encourage the tablet to break down into small fragments, ideally individual drug particles, when it is ingested and promote the rapid dissolution and absorption of drug; Binder to ensure that granules and tablets can be formed with the required mechanical strength and hold a tablet together after it has been compressed, preventing it from breaking down into its component powders during packaging, shipping and routine handling; Glidant to improve the flowability of the powder making up the tablet during production; Lubricant to ensure that the tableting powder does not adhere to the equipment used to press the tablet during manufacture. They improve the flow of the powder mixes through the presses and minimize friction and breakage as the finished tablets are ejected from the equipment; Antiadherent with function similar to that of the glidant, reducing adhesion between the powder making up the tablet and the machine that is used to punch out the shape of the tablet during manufacture; Flavor incorporated into tablets to give them a more pleasant taste or to mask an unpleasant one, and Colorant to aid identification and patient compliance.
[0137] Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipient which are suitable for manufacture of tablets are acceptable. These excipients may be, for example, inert diluents, such as calcium or sodium carbonate, lactose, calcium or sodium phosphate; granulating and disintegrating agents, such as maize starch, oralginicacid; binding agents, such as starch, gelatin oracacia; and lubricating agents, such as magnesium stearate, stearic acid or talc. Tablets may be uncoated or may be coated by known techniques including microencapsulation to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax may be employed.
[0138] For treatment of the eye or other external tissues, e.g., mouth and skin, the formulations are preferably applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20% w/w. When formulated in an ointment, the active ingredients may be employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredients may be formulated in a cream with an oil-in-water cream base.
[0139] If desired, the aqueous phase of the cream base may include a polyhydric alcohol, i.e., an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof. The topical formulations may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulfoxide and related analogs.
[0140] The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner, including a mixture of at least one emulsifier with a fat or an oil, or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. Together, the emulsifier(s) with or without stabilizer(s) make up an emulsifying wax, and the wax together with the oil and fat comprise an emulsifying ointment base which forms the oily dispersed phase of cream formulations. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the invention include Tween® 60, Span® 80, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate.
[0141] Aqueous suspensions of the pharmaceutical formulations of the invention contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients include a suspending agent, such as sodium carboxymethylcellulose, croscarmellose, povidone, methylcellulose, hydroxypropyl methylcellu-lose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptade-caethyleneoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan monooleate). The aqueous suspension may also contain one or more preservatives such as ethyl or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as sucrose or saccharin.
[0142] Pharmaceutical compositions may be in the form of a sterile injectable preparation, such as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation may be a solution or a suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butanediol or prepared from a lyophilized powder. Among the acceptable vehicles and solvents that may be employed are water, Ringer’s solution and isotonic sodium chloride solution. In addition, sterile fixed oils may conventionally be employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid may likewise be used in the preparation of injectables. [0143] The amount of active ingredient that may be combined with the carrier material to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a time-release formulation intended for oral administration to humans may contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95% of the total compositions (weight:weight). The pharmaceutical composition can be prepared to provide easily measurable amounts for administration. For example, an aqueous solution intended for intravenous infusion may contain from about 3 to 500 μς of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about 30 mL/hr can occur.
[0144] Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
[0145] Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient. The active ingredient is preferably present in such formulations in a concentration of about 0.5 to 20% w/w, for example about 0.5 to 10% w/w, for example about 1.5% w/w.
[0146] Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia ortragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
[0147] Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.
[0148] Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 microns (including particle sizes in a range between 0.1 and 500 microns in increments microns such as 0.5,1,30 microns, 35 microns, etc.), which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs. Suitable formulations include aqueous or oily solutions of the active ingredient. Formulations suitable for aerosol or dry powder administration may be prepared according to conventional methods and may be delivered with other therapeutic agents such as compounds heretofore used in the treatment or prophylaxis disorders as described below.
[0149] Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
[0150] The formulations may be packaged in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water, for injection immediately prior to use. Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described. Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.
[0151] The invention further provides veterinary compositions comprising at least one active ingredient as above defined together with a veterinary carrier therefore. Veterinary carriers are materials useful for the purpose of administering the composition and may be solid, liquid or gaseous materials which are otherwise inert or acceptable in the veterinary art and are compatible with the active ingredient. These veterinary compositions may be administered parenterally, orally or by any other desired route.
COMBINATION THERAPY
[0152] Trastuzumab-MCC-DM1 may be employed in combination with other chemotherapeutic agents for the treatment of a hyperproliferative disease or disorder, including tumors, cancers, and neoplastic tissue, along with pre-malignant and non-neoplastic or non-malignant hyperproliferative disorders. In certain embodiments, trastuzumab-MCC-DM1 is combined in a pharmaceutical combination formulation, or dosing regimen as combination therapy, with a second compound that has anti-hyperproliferative properties or that is useful for treating the hyperproliferative disorder. The second compound of the pharmaceutical combination formulation or dosing regimen preferably has complementary activities to trastuzumab-MCC-DM1, and such that they do not adversely affect each other. Such compounds are suitably present in combination in amounts that are effective for the purpose intended. In one embodiment, a composition of this invention comprises trastuzumab-MCC-DM1 in combination with a chemotherapeutic agent such as described herein. Examples 4 and 5 are clinical protocols for T-DM1 + pertuzumab, and T-DM1 + GDC-0941 (reference example), respectively. [0153] Therapeutic combinations of the invention include a formulation, dosing regimen, or other course of treatment comprising the administration of trastuzumab-MCC-DM1 and pertuzumab, as a combined preparation for separate, simultaneous or sequential use in the treatment of a hyperproliferative disorder.
[0154] The combination therapy may be administered as a simultaneous or sequential regimen. When administered sequentially, the combination may be administered in two or more administrations. The combined administration includes coadministration, using separate formulations or a single pharmaceutical formulation, and consecutive administration in either order, wherein preferably there is a time period while both (or all) active agents simultaneously exert their biological activities.
[0155] Suitable dosages for any of the above coadministered agents are those presently used and may be lowered due to the combined action (synergy) of the newly identified agent and other chemotherapeutic agents or treatments. [0156] In a particular embodiment of anti-cancer therapy, trastuzumab-MCC-DM1 may be combined with a chemotherapeutic agent, including hormonal or antibody agents such as those described herein, as well as combined with surgical therapy and radiotherapy. The amounts of trastuzumab-MCC-DM1 and the other pharmaceutically active chemotherapeutic agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect.
ADMINISTRATION OF PHARMACEUTICAL COMPOSITIONS
[0157] The compounds of the invention may be administered by any route appropriate to the condition to be treated. Suitable routes include oral, parenteral (including subcutaneous, intramuscular, intravenous, intraarterial, inhalation, intradermal, intrathecal, epidural, and infusion techniques), transdermal, rectal, nasal, topical (including buccal and sublingual), vaginal, intraperitoneal, intrapulmonary and intranasal. Topical administration can also involve the use of transdermal administration such as transdermal patches or iontophoresis devices. Formulation of drugs is discussed in Remington’s Pharmaceutical Sciences, 18th Ed., (1995) Mack Publishing Co., Easton, PA. Other examples of drug formulations can be found in Liberman, H. A. and Lachman, L., Eds., Pharmaceutical Dosage Forms, Marcel Decker, Vol 3, 2nd Ed., New York, NY. For local immunosuppressive treatment, the compounds may be administered by intral-esional administration, including perfusing or otherwise contacting the graft with the inhibitor before transplantation. It will be appreciated that the preferred route may vary with for example the condition of the recipient. Where the compound is administered orally, it may be formulated as a pill, capsule, tablet, etc. with a pharmaceutically acceptable carrier, glidant, or excipient. Where the compound is administered parenterally, it may be formulated with a pharmaceutically acceptable parenteral vehicle or diluent, and in a unit dosage injectable form, as detailed below.
[0158] Adose of trastuzumab-MCC-DM1 to treat human patients may range from about 100 mg to about 500 mg. The dose of trastuzumab-MCC-DM1 may be administered once every six weeks, once every three weeks, weekly, or more frequently, depending on the pharmacokinetic (PK) and pharmacodynamic (PD) properties, including absorption, distribution, metabolism, and excretion. A dose of the chemotherapeutic agent, used in combination with trastuzumab-MCC-DM1, may range from about 10 mg to about 1000 mg. The chemotherapeutic agent may be administered once every six weeks, once every three weeks, weekly, or more frequently, such as once or twice per day. In addition, toxicity factors may influence the dosage and administration regimen. When administered orally, the pill, capsule, or tablet may be ingested daily or less frequently for a specified period of time. The regimen may be repeated for a number of cycles of therapy.
TREATMENT
[0159] Therapeutic combinations of: (1) trastuzumab-MCC-DM1 and (2) the chmotherapeutic agents pertuzumab useful for treating diseases, conditions and/or disorders cancer characterized by activation of the HER2 pathway. Accordingly, another aspect of this invention includes combination for use in of treating diseases or conditions that can be treated by targetting HER2 Therapeutic combinations of: (1) trastuzumab-MCC-DM1 and (2) pertuzumab may be employed for the treatment of a a cancer expressing ErbB2.
[0160] Cancers which can be treated include, breast, ovary, cervix, prostate, testis, genitourinary tract, esophagus, larynx, glioblastoma, neuroblastoma, stomach, skin, keratoacanthoma, lung, epidermoid carcinoma, large cell carcinoma, non-small cell lung carcinoma (NSCLC), small cell carcinoma, lung adenocarcinoma, bone, colon, adenoma, pancreas, adenocarcinoma, thyroid, follicular carcinoma, undifferentiated carcinoma, papillary carcinoma, seminoma, melanoma, sarcoma, bladder carcinoma, liver carcinoma and biliary passages, kidney carcinoma, myeloid disorders, lymphoid disorders, hairy cells, buccal cavity and pharynx (oral), lip, tongue, mouth, pharynx, small intestine, colon-rectum, large intestine, rectum, brain and central nervous system, Hodgkin’s and leukemia.
[0161] Another aspect of this invention provides a pharmaceutical composition or therapeutic combination for use in the treatment of the diseases or conditions described herein in a mammal, for example, a human, suffering from such disease or condition. Also provided is the use of a pharmaceutical composition in the preparation of a medicament for the treatment of the diseases and conditions described herein in a warm-blooded animal, such as a mammal, for example a human, suffering from such disorder.
ARTICLES OF MANUFACTURE
[0162] In another embodiment of the invention, an article of manufacture, or "kit", containing trastuzumab-MCC-DM1 useful forthe treatment of the diseases and disorders described above is provided. In one embodiment, the kit comprises a container comprising trastuzumab-MCC-DM1. The kit may further comprise a label or package insert, on or associated with the container. The term "package insert" is used to referto instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products. Suitable containers include, for example, bottles, vials, syringes, blister pack, etc. The container may be formed from a variety of materials such as glass or plastic. The container may hold trastuzumab-MCC-DM1 or a formulation thereof which is effective for treating the condition and may have a sterile access port (for example, the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is trastuzumab-MCC-DM1. The label or package insert indicates that the composition is used for treating the condition of choice, such as cancer. In one embodiment, the label or package inserts indicates that the composition comprising trastuzumab-MCC-DM1 can be used to treat a disorder resulting from abnormal cell growth. The label or package insert may also indicate that the composition can be used to treat other disorders. Alternatively, or additionally, the article of manufacture may further comprise a second container comprising a pharmaceutically acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer’s solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
[0163] The kit may further comprise directions for the administration of trastuzumab-MCC-DM1 and, if present, the second pharmaceutical formulation. For example, if the kit comprises a first composition comprising trastuzumab-MCC-DM1 and a second pharmaceutical formulation, the kit may further comprise directions for the simultaneous, sequential or separate administration of the first and second pharmaceutical compositions to a patient in need thereof.
[0164] In another embodiment, the kits are suitable for the delivery of solid oral forms of trastuzumab-MCC-DM1, such as tablets or capsules. Such a kit preferably includes a number of unit dosages. Such kits can include a card having the dosages oriented in the order of their intended use. An example of such a kit is a "blister pack". Blister packs are well known in the packaging industry and are widely used for packaging pharmaceutical unit dosage forms. If desired, a memory aid can be provided, for example in the form of numbers, letters, or other markings or with a calendar insert, designating the days in the treatment schedule in which the dosages can be administered.
[0165] According to one embodiment, a kit may comprise (a) a first container with trastuzumab-MCC-DM1 contained therein; and optionally (b) a second container with a second pharmaceutical formulation contained therein, wherein the second pharmaceutical formulation comprises a second compound with anti-hyperproliferative activity. Alternatively, or additionally, the kit may further comprise a third container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer’s solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
[0166] Where the kit comprises a composition of trastuzumab-MCC-DM1 and a second therapeutic agent, i.e. the chemotherapeutic agent, the kit may comprise a container for containing the separate compositions such as a divided bottle or a divided foil packet, however, the separate compositions may also be contained within a single, undivided container. Typically, the kit comprises directions for the administration of the separate components. The kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician.
EXAMPLES
[0167] In order to illustrate the invention, the following examples are included.
Example 1 Preparation of trastuzumab-MCC-DM1 [0168] Trastuzumab was purified from HERCEPTIN® by buffer-exchange at 20 mg/mL in 50 mM potassium phosphate/ 50 mM sodium chloride/ 2 mM EDTA, pH 6.5 and treated with 7.5 to 10 molar equivalents of succinimidyl 4-(N-maleim-idomethyl) cyclohexane-1-carboxylate (SMCC, Pierce Biotechnology, Inc), 20 mM in DMSOorDMA(dimethylacetamide), 6.7 mg/mL (US 2005/0169933; US 2005/0276812). After stirring for 2 to 4 hours under argon at ambient temperature, the reaction mixture was filtered through a Sephadex G25 column equilibrated with 50mM potassium phosphate/ 50 mM sodium chloride/ 2 mM EDTA, pH 6.5. Alternatively, the reaction mixture was gel filtered with 30 mM citrate and 150 mM sodium chloride at pH 6. Antibody containing fractions were pooled and assayed. Recovery of trastuzumab-SMCC was 88%.
[0169] The drug-linker intermediate, trastuzumab-MCC from above, was diluted with 50 mM potassium phosphate/50 mM sodium chloride/2 mM EDTA, pH 6.5, to a final concentration of 10 mg/ml, and reacted with a 10 mM solution of DM1 (1.7 equivalents assuming 5 SMCC/trastuzumab, 7.37 mg/ml) in dimethylacetamide. DM1 may be prepared from ansamitocin fermentation products (US 6790954; US 7432088) and derivatized for conjugation (US 6333410; RE 39151). The reaction was stirred at ambient temperature under argon for 4 to about 16 hours. The conjugation reaction mixture was filtered through a Sephadex G25 gel filtration column (1.5 x 4.9 cm) with 1 x PBS at pH 6.5. Alternatively, the reaction mixture was gel filtered with 10 mM succinate and 150 mM sodium chloride at pH 5. The DM1/trastuzumab ratio (p) was 3.1, as measured by the absorbance at 252 nm and at 280 nm. The drug to antibody ratio (p) may also be measured by mass spectrometry. Conjugation may also be monitored by SDS polyacrylamide gel electrophoresis. Aggregation may be assessed by laser light scattering analysis.
[0170] Alternatively, trastuzumab-MCC-DM1 may be prepared by forming an MCC-DM1 linker-drug reagent and then reacting with trastuzumab.
[0171] Typically a conjugation reaction of trastuzumab-MCC with DM1 results in a heterogeneous mixture comprising antibodies different numbers of attached, conjugated DM1 drugs, i.e. drug loading where p is a distribution from 1 to about 8. An additional dimension of heterogeneity exists with different attachment sites of SMCC to trastuzumab where many different nucleophiles on trastuzumab, e.g. terminal lysine amino groups, can react with SMCC. Thus, trastuzumab-MCC-DM1 includes isolated, purified species molecules as well as mixtures of average drug loading from 1 to 8 and where MCC-DM1 is attached through any site of the trastuzumab antibody.
[0172] The average number of DM1 drug moieties per trastuzumab antibody in preparations of trastuzumab-MCC-DM1 from conjugation reactions may be characterized by conventional means such as mass spectroscopy, ELISA assay, electrophoresis, and HPLC. The quantitative distribution oftrastuzumab-MCC-DM1 in termsofp may also be determined. By ELISA, the averaged value of p in a particular preparation of ADC may be determined (Hamblett et al (2004) Clinical Cancer Res. 10:7063-7070; Sanderson et al (2005) Clinical Cancer Res. 11:843-852). However, the distribution of p (drug) values is not discernible by the antibody-antigen binding and detection limitation of ELISA. Also, ELISA assay for detection of antibody-drug conjugates does not determine where the drug moieties are attached to the antibody, such as the heavy chain or light chain fragments, or the particular amino acid residues. In some instances, separation, purification, and characterization of homogeneous trastuzumab-MCC-DM1 where p is a certain value from trastuzumab-MCC-DM1 with other drug loadings may be achieved by means such as reverse phase HPLC or electrophoresis.
Example 2 In Vitro Cell Proliferation Assay [0173] Efficacy of the combinations of the invention was measured by a cell proliferation assay employing the following protocol (Promega Corp. Technical Bulletin TB288; Mendoza et al (2002) Cancer Res. 62:5485-5488). The Cell-Titer Gio assay reagents and protocol are commercially available (Promega). The assay assesses the ability of compounds to get into cells and affect cell proliferation. The assay principle is the determination of the number of viable cells present by quantitating the cellular ATP. Cell-Titer Gio is the reagent used for this quantitation. It is a homogenous assay where addition of the Cell-Titer Gio results in cell lysis and generation of a luminescent signal through the luciferase reaction. The luminescent signal is proportional to the amount of ATP present. DMSO and Media Plates: 96-well conical bottom polypropylene plates from Nunc (cat.# 249946)
Cell Plates: 384-well black, clear bottom (microclear), TC plates with lid from Falcon (353962)
Cell Culture Medium: RPMI or DMEM high glucose; Ham’s F-12 (50:50), 10% Fetal Bovine Serum, 2mM L-Glutamine Cell Titer-Gio: Promega (cat.# G7572)
Procedure: [0174]
Day 1 - Seed Cell Plates, Harvest cells, Seed cells at 1000-2000 cells per 54μΙ per well into 384 well Cell Plates for 3 days assay. Incubate overnight (approx. 16 hr) at 37 C, 5% CO2.
Day 2 - Add Drug to Cells, Compound Dilution, DMSO Plates (serial 1:2 for 9 points). Add 20 ul compounds (10 mM stock solution for small molecule drugs) in the 2nd column of 96 well plate. Perform serial 1:2 across the plate (1 ΟμΙ + 10μΙ 100% DMSO) for a total of 9 points using Precision Media Plates (1:50 dilution). Add 147μΙ of Media into all wells of separate 96-well media plate. Transfer 3μΙ of DMSO + compound from each well in the DMSO Plate to each corresponding well on Media Plate using Rapidplate. For 2 drug combo studies, transfer one drugl.5μΙ of DMSO + compound from each well in the DMSO Plate to each corresponding well on Media Plate using Rapidplate. Then, transfer another drug 1.5μΙ to the medium plate.
[0175] Drug Addition to Cells, Cell Plate (1:10 dilution), Add 6μΙ of media + compound directly to cells (54μΙ of media on the cells already). Incubate 3 days at 37 C, 5% CO2 in an incubator that will not be opened often.
[0176] Day 5 - Develop Plates, Thaw Cell Titer Gio Buffer at room temperature. Remove Cell Plates from 37 °C and equilibrate to room temperature, for about 30 minutes. Add Cell Titer Gio Buffer to Cell Titer Gio Substrate (bottle to bottle). Add 30 μΙ Cell Titer Gio Reagent to each well of cells. Place on plate shaker for about 30 minutes. Read luminescence on PerkinElmer Envision (0.1 second per well) or Analyst HT Plate Reader (half second per well).
[0177] Cell viability assays and combination assays: Cells were seeded at 1000-2000 cells/well in 384-well plates for 16 h. On day two, nine serial 1:2 compound dilutions were made in DMSO in a 96 well plate. The compounds were further diluted into growth media using a Rapidplate robot (Zymark Corp., Hopkinton, MA). Thediluted compounds were then added to quadruplicate wells in 384-well cell plates and incubated at 37 C and 5% CO2. After 4 days, relative numbers of viable cells were measured by luminescence using Cell-Titer Gio (Promega) according to the manufacturer’s instructions and read on an Envision or a Wallac Multilabel Reader (PerkinElmer, Foster City). EC50 values were calculated using Kaleidagraph 4.0 (Synergy Software) or Prism 4.0 software (GraphPad, San Diego). Drugs in combination assays were dosed starting at 8X EC50 concentrations. In cases where the EC50 of the drug was >2.5 μΜ, the highest concentration used was 10 μΜ. Trastuzumab-MCC-DM1 and chemotherapeutic agents were added simultaneously or separated by 4 hours (one before the other) in all assays.
[0178] An additional exemplary in vitro cell proliferation assay includes the following steps: 1. An aliquot of 100 μΙ of cell culture containing about 104 cells (see Figure 1 for cell lines and tumor type) in medium was deposited in each well of a 384-well, opaque-walled plate. 2. Control wells were prepared containing medium and without cells. 3. The compound was added to the experimental wells and incubated for 3-5 days. 4. The plates were equilibrated to room temperature for approximately 30 minutes. 5. A volume of CellTiter-Glo Reagent equal to the volume of cell culture medium present in each well was added. 6. The contents were mixed for 2 minutes on an orbital shaker to induce cell lysis. 7. The plate was incubated at room temperature for 10 minutes to stabilize the luminescence signal. 8. Luminescence was recorded and reported in graphs as RLU = relative luminescence units.
[0179] Alternatively, cells were seeded at optimal density in a 96 well plate and incubated for 4 days in the presence of test compound. Alamar Blue™ was subsequently added to the assay medium, and cells were incubated for 6 h before reading at 544nm excitation, 590nm emission. EC50 values were calculated using a sigmoidal dose response curve fit.
Example 3 In Vivo Tumor Xenograft [0180] Animals suitable for transgenic experiments can be obtained from standard commercial sources. Groups of female CB-17 SCID beige mice (Charles River Laboratory) were implanted with 3 million KPL-4 (Her2 overexpressing) breast cancer cells with matrigel in the mammary fat pad. Groups of female athymic nude mice (Charles River Laboratory or Harlan) were implanted with 2x2 mm3 fragments of MMTV-Her2 Fo5 transgenic breast tumors in the mammary fat pad. Mouse xenografts were dosed at day 0 with drug, drug combination, or vehicle according to the schedule specified for each tumor model. 5-FU, gemcitabine, carboplatin and B20-4.1 were administered intraperitoneal, pertuzumab was given either intravenously or intraperitoneal as indicated, trastuzumab-MCC-DM1 and docetaxel were administered intravenously, lapatinib, GDC-0941 and ABT-869 were given periorally by gavage. Tumor sizes were recorded twice weekly over the course of the study. Mouse body weights were also recorded twice weekly, and the mice were observed regularly. Tumor volume was measured in two dimensions (length and width) using Ultra Cal IV calipers (Model 54-10-111; Fred V. Fowler Co., Inc.; Newton, MA) and analyzed using Excel v.11.2 (Microsoft Corporation; Redmond, WA). Tumor inhibition graphs were plotted using KaleidaGraph, Version 3.6 (Synergy Software; Reading, PA). The tumor volume was calculated with formula: Tumor size (mm3) = (longer measurement x shorter measurement2) x 0.5 [0181] Animal body weights were measured using an Adventurers Pro AV812 scale (Ohaus Corporation; Pine Brook, NJ). Graphs were generated using KaleidaGraph Version 3.6. Percent weight change was calculated using formula: Group percent weight change = (1 -(initial weight / new weight)) x 100.
[0182] Mice whose tumor volume exceeded 2000 mm3 or whose body weight loss was more than 20% of their starting weight were promptly euthanized according to regulatory guidance.
[0183] The percent tumor growth delay (% TGD) at the end of study (EOS) was calculated using formula: % TGD= 100 x (Median time to endpoint for the treatment group - median time to endpoint for the control group)/Median time to endpoint for the control group.
[0184] Tumor incidence (Tl) was determined based on the number of measurable tumors remaining in each group at the end of the study. A partial response (PR) was defined as more than 50% but less than 100% reduction in tumor volume, compared with the starting tumorvolume, observed for three consecutive measurements. A complete response (CR) was defined as a 100% reduction in tumor volume, compared with the initial tumor volume, observed for three consecutive measurements. Data were analyzed and p-values were determined using the Dunnett’s t-test with JMP statistical software, version 5.1.2 (SAS Institute; Cary, NC). Individual tumor volumes at end of study and mean tumor volume ±SEM values were calculated using JMP statistical software, version 5.1.2. Body weight data were graphed based on the mean percentage of change from initial body weights ±SEM.
Example 4 Clinical study of trastuzumab-MCC-DM1 (T-DM1) in combination with pertuzumab [0185] A Phase 1 b/ll, open-label study of the safety, tolerability, and efficacy of trastuzumab-MCC-DM1 (T-DM1) in combination with pertuzumab administered intravenously to patients with HER2-positive locally advanced or metastatic breast cancer who have progressed while receiving prior therapy was designed to characterize the safety and tolerability of the combination. The combination is administered every 3 weeks to patients with HER2-positive locally advanced or metastatic breast cancerwho have previously received trastuzumab in any line of therapy, have received chemotherapy combined with HER2-targeted therapy for advanced disease, or have progressed while receiving their most recent therapy. Another objective is to evaluate the pharmacokinetics of T-DM1 when the combination ofT-DM1 and pertuzumab is administered on this schedule. Another objective is to make a preliminary assessment of the efficacy of the combination of T-DM1 and pertuzumab administered on this schedule, as measured by objective response rate based on investigator assessment using modified Response Evaluation Criteria in Solid Tumors (RECIST), Version 1.0. Secondary objectives for this study are as follows: (1) To estimate the progression-free survival (PFS) of patients who receive the combination of T-DM1 and pertuzumab administered on this schedule; (2) To assess the duration of response of the combination of T-DM1 and pertuzumab administered on this schedule; and (3) To assess the development of anti-therapeutic antibodies to T-DM1.
[0186] T-DM1 will be administered by intravenous (IV) infusion in combination with pertuzumab, also administered by intravenous (IV) infusion, in patients with HER2-positive locally advanced or metastatic breast cancer that have previously received trastuzumab and have progressed following or while receiving their last therapy. Patients will receive a combination of T-DM1 and pertuzumab, in repeated cycles, at a minimum interval of 3 weeks.
[0187] Patients at a given dose level will be observed for DLT (Dose-Limiting Toxicity) during the DLT Observation Period (defined as 21 days from the time of the first dose of T-DM1) after receiving their first doses of study drugs prior to treatment of any patient at a higher dose level. If no DLTs are observed in these patients during the DLT Observation Period, dose escalation to the next dose level may proceed.
[0188] A DLT is defined as any of the following treatment-related toxicities occurring within the DLT Observation Period: (1) Grade >3 non-hematologic adverse event that is not due to disease progression or another clearly identifiable cause, except for alopecia of any grade; (2) Grade 3 diarrhea that responds to standard of care therapy: (3) Grade 3 nausea or vomiting in the absence of premedication that responds to standard of care therapy; (4) Grade >3 elevation of serum bilirubin, hepatic transaminases (ALT or AST), or alkaline phosphatase (ALP) lasting 72 hours, with the exception of patients with Grade 2 hepatic transaminase or ALP levels at baseline, (<5 the upper limit of normal [ULN]) as a result of liver or bone metastases. A hepatic transaminase or ALP level >10 ULN will be considered a DLT; (5) Grade >4 thrombocytopenia lasting 24 hours; (6) Grade >4 neutropenia (absolute neutrophil count < 500/cells/mm3) lasting 4 days or accompanied by a fever (oral or tympanic temperature 100.4 °F or 38 °C); (7) Any subjectively intolerable toxicity felt by the investigator to be related to either test compound; (8) Any treatment-related toxicity prohibiting the start of the second cycle of treatment.
[0189] Once a decision has been made to proceed to the next highest dose level, an intra-patient dose escalation will also be allowed; patients enrolled in the study will initially receive a reduced dose of T-DM1 (3.0 mg/kg) along with full-dose pertuzumab. These patients will be allowed to escalate to full doses of both drugs for subsequent cycles once their cohort has cleared the DLT Observation Period. However, the safety of the 3.6 mg/kg dose level will be based on the assessment of DLT. Patients (including those who are enrolled in the study during the dose-escalation phase of the study) will be considered evaluable for efficacy if they remain on study through the first follow-up tumor assessment. Echocardiogram (ECHO) or multigated acquisition (MUGA) scans should be performed at the end of Cycle 1, and then every three cycles throughout the treatment period. T-DM1 Formulation [0190] T-DM1 may be provided as a single-use lyophilized formulation in a20-mL Type I USP/European Pharmacopeia glass vial fitted with a 20-mm fluoro resin-laminated stopper and aluminum seal with a dark gray flip-off plastic cap. Following reconstitution with 8.0 mL Sterile Water for Injection (SWFI), the resulting product contains 20 mg/mL T-DM1 in 10 mM sodium succinate, pH 5.0, 6% (w/v) sucrose, and 0.02% (w/v) polysorbate 20. Each 20-mL vial contains approximately 172 mg T-DM1 to allow delivery of 160 mg T-DM1. The indicated volume ofT-DM1 solution is removed from the vial(s) and added to the IV bag. Reconstituted T-DM1 is diluted into PVC or latex-free PVC-free polyolefin bags (PO) containing 0.45% or 0.9% Sodium Chloride Injection (minimum volume of 250 mL). The use of PVC or PO bags containing 0.45% Sodium Chloride is preferred. In cases wherein PVC or PO bags containing 0.9% Sodium Chloride are used, the use of 0.22 μπι in-line filters is recommended. The bag is gently inverted to mix the solution. The solution of T-DM1 for infusion diluted in polyvinyl chloride (PVC) or latex-free PVC-free polyolefin (PO) bags containing 0.9% or 0.45% Sodium Chloride Injection, USP, may be stored at 2 °C-8 °C (36 °F-46 °F) for a short period of time.
Pertuzumab Formulation [0191] Pertuzumab is provided as a single-use formulation containing 30 mg/mL pertuzumab formulated in 20 mM L-histidine (pH 6.0), 120 mM sucrose, and 0.02% polysorbate 20. Each 20-cc vial contains approximately 420 mg of pertuzumab (14.0 mL/vial). The indicated volume of pertuzumab solution is withdrawn from vials and added to a 250-cc IV bag of 0.9% sodium chloride solution for injection. The bag is gently inverted the bag to mix the solution, and visually inspected for particulates and discoloration prior to administration. The solution of pertuzumab for infusion diluted in polyethylene or non-PVC polyolefin bags containing 0.9% sodium chloride solution may be stored at 2 °C-8 °C (36 °F-46 °F) for a short period of time.
Safety Outcome Measures [0192] The safety and tolerability of T-DM1 and pertuzumab will be assessed using the following primary safety outcome measures: (1) Incidence, nature, and severity of adverse events; (2) Adverse events or changes in physical findings and clinical laboratory results during and following study drug administration that result in dose modification, dose delay, or discontinuation of T-DM1 and/or pertuzumab; and (3) Change in cardiac function (i.e., left ventricular ejection fraction [LVEF], segmental wall abnormalities), including ECHO or MUGA scans
Pharmacokinetic and Pharmacodynamic Outcome Measures [0193] The following pharmacokinetic parameters of T-DM1 and pertuzumab will be determined in all patients who receive study treatment using either non-compartmental and/or population methods, when appropriate, as data allow: (1) Serum concentrations of T-DM1 (conjugate), total trastuzumab (free and conjugated to DM1); (2) Plasma concentrations of free DM1; (3) Total exposure (area under the concentration-time curve [AUC]); (4) Maximum serum concentration (Cmax); (5) Minimum concentration (Cmin); (6) Clearance; (7) Volume of distribution; (8) Terminal half-life; (9) Anti-therapeutic antibodies to T-DM1
Efficacy Outcome Measures [0194] The objective response rate using modified RECIST, v1.0 will be assessed as the efficacy outcome measure. The secondary efficacy outcome measures of this study are the following: (1) PFS, defined as the time from the study treatment initiation to the first occurrence of disease progression or death on study (within 30 days of the last dose of study treatment) from any cause, as determined by investigator review of tumor assessments using modified RECIST, v1.0; and (2) Duration of response, defined as the first occurrence of a documented objective response until the time of disease progression, as determined by investigator review of tumor assessments using modified RECIST (v1.0), or death on study (within 30 days of the last dose of study treatment) from any cause.
Study Treatment [0195] T-DM1 will be administered no more frequently than every 3 weeks at a dose of 2.4, 3.0, or 3.6 mg/kg IV. Any patient may be de-escalated to a T-DM1 dose as low as 2.4 mg/kg. Depending on the toxicity encountered in the cohort of patients that begin therapy at 3.0 mg/kg, and if 3.0 mg/kg T-DM1 is confirmed to be tolerable, patients may be escalated to a dose of 3.6 mg/kg IV every 3 weeks in subsequent cycles. Pertuzumab will be administered at a loading dose of 840 mg IV on Day 1, Cycle 1, followed by 420 mg IV every 3 weeks in subsequent cycles.
Statistical Methods [0196] The primary efficacy endpoint of this study is investigator-assessed objective response, defined as a complete or partial response determined on two consecutive occasions >4 weeks apart. An estimate of the objective response rate will be computed as well as the corresponding 95% confidence interval. For objective response, patients without a valid post-baseline tumor assessment will be counted as non-responders. For duration of response and PFS, data from patients who are lost to follow-up will be treated as censored on the last date the patient was known to be progression-free. Data for patients without post-treatment tumor assessment or death will be censored at the date of the treatment initiation plus 1 day.
Example 5 (reference example)
Clinical study of trastuzumab-MCC-DM1 (T-DM1) in combination with GDC-0941 [0197] A phase lb, open-label study of the combination of T-DM1 administered intravenously and GDC-0941 administered orally to patients with HER2-positive metastatic breast cancer who have progressed on previous trastuzumab-based therapy was designed to characterize the safety, tolerability, pharmacokinetics, and activity of the combination. The primary objectives of this study are: To evaluate the safety and tolerability of GDC-0941 administered with T-DM1; To estimate the MTD of GDC-0941 when administered with T-DM1; identify a recommended Phase II dose for GDC-0941 administered in combination with T-DM1; and To characterize any observed anti-tumor activity of GDC-0941 when administered in combination with T-DM1 The pharmacokinetic objectives are: To characterize the pharmacokinetics of GDC-0941 in the absence and presence of T-DM1; and To characterize the pharmacokinetics of T-DM1 in the relative absence and presence of GDC-0941. GDC-0941 Formulation [0198] GDC-0941 is a dry powder intended for PO administration. The formulated drug product will be provided in hard gelatin capsules of two strengths (15 and 50 mg) that are encapsulated with size 0 shells and differentiated by color. Excipients included in the capsule formulations are microcrystalline cellulose NF/EP, sodium lauryl sulfate NF/DP (in the 50 mg strength only), citric acid anhydrous USP/EP, croscarmellose sodium NF/EP, colloidal silicon dioxide NF/EP, and magnesium stearate (non-bovine) NF/EP. GDC-0941 capsules should be stored at refrigerated temperature between 36 °F and 46 °F (2 °C and 8 °C). Patients will be instructed to store study drug at refrigerated temperature between 36 °F and 46 °F (2 °C and 8 °C).
Outcome measures [0199] Outcome measures for safety, pharmacokinetics, pharmacodynamic, and efficacy will be determined and assessed, including Statistical Methods, as in Example 4.
Study Treatment [0200] Study treatments will be administered in 3-week cycles. Patients receiving clinical benefit from study treatment may have the possibility of treatment for more cycles which may occur in a separate study, depending on the development status, drug availability, and other factors.
[0201] In the dose escalation phase of the study, patients enrolled will receive a single dose of GDC-0941 on Day 1 of Cycle 1 on an empty stomach, to allow pre- and post-dose GDC-0941 PK sample collection and to observe intrapatient variability. The starting dose of GDC-0941 will be 60 mg qd, which is a dose that has been determined to be safe as a single agent without any dose limiting toxicities in a phase I study. On Day 2 of Cycle 1, full-dose T-DM1 will be administered at 3.6 mg/kg IV over 90 minutes without a loading dose. This will be followed by a dose of GDC-0941. Patients will be monitored for 90 minutes after the first T-DM1 infusion. GDC-0941 will then be given once daily, for a total of 14 doses followed by 1 week off for the first cycle.
[0202] Dose escalation of GDC-0941 in subsequent patients will continue until progression or intolerability. Subsequent study treatment cycles will be 3 weeks in length, with T-DM1 3.6 mg/kg IV administered over 30 minutes first on Day 1 of each cycle and GDC-0941 administered after the T-DM1 infusion, and continuing for a total of 2 weeks on and 1 week off. Dosing will continue until progression or intolerability. T-DM1 will be administered as a 30 to 90 minute (± 10) IV infusion, depending on howT-DM1 was tolerated in the parent study. If the 90 minute infusion is well tolerated, subsequent infusions may be delivered over 30 (± 10) minutes.
Claims 1. A therapeutic combination for use in a method for the treatment of a cancer expressing ErbB2, wherein the method comprises administering a therapeutic combination as a combined formulation or by alternation to a mammal, wherein the therapeutic combination comprises a therapeutically effective amount of trastuzumab-MCC-DM1, and a therapeutically effective amount of pertuzumab, wherein administration of the therapeutic combination results in a synergistic effect. 2. A therapeutic combination for use in a method for the treatment of claim 1, wherein the therapeutically effective amount of trastuzumab-MCC-DM1 and the therapeutically effective amount of pertuzumab are administered as a combined formulation. 3. A therapeutic combination for use in a method for the treatment of claim 1, wherein the therapeutically effective amount of trastuzumab-MCC-DM1 and the therapeutically effective amount of pertuzumab are administered by alternation. 4. A therapeutic combination for use in a method for the treatment of claim 3 wherein the mammal is administered the pertuzumab and then subsequently administered trastuzumab-MCC-DM1. 5. A therapeutic combination for use in a method for the treatment of any one of the preceding claims, wherein the therapeutic combination is administered at about three week intervals to a human with cancer expressing ErbB2. 6. A therapeutic combination for use in a method for the treatment of any one of claims 1 to 4, wherein trastuzumab-MCC-DM1 is administered at intervals from aboutoneweekto three weeks to a human with cancer expressing ErbB2. 7. A therapeutic combination for use in a method for the treatment of any one of the preceding claims, wherein the trastuzumab-MCC-DM1 is administered no more frequently than every 3 weeks at a dose of 2.4, 3.0 or 3.6 mg/kg intravenously. 8. A therapeutic combination for use in a method for the treatment of claim 7, wherein pertuzumab is administered at a loading dose of 840 mg intravenously on day 1, cycle 1, followed by 420 mg intravenously every three weeks in subsequent cycles. 9. A therapeutic combination for use in a method for the treatment of any one of the preceding claims, wherein the amount of trastuzumab-MCC-DM1 and the amount of pertuzumab are each from 1 mg to 1000 mg and the amount of trastuzumab-MCC-DM1 and the amount of pertuzumab are in a ratio of 1:10 to 10:1 by weight. 10. A therapeutic combination for use in a method for the treatment of any one of the preceding claims, wherein the mammal is a HER2 positive patient. 11. A therapeutic combination for use in a method for the treatment of any one of the preceding claims, wherein the HER2 positive patient has received trastuzumab or lapatinib therapy. 12. A therapeutic combination for use in a method for the treatment of any one of the preceding claims, wherein the therapeutic combination is a pharmaceutical composition comprising trastuzumab-MCC-DM1, pertuzumab and one or more pharmaceutically acceptable carrier, glidant, diluent, or excipient. 13. A therapeutic combination for use in a method for the treatment of claim 12, wherein the pharmaceutical composition comprises a pharmaceutically acceptable glidant selected from silicon dioxide, powdered cellulose, microcrystalline cellulose, metallic stearates, sodium aluminosilicate, sodium benzoate, calcium carbonate, calcium silicate, corn starch, magnesium carbonate, asbestos free talc, stearowet C, starch, starch 1500, magnesium lauryl sulfate, magnesium oxide, and combinations thereof. 14. Use of a therapeutic combination in the manufacture of a medicament for the treatment of breast cancer, wherein the therapeutic combination is administered to a mammal as a combined formulation or by alternation, and comprises a therapeutically effective amount of trastuzumab-MCC-DM1, and a therapeutically effective amount of pertuzumab, wherein administration of the therapeutic combination results in a synergistic effect.
Patentansprüche 1. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung von ErbB2 exprimie-rendem Krebs, wobei das Verfahren das Verabreichen einer therapeutisch wirksamen Kombination als kombinierte Formulierung oder abwechselnd an ein Säugetier umfasst, wobei die therapeutisch wirksame Kombination eine therapeutisch wirksame Menge an Trastuzumab-MCC-DM1 und eine therapeutisch wirksame Menge an Pertuzumab umfasst, wobei die Verabreichung der therapeutisch wirksamen Kombination eine synergistische Wirkung ergibt. 2. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach Anspruch 1, wobei die therapeutisch wirksame Menge an Trastuzumab-MCC-DM1 und die therapeutisch wirksame Menge an Pertu-zumab als kombinierte Formulierung verabreicht werden. 3. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach Anspruch 1, wobei die therapeutisch wirksame Menge an Trastuzumab-MCC-DM1 und die therapeutisch wirksame Menge von Per-tuzumab abwechselnd verabreicht werden. 4. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach Anspruch 3, wobei dem Säugetier Pertuzumab und anschließend Trastuzumab-MCC-DM1 verabreicht werden. 5. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach einem der vorhergehenden Ansprüche, wobei die therapeutisch wirksame Kombination einem Menschen mit ErbB2 exprimierendem Krebs in Intervallen von ungefähr drei Wochen verabreicht wird. 6. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach einem der Ansprüche 1 bis 4, wobei Trastuzumab-MCC-DM1 einem Menschen mit ErbB2 exprimierendem Krebs in Intervallen von ungefähr einer Woche bis drei Wochen verabreicht wird. 7. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach einem der vorhergehenden Ansprüche, wobei Trastuzumab-MCC-DM1 nicht häufiger als alle drei Wochen in einer Dosis von 2,4, 3,0 oder 3,6 mg/kg intravenös verabreicht wird. 8. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach Anspruch 7, wobei Partuzumab an Tag 1 von Zyklus 1 in einer Aufsättigungsdosis von 840 mg intravenös verabreicht wird, gefolgt von 420 mg intravenös alle drei Wochen in den darauffolgenden Zyklen. 9. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach einem der vorhergehenden Ansprüche, wobei die Menge an Trastuzumab-MCC-DM1 und die Menge an Pertuzumab jeweils 1 mg bis 1000 mg betragen und die Menge an Trastuzumab-MCC-DM1 und die Menge an Pertuzumab in einem Gewichtsverhältnis von 1:10 bis 10:1 stehen. 10. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach einem der vorhergehenden Ansprüche, wobei das Säugetier ein HER2-positiver Patient ist. 11. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach einem der vorhergehenden Ansprüche, wobei der HER2-positive Patient einer Trastuzumab- oder Lapatinib-Therapie unterzogen wurde. 12. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach einem der vorhergehenden Ansprüche, wobei die therapeutisch wirksame Kombination eine pharmazeutische Zusammensetzung ist, dieTrastuzumab-MCC-DM1, Pertuzumab und ein(en) oder mehrere pharmazeutisch annehmbare Träger, Flussregulierungsmittel, Verdünnungsmittel oder Exzipienten umfasst. 13. Therapeutisch wirksame Kombination zur Verwendung in einem Verfahren zur Behandlung nach Anspruch 12, wobei die pharmazeutische Zusammensetzung ein pharmazeutisch annehmbares Flussregulierungsmittel ausgewählt aus Siliciumdioxid, pulverförmiger Cellulose, mikrokristalliner Cellulose, Metallstearaten, Natriumalumosilicat, Natriumbenzoat, Calciumcarbonat, Calciumsilicat, Maisstärke, Magnesiumcarbonat, asbestfreiem Talkum, Stearo-wet C, Stärke, Stärke 1500, Magnesiumlaurylsulfat, Magnesiumoxid und Kombinationen davon umfasst. 14. Verwendung einer therapeutisch wirksamen Kombination bei der Herstellung eines Medikaments zur Behandlung von Brustkrebs, wobei die therapeutisch wirksame Kombination einem Säugetier als kombinierte Formulierung oder abwechselnd verabreicht wird und eine therapeutisch wirksame Menge an Trastuzumab-MCC-DM1 sowie eine therapeutisch wirksame Menge an Pertuzumab umfasst, wobei die Verabreichung der therapeutisch wirksamen Kombination eine synergistische Wirkung ergibt.
Revendications 1. Combinaison thérapeutique pour une utilisation dans une méthode de traitement d’un cancer exprimant ErbB2, la méthode comprenant l’administration à un mammifère d’une combinaison thérapeutique sous la forme d’une formulation combinée ou en alternance, la combinaison thérapeutique comprenant une quantité thérapeutiquement efficace de trastuzumab-MCC-DM1, et une quantité thérapeutiquement efficace de pertuzumab, l’administration de la combinaison thérapeutique engendrant un effet synergique. 2. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon la revendication 1, dans laquelle la quantité thérapeutiquement efficace de trastuzumab-MCC-DM1 et la quantité thérapeutiquement efficace de pertuzumab sont administrées sous la forme d’une formulation combinée. 3. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon la revendication 1, dans laquelle la quantité thérapeutiquement efficace de trastuzumab-MCC-DM1 et la quantité thérapeutiquement efficace de pertuzumab sont administrées en alternance. 4. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon la revendication 3, dans laquelle le mammifère reçoit une administration de pertuzumab, puis ultérieurement une administration de trastuzu- mab-MCC-DM1. 5. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon l’une quelconque des revendications précédentes, la combinaison thérapeutique étant administrée à des intervalles d’environ trois semaines à un sujet humain atteint d’un cancer exprimant ErbB2. 6. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon l’une quelconque des revendications 1 à 4, dans laquelle le trastuzumab-MCC-DM1 est administré à des intervalles d’environ une à trois semaines à un sujet humain atteint d’un cancer exprimant ErbB2. 7. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon l’une quelconque des revendications précédentes, dans laquelle le trastuzumab-MCC-DM1 n’est pas administré plus fréquemment que toutes les trois semaines à une dose de 2,4, 3,0 ou 3,6 mg/kg par voie intraveineuse. 8. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon la revendication 7, dans laquelle le pertuzumab est administré à une dose d’attaque de 840 mg par voie intraveineuse le jour 1, cycle 1, suivie par des doses de 420 mg par voie intraveineuse toutes les trois semaines dans les cycles suivants. 9. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon l’une quelconque des revendications précédentes, dans laquelle la quantité de trastuzumab-MCC-DM1 et la quantité de pertuzumab sont chacune de 1 à 1 000 mg et la quantité de trastuzumab-MCC-DM1 et la quantité de pertuzumab sont dans un rapport de 1:10 à 10:1 en poids. 10. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon l’une quelconque des revendications précédentes, le mammifère étant un patient positif à HER2. 11. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon l’une quelconque des revendications précédentes, le patient positif à HER2 ayant reçu une thérapie à base de trastuzumab ou de lapatinib. 12. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon l’une quelconque des revendications précédentes, la combinaison thérapeutique étant une composition pharmaceutique comprenant du trastuzumab-MCC-DM1, du pertuzumab et un ou plusieurs véhicules, agents de glissement, diluants, ou excipients pharmaceutiquement acceptables. 13. Combinaison thérapeutique pour une utilisation dans une méthode de traitement selon la revendication 12, la composition pharmaceutique comprenant un agent de glissement pharmaceutiquement acceptable choisi parmi le dioxyde de silicium, la cellulose en poudre, la cellulose microcristalline, les stéarates métalliques, l’aluminosilicate de sodium, le benzoate de sodium, le carbonate de sodium, le silicate de calcium, l’amidon de maïs, le carbonate de magnésium, le talc sans amiante, le Stearowet C, l’amidon, l’amidon 1500, le laurylsulfate de magnésium, l’oxyde de magnésium, et leurs combinaisons. 14. Utilisation d’une combinaison thérapeutique dans la fabrication d’un médicament pour le traitement du cancer du sein, la combinaison thérapeutique étant administrée à un mammifère sous la forme d’une formulation combinée ou en alternance, et corn prenant une quantité thérapeutiquement efficace de trastuzumab-MCC-DM1, et une quantité thérapeutiquement efficace de pertuzumab, l’administration de la combinaison thérapeutique créant un effet synergique.
IC50 Multiple
Figure 1 o k_ c o
O o Φ > ro φ or ω
_Q
E =3
Z ω υ IC50 Multiple
Figure 2
Figure 3 ΜΠΔ-MR-I 7fi PrnlifAratinn - 5 Hava
Figure 3 a
2 Έ ο Ο ο ω > 73
(D
QL ι_
(D _Ω Ε ζ "ω Ο
Figure 4 "δ ι_ 7ζ ο Ο ο
(D > 73
<D or ι_
<D
_Q =3 Ζ "ω Ο
Drug Concentration (ng/mL)
Figure 5
ο ι_ Έ ο Ο ο φ > φ or φ _Ω Ε Σ] ζ “δ Ο
Figure 6 Ο ι_ Μ—'
C ο Ο ο Μ—' φ > Μ—' Φ Φ ο: ι_ φ
_Q Ε ~ζ. φ ο T-DM1 Concentration (ng/mL)
Figure 7
ο
C ο Ο ο ο > 73 ο or Ο _Ω Ε ~ζ. "ο Ο
Figure 7a Ο
C ο Ο ο ο > 75 ο or ο _Ω Ε ~ζ. "ο Ο
Figure 8a
ο ι_ Έ ο Ο ο ω > 73 ω ο: ι_ ω _α Ε □ ζ "ω Ο T-DM1 Concentration (ng/mL)
Figure 8 "δ Έ ο Ο ο ο > 73 ο ο: ο _Ω Ε Σ] ζ "δ Ο T-DM1 Concentration (ng/mL)
Figure 9
Figure 10
Figure 11
Tl PR CR —X— 1 Vehicle 9/9 θ θ - -Λ- 2 Β20-4.1 9/9 Ο Ο - -Ο- 3 T-DM1,3 mg/kg 7/7 θ 0 - 4 T-DM1,5 mg/kg 8/8 0 0 --Ο-. 5 T-DM1, 10 mg/kg 8/8 3 0 —6 Β20 + T-DM1,3 mg/kg 6/6 0 0 —Η—7 Β20 + T-DM1,5 mg/kg 8/8 0 0 —φ— 8 Β20+ T-DM1, 10 mg/kg 7/7 0 0 1600 _ 1200
CO Ε £ Ξ
1 W ο + 800 > ι_ ο Ε Η c ω 400 2 0 T-DM1 Rx Β20-4.1 Rx
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
41
Figure 27
Figure 28
ix-'v'v iviu111ic
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • US 61037410 A [0001] · US 6713485 B [0053] • US 5677171 A [0004] · US 7109333 B [0053] • US 5821337 A [0004] [0042] · US 6933299 B [0053] • US 6054297 A [0004] [0045] · US 7084147 B [0053] • US 6165464 A [0004] · US 7157466 B [0053] • US 6339142 B [0004] · US 7141576 B [0053] • US 6407213 B [0004] [0045] · US 7297709 B [0054] • US 6639055 B [0004] · US 2004235892 A [0054] • US 6719971 B [0004] · US 2007104780 A [0054] • US 6800738 B [0004] [0045] · US 4814470 A [0055] • US 7074404 B [0004] · US 5438072 A [0055] • US 7097840 B [0006] [0041] · US 5698582 A [0055] • US20050276812 A [0006] [0041] [0168] · US 5714512 A [0055] • US 20050166993 A [0006] [0041] · US 5750561 A [0055] • US 20070020261 A [0009] · EP 253738 A [0055] • WO 2007044515 A [0029] [0030] · US 20080076768 A [0056] • US 5208020 A [0041] · US 20080207611 A [0056] • US 6441163 B [0041] · US 12208227 B [0056] [0057] • US 6627196 B [0045] · US 20080242665 A [0057] • US 6949245 B [0045] · WO 2008070740 A [0057] • US 7041292 B [0045] · WO 2007129161 A [0063] • US 7227004 B [0048] · US 5583024 A [0065] • US 6884879 B [0048] [0049] · US 5674713 A [0065] • US 7060269 B [0048] · US 5700670 A [0065] • US 7169901 B [0048] · US 6602677 B [0065] • US 7297334 B [0048] · US 6608053 B [0088] • WO 2005012359 A [0049] · US 20050169933 A [0168] • US 6391311 B [0050] · US 6790954 B [0169] • US 2802005 A [0051] · US 7432088 B [0169] • US 2885396 A [0051] · US 6333410 B [0169] • US 4140707 A [0052] · RE 39151 [0169] • US 6727256 B [0053]
Non-patent literature cited in the description • SLAMON et al. Science, 1987, vol. 235, 177-182 · BASELGA et al. Cancer Res., 1998, vol. 58, [0003] 2825-2831 [0004] • COUSSENS et al. Science, 1985, vol. 230, 1132-9 · LEWIS et al. Cancer Immunol Immunother, 1993, [0004] vol. 37 (4), 255-263 [0004] • SLAMON et al. Science, 1989, vol. 244, 707-12 · HOTALING et al. Proc. Annual Meeting Am Assoc [0004] Cancer Res, 1996, vol. 37, 471 [0004] • SLAMON et al. New Engl. J. Med, 2001, vol. 344, · PEGRAM MD et al. Proc Am Assoc Cancer Res, 783-792 [0004] 1997, vol. 38, 602 [0004] • HUDZIAKetal. Mol Cell Biol, 1989, vol. 9, 1165-72 · SLIWKOWSKI et al. Seminars in Oncology, 1999, [0004] vol. 26 (4), 60-70 [0004] • LEWIS et al. Cancer Immunol Immunother, 1993, · YARDEN Y. ; SLIWKOWSKI, M. Nature Reviews: vol. ; 37, 255-63 [0004] Molecular Cell Biology. Macmillan Magazines, Ltd, 2001, vol. 2, 127-137 [0004] • BASELGA et al. J. Clin. Oncol, 1996, vol. 14, · P. GOULD. International J. of Pharmaceutics, 1986, 737-744 [0005] vol. 33, 201-217 [0036] • SLAMON DJ et al. N Engl J Med, 2001, vol. 344, · ANDERSON et al. The Practice of Medicinal Chem- 783-92 [0005] istry. Academic Press, 1996 [0036] • VOGEL CL et al. J Clin Oncol, 2002, vol. 20, 719-26 · Remington’s Pharmaceutical Sciences. Mack Pub- 10005] lishing Co, 1995 [0036] [0134] [0157] • MARTY M et al. J Clin Oncol, 2005, vol. 23, 4265-74 · The Orange Book. Food &amp; Drug Administration [0005] [0036] • ROMOND EH etal. T N Engl J Med, 2005, vol. 353, · M. CAIRA et al. J. Pharmaceutical Sci., 2004, vol. 1673-84 [0005] 93 (3), 601-611 [0039] • PICCART-GEBHART MJ etal. N Engl J Med, 2005, · E. C. VAN TONDER et al. AAPS PharmSciTech., vol. 353, 1659-72 [0005] 2004, vol. 5 (1 [0039] • SLAMON D et al. Breast Cancer Res Treat, 2006, · A. L. BINGHAM et al. Chem. Commun., 2001, vol. 100 (1), 52 [0005] 603-604 [0039] • ISSELL BF et al. Cancer Treat. Rev., 1978, vol. 5, · CHOU ; TALALAY. Adv. Enzyme Regul, 1984, vol. 199-207 [0006] 22, 27-55 [0040] • CABANILLAS F et al. Cancer Treat Rep, 1979, vol. · CHOU ; TALALAY. New Avenues in Developmental 63, 507-9 [0006] Cancer Chemotherapy. Academic Press, 1987 • CHARI et al. Cancer Res., 1992, 127-133 [0006] [0040] • BEERAM et al. A phase I study of trastuzum- · PRESS MFetal. CancerRes, 1993, vol. 53, 4960-70 ab-MCC-DM1 (T-DM1), a first-in-class HER2 anti- [0042] body-drug conjugate (ADC), in patients (pts) with · NAHTAetal. Cancer Res., 2004, vol. 64, 2343-2346 HER2+ metastatic breast cancer (BC). American So- [0045] ciety of Clinical Oncology 43rd, 02 June 2007 [0006] · AGUS et al. Cancer Cell, 2002, vol. 2,127-37 [0045] • KROP et al. European Cancer Conference ECCO, · JACKSON et al. Cancer Res, 2004, vol. 64, 2601-9
Poster 2118, 23 September 2007 [0006] [0045] • PEGRAM, M. et al. Oncogene, vol. 18, 2241-2251 · TAKAI et al. Cancer, 2005, vol. 104, 2701-8 [0045] [0007] · MULLEN et al. Molecular Cancer Therapeutics, • KONECNY, G. et al. Breast CancerRes. and Treat- 2007, vol. 6, 93-100 [0045] ment, 2001, vol. 67, 223-233 [0007] · CORTES et al. J. Clin. Oncol., 2005, vol. 23, 3068 • PEGRAM, M. etal. J. of the Nat. Cancer Inst., 2004, [0047] vol. 96 (10), 739-749 [0007] · GELMON et al. J. Clin. Oncol., 2008, vol. 26, 1026 • FITZGERALD et al. Nature Chem. Biol., 2006, vol. [0047] 2 (9), 458-466 [0007] · PRESTA et al. Cancer Res., 1997, vol. 57, • BORISY et al. Proc. Natl. Acad. Sci, 2003, vol. 100 4593-4599 [0049] (13), 7977-7982 [0007] · BARTON etal. Jour. Org. Chem., 1972, vol. 37, 329 • CHOU, T.C. ; TALALAY, P. J. Biol. Chem., 1977, [0051] vol. 252, 6438-6442 [0008] · HANSEN, R.M. Cancer Invest., 1991, vol. 9, 637-642 • CHOU, T.C.; TALALAY, P. Adv. Enzyme Regul., [0051] 1984, vol. 22, 27-55 [0008] · FOLKES et al. Jour, of Med. Chem, 2008, vol. 51 • BERENBAUM, M.C. Pharmacol. Rev., 1989, vol. 41, (18), 5522-5532 [0056] 93-141 [0008] · BELVIN et al. American Association for Cancer Re- • BLISS, C.l. Bacteriol. Rev., 1956, vol. 20, 243-258 search Annual Meeting, 15 April 2008 [0056] [0008] · FOLKES etal. American Association for Cancer Re- • GRECO et al. Pharmacol. Rev., 1995, vol. 47, search Annual Meeting, 14 April 2008 [0056] 331-385 [0008] · FRIEDMAN et al. American Association for Cancer • BASELGA J et al. A Phase II trial of trastuzumab Research Annual Meeting, 14 April 2008 [0056] and pertuzumab in patients with HER2-positive met- · BELVIN etal. Combinations Of Phosphoinositide astatic breast cancerthat had progressed during tras- 3-Kinase Inhibitor Compounds And Chemotherapeu- tuzumab therapy: full response data. European So- tic Agents, And Methods Of Use, 10 September 2008 ciety of Medical Oncology, Stockholm, Sweden, 12 [0056] [0057]
September 2008 [0009] [0047] · LIANG et al. Jour. Biol. Chem., 2006, vol. 281, • Angew Chem. Inti. Ed. Engl, 1994, vol. 33, 183-186 951-961 [0060] [0029] · CROUCH et al. J. Immunol. Meth., 1993, vol. 160, • Handbook of Pharmaceutical Salts. Properties, Se- 81-88 [0065] lection and Use. Wiley-VCH, 2002 [0036] · CREEetal. AntiCancerDrugs, 1995, vol. 6, 398-404 • S. BERGEetal. Journal of Pharmaceutical Sciences, [0065] 1977, vol. 66 (1), 1-19 [0036] • HAYAKAWA et al. Bioorg. Med. Chem. Lett., 2007, · Remington’s Pharmaceutical Sciences. Mack Publ. vol. 17, 2438-2442 [0088] Co, 1995 [0128] [0133] • RAYNAUD et al. Cancer Res., 2007, vol. 67, · Pharmaceutical Dosage Forms. Marcel Decker, vol. 5840-5850 [0088] 3 [0157] • FAN et al. Cancer Cell, 2006, vol. 9, 341-349 [0088] · HAMBLETT et al. Clinical Cancer Res., 2004, vol. • CALL et al. The Lancet Oncology, 2008, vol. 9(10), 10, 7063-7070 [0172] 1002-1011 [0114] · SANDERSON et al. Clinical Cancer Res., 2005, vol. • DEVERAUX et al. J Clin Immunol, 1999, vol. 19, 11,843-852 [0172] 388-398 [0114] · MENDOZA et al. Cancer Res., 2002, vol. 62, 5485-5488 [0173]

Claims (10)

  1. Anti-HER2 anbtest-hatóanyag-konjugátum és pertozumab kombinációi Szabadalmi igénypontok:
    1, Terápiás kombináció ErbB2-t expresszáló rák kezdési eljárásában való alkalmazásra, ahol az eljárás tartalmazza terápiás kombináció emlősnek történő beadását kombinált készítményként vagy alternálva, ahol a terápiás kombináció tartalmazza trasztuzumah-MCC-DMI terápiásán hatásos mennyiségét és pertozumab terápiásán hatásos mennyiségét, ahol a terápiás kombináció beadása szinergetíkus hatást eredményez.
  2. 2, Terápiás kombináció kezelési eljárásban való alkalmazásra az 1. igénypont szerint, ahol a t.rasztuzumab-MCC-DMI terápiásán hatásos mennyiségét és a pertozumab terápiásán hatásos mennyiségét kombinált készítményként, adjuk be. 3< Terápiás kombináció kezelési eljárásban való alkalmazásra az T igénypont szerint, ahol a trasztuzumab~MCC~DM1 terápiásán hatásos mennyiségét és a pertozumab terápiásán hatásos mennyiségét alternálva adjuk be,
  3. 4, Terápiás kombináció kezelési eljárásban való alkalmazásra a 3. igénypont szerint, ahol az emlősnek beadjuk a pertuzumabot, majd ezután beadjuk a traszíuzumah-MCC-DM 1 -et. Se Terápiás kombináció kezelési eljárásban való alkalmazásra az előző igénypontok bármelyike szerint, ahol a terápiás kombinációt körüibeíül háromhetes időközönként adjuk be az ErbB2-t expresszáló rákban szenvedő embernek. S> Terápiás kombináció kezelési eljárásban való alkalmazásra az 1-4. igénypontok bármelyike szerint, ahol a trasztuzumab-MCC-DMI-et körülbelül egyhetes-háromhetes időközönként adjuk be az ErbB2-í expresszáló rákban szenvedő embernek.
  4. 7. Terápiás kombináció kezelési eljárásban való alkalmazásra az előző igénypontok bármelyike szerint, ahol a trasztuzumab-MCC-DMI-et nem gyakrabban, mint minden 3 hétben adjuk be 2,4, 3 0 vagy 3,6 mg/kg dózisban intravénásán. 8« Terápiás kombináció kezelési eljárásban való alkalmazásra a 7. igénypont szerint, ahol beadunk pertuzumabot 840 mg feltöltő dózisban intravénásán az 1. ciklus 1. napján, majd 420 mg dózisban intravénásán minden három hétben a kővetkező ciklusokban.
  5. 9- Terápiás kombináció kezelési eljárásban való alkalmazásra az előző igénypontok bármelyike szerint, ahol a trasztuzumab~MCC-DM1 és a pertuzumab mindegyikének a mennyisége 1 mg - 1000 mg, és a trasztuzumab-MCC-DMI mennyiségének és a pertuzumab mennyiségének a tömegaránya 1:10 - 10.1.
  6. 10, Terápiás kombináció kezelési eljárásban való alkalmazásra az előző igénypontok bármelyike szerint, ahol az emlős HER2 pozitív páciens.
  7. 11, Terápiás kombináció kezelési eljárásban való alkalmazásra az előző igénypontok bármelyike szerint, ahol a HER2 pozitív páciens trasztuzumah vagy iapatinib terápiát kapott.
  8. 12, Terápiás kombináció kezelési eljárásban való alkalmazásra az előző igénypontok bármelyike szerint, ahol a terápiás kombináció gyógyszerkészítmény, amely tartalmaz. trasztuzumab-MCC-DM1~et, pertuzumabot és egy vagy több gyógyászatiiag elfogadható hordozót, gíidánst, hígítót vagy excipienst.
  9. 13, Terápiás kombináció kezelési eljárásban való alkalmazásra a 12. igénypont szerint, ahol a gyógyszerkészítmény tartalmaz olyan gyógyászatiiag elfogadható gíidánst, amelyet a szílícium-dioxid, porított cellulóz, mikrokristályos cellulóz, fém-szíearátok, nátrium-aluminoszilikát, nátrium-benzoát, kalcium-karbonát, kalcíum-sziíikát, kukoricakeményítő, magnézium-karbonát, azbesztmentes talkum, stearowet C, keményítő, keményítő 1500« magnézium-lauril-szulfát, magnézium-oxid és ezek kombinációi közül választunk.
  10. 14. Terápiás kombináció alkalmazása emlőrák kezelésére alkalmas gyógyszer előállításában, ahol a terápiás kombináció beadásra kerül emlősnek kombinált készítményként vagy alternálva, és tartalmazza trasztuzumab~MCC-DM1 terápiásán hatásos mennyiségét és pertuzumab terápiásán hatásos mennyiségét, ahol a terápiás kombináció beadása szinergetikus hatást eredményez.
HUE13158391A 2008-03-18 2009-03-10 Anti-HER2 antitest-hatóanyag-konjugátum és pertuzumab kombinációi HUE035182T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3741008P 2008-03-18 2008-03-18

Publications (1)

Publication Number Publication Date
HUE035182T2 true HUE035182T2 (hu) 2018-05-02

Family

ID=40858064

Family Applications (3)

Application Number Title Priority Date Filing Date
HUE13158350A HUE035184T2 (hu) 2008-03-18 2009-03-10 Anti-HER2 antitest-hatóanyag-konjugátum és docetaxel kombinációi
HUE13158391A HUE035182T2 (hu) 2008-03-18 2009-03-10 Anti-HER2 antitest-hatóanyag-konjugátum és pertuzumab kombinációi
HUE09721522A HUE025507T2 (hu) 2008-03-18 2009-03-10 Anti-HER2 antitest-hatóanyag konjugátum és kemoterápiás ágensek kombinációi, és eljárások alkalmazásukra

Family Applications Before (1)

Application Number Title Priority Date Filing Date
HUE13158350A HUE035184T2 (hu) 2008-03-18 2009-03-10 Anti-HER2 antitest-hatóanyag-konjugátum és docetaxel kombinációi

Family Applications After (1)

Application Number Title Priority Date Filing Date
HUE09721522A HUE025507T2 (hu) 2008-03-18 2009-03-10 Anti-HER2 antitest-hatóanyag konjugátum és kemoterápiás ágensek kombinációi, és eljárások alkalmazásukra

Country Status (29)

Country Link
US (5) US8663643B2 (hu)
EP (6) EP2638907A3 (hu)
JP (5) JP5656823B2 (hu)
KR (8) KR20210131473A (hu)
CN (5) CN104888232B (hu)
AR (1) AR070865A1 (hu)
AU (1) AU2009225877B2 (hu)
BR (1) BRPI0906181A2 (hu)
CA (3) CA3146422A1 (hu)
CL (1) CL2009000559A1 (hu)
CR (2) CR20180483A (hu)
DK (3) DK2644194T3 (hu)
ES (4) ES2629405T3 (hu)
HK (1) HK1147444A1 (hu)
HU (3) HUE035184T2 (hu)
IL (7) IL295098A (hu)
MA (1) MA32223B1 (hu)
MX (3) MX353429B (hu)
MY (4) MY188477A (hu)
NZ (4) NZ602675A (hu)
PH (4) PH12014502135A1 (hu)
PL (4) PL2644204T3 (hu)
RU (2) RU2510272C2 (hu)
SG (3) SG10201401941RA (hu)
SI (3) SI2644194T1 (hu)
TW (4) TWI449536B (hu)
UA (2) UA127472C2 (hu)
WO (1) WO2009117277A2 (hu)
ZA (1) ZA201006186B (hu)

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2472937C (en) 2002-01-11 2014-06-17 Biomarin Pharmaceutical, Inc. Use of p97 as an enzyme delivery system for the delivery of therapeutic lysosomal enzymes
US8088387B2 (en) 2003-10-10 2012-01-03 Immunogen Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates
NZ579482A (en) * 2004-06-01 2011-02-25 Genentech Inc Antibody drug conjugates and methods
JO3000B1 (ar) 2004-10-20 2016-09-05 Genentech Inc مركبات أجسام مضادة .
MX2007009889A (es) * 2005-02-23 2007-09-07 Genentech Inc Alargar el tiempo hasta la progresion de la enfermedad o la supervivencia de los pacientes de cancer.
EP2899541A1 (en) 2007-03-02 2015-07-29 Genentech, Inc. Predicting response to a HER dimerisation inhbitor based on low HER3 expression
TWI472339B (zh) 2008-01-30 2015-02-11 Genentech Inc 包含結合至her2結構域ii之抗體及其酸性變異體的組合物
BRPI0812682A2 (pt) 2008-06-16 2010-06-22 Genentech Inc tratamento de cáncer de mama metastático
CN102170907A (zh) 2008-08-05 2011-08-31 东丽株式会社 用于治疗和预防癌症的药物组合物
BRPI0911925B8 (pt) 2008-08-05 2024-02-06 Toray Industries Método para detectar um câncer
MX2011009167A (es) 2009-03-12 2011-09-15 Genentech Inc Combinaciones de compuestos inhibidores de fosfoinositida 3-cinasa y agentes quimioterapeuticos para el tratamiento contra neoplasia hemotopoyeticas malignas.
US20110165155A1 (en) * 2009-12-04 2011-07-07 Genentech, Inc. Methods of treating metastatic breast cancer with trastuzumab-mcc-dm1
EP2519526B1 (en) 2009-12-31 2014-03-26 Centro Nacional de Investigaciones Oncológicas (CNIO) Tricyclic compounds for use as kinase inhibitors
PT2532743E (pt) 2010-02-04 2015-08-04 Toray Industries Composição farmacêutica para o tratamento e/ou a prevenção de cancro
CA2815492C (en) * 2010-11-08 2019-04-09 Novartis Ag Use of 2-carboxamide cycloamino urea derivatives in the treatment of egfr dependent diseases or diseases that have acquired resistance to agents that target egfr family members
AU2011338383A1 (en) * 2010-12-09 2012-06-14 Genentech, Inc. Treatment of HER2-positive cancer with paclitaxel and trastuzumab-MCC-DM1
WO2012098387A1 (en) 2011-01-18 2012-07-26 Centro Nacional De Investigaciones Oncológicas (Cnio) 6, 7-ring-fused triazolo [4, 3 - b] pyridazine derivatives as pim inhibitors
US9527925B2 (en) 2011-04-01 2016-12-27 Boehringer Ingelheim International Gmbh Bispecific binding molecules binding to VEGF and ANG2
EP3088005B1 (en) * 2011-07-05 2019-01-02 biOasis Technologies Inc P97-antibody conjugates
BR112014002619A2 (pt) 2011-08-04 2018-10-09 Toray Industries, Inc composição farmacêutica e método de tratamento e/ou prevenção de câncer pancreático e combinação farmacêutica
PT2741085T (pt) 2011-08-04 2017-06-30 Toray Industries Método para a deteção de cancro prancreático
PT2740796T (pt) 2011-08-04 2017-07-26 Toray Industries Composição farmacêutica para o tratamento e/ou profilaxia de cancro
PT2739649T (pt) 2011-08-05 2018-01-03 Bioasis Technologies Inc Fragmentos de p97 com atividade de transferência
EP2766011B1 (en) 2011-10-13 2017-09-27 Genentech, Inc. Treatment of pharmacological-induced hypochlorhydria in cancer patients
RS58944B1 (sr) 2011-10-14 2019-08-30 Hoffmann La Roche Pertuzumab, trastuzumab, docetaksel i karboplatin za lečenje raka dojke u ranoj fazi
ES2749672T3 (es) 2012-02-21 2020-03-23 Toray Industries Composición farmacéutica para tratar y/o prevenir el cáncer
MX360208B (es) 2012-02-21 2018-10-24 Toray Industries Composicion farmaceutica para el tratamiento y/o prevencion del cancer.
CA2864869C (en) 2012-02-21 2021-10-19 Toray Industries, Inc. Pharmaceutical composition for treatment and/or prevention of cancer
PT2824114T (pt) 2012-02-21 2019-08-05 Toray Industries Composição farmacêutica para o tratamento do cancro
UA122044C2 (uk) * 2012-03-23 2020-09-10 Еррей Біофарма Інк. Лікування раку головного мозку
ES2656501T3 (es) 2012-03-30 2018-02-27 Toray Industries, Inc. Composición farmacéutica para el tratamiento y/o la prevención de cáncer de vesícula biliar
JP6107654B2 (ja) 2012-03-30 2017-04-05 東レ株式会社 肝臓癌の治療及び/又は予防用医薬組成物
TW201843172A (zh) * 2012-06-25 2018-12-16 美商再生元醫藥公司 抗-egfr抗體及其用途
CN112587658A (zh) 2012-07-18 2021-04-02 博笛生物科技有限公司 癌症的靶向免疫治疗
EP2876447B1 (en) 2012-07-19 2019-11-20 Toray Industries, Inc. Method for detecting cancer
KR102056654B1 (ko) 2012-07-19 2019-12-17 도레이 카부시키가이샤 암의 검출 방법
CN104662150B (zh) 2012-07-31 2018-07-10 比奥阿赛斯技术有限公司 脱磷酸化的溶酶体贮积症蛋白及其使用方法
US20150272939A1 (en) * 2012-10-02 2015-10-01 Yale University Identification of Small Molecule Inhibitors of Jumonji AT-Rich Interactive Domain 1A (JARID1A) and 1B (JARID1B) Histone Demethylase
RU2692773C2 (ru) * 2012-11-30 2019-06-27 Ф.Хоффманн-Ля Рош Аг Идентификация пациентов, нуждающихся в совместной терапии с использованием ингибитора pd-l1
WO2014138186A1 (en) * 2013-03-05 2014-09-12 The Johns Hopkins University Bioorthogonal two-component delivery systems for enhanced internalization of nanotherapeutics
NZ711373A (en) 2013-03-13 2020-07-31 Bioasis Technologies Inc Fragments of p97 and uses thereof
US10570151B2 (en) 2013-03-15 2020-02-25 Regeneron Pharmaceuticals, Inc. Biologically active molecules, conjugates thereof, and therapeutic uses
EP2968591A1 (en) * 2013-03-15 2016-01-20 Novartis AG Cell proliferation inhibitors and conjugates thereof
CN105121471A (zh) 2013-04-16 2015-12-02 豪夫迈·罗氏有限公司 帕妥珠单抗变体及其评估
US9862774B2 (en) 2013-08-09 2018-01-09 Toray Industries, Inc. Pharmaceutical composition for treatment and/or prevention of cancer
BR112016004023A2 (pt) 2013-08-26 2022-11-16 Regeneron Pharma Composição, métodos para preparar uma composição e para tratar uma doença, e, composto
CN113461705A (zh) 2013-11-19 2021-10-01 普渡研究基金会 抗癌剂及其制备
US10087260B2 (en) * 2013-11-19 2018-10-02 Remegen, Ltd. Anti-HER2 antibody and conjugate thereof
CA2936377A1 (en) 2014-01-10 2015-07-16 Shanghai Birdie Biotech, Inc. Compounds and compositions for treating egfr expressing tumors
KR102417312B1 (ko) * 2014-01-31 2022-07-05 다이이찌 산쿄 가부시키가이샤 항-her2 항체-약물 접합체
ES2764973T3 (es) 2014-02-03 2020-06-05 Bioasis Technologies Inc Proteínas de fusión de P97
ES2762672T3 (es) 2014-02-19 2020-05-25 Bioasis Technologies Inc Proteínas de fusión de P97-IDS
WO2015160868A1 (en) * 2014-04-16 2015-10-22 Signal Pharmaceuticals, Llc Methods for treating cancer using tor kinase inhibitor combination therapy
MX2016014007A (es) 2014-04-25 2017-01-11 Genentech Inc Metodos para el tratamiento de cancer de mama temprano con trastuzumab-emtansina(mcc-dm1) y pertuzumab.
CA2943890A1 (en) 2014-05-01 2015-11-05 Bioasis Technologies, Inc. P97-polynucleotide conjugates
CN110478495A (zh) 2014-06-30 2019-11-22 塔弗达治疗有限公司 靶向缀合物及其颗粒和制剂
CA2954446A1 (en) 2014-07-09 2016-01-14 Shanghai Birdie Biotech, Inc. Anti-pd-l1 combinations for treating tumors
CN105440135A (zh) 2014-09-01 2016-03-30 博笛生物科技有限公司 用于***的抗-pd-l1结合物
WO2016061231A1 (en) * 2014-10-14 2016-04-21 Deciphera Pharmaceuticals, Llc Inhibition of tumor cell interactions with the microenvironment resulting in a reduction in tumor growth and disease progression
WO2016196373A2 (en) 2015-05-30 2016-12-08 Genentech, Inc. Methods of treating her2-positive metastatic breast cancer
MX2018000135A (es) * 2015-07-07 2018-03-23 Genentech Inc Terapia combinada con un conjugado de farmaco y anticuerpo anti receptor 2 de factor de crecimiento epidermico humano (her2) y un inhibidor de linfoma de celulas b2 (bcl-2).
CN108136042A (zh) * 2015-08-06 2018-06-08 希望之城 治疗性细胞内化缀合物
CN108473538B (zh) * 2015-10-28 2022-01-28 塔弗达治疗有限公司 Sstr靶向缀合物及其颗粒和制剂
WO2017087280A1 (en) 2015-11-16 2017-05-26 Genentech, Inc. Methods of treating her2-positive cancer
CN106729743B (zh) 2015-11-23 2021-09-21 四川科伦博泰生物医药股份有限公司 抗ErbB2抗体-药物偶联物及其组合物、制备方法和应用
RU2618405C1 (ru) * 2015-12-31 2017-05-03 Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения Российской Федерации Способ определения продолжительности адъювантной химиотерапии при местно-распространенном колоректальном раке с метастазами в регионарные лимфоузлы после радикальных оперативных вмешательств
CN106943598A (zh) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 用于***的抗-her2组合
CN115252792A (zh) 2016-01-07 2022-11-01 博笛生物科技有限公司 用于***的抗-egfr组合
CN106943596A (zh) 2016-01-07 2017-07-14 博笛生物科技(北京)有限公司 用于***的抗-cd20组合
BR112018014759B1 (pt) 2016-01-25 2024-02-27 Regeneron Pharmaceuticals, Inc Compostos derivados de maitasinoide e seus conjugados, composição compreendendo os mesmos, seus métodos de fabricação e uso
KR102646702B1 (ko) 2016-09-23 2024-03-11 퍼듀 리서치 파운데이션 항암제 및 그의 제조
US20180140703A1 (en) * 2016-11-18 2018-05-24 The Regents Of The University California Tumor radiosensitization with antibody conjugates
WO2018107069A1 (en) * 2016-12-08 2018-06-14 Washington University Incompatible blood group antigen for cancer detection and treatment
JP7244987B2 (ja) * 2016-12-14 2023-03-23 シージェン インコーポレイテッド 多剤抗体薬物コンジュゲート
MX2019008350A (es) 2017-01-17 2019-11-11 Genentech Inc Formulaciones de anticuerpos de her2 subcutáneas.
US20180271996A1 (en) * 2017-02-28 2018-09-27 Mersana Therapeutics, Inc. Combination therapies of her2-targeted antibody-drug conjugates
CN116531511A (zh) 2017-03-02 2023-08-04 豪夫迈·罗氏有限公司 Her2阳性乳腺癌的辅助治疗
JP7408396B2 (ja) * 2017-04-20 2024-01-05 アーデーセー セラピューティクス ソシエテ アノニム 併用療法
CN108794467A (zh) 2017-04-27 2018-11-13 博笛生物科技有限公司 2-氨基-喹啉衍生物
SG11201909676WA (en) 2017-04-28 2019-11-28 Seattle Genetics Inc Treatment of her2 positive cancers
WO2018226802A1 (en) * 2017-06-06 2018-12-13 The Johns Hopkins University Induction of synthetic lethality with epigenetic therapy
WO2018232725A1 (en) 2017-06-23 2018-12-27 Birdie Biopharmaceuticals, Inc. PHARMACEUTICAL COMPOSITIONS
SG10201801219VA (en) 2018-02-13 2019-09-27 Agency Science Tech & Res Anti-HER2 Antibodies
KR20200034369A (ko) 2018-09-21 2020-03-31 건국대학교 글로컬산학협력단 Her2에 특이적으로 결합하는 항체단편 및 이의 용도
US10966950B2 (en) 2019-06-11 2021-04-06 Io Therapeutics, Inc. Use of an RXR agonist in treating HER2+ cancers
JP7438496B2 (ja) * 2019-06-11 2024-02-27 アイオー セラピューティクス インコーポレイテッド Her2+がんの治療におけるrxrアゴニストの使用
AU2020331036A1 (en) * 2019-08-15 2022-03-03 Silverback Therapeutics, Inc. Formulations of benzazepine conjugates and uses thereof
AU2020381495A1 (en) 2019-11-15 2022-05-19 Seagen Inc. Methods of treating HER2 positive breast cancer with tucatinib in combination with an anti-HER2 antibody-drug conjugate
KR20220140500A (ko) * 2020-01-13 2022-10-18 압테보 리서치 앤드 디벨롭먼트 엘엘씨 약물 전달 시스템 성분에 대한 치료제 단백질의 흡착을 방지하기 위한 방법 및 조성물
WO2022020588A1 (en) * 2020-07-22 2022-01-27 Molecular Templates, Inc. Clinical methods for use of her2 binding molecules
WO2023043883A1 (en) * 2021-09-15 2023-03-23 Tgv Pharma Inc. Triple-agent therapy for cancer treatment
WO2023108012A1 (en) 2021-12-07 2023-06-15 Io Therapeutics, Inc. Use of an rxr agonist and taxanes in treating her2+ cancers

Family Cites Families (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2802005A (en) 1957-08-06 S-eluorourace
US2885396A (en) 1957-03-21 1959-05-05 Heidelberger Charles N-glycosides of 5-fluorouracil
CH605550A5 (hu) 1972-06-08 1978-09-29 Research Corp
US3896111A (en) 1973-02-20 1975-07-22 Research Corp Ansa macrolides
US4151042A (en) 1977-03-31 1979-04-24 Takeda Chemical Industries, Ltd. Method for producing maytansinol and its derivatives
US4137230A (en) 1977-11-14 1979-01-30 Takeda Chemical Industries, Ltd. Method for the production of maytansinoids
US4307016A (en) 1978-03-24 1981-12-22 Takeda Chemical Industries, Ltd. Demethyl maytansinoids
US4265814A (en) 1978-03-24 1981-05-05 Takeda Chemical Industries Matansinol 3-n-hexadecanoate
JPS5562090A (en) 1978-10-27 1980-05-10 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
US5206018A (en) 1978-11-03 1993-04-27 Ayerst, Mckenna & Harrison, Inc. Use of rapamycin in treatment of tumors
US4256746A (en) 1978-11-14 1981-03-17 Takeda Chemical Industries Dechloromaytansinoids, their pharmaceutical compositions and method of use
JPS55164687A (en) 1979-06-11 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS5566585A (en) 1978-11-14 1980-05-20 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS55102583A (en) 1979-01-31 1980-08-05 Takeda Chem Ind Ltd 20-acyloxy-20-demethylmaytansinoid compound
JPS55162791A (en) 1979-06-05 1980-12-18 Takeda Chem Ind Ltd Antibiotic c-15003pnd and its preparation
JPS55164685A (en) 1979-06-08 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
JPS55164686A (en) 1979-06-11 1980-12-22 Takeda Chem Ind Ltd Novel maytansinoid compound and its preparation
US4309428A (en) 1979-07-30 1982-01-05 Takeda Chemical Industries, Ltd. Maytansinoids
JPS5645483A (en) 1979-09-19 1981-04-25 Takeda Chem Ind Ltd C-15003phm and its preparation
JPS5645485A (en) 1979-09-21 1981-04-25 Takeda Chem Ind Ltd Production of c-15003pnd
EP0028683A1 (en) 1979-09-21 1981-05-20 Takeda Chemical Industries, Ltd. Antibiotic C-15003 PHO and production thereof
WO1982001188A1 (en) 1980-10-08 1982-04-15 Takeda Chemical Industries Ltd 4,5-deoxymaytansinoide compounds and process for preparing same
US4450254A (en) 1980-11-03 1984-05-22 Standard Oil Company Impact improvement of high nitrile resins
US4313946A (en) 1981-01-27 1982-02-02 The United States Of America As Represented By The Secretary Of Agriculture Chemotherapeutically active maytansinoids from Trewia nudiflora
US4315929A (en) 1981-01-27 1982-02-16 The United States Of America As Represented By The Secretary Of Agriculture Method of controlling the European corn borer with trewiasine
JPS57192389A (en) 1981-05-20 1982-11-26 Takeda Chem Ind Ltd Novel maytansinoid
US5169774A (en) 1984-02-08 1992-12-08 Cetus Oncology Corporation Monoclonal anti-human breast cancer antibodies
US4753894A (en) 1984-02-08 1988-06-28 Cetus Corporation Monoclonal anti-human breast cancer antibodies
US5583024A (en) 1985-12-02 1996-12-10 The Regents Of The University Of California Recombinant expression of Coleoptera luciferase
CA1289880C (en) 1985-12-06 1991-10-01 Jeffrey L. Winkelhake Anti-human ovarian cancer immunotoxins and methods of use thereof
US4956453A (en) 1985-12-06 1990-09-11 Cetus Corporation Anti-human ovarian cancer immunotoxins and methods of use thereof
US7838216B1 (en) 1986-03-05 2010-11-23 The United States Of America, As Represented By The Department Of Health And Human Services Human gene related to but distinct from EGF receptor gene
US5395924A (en) 1986-03-20 1995-03-07 Dana-Farber Cancer Institute, Inc. Blocked lectins; methods and affinity support for making the same using affinity ligands; and method of killing selected cell populations having reduced non-selective cytotoxicity
FR2601675B1 (fr) 1986-07-17 1988-09-23 Rhone Poulenc Sante Derives du taxol, leur preparation et les compositions pharmaceutiques qui les contiennent
US4968603A (en) 1986-12-31 1990-11-06 The Regents Of The University Of California Determination of status in neoplastic disease
US4981979A (en) 1987-09-10 1991-01-01 Neorx Corporation Immunoconjugates joined by thioether bonds having reduced toxicity and improved selectivity
US5824311A (en) 1987-11-30 1998-10-20 Trustees Of The University Of Pennsylvania Treatment of tumors with monoclonal antibodies against oncogene antigens
US5720937A (en) 1988-01-12 1998-02-24 Genentech, Inc. In vivo tumor detection assay
WO1989006692A1 (en) 1988-01-12 1989-07-27 Genentech, Inc. Method of treating tumor cells by inhibiting growth factor receptor function
US5217713A (en) 1988-12-27 1993-06-08 Takeda Chemical Industries, Ltd. Cytotoxic bispecific monoclonal antibody, its production and use
US5705157A (en) 1989-07-27 1998-01-06 The Trustees Of The University Of Pennsylvania Methods of treating cancerous cells with anti-receptor antibodies
CA2026147C (en) 1989-10-25 2006-02-07 Ravi J. Chari Cytotoxic agents comprising maytansinoids and their therapeutic use
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
US5183884A (en) 1989-12-01 1993-02-02 United States Of America Dna segment encoding a gene for a receptor related to the epidermal growth factor receptor
DE4014540A1 (de) 1990-05-07 1991-11-14 Klaus Dr Tschaikowsky Immunkonjugate zur prophylaxe und therapie von organschaeden bei entzuendlichen prozessen
US6582959B2 (en) 1991-03-29 2003-06-24 Genentech, Inc. Antibodies to vascular endothelial cell growth factor
IL101943A0 (en) 1991-05-24 1992-12-30 Genentech Inc Structure,production and use of heregulin
US6800738B1 (en) 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
DK0590058T3 (da) 1991-06-14 2004-03-29 Genentech Inc Humaniseret heregulin-antistof
WO1994004679A1 (en) 1991-06-14 1994-03-03 Genentech, Inc. Method for making humanized antibodies
US5698582A (en) 1991-07-08 1997-12-16 Rhone-Poulenc Rorer S.A. Compositions containing taxane derivatives
US5714512A (en) 1991-07-08 1998-02-03 Rhone-Poulenc Rorer, S.A. Compositions containing taxane derivatives
US5750561A (en) 1991-07-08 1998-05-12 Rhone-Poulenc Rorer, S.A. Compositions containing taxane derivatives
CA2096417C (en) 1991-08-22 2000-10-10 Sarah S. Bacus Methods and compositions for cancer therapy and for prognosticating responses to cancer therapy
US6022541A (en) 1991-10-18 2000-02-08 Beth Israel Deaconess Medical Center Immunological preparation for concurrent specific binding to spatially exposed regions of vascular permeability factor bound in-vivo to a tumor associated blood vessel
EP1997894B1 (en) 1992-02-06 2011-03-30 Novartis Vaccines and Diagnostics, Inc. Biosynthetic binding protein for cancer marker
DE69231123T2 (de) 1992-03-25 2001-02-15 Immunogen Inc Konjugaten von Zell-bindender Mittel und Derivaten von CC-1065
US7754211B2 (en) 1992-04-10 2010-07-13 Research Development Foundation Immunotoxins directed against c-erbB-2(HER-2/neu) related surface antigens
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
FR2698543B1 (fr) 1992-12-02 1994-12-30 Rhone Poulenc Rorer Sa Nouvelles compositions à base de taxoides.
JP3161490B2 (ja) 1993-07-30 2001-04-25 松下電器産業株式会社 金型装置
US5679648A (en) 1994-11-30 1997-10-21 The University Hospital Methods for the treatment and prevention of fungal infections by administration of 3'-deoxypurine nucleosides
JPH08336393A (ja) 1995-04-13 1996-12-24 Mitsubishi Chem Corp 光学活性なγ−置換−β−ヒドロキシ酪酸エステルの製造法
US5837234A (en) 1995-06-07 1998-11-17 Cytotherapeutics, Inc. Bioartificial organ containing cells encapsulated in a permselective polyether suflfone membrane
US5783186A (en) 1995-12-05 1998-07-21 Amgen Inc. Antibody-induced apoptosis
US5919815A (en) 1996-05-22 1999-07-06 Neuromedica, Inc. Taxane compounds and compositions
KR100473278B1 (ko) 1996-05-23 2005-08-29 켈빈 윈스턴 던컨 식물체로부터프로안토시아니딘을추출및단리시키는방법
DE69727489T2 (de) 1996-11-06 2004-11-25 Sequenom, Inc., San Diego Verfahren zur massenspektrometrie
US6884879B1 (en) 1997-04-07 2005-04-26 Genentech, Inc. Anti-VEGF antibodies
ES2273415T3 (es) 1997-04-07 2007-05-01 Genentech, Inc. Anticuerpos anti-vegf.
US20020032315A1 (en) 1997-08-06 2002-03-14 Manuel Baca Anti-vegf antibodies
US6602677B1 (en) 1997-09-19 2003-08-05 Promega Corporation Thermostable luciferases and methods of production
US6391311B1 (en) 1998-03-17 2002-05-21 Genentech, Inc. Polypeptides having homology to vascular endothelial cell growth factor and bone morphogenetic protein 1
RS49779B (sr) 1998-01-12 2008-06-05 Glaxo Group Limited, Biciklična heteroaromatična jedinjenja kao inhibitori protein tirozin kinaze
JP4469933B2 (ja) 1998-05-06 2010-06-02 ジェネンテック, インコーポレイテッド イオン交換クロマトグラフィによるタンパク質精製
PT1169021E (pt) 1999-04-01 2009-11-18 Univ Texas Composições e métodos para o tratamento de linfoma
EP1185559A2 (en) 1999-04-28 2002-03-13 Board Of Regents, The University Of Texas System Compositions and methods for cancer treatment by selectively inhibiting vegf
CA2727172A1 (en) * 1999-05-26 2001-01-04 Genentech, Inc. Methods of treatment using anti-erbb antibody-maytansinoid conjugates
US6656730B1 (en) 1999-06-15 2003-12-02 Isis Pharmaceuticals, Inc. Oligonucleotides conjugated to protein-binding drugs
US7041292B1 (en) 1999-06-25 2006-05-09 Genentech, Inc. Treating prostate cancer with anti-ErbB2 antibodies
BRPI0017590B8 (pt) 1999-06-25 2021-05-25 Genentech Inc conjugado de maitansinoide - anticorpo anti-erbb, e formulação farmacêutica
DE60033658T2 (de) 1999-06-25 2007-11-22 Genentech, Inc., South San Francisco Behandlung von prostata-krebs mit anti-erbb2 antikörpern
US6949245B1 (en) 1999-06-25 2005-09-27 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US6933299B1 (en) 1999-07-09 2005-08-23 Smithkline Beecham Corporation Anilinoquinazolines as protein tyrosine kinase inhibitors
ES2295035T3 (es) 1999-07-09 2008-04-16 Glaxo Group Limited Anilinoquinazolinas como inhibidores de proteina tirosina quinasa.
US6531131B1 (en) 1999-08-10 2003-03-11 The United States Of America As Represented By The Department Of Health And Human Services Conjugate vaccine for Neisseria meningitidis
US6635677B2 (en) * 1999-08-13 2003-10-21 Case Western Reserve University Methoxyamine combinations in the treatment of cancer
KR20090126330A (ko) 1999-08-27 2009-12-08 제넨테크, 인크. 항-ErbB2 항체 투여 치료 방법
US7030231B1 (en) 1999-09-30 2006-04-18 Catalyst Biosciences, Inc. Membrane type serine protease 1 (MT-SP1) and uses thereof
US7303749B1 (en) 1999-10-01 2007-12-04 Immunogen Inc. Compositions and methods for treating cancer using immunoconjugates and chemotherapeutic agents
EP2266607A3 (en) 1999-10-01 2011-04-20 Immunogen, Inc. Immunoconjugates for treating cancer
EP1242401B1 (en) 1999-11-24 2006-12-27 Immunogen, Inc. Cytotoxic agents comprising taxanes and their therapeutic use
US7097840B2 (en) 2000-03-16 2006-08-29 Genentech, Inc. Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
US6632979B2 (en) 2000-03-16 2003-10-14 Genentech, Inc. Rodent HER2 tumor model
US6608053B2 (en) 2000-04-27 2003-08-19 Yamanouchi Pharmaceutical Co., Ltd. Fused heteroaryl derivatives
NZ522989A (en) 2000-06-30 2005-06-24 Glaxo Group Ltd Quinazoline ditosylate salt compounds
US6333410B1 (en) 2000-08-18 2001-12-25 Immunogen, Inc. Process for the preparation and purification of thiol-containing maytansinoids
DE60141297D1 (de) 2000-12-28 2010-03-25 Kyowa Hakko Kirin Co Ltd Gegen das menschliche bst2 antigen gerichteter monoklonaler antikörper
JP4458746B2 (ja) 2001-01-16 2010-04-28 グラクソ グループ リミテッド 癌の治療方法
US20030103985A1 (en) 2001-05-18 2003-06-05 Boehringer Ingelheim International Gmbh Cytotoxic CD44 antibody immunoconjugates
US6441163B1 (en) 2001-05-31 2002-08-27 Immunogen, Inc. Methods for preparation of cytotoxic conjugates of maytansinoids and cell binding agents
WO2003000113A2 (en) * 2001-06-20 2003-01-03 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US20040235068A1 (en) 2001-09-05 2004-11-25 Levinson Arthur D. Methods for the identification of polypeptide antigens associated with disorders involving aberrant cell proliferation and compositions useful for the treatment of such disorders
US20080085283A1 (en) 2001-09-05 2008-04-10 Levinson Arthur D Methods for the identification of polypeptide antigens associated with disorders involving aberrant cell proliferation and compositions useful for the treatment of such disorders
US20050238650A1 (en) 2002-04-17 2005-10-27 Genentech, Inc. Compositions and methods for the treatment of tumor of hematopoietic origin
US6716821B2 (en) 2001-12-21 2004-04-06 Immunogen Inc. Cytotoxic agents bearing a reactive polyethylene glycol moiety, cytotoxic conjugates comprising polyethylene glycol linking groups, and methods of making and using the same
US6790954B2 (en) 2002-01-29 2004-09-14 Immunogen, Inc. Mutant Actinosynnema pretiosum strain with increased maytansinoid production
US7538195B2 (en) 2002-06-14 2009-05-26 Immunogen Inc. Anti-IGF-I receptor antibody
EP1536814A4 (en) 2002-07-03 2006-02-15 Immunogen Inc ANTIBODIES AGAINST MUC1 AND MUC16 NOT RELEASED AND USES THEREOF
AU2003259163B2 (en) 2002-08-16 2008-07-03 Immunogen, Inc. Cross-linkers with high reactivity and solubility and their use in the preparation of conjugates for targeted delivery of small molecule drugs
US20040126379A1 (en) 2002-08-21 2004-07-01 Boehringer Ingelheim International Gmbh Compositions and methods for treating cancer using cytotoxic CD44 antibody immunoconjugates and chemotherapeutic agents
US20040120949A1 (en) 2002-11-08 2004-06-24 Boehringer Ingelheim International Gmbh Compositions and methods for treating cancer using cytotoxic CD44 antibody immunoconjugates and radiotherapy
US20040258685A1 (en) 2002-11-21 2004-12-23 Genentech, Inc. Therapy of non-malignant diseases or disorders with anti-ErbB2 antibodies
US7432088B2 (en) 2003-05-08 2008-10-07 Immunogen Inc. Methods for the production of ansamitocins
US8088387B2 (en) 2003-10-10 2012-01-03 Immunogen Inc. Method of targeting specific cell populations using cell-binding agent maytansinoid conjugates linked via a non-cleavable linker, said conjugates, and methods of making said conjugates
KR101441358B1 (ko) 2003-05-14 2014-09-24 이뮤노젠 아이엔씨 약물 콘쥬게이트 조성물
US7276497B2 (en) 2003-05-20 2007-10-02 Immunogen Inc. Cytotoxic agents comprising new maytansinoids
US20040235892A1 (en) 2003-05-22 2004-11-25 Yujia Dai Indazole and benzisoxazole kinase inhibitors
US7297709B2 (en) 2003-05-22 2007-11-20 Abbott Laboratories Indazole, benzisoxazole, and benzisothiazole kinase inhibitors
US20050106667A1 (en) 2003-08-01 2005-05-19 Genentech, Inc Binding polypeptides with restricted diversity sequences
TW200526777A (en) * 2003-11-12 2005-08-16 Combinatorx Inc Combinations for the treatment of proliferative diseases
JP3991983B2 (ja) 2003-12-19 2007-10-17 日産自動車株式会社 車両の駆動制御装置
CA2551813C (en) 2003-12-24 2014-08-12 Genentech, Inc. Compositions and methods for the treatment of tumor of hematopoietic origin
US7004206B2 (en) 2004-01-29 2006-02-28 Viken James P Automatic fluid exchanger
AU2005216251B2 (en) 2004-02-23 2011-03-10 Genentech, Inc. Heterocyclic self-immolative linkers and conjugates
CN109045307A (zh) * 2004-06-01 2018-12-21 健泰科生物技术公司 抗体-药物偶联物和方法
NZ579482A (en) 2004-06-01 2011-02-25 Genentech Inc Antibody drug conjugates and methods
NZ580115A (en) 2004-09-23 2010-10-29 Genentech Inc Cysteine engineered antibody light chains and conjugates
GB0423653D0 (en) 2004-10-25 2004-11-24 Piramed Ltd Pharmaceutical compounds
WO2006096861A2 (en) 2005-03-08 2006-09-14 Genentech, Inc. METHODS FOR IDENTIFYING TUMORS RESPONSIVE TO TREATMENT WITH HER DIMERIZATION INHIBITORS (HDIs)
US20060212956A1 (en) * 2005-03-14 2006-09-21 Genentech, Inc. Animal model of ligand activated HER2 expressing tumors
TW200716141A (en) * 2005-05-05 2007-05-01 Combinatorx Inc Compositions and methods for treatment for neoplasms
JP2006316040A (ja) 2005-05-13 2006-11-24 Genentech Inc Herceptin(登録商標)補助療法
PE20070207A1 (es) 2005-07-22 2007-03-09 Genentech Inc Tratamiento combinado de los tumores que expresan el her
JP5129143B2 (ja) 2005-10-07 2013-01-23 エグゼリクシス, インコーポレイテッド Mekインヒビターおよびその使用方法
CN101346128B (zh) 2005-10-25 2013-10-02 雅培制药有限公司 包含低水溶解度药物的配方及其使用方法
RU2439074C2 (ru) 2006-04-26 2012-01-10 Ф. Хоффманн-Ля Рош Аг ПРОИЗВОДНОЕ ТИЕНО[3,2-d]ПИРИМИДИНА В КАЧЕСТВЕ ИНГИБИТОРА ФОСФАТИДИЛИНОЗИТОЛ-3-КИНАЗЫ (РI3К)
ATE532788T1 (de) * 2006-04-26 2011-11-15 Hoffmann La Roche Pharmazeutische verbindungen
US20090098115A1 (en) 2006-10-20 2009-04-16 Lisa Michele Crocker Cell lines and animal models of HER2 expressing tumors
NZ578162A (en) 2006-12-07 2011-12-22 Genentech Inc Phosphoinositide 3-kinase inhibitor compounds and methods of use
BRPI0816769A2 (pt) * 2007-09-12 2016-11-29 Hoffmann La Roche combinações de compostos inibidores de fosfoinositida 3-cinase e agentes quimioterapêuticos, e métodos de uso
MX2011009167A (es) 2009-03-12 2011-09-15 Genentech Inc Combinaciones de compuestos inhibidores de fosfoinositida 3-cinasa y agentes quimioterapeuticos para el tratamiento contra neoplasia hemotopoyeticas malignas.

Also Published As

Publication number Publication date
CN102036660B (zh) 2015-05-06
EP2638907A2 (en) 2013-09-18
EP2638907A3 (en) 2014-05-14
CN104888232B (zh) 2019-05-10
KR20200113026A (ko) 2020-10-05
MA32223B1 (fr) 2011-04-01
PL2254571T3 (pl) 2015-11-30
DK2644204T3 (en) 2017-07-03
KR20100129318A (ko) 2010-12-08
ES2545977T3 (es) 2015-09-17
CL2009000559A1 (es) 2010-10-15
ES2629405T3 (es) 2017-08-09
MY166445A (en) 2018-06-27
PH12014502134A1 (en) 2015-06-29
US20170136026A1 (en) 2017-05-18
TW201511771A (zh) 2015-04-01
US20190374547A1 (en) 2019-12-12
SG10201401942PA (en) 2014-08-28
CN110251670A (zh) 2019-09-20
IL234066A0 (en) 2014-09-30
CA3146422A1 (en) 2009-09-24
JP6705788B2 (ja) 2020-06-03
JP6388859B2 (ja) 2018-09-12
SI2254571T1 (sl) 2015-10-30
KR101772304B1 (ko) 2017-08-28
EP3692988A3 (en) 2020-10-14
IL274393A (en) 2020-06-30
IL274393B (en) 2022-09-01
CN104888232A (zh) 2015-09-09
KR101751065B1 (ko) 2017-06-26
JP2014132009A (ja) 2014-07-17
RU2510272C2 (ru) 2014-03-27
UA108832C2 (uk) 2015-06-25
CA2990929A1 (en) 2009-09-24
IL234065A0 (en) 2014-09-30
AU2009225877A1 (en) 2009-09-24
IL207894A (en) 2015-09-24
EP3269366A2 (en) 2018-01-17
PH12014502133A1 (en) 2015-06-29
PH12014502134B1 (en) 2015-06-29
CN104873980B (zh) 2019-07-19
KR20230054478A (ko) 2023-04-24
EP2644204A3 (en) 2014-02-12
NZ587706A (en) 2012-12-21
MX353429B (es) 2018-01-12
IL259499A (en) 2018-07-31
JP5656823B2 (ja) 2015-01-21
SG10201401941RA (en) 2014-07-30
PL2644204T3 (pl) 2017-09-29
CN104873980A (zh) 2015-09-02
CN102036660A (zh) 2011-04-27
TWI574698B (zh) 2017-03-21
HUE025507T2 (hu) 2016-02-29
RU2018136076A (ru) 2020-04-13
JP2020147570A (ja) 2020-09-17
TW201722475A (zh) 2017-07-01
EP2254571B1 (en) 2015-07-01
RU2013147514A (ru) 2015-04-27
TW200942261A (en) 2009-10-16
EP2644204B1 (en) 2017-04-19
PH12014502133B1 (en) 2015-06-29
US20120107302A1 (en) 2012-05-03
ZA201006186B (en) 2011-11-30
AR070865A1 (es) 2010-05-12
BRPI0906181A2 (pt) 2015-06-30
MY184496A (en) 2021-04-01
US20230201210A1 (en) 2023-06-29
US8663643B2 (en) 2014-03-04
DK2644194T3 (en) 2017-07-03
KR20210131473A (ko) 2021-11-02
TWI449536B (zh) 2014-08-21
PL2644194T3 (pl) 2017-09-29
CA2716592A1 (en) 2009-09-24
ES2629067T3 (es) 2017-08-07
CR11678A (es) 2010-12-13
PH12014502135B1 (en) 2015-06-29
CN104888231A (zh) 2015-09-09
JP6016825B2 (ja) 2016-10-26
MX2022000579A (es) 2022-02-10
JP2012500180A (ja) 2012-01-05
PH12014502135A1 (en) 2015-06-29
EP3269366B1 (en) 2020-01-15
CA2716592C (en) 2018-02-27
JP2016040273A (ja) 2016-03-24
RU2671489C2 (ru) 2018-11-01
EP2644194B1 (en) 2017-04-19
MY188477A (en) 2021-12-13
EP2644194A2 (en) 2013-10-02
KR20150115951A (ko) 2015-10-14
HK1147444A1 (en) 2011-08-12
DK2254571T3 (en) 2015-09-28
MX2010010168A (es) 2010-10-04
EP2254571A2 (en) 2010-12-01
KR20160125535A (ko) 2016-10-31
CN104888231B (zh) 2019-05-17
UA127472C2 (uk) 2023-09-06
WO2009117277A3 (en) 2010-04-29
KR102449659B1 (ko) 2022-09-29
KR20180035923A (ko) 2018-04-06
PL3269366T3 (pl) 2020-07-27
NZ602675A (en) 2014-03-28
SI2644194T1 (sl) 2017-08-31
EP3692988A2 (en) 2020-08-12
HUE035184T2 (hu) 2018-05-02
TWI675668B (zh) 2019-11-01
IL234064A0 (en) 2014-09-30
PH12019501792A1 (en) 2021-03-22
CR20180483A (es) 2018-12-05
EP3269366A3 (en) 2018-04-04
ES2773510T3 (es) 2020-07-13
WO2009117277A2 (en) 2009-09-24
TW201611846A (en) 2016-04-01
AU2009225877B2 (en) 2014-11-20
TWI527593B (zh) 2016-04-01
SI2644204T1 (sl) 2017-08-31
MY166446A (en) 2018-06-27
SG10202104314YA (en) 2021-06-29
KR20190077616A (ko) 2019-07-03
CN110251670B (zh) 2023-11-14
RU2010142390A (ru) 2012-04-27
RU2018136076A3 (hu) 2021-10-25
EP2644204A2 (en) 2013-10-02
IL234065B (en) 2018-06-28
NZ621433A (en) 2015-10-30
JP2018052946A (ja) 2018-04-05
EP2644194A3 (en) 2014-01-01
US20140140993A1 (en) 2014-05-22
IL295098A (en) 2022-09-01
IL207894A0 (en) 2010-12-30
IL234064B (en) 2020-05-31
NZ709293A (en) 2017-01-27
CA2990929C (en) 2022-04-12

Similar Documents

Publication Publication Date Title
US20230201210A1 (en) Combinations of anti-her2 antibody-drug conjugate and chemotherapeutic agents, and methods of use
AU2020277143A1 (en) Combinations of an anti-HER2 antibody-drug conjugate and chemotherapeutic agents, and methods of use