EP1646458A1 - Pressgehärtetes bauteil und verfahren zu seiner herstellung - Google Patents

Pressgehärtetes bauteil und verfahren zu seiner herstellung

Info

Publication number
EP1646458A1
EP1646458A1 EP04739467A EP04739467A EP1646458A1 EP 1646458 A1 EP1646458 A1 EP 1646458A1 EP 04739467 A EP04739467 A EP 04739467A EP 04739467 A EP04739467 A EP 04739467A EP 1646458 A1 EP1646458 A1 EP 1646458A1
Authority
EP
European Patent Office
Prior art keywords
component
press
hardened
blank
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04739467A
Other languages
English (en)
French (fr)
Other versions
EP1646458B1 (de
Inventor
Martin Brodt
Roland Wendler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THERMISSION AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34088708&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1646458(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1646458A1 publication Critical patent/EP1646458A1/de
Application granted granted Critical
Publication of EP1646458B1 publication Critical patent/EP1646458B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S29/00Metal working
    • Y10S29/049Work hardening with other step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49622Vehicular structural member making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • Y10T29/49986Subsequent to metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49995Shaping one-piece blank by removing material

Definitions

  • the invention relates to a press-hardened component and a method for producing a press-hardened component according to the preambles of the independent claims.
  • High demands are placed on body components in vehicle construction with regard to rigidity and strength. At the same time, however, in order to minimize weight, the aim is to reduce the material thickness.
  • a solution to meet the contradicting requirements is provided by high-strength and ultra-high-strength steel materials, which enable the production of components with very high strengths and a low material thickness.
  • the strength and toughness values of a component can be set in a targeted manner by means of a suitable choice of process parameters during hot forming, which is customary for these materials.
  • a blank is first cut out of a coil, which is then heated above the structural transformation temperature of the steel material, above which the material structure is in the austenitic state, placed in a heated tool in the heated state and in the desired component shape is formed and mechanically xation of the desired forming state cooled, whereby the component is tempered or hardened.
  • the component is often subjected to a preforming step or a trimming step before the actual hot forming. This is described, for example, in DE 101 49 221 Cl.
  • a preforming step or a trimming step before the actual hot forming.
  • This is described, for example, in DE 101 49 221 Cl.
  • such a process can result in corrosion problems because a commonly applied coil coating is damaged during preforming. It is not possible to preform and trim the components, especially in the case of precoated high-strength steels such as Usibor 1500 PC, which has an AlSi coating, since the precoating is too brittle and the corrosion protection would be lost.
  • the object of the invention is to provide a press-hardened component and a manufacturing method for press-hardened components, which enables reliable corrosion protection and at the same time is suitable for series production.
  • a first embodiment of the method according to the invention for producing press-hardened components includes the following method steps: a blank is formed from the semi-finished product by a cold forming method, in particular a drawing method; the blank of the component is trimmed on the edge to an edge contour approximately corresponding to the component to be produced; the trimmed component blank is heated and press-hardened in a hot-forming tool; The press-hardened component blank is coated with a layer that protects against corrosion in one coating step.
  • This embodiment of the invention makes it possible, on the one hand, to design the component manufacturing process in such a way that the technically complex and costly final trimming of the hardened component can be dispensed with.
  • edge areas are therefore cut off in the uncured state of the component and not after the heating and hardening process - as is customary in hot forming.
  • By trimming the workpiece while it is still soft significantly lower cutting forces are required than for cold cutting hardened materials, which leads to reduced tool wear and a reduction in the maintenance costs of the cutting tools.
  • the high-strength material is trimmed in the uncured state, the risk of rapid crack formation is considerably reduced due to the high sensitivity to notching of these materials.
  • a layer protecting against corrosion is only applied after the hardening process, so that the component is completely coated, including on the edges.
  • the following process steps are carried out: the semi-finished product is heated and press-hardened in a hot-forming tool; the component blank produced in this way is trimmed on the edge to a border contour corresponding to the component to be produced; the press-hardened, trimmed component blank is coated in a coating step with a layer that protects against corrosion.
  • the hardened component is preferably trimmed with the aid of a laser or Water jet cutting process, through which a high-quality trimming of the component edges can be achieved.
  • the subsequent application of a corrosion protection layer ensures that the component is also protected against corrosion in the area of the trimmed edges.
  • a layer of zinc that protects against corrosion can be applied in a coating process that can be suitably integrated into a manufacturing process.
  • the layer is applied to the press-hardened component blank using a thermal diffusion process, an easily controllable process can be used, with which preferably a layer of zinc or a zinc alloy can be applied, which is also suitable for complex component geometries and for edge layering is.
  • the layer thickness can be set between a few ⁇ m and over 100 ⁇ m. A thermal load on the component is low. Components can be coated regardless of their size, dimensions, configuration, complexity and weight.
  • the component blank is advantageously tempered after the coating step. It is particularly advantageous if the component blank is coated with a zinc-containing layer, since an oxide is formed on the surface which is suitable as a primer.
  • a press-hardened component according to the invention in particular a body component, from a semi-finished product made of unhardened, hot-formable steel sheet is produced according to at least one development of the method according to the invention.
  • a component is particularly suitable for mass production in a corresponding series production and combines an advantageous weight reduction of the component with excellent corrosion protection.
  • step I shows a process sequence for producing a press-hardened component with la: cutting the board (step I); Ib: Cold Forming (Step II); lc: trimming the edges (step III); Id: hot working (step IV); le: cleaning (step V); lf: coating (step VI); 2 perspective views of selected intermediate stages in the manufacture of a component with 2a: a semi-finished product; 2b: a component blank formed therefrom; 2c: a trimmed component blank; 2d: a coated component blank;
  • step 3 shows an alternative process sequence for producing a press-hardened component with la: cutting the board (step I); Ib: hot forming (step II '); lc: trimming the edges (step III '); Id: cleaning (step IV); le: coating (step V).
  • FIGS. 1 a to 1 f schematically show a method according to the invention for producing a spatially shaped, press-hardened component 1 from a semi-finished product 2.
  • a blank 3 is used as the semi-finished product 2, which is cut out of a unwound coil 5.
  • a composite sheet can also be used as the semi-finished product 2, e.g. is described in DE 100 49 660 AI and which consists of a base plate and at least one reinforcing plate.
  • a Taylored Blank can also be used as the semi-finished product 2, which consists of a plurality of sheets of different material thickness and / or different material properties welded together.
  • the semifinished product 2 can be a three-dimensionally shaped sheet metal part produced by any forming process, which is to undergo further forming and an increase in strength and / or rigidity with the aid of the method according to the invention.
  • the semi-finished product 2 consists of an uncured, hot-formable steel sheet.
  • a particularly preferred material is a water-hardening tempering steel, such as that sold by the German company Benteler AG under the trade name BTR 165.
  • This steel has the following alloys
  • the components of the alloy to be added in addition to the base metal iron are to be understood in percent by weight: carbon 0.23-0.27% silicon 0.15-0.50% manganese 1.10-1.40% chromium 0.10- 0.35% molybdenum 0.00-0.35% titanium 0.03-0.05% aluminum 0.02-0.06% phosphorus max. 0.025% sulfur max. 0.01% others total 0.0020-0.0035%.
  • a first process step I the blank 3 (FIG. 1 a) is cut out of a unwound and straightened section of a coil 5 from a hot-formable sheet.
  • the hot-formable material is in an unhardened state, so that board 3 can be easily cut using conventional mechanical cutting means 4, e.g. a pair of scissors that can be cut
  • the blank 3 is advantageously cut using a blank press 6, which ensures automated feeding of the coil 5 and automatic punching out and removal of the blank 3.
  • the circuit board 3 cut out in this way is shown in FIG. 2a in a schematic perspective view.
  • a blank 3 is made from the blank 3 using the cold-forming tool 8, for example a two-stage deep-drawing tool 9 Component blank 10 shaped.
  • the blank 3 has edge regions 11 which protrude beyond an outer contour 12 of the component 1 to be molded.
  • the component blank 10 is shaped close to the final contour.
  • Near-net shape is to be understood to mean that those parts of the geometry of the finished component 1 which are associated with a macroscopic material flow are completely molded into the component blank 10 after the cold forming process has been completed. After the cold forming process has been completed, the three-dimensional parts are thus produced
  • the shape of the component 1 requires only slight shape adjustments, which require a minimal (local) material flow; the component blank 10 is shown in FIG. 2b.
  • the near-net-shape shaping can take place in a single deep-drawing step, or it can take place in several stages (FIG. 1b).
  • the component blank 10 is placed in a cutting device 15 and trimmed there (process step III, FIG. 1c).
  • the material is still in the uncured state at this point in time, so trimming can be carried out using conventional mechanical cutting means 14, such as cutting knives, folding and / or punching tools.
  • a separate cutting device 15 can be provided for the trimming.
  • the cutting means 14 can be integrated in the last stage 9 'of the deep-drawing tool 9, so that in the last deep-drawing stage 9', in addition to the final shaping of the sheet metal part blank 10, the edge-side trimming also takes place. Due to the cold forming process and the trimming (process steps II and III), a blank 3, which is trimmed close to the final contour, is produced from the blank 3, which has little of the desired shape of the component, both in terms of its three-dimensional shape and in terms of its edge contour 12 ' 1 deviates. The cut off edge regions 11 are removed in the cutting device 15; the component blank 17 (FIG. 2c) is removed from the cutting device 15 with the aid of a manipulator 19 and fed to the next process step IV.
  • process steps II and III are integrated in a single processing station, in which the forming and cutting is carried out fully automatically.
  • the component blank 17 can be removed automatically or the component blanks 17 can be removed and stacked manually.
  • the trimmed component blank 17 is subjected to hot-working in a hot-forming area 26, in the course of which it is shaped and hardened to a final shape of the component 1.
  • the trimmed component blank 17 is inserted by a manipulator 20 into a continuous furnace 21, where it is heated to a temperature which is above the structural transformation temperature in the austenitic state; Depending on the type of steel, this corresponds to heating to a temperature between 700 ° C and 1100 ° C.
  • BTR 165 there is a favorable range between 900 ° C and 1000 ° C.
  • the atmosphere of the continuous furnace is expediently rendered inert by adding a protective gas in order to scale the uncoated interfaces of the edge contour 12 'of the trimmed component blanks 17 or, if uncoated blanks 3 are used, on the entire blank surface. to prevent before.
  • a suitable protective gas is, for example, carbon dioxide or nitrogen.
  • the heated trimmed component blank 17 is then inserted with the aid of a manipulator 22 into a hot-forming tool 23 in which the three-dimensional shape and the edge contour 12 'of the trimmed component blank 17 are brought to their desired dimensions. Since the trimmed component blank 17 already has dimensions close to the final contour, only a slight shape adjustment is necessary during hot forming.
  • the hot-forming tool 23 the trimmed component blank 17 is finished and quickly cooled, as a result of which a fine-grained martensitic or bainitic material structure is set. This step corresponds to a hardening of the component blank 18 and enables a targeted adjustment of the material strength. Details of such a hardening process are e.g. described in DE 100 49 660 AI.
  • Both the entire component blank 17 can be hardened and hardening can only be carried out locally at selected points on the component blank 17.
  • the hardened component blank 18 is removed from the hot-forming tool 23 using a manipulator and, if appropriate, stacked until further processing.
  • the component 18 already has the desired outer contour 24 of the finished component 1 after the hot-forming process has been completed, so that after hot forming no time-consuming trimming of the component edge is necessary.
  • the component blank 18 can be be quenched in a cooled hot forming tool 23.
  • the hot forming of the component blank 18 is usually accompanied by scaling of the surface when using uncoated blanks 3, so that the surface must subsequently be cleaned.
  • the cycle times in the production process are advantageously short.
  • the cooling of the component blank 18 is now a bottleneck.
  • air-hardening or water-hardening materials can be used for the components 1.
  • the component blank 18 only needs to be cooled until sufficient heat resistance, rigidity and the dimensional stability of the component blank 18 is achieved.
  • the component blank 18 can then be removed from the tool 23, so that the further heat treatment process takes place in air or in water outside the tool 23, which is then very quickly available for receiving further component blanks 17 after a few seconds.
  • the press-hardened component blank 18 is first subjected to dry cleaning in a dry cleaning system 25 and then coated with a layer 34 that prevents corrosion of the component 1 in a coating process.
  • a plurality of press-hardened component blanks 18, preferably suspended in parallel or one behind the other, are introduced into the dry cleaning system 25 and blasted, for example, with shot-peening units.
  • the surface of the component blanks 18 is then essentially oxide-free.
  • the component blanks 18 are slowly heated to about 300 ° C. at about 5-10 K / min with slow rotation of the drums 31.
  • the zinc or the zinc alloy is distributed essentially homogeneously over the entire surface of the component blanks 18 and connects to the surface.
  • a uniform layer thickness is established on the component blanks 18, which can be set as desired between a few ⁇ m and over 100 ⁇ m, preferably between 5 ⁇ m and 120 ⁇ m.
  • the layer 34 is weldable and gives a tensile strength which can be more than 1300 MPa for a component 1 made of BTR 165. With the thermal diffusion process there are practically no residues or emissions into the environment.
  • the coating process is concluded with a passivation process in an adjacent passivation station 35, in which the drums 31 are removed from the coating system 30, cooled in a cooling station 36, ultrasonically cleaned of residues of the coating powder in a cleaning station 37 and in a tempering station 38 are annealed at a temperature of about 200 ° C for about 1 h, wherein the layer 34 is passivated. If necessary, suitable passivation additives can also be added. The finished corrosion-protected components 1 can then be removed from the drum 31.
  • the zinc-containing layer 34 can be applied to the press-hardened component blank 18 using a hot-dip galvanizing process which the component blanks 18 are immersed in a bath with a zinc-containing liquid.
  • FIGS. 3a to 3e schematically show an alternative process sequence for producing a spatially shaped, press-hardened component 1 from a semifinished product 2, in particular from a blank 3.
  • a first process step (FIG. 3a) the blank 3 in the blank press 6 is made from a developed and straight section of a sheet metal coil 5 cut and placed on a stack 7.
  • the blank 3 is then subjected to a hot-forming step (FIG. 3b).
  • the circuit board 3 is inserted by a manipulator 20 'into a continuous furnace 21' in which the circuit board 3 is heated to a temperature which is above the transition temperature to the austenitic structure.
  • the heated blank 3 is then placed in a hot-forming tool 23 ', in which a component blank 10' of the desired three-dimensional shape is formed from the blank 3; the component blank 10 'is cooled so quickly that it undergoes (component-wide or local) hardening.
  • the continuous furnace 21 'and the hot-forming tool 23' are advantageously in a protective gas atmosphere 26 'in order to prevent scaling of the blanks 3.
  • the hardened component blank 10 ' is then transferred to a cutting device 15' (FIG. 3c), in which the component blank 10 'is trimmed on the edge side in order to produce a blank 18' with an edge contour 12.
  • the trimming is preferably done with a laser 14 '.
  • the cut off edge regions 11 ' are disposed of.
  • the press-hardened and trimmed blank 18 ′ is subjected to dry cleaning, analogously to process stages V and VI in FIGS. Le and lf, and coated in a coating system 30.
  • the press-hardened, coated component 1 is particularly suitable as a body component in vehicle construction, which is produced in large quantities.
  • the method according to the invention enables advantageous process control with short cycle times; all process steps have industrialization potential.
  • materials pre-coated with corrosion protection such as Usibor 1500 PC
  • conventional pre-forming is possible.
  • the subsequent application of a corrosion protection means that conventional forming and trimming is also possible with high-strength materials, so that laser cutting, which is expensive in large quantities, can be replaced cost-effectively.
  • sheet metal components can be secured during their development by conventional forming simulation.
  • corrosion protection especially with zinc layers with the advantage of edge coating.
  • the fuel consumption is reduced by reducing the weight of the components, since these can be much thinner than conventional sheet metal parts, while at the same time increasing passive safety, since the components have a very high strength ,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Die Erfindung betrifft ein pressgehärtetes Bauteil, sowie ein Verfahren zur Herstellung von pressgehärteten Bauteilen, insbesondere eines Karosseriebauteils, aus einem Halbzeug aus ungehärtetem, warm umformbaren Stahlblech. In dem Verfahren werden verschiedene Verfahrensschritte ausgeführt. Aus dem Halbzeug wird durch ein Kaltumformverfahren, insbesondere ein Ziehverfahren, ein Bauteil-Rohling geformt. Der Bauteil-Rohling wird randseitig auf eine dem herzustellenden Bauteil näherungsweise entsprechende Randkontur beschnitten. Der beschnittene Bauteil-Rohling wird erwärmt und in einem Warmumform-Werkzeug pressgehärtet, anschließend wird der pressgehärtete Bauteil-Rohling in einem Beschichtungsschritt mit einer vor Korrosion schützenden Schicht überzogen.

Description

PRESSGEHARTETES BAUTEIL UND VERFAHREN SU SEINER HERSTELLUNG
Die Erfindung betrifft ein pressgehärtetes Bauteil sowie ein Verfahren zur Herstellung eines pressgehärteten Bauteils gemäß den Oberbegriffen der unabhängigen Ansprüche.
An Karosseriebauteile im Fahrzeugbau werden hohe Anforderungen bezüglich Steifigkeit und Festigkeit gestellt. Gleichzeitig wird jedoch im Interesse einer Gewichtsminimierung eine Verringerung der Materialdicke angestrebt . Eine Lösung zur Erfüllung der widersprüchlichen Anforderungen bieten hochfeste und höchstfeste Stahl erkstoffe, welche die Herstellung von Bauteilen mit sehr hohe Festigkeiten bei gleichzeitiger geringer Materialdicke ermöglichen. Durch eine geeignete Wahl von Prozessparametern während eines bei diesen Werkstoffen üblichen Warmumformens können Festigkeits- und Zähigkeitswerte eines Bauteils gezielt eingestellt werden.
Zur Herstellung eines solchen Bauteils mit Hilfe der Warmumformung wird zunächst aus einem Coil eine Platine ausgeschnitten, die anschließend oberhalb der Gefügeumwandlungs- temperatur des Stahlwerkstoffs, oberhalb derer das Werkstoff- gefüge im austenitischen Zustand vorliegt, erwärmt, im erwärmten Zustand in ein Umformwerkzeug eingelegt und in die gewünschte Bauteilform umgeformt und unter mechanischer Fi- xierung des gewünschten Umformzustands abgekühlt, wobei eine Vergütung bzw. Härtung des Bauteils erfolgt.
Oftmals wird das Bauteil vor der eigentlichen Warmumformung einem Vorformschritt oder einem Beschneidungsschritt unterzogen. Dies ist beispielsweise in der DE 101 49 221 Cl beschrieben. Ein solches Verfahren kann jedoch Probleme hinsichtlich der Korrosion zur Folge haben, da eine üblicherweise aufgebrachte Bandbeschichtung beim Vorformen beschädigt wird. Ein übliches Vorformen und Beschneiden der Bauteile besonders bei vorbeschichteten hochfesten Stählen wie Usi- bor 1500 PC, welcher eine AlSi-Beschichtung aufweist, ist nicht möglich, da die Vorbeschichtung zu spröde ist und der Korrosionsschutz dabei verloren ginge.
Aufgabe der Erfindung ist, ein pressgehärtetes Bauteil sowie ein Herstellverfahren für pressgehärtete Bauteile anzugeben, welches einen sicheren Korrosionsschutz ermöglicht und gleichzeitig für eine Serienproduktion geeignet ist .
Die Aufgabe wird erfindungsgemäß durch die Merkmale der Ansprüche 1, 2 und 9 gelöst.
Eine erste Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung von pressgehärteten Bauteilen u fasst die folgenden Verfahrensschritte: aus dem Halbzeug wird durch ein Kaltumformverfahren, insbesondere ein Ziehverfahren, ein Bauteil-Rohling geformt; der Bauteil-Rohling wird randseitig auf eine dem herzustellenden Bauteil näherungsweise entsprechende Berandungskontur beschnitten; der beschnittene Bauteil- Rohling wird erwärmt und in einem Warmumform-Werkzeug pressgehärtet; der pressgehärtete Bauteil-Rohling wird in einem Beschichtun sschritt mit einer vor Korrosion schützenden Schicht überzogen. Diese Ausgestaltung der Erfindung ermöglicht einerseits, den Bauteil-Herstellungsprozess so zu gestalten, dass auf die verfahrenstechnisch aufwändige und kostenintensive abschließende Beschneiden des gehärteten Bauteils verzichtet werden kann. Die Randbereiche werden daher bereits im ungehärteten Zustand des Bauteils abgeschnitten und nicht erst - wie herkömmlicherweise beim Warmumformen üblich - nach dem Erwär- mungs- und Harteprozess. Indem das Werkstück bereits im weichen Zustand beschnitten wird, sind wesentlich geringere Schneidkräfte als zum kalten Schneiden gehärteter Werkstoffe erforderlich, was zu einem verminderten Werkzeugverschleiß und zu einer Reduktion der Instandhaltungskosten der Schneidwerkzeuge führt. Weiterhin wird beim Beschneiden des hochfesten Werkstoffs im ungehärteten Zustand die Gefahr einer schnellen Rissbildung aufgrund der hohen Kerbempfindlichkeit dieser Werkstoffe erheblich reduziert.
Erst nach dem Harteprozess wird eine vor Korrosion schützende Schicht aufgebracht, so dass das Bauteil vollständig, also auch an den Kanten, beschichtet ist.
In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung von pressgehärteten Bauteilen werden die folgenden Verfahrensschritte durchgeführt : das Halbzeug wird erwärmt und in einem Warmumform-Werkzeug pressgehärtet; der auf diese Weise erzeugte Bauteil-Rohling wird randseitig auf eine dem herzustellenden Bauteil entsprechende Beran- dungskontur beschnitten; der pressgehärtete, beschnittene Bauteil-Rohling wird in einem Beschichtungsschritt mit einer vor Korrosion schützenden Schicht überzogen.
In dieser Ausführungsform erfolgt das Beschneiden des gehärteten Bauteils vorzugsweise mit Hilfe eines Laser- oder des Wasserstrahl-Schneideverfahrens, durch die ein hochwertiger Beschnitt der Bauteilkanten erreicht werden kann. Das nachfolgende Aufbringen einer Korrosionsschutzschicht stellt sicher, dass das Bauteil auch im Bereich der beschnittenen Ränder gegen Korrosion geschützt ist.
Wird die Schicht mit einem Feuerverzinkungs-Verfahren auf den pressgehärteten Bauteil-Rohling aufgebracht, kann eine vor Korrosion schützende Schicht aus Zink in einem geeignet in einen Fertigungsprozess integrierbaren Beschichtungsverfahren aufgebracht werden.
Wird die Schicht mit einem thermischen Diffusions-Verfahren auf den pressgehärteten Bauteil-Rohling aufgebracht, kann ein gut steuerbares Verfahren eingesetzt werden, mit dem vorzugsweise eine Schicht aus Zink oder einer Zinklegierung aufgebracht werden kann, das auch für komplexe Bauteil-Geometrien und zur Kantenschichtung geeignet ist. Die Schichtdicke kann gezielt zwischen einigen μm und über 100 μm eingestellt werden. Eine thermische Belastung des Bauteils ist gering. Bauteile können unabhängig von ihrer Größe, den Abmessungen, Konfiguration, Komplexität und Gewicht beschichtet werden.
Eine Reinigung des pressgehärteten Bauteil-Rohlings vor dem Beschichtungsschritt mit einer Trockenreinigung verbessert die Haftung der Schicht . Eine durch die Warmumformung erzeugte Verzunderung an der Oberfläche wird beseitigt. Eine chemische Vorreinigung kann entfallen.
Günstig ist, den pressgehärteten Bauteil-Rohling vor dem Beschichtungsschritt mit Partikeln, insbesondere Glaspartikeln, zu strahlen, um die Oberfläche möglichst rückstandsfrei zu reinigen. Wird der Bauteil-Rohling nach dem Beschichtungsschritt von Rückständen gereinigt, z.B. mit Ultraschall, und passiviert, wird eine Oberfläche gebildet, die einen guten Haftgrund für Beschichtungen, insbesondere Grundierungen oder Lacke, ergibt .
Vorteilhaft wird der Bauteil-Rohling nach dem Beschichtungsschritt getempert. Besonders vorteilhaft ist, wenn der Bauteil-Rohling mit einer zinkhaltigen Schicht beschichtet ist, da an der Oberfläche ein Oxid gebildet wird, welches als Haftgrund geeignet ist .
Ein erfindungsgemäßes pressgehärtetes Bauteil, insbesondere ein Karosseriebauteil, aus einem Halbzeug aus ungehärtetem warm umformbaren Stahlblech, ist nach zumindest einer der Weiterbildungen des erfindungsgemäßen Verfahrens hergestellt. Ein solches Bauteil ist besonders geeignet mit einer entsprechenden Serienfertigung in großen Stückzahlen herstellbar und verbindet eine vorteilhafte Gewichtsminderung des Bauteils mit einem ausgezeichneten Korrosionsschutz.
Weitere Vorteile und Ausgestaltungen der Erfindung sind den weiteren Ansprüchen und der Beschreibung zu entnehmen.
Im folgenden ist die Erfindung anhand eines in einer Zeichnung dargestellten Ausführungsbeispiels näher erläutert.
Dabei zeigen:
Fig. 1 einen Verfahrensablauf zur Herstellung eines pressgehärteten Bauteils mit la: Zuschneiden der Platine (Schritt I); lb: Kaltumformung (Schritt II); lc : Beschneiden der Ränder (Schritt III) ; ld: Warmumformung (Schritt IV); le : Reinigung (Schritt V); lf: Beschichtung (Schritt VI) ; Fig. 2 perspektivische Ansichten ausgewählter Zwischenstufen bei der Herstellung eines Bauteils mit 2a: ein Halbzeug; 2b: ein daraus geformter Bauteil-Rohling; 2c : ein beschnittener Bauteil-Rohling; 2d: ein beschichteter Bauteil-Rohling;
Fig. 3 einen alternativen Verfahrensablauf zur Herstellung eines pressgehärteten Bauteils mit la: Zuschneiden der Platine (Schritt I) ; lb: Warmumformung (Schritt II'); lc: Beschneiden der Ränder (Schritt III'); ld: Reinigung (Schritt IV); le : Beschichtung (Schritt V).
Die Figuren la bis lf zeigen schematisch ein erfindungsgemäßes Verfahren zur Herstellung eines räumlich geformten, pressgehärteten Bauteils 1 aus einem Halbzeug 2. Im vorliegenden Ausführungsbeispiel wird als Halbzeug 2 eine Platine 3 verwendet, welche aus einem abgewickelten Coil 5 ausgeschnitten wird. Alternativ kann als Halbzeug 2 auch ein Verbundblech zum Einsatz kommen, wie es z.B. in der DE 100 49 660 AI beschrieben ist und das aus einem Basisblech und mindestens einem Verstärkungsblech besteht. Weiterhin kann als Halbzeug 2 auch ein Taylored Blank verwendet werden, welches aus mehreren zusammen geschweißten Blechen unterschiedlicher Materialstärke und/oder unterschiedlicher Materialbeschaffenheit besteht. Alternativ kann das Halbzeug 2 ein durch ein beliebiges Umformverf hren hergestelltes dreidimensional geformtes Blechteil sein, welches mit Hilfe des erfindungsgemäßen Verfahrens eine weitere Umformung sowie eine Festigkeitsund/oder Steifigkeitserhöhung erfahren soll .
Das Halbzeug 2 besteht aus einem ungehärtetem, warm umformbaren Stahlblech. Ein besonders bevorzugter Werkstoff ist ein wasserhärtender Vergütungsstahl, wie er z.B. von der deutschen Firma Benteler AG mit dem Handelsnamen BTR 165 vertrieben wird. Dieser Stahl weist die nachfolgend genannten Legie- rungsbestandteile auf, wobei die zusätzlich zu dem Basismetall Eisen hinzuzufügenden Legierungsbestandteile in Gewichtsprozent zu verstehen sind: Kohlenstoff 0,23-0,27% Silizium 0,15-0,50% Mangan 1,10-1,40% Chrom 0,10-0,35% Molybdän 0,00-0,35% Titan 0,03-0,05% Aluminium 0,02-0,06% Phosphor max. 0,025% Schwefel max. 0,01% andere insgesamt 0,0020-0,0035%.
In einem ersten Prozessschritt I wird die Platine 3 (Fig. la) aus einem abgewickelten und gerade gerichteten Abschnitt eines Coils 5 aus einem warm umformbaren Blech ausgeschnitten. Der warm umformbare Werkstoff befindet sich zu diesem Zeitpunkt in einem ungehärteten Zustand, so dass Platine 3 problemlos mit Hilfe konventioneller mechanischer Schneidmittel 4, z.B. einer Hubschere, ausgeschnitten werden kann. Im Großserieneinsatz erfolgt das Zuschneiden der Platine 3 vorteilhafterweise mit Hilfe einer Platinenpresse 6, welche eine automatisierte Zuführung des Coils 5 und ein automatisches Ausstanzen und Abführen der ausgeschnittenen Platine 3 gewährleistet. Die auf diese Weise ausgeschnittene Platine 3 ist in Fig.2a in einer schematischen perspektivischen Ansicht dargestellt.
Die ausgeschnittenen Platinen 3 werden auf einem Stapel 7 abgelegt und in gestapelter Form einer Kaltumformstation 8 zugeführt (Fig. lb) . Hier wird in einem zweiten Prozessschritt II aus der Platine 3 mit Hilfe des Kaltumform-Werkzeugs 8, beispielsweise einem zweistufigen Tiefziehwerkzeug 9, ein Bauteil-Rohling 10 geformt. Um eine qualitativ hochwertige Ausformung der Bauteilgeometrie gewährleisten zu können, weist die Platine 3 Randbereiche 11 auf, die über eine Außenkontur 12 des zu formenden Bauteils 1 hinausragen. Im Rahmen dieses Kaltumformprozesses (Prozessschritt II) wird der Bauteil-Rohling 10 endkonturnah ausgeformt. Unter „endkonturnah" soll dabei verstanden werden, dass diejenigen Teile der Geometrie des fertigen Bauteils 1, welche mit einem makroskopischen Materialfluss einhergehen, nach Abschluss des Kaltumformprozesses vollständig in den Bauteil-Rohling 10 eingeformt sind. Nach Abschluss des Kaltumformprozesses sind somit zur Herstellung der dreidimensionalen Form des Bauteils 1 nur noch geringe Formanpassungen notwendig, welche einen minimalen (lokalen) Materialfluss erfordern; der Bauteil-Rohling 10 ist in Fig. 2b dargestellt.
Je nach Komplexität des Bauteils 1 kann die endkonturnahe Formgebung in einem einzigen Tiefziehschritt erfolgen, oder sie kann mehrstufig erfolgen (Fig. lb) . Anschließend an den Kaltumformprozess wird der Bauteil-Rohling 10 in eine Schneidvorrichtung 15 eingelegt und dort beschnitten (Prozessschritt III, Fig. lc) . Der Werkstoff befindet sich zu diesem Zeitpunkt immer noch im ungehärteten Zustand, daher kann das Beschneiden mit Hilfe konventioneller mechanischer Schneidmittel 14, wie etwa Schneidmesser, Abkant- und/oder Stanzwerkzeugen, erfolgen.
Für das Beschneiden kann, wie in Fig. lc gezeigt, eine separate Schneidvorrichtung 15 vorgesehen sein. Alternativ können die Schneidmittel 14 in die letzte Stufe 9' des Tiefziehwerk- zeugs 9 integriert sein, so dass in der letzten Tiefziehstufe 9' zusätzlich zu der Fertigformung des Blechteil-Rohlings 10 auch das randseitige Beschneiden erfolgt. Durch den Kaltumformprozess und das Beschneiden (Prozessschritte II und III) wird aus der Platine 3 ein endkonturnah beschnittener Bauteil-Rohling 17 hergestellt der sowohl in Bezug auf seine dreidimensionale Form als auch in Bezug auf seine Randkontur 12' nur wenig von der gewünschten Form des Bauteils 1 abweicht. Die abgeschnittenen Randbereiche 11 werden in der Schneidvorrichtung 15 abgeführt; der Bauteil- Rohling 17 (Fig. 2c) wird mit Hilfe eines Manipulators 19 aus der Schneidvorrichtung 15 entnommen und dem nächsten Prozessschritt IV zugeführt .
In einer besonders vorteilhaften Alternative sind die Prozessschritte II und III in einer einzigen Bearbeitungsstation integriert, in der das Umformen und Schneiden vollautomatisch vorgenommen wird. Die Entnahme des Bauteil-Rohlings 17 kann automatisiert erfolgen oder es kann eine manuelle Entnahme und Abstapelung der Bauteil-Rohlinge 17 erfolgen.
In dem folgenden Prozessschritt IV (Fig. ld) wird der beschnittene Bauteil-Rohling 17 einer Warmumformung in einem Warmumformbereich 26 unterzogen, im Rahmen derer er auf eine endgültige Form des Bauteils 1 ausgeformt und gehärtet wird. Der beschnittene Bauteil-Rohling 17 wird von einem Manipulator 20 in einen Durchlaufofen 21 eingelegt, wo er auf eine Temperatur erhitzt wird, die oberhalb der Gefügeumwandlungs- temperatur in den austenitischen Zustand liegt; je nach Stahlsorte entspricht dies einer Erhitzung auf eine Temperatur zwischen 700°C und 1100°C. Für einen bevorzugten Werkstoff BTR 165 ist ein günstiger Bereich zwischen 900°C und 1000°C. Die Atmosphäre des Durchlaufofens wird zweckmäßigerweise durch Zugabe eines Schutzgases inertisiert, um ein Verzundern der unbeschichteten Schnittstellen der Randkontur 12' der beschnittenen Bauteil-Rohlinge 17 oder, bei Verwendung unbeschichteter Platinen 3, an der gesamten Rohlingsoberflä- ehe zu verhindern. Ein geeignetes Schutzgas ist z.B. Kohlendioxid oder Stickstoff.
Der erhitzte beschnittene Bauteil-Rohling 17 wird dann mit Hilfe eines Manipulators 22 in ein Warmumform-Werkzeug 23 eingelegt, in dem die dreidimensionale Gestalt und die Randkontur 12' des beschnittenen Bauteil-Rohlings 17 auf ihr gewünschtes Maß gebracht werden. Da der beschnittene Bauteil- Rohling 17 bereits endkonturnahe Maße aufweist, ist während der Warmumformung nur noch eine geringe Formanpassung notwendig. Im Warmumform-Werkzeug 23 wird der beschnittene Bauteil- Rohling 17 fertig geformt und schnell abgekühlt, wodurch ein feinkörniges martensitisches oder bainitisches Werkstoffgefü- ge eingestellt wird. Dieser Schritt entspricht einer Härtung des Bauteil-Rohlings 18 und ermöglicht eine gezielte Einstellung der Werkstofffestigkeit . Einzelheiten eines solchen Härtungsprozesses sind z.B. in der DE 100 49 660 AI beschrieben. Es kann sowohl der ganze Bauteil-Rohling 17 gehärtet werden, als auch lediglich lokal an ausgewählten Stellen des Bauteil- Rohlings 17 eine Härtung vorgenommen werden. Ist der gewünschte Härtungsgrad des Bauteil-Rohlings 18 erreicht, wird der gehärtete Bauteil-Rohling 18 mit einem Manipulator aus dem Warmumform-Werkzeug 23 genommen und gegebenenfalls bis zur weiteren Verarbeitung gestapelt . Wegen dem dem Warmum- form-Prozess vorgelagerten endkonturnahen Beschneiden des Bauteil-Rohlings 10 sowie der Formanpassung der Randkontur 12' im Warmumform-Werkzeug 23 weist das Bauteil 18 nach Abschluss des Warmumform-Prozesses bereits die gewünschte Außenkontur 24 des fertigen Bauteils 1 auf, so dass nach der Warmumformung kein zeitaufwändiges Beschneiden des Bauteil- randes notwendig ist.
Um eine schnelle Abschreckung des Bauteil-Rohlings 18 im Zuge der Warmumformung zu erreichen, kann der Bauteil-Rohling 18 in einem gekühlten Warmumform-Werkzeug 23 abgeschreckt werden. Die Warmumformung des Bauteil-Rohlings 18 geht üblicherweise bei der Verwendung unbeschichteter Platinen 3 mit einer Verzunderung der Oberfläche einher, so dass die Oberfläche anschließend gereinigt werden muss .
Da kein Laserschneiden des gehärteten Bauteil-Rohlings 18 erfolgen muss, sind die TaktZeiten im Fertigungsverfahren vorteilhaft kurz. Im erfindungsgemäßen Verfahrensablauf ist nunmehr das Abkühlen des Bauteil-Rohlings 18 ein Engpass . Um diesen zu entschärfen, können lufthärtende oder wasserhärtende Werkstoffe für die Bauteile 1 eingesetzt werden. Der Bauteil-Rohling 18 braucht nur soweit abzukühlen, bis eine ausreichende Warmfestigkeit, Steifigkeit und damit verbundene Maßhaltigkeit des Bauteil-Rohlings 18 erreicht ist. Dann kann der Bauteil-Rohling 18 aus dem Werkzeug 23 entnommen werden, so dass der weitere Wärmebehandlungsvorgang an der Luft oder in Wasser außerhalb des Werkzeugs 23 erfolgt, das dann nach einigen Sekunden sehr schnell wieder zur Aufnahme weiterer Bauteil-Rohlinge 17 zur Verfügung steht.
In weiteren Prozessschritten V und VI (Fig. le, Fig. lf) wird der pressgehärtete Bauteil-Rohling 18 zunächst einer Trockenreinigung in einer Trockenreinigungsanlage 25 unterzogen und dann in einem Beschichtungsverfahren mit einer eine Korrosion des Bauteils 1 verhindernden Schicht 34 überzogen. Dazu werden eine Mehrzahl pressgehärteter Bauteil-Rohlinge 18, vorzugsweise parallel hängend oder hintereinander liegend in die Trockenreinigungsanlage 25 eingebracht und z.B. mit Kugel- Strahleinheiten gestrahlt. Die Oberfläche der Bauteil- Rohlingen 18 ist anschließend im wesentlichen oxidfrei. Anschließend werden Trommeln 31 mit den gereinigten und pressgehärteten Bauteil-Rohlingen 18 sowie einem zinkhaltigen Pulver, vorzugsweise eine Zinklegierung oder eine zinkhaltige Mischung, beschickt, geschlossen und in eine Beschichtungsan- lage 30 eingebracht. Dort werden die Bauteil-Rohlinge 18 langsam mit etwa 5-10 K/min unter langsamer Rotation der Trommeln 31 auf etwa 300°C erwärmt. In diesem thermischen Diffusionsverfahren verteilt sich das Zink bzw. die Zinklegierung im wesentlichen homogen über die gesamte Oberfläche der Bauteil-Rohlinge 18 und verbindet sich mit der Oberfläche.
In Abhängigkeit der Zusammensetzung des Pulvers, der Zeit und der Temperatur stellt sich auf den Bauteil-Rohlingen 18 eine gleichmäßige Schichtdicke ein, die beliebig zwischen einigen μm und über 100 μm, bevorzugt zwischen 5 μm und 120 μm, eingestellt werden kann. Die Schicht 34 ist schweißbar und ergibt eine Zugfestigkeit, die für ein Bauteil 1 aus BTR 165 mehr als 1300 MPa betragen kann. Bei dem thermischen Diffusionsverfahren fallen praktisch keine Rückstände oder Emissionen in die Umwelt an.
Das Beschichtungsverfahren wird mit einem Passivierungsvor- gang in einer angrenzenden Passivierungsstation 35 abgeschlossen, bei dem die Trommeln 31 aus der Beschichtungsanla- ge 30 ausgeschleust, in einer Kühlstation 36 gekühlt, in einer Reinigungsstation 37 mit Ultraschall von Rückständen des Beschichtungspulvers befreit und in einer Temperstation 38 bei einer Temperatur von etwa 200°C für etwa 1 h getempert werden, wobei die Schicht 34 passiviert wird. Gegebenenfalls können auch geeignete Passivierungszusätze zugegeben werden. Dann können die fertigen korrosionsgeschützten Bauteile 1 aus der Trommel 31 entnommen werden.
In einer alternativen Ausgestaltung kann die zinkhaltige Schicht 34 mit einem Feuerverzinkungs-Verfahren auf den pressgehärteten Bauteil-Rohling 18 aufgebracht werden, bei dem die Bauteil-Rohlinge 18 in ein Bad mit einer zinkhaltigen Flüssigkeit getaucht werden.
Figuren 3a bis 3e zeigen schematisch einen alternativen Verfahrensablauf zur Herstellung eines räumlich geformten, pressgehärteten Bauteils 1 aus einem Halbzeug 2, insbesondere aus einer Platine 3. In einem ersten Prozessschritt (Fig. 3a) wird die Platine 3 in der Platinenpresse 6 aus einem abgewickelten und gerade gerichteten Abschnitt eines Blechcoils 5 zugeschnitten und auf einem Stapel 7 abgelegt. Anschließend wird die Platine 3 einem Warmumformschritt unterzogen (Fig. 3b) . Hierzu wird die Platine 3 von einem Manipulator 20' in einen Durchlaufofen 21' eingelegt, in dem die Platine 3 auf eine Temperatur erwärmt wird, die oberhalb der Übergangstem- peratur in den austenitischen Gefügezustand liegt. Anschließend wird die erhitzte Platine 3 in ein Warmumformwerkzeug 23' eingelegt, in dem aus der Platine 3 ein Bauteil-Rohling 10' der gewünschten dreidimensionalen Form ausgeformt wird; dabei wird der Bauteil-Rohling 10' so schnell abgekühlt, dass er eine (bauteilweite oder lokale) Härtung erfährt. Der Durchlaufofen 21' und das Warmumformwerkzeug 23' befinden sich vorteilhafterweise in einer Schutzgasatmosphäre 26', um eine Verzunderung der Platinen 3 zu unterbinden.
Anschließend wird der gehärtete Bauteil-Rohling 10' an eine Schneidvorrichtung 15' übergeben (Fig. 3c) , in der der Bauteil-Rohling 10' randseitig beschnitten wird, um einen Rohling 18' mit Randkontur 12 zu erzeugen. Das Beschneiden erfolgt vorzugsweise mit einem Laser 14'. Die abgeschnittenen Randbereiche 11' werden entsorgt. In den weiteren Prozessschritten der Figuren 3d und 3e wird der pressgehärtete und beschnittene Rohling 18' - analog zu den Prozessstufen V und VI der Figuren le und lf - einer Trockenreinigung unterzogen und in einer Beschichtungsanlage 30 beschichtet. Das pressgehärtete, beschichtete Bauteil 1 ist insbesondere als Karosseriebauteil im Fahrzeugbau geeignet, welches in großen Stückzahlen hergestellt wird. Das erfindungsgemäße Verfahren ermöglicht eine vorteilhafte Prozessführung mit kurzen Taktzeiten, alle Prozessschritte haben Industrialisierungspotential. Im Gegensatz zu mit einem Korrosionsschutz vorbeschichteten Werkstoffen, wie etwa Usibor 1500 PC, ist ein Einsatz einer konventionellen Vor-Umformung möglich. Durch das nachträgliche Aufbringen eines Korrosionsschutzes wird ein konventionelles Umformen und Beschneiden auch bei hochfesten Werkstoffen möglich, so dass das bei großen Stückzahlen aufwändige Laserschneiden kostengünstige ersetzt werden kann. Blechbauteile können durch diese Fertigungsmethode bereits in der Entwicklung durch konventionelle Umform- Simulation auf ihre Herstellung abgesichert werden. Hinzu kommt der Korrosionsschutz, insbesondere bei Zinkschichten mit dem Vorteil der KantenbeSchichtung. In einem Fahrzeug wiederum, das aus solchen Bauteilen gefügt ist, wird der Kraftstoffverbrauch durch die Verminderung des Gewichts der Bauteile gesenkt, da diese wesentlich dünner sein können als konventionelle Blechteile, während gleichzeitig die passive Sicherheit erhöht wird, da die Bauteile eine sehr hohe Festigkeit aufweisen.

Claims

DaimlerChrysler AGPatentansprüche
Verfahren zur Herstellung von pressgehärteten Bauteilen, insbesondere eines Karosseriebauteils, aus einem Halbzeug (2) aus ungehärtetem, warm umformbaren Stahlblech, d a d u r c h g e k e n n z e i c h n e t , dass folgende Verfahrensschritte ausgeführt werden - aus dem Halbzeug (2) wird durch ein Kaltumformverfahren, insbesondere ein Ziehverfahren, ein Bauteil- Rohling (10) geformt; - der Bauteil-Rohling (10) wird randseitig auf eine dem herzustellenden Bauteil (1) näherungsweise entsprechende Randkontur (12') beschnitten; - der beschnittene Bauteil-Rohling (17) wird erwärmt und in einem Warmumform-Werkzeug (23) pressgehärtet; - der pressgehärtete Bauteil-Rohling (18) wird in einem Beschichtungsschritt mit einer vor Korrosion schützenden Schicht (34) überzogen.
Verfahren zur Herstellung von pressgehärteten Bauteilen, insbesondere eines Karosseriebauteils, aus einem Halbzeug (2) aus ungehärtetem, warm umformbaren Stahlblech, d a d u r c h g e k e n n z e i c h n e t , dass folgende Verfahrensschritte ausgeführt werden - das Halbzeug (2) wird erwärmt und in einem Warmumform- Werkzeug (23) pressgehärtet; - der auf diese Weise erzeugte pressgehärtete Bauteil- Rohling (10') wird randseitig auf eine dem herzustellenden Bauteil (1) entsprechende Randkontur (12') beschnitten; - der pressgehärtete, beschnittene Bauteil-Rohling (18') wird in einem Beschichtungsschritt mit einer vor Korrosion schützenden Schicht (34) überzogen.
3. Verfahren nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t , dass die Schicht (34) mit einem Feuerverzinkungs- Verfahren auf den pressgehärteten Bauteil-Rohling (18, 18') aufgebracht wird.
4. Verfahren nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t , dass die Schicht (34) mit einem thermischen Diffusions- Verfahren auf den pressgehärteten Bauteil-Rohling (18, 18') aufgebracht wird.
5. Verfahren nach zumindest einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der pressgehärtete Bauteil-Rohling (18,18') vor dem Beschichtungsschritt mit einer Trockenreinigung gereinigt wird.
6. Verfahren nach Anspruch 5 , d a d u r c h g e k e n n z e i c h n e t , dass der pressgehärtete Bauteil-Rohling (18,18') vor dem Beschichtungsschritt mit Partikeln, insbesondere Glaspartikeln, gestrahlt wird. ' . Verfahren nach zumindest einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der beschichtete Bauteil-Rohling (18,18') nach dem Beschichtungsschritt von Rückständen des Beschichtungs- schritts gereinigt wird.
i . Verfahren nach zumindest einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der beschichtete Bauteil-Rohling (18,18') nach dem Beschichtungsschritt getempert wird.
). Pressgehärtetes Bauteil, insbesondere Karosseriebauteil, aus einem Halbzeug (2) aus ungehärtetem, warm umformbaren Stahlblech, d a d u r c h g e k e n n z e i c h n e t , dass es nach dem Verfahren nach zumindest einem der vorangegangenen Ansprüche hergestellt ist .
EP04739467.1A 2003-07-22 2004-05-29 Verfahren zur herstellung von pressgehärteten bauteilen Expired - Fee Related EP1646458B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10333165A DE10333165A1 (de) 2003-07-22 2003-07-22 Pressgehärtetes Bauteil und Verfahren zur Herstellung eines pressgehärteten Bauteils
PCT/EP2004/005855 WO2005018848A1 (de) 2003-07-22 2004-05-29 Pressgehärtetes bauteil und verfahren zu seiner herstellung

Publications (2)

Publication Number Publication Date
EP1646458A1 true EP1646458A1 (de) 2006-04-19
EP1646458B1 EP1646458B1 (de) 2016-04-06

Family

ID=34088708

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04739467.1A Expired - Fee Related EP1646458B1 (de) 2003-07-22 2004-05-29 Verfahren zur herstellung von pressgehärteten bauteilen

Country Status (6)

Country Link
US (2) US8141230B2 (de)
EP (1) EP1646458B1 (de)
JP (1) JP2007500782A (de)
DE (1) DE10333165A1 (de)
WO (1) WO2005018848A1 (de)
ZA (1) ZA200600593B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078484A1 (de) 2016-10-26 2018-05-03 Thermission Ag Verfahren für die aufbringung einer schichtstruktur durch thermodiffusion auf eine metallische oder intermetallische oberfläche
WO2019242818A1 (de) 2018-06-20 2019-12-26 Benteler Automobiltechnik Gmbh Kraftfahrzeugbauteil aus vergütungsstahl

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333165A1 (de) * 2003-07-22 2005-02-24 Daimlerchrysler Ag Pressgehärtetes Bauteil und Verfahren zur Herstellung eines pressgehärteten Bauteils
US8048101B2 (en) 2004-02-25 2011-11-01 Femasys Inc. Methods and devices for conduit occlusion
US9238127B2 (en) 2004-02-25 2016-01-19 Femasys Inc. Methods and devices for delivering to conduit
US8048086B2 (en) 2004-02-25 2011-11-01 Femasys Inc. Methods and devices for conduit occlusion
US8052669B2 (en) 2004-02-25 2011-11-08 Femasys Inc. Methods and devices for delivery of compositions to conduits
EP1767659A1 (de) 2005-09-21 2007-03-28 ARCELOR France Herstellungsverfahren eines Stahlwerkstücks mit mehrphasigem Mikrogefüge
DE102007013739B3 (de) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Verfahren zum flexiblen Walzen von beschichteten Stahlbändern
JP4994934B2 (ja) * 2007-04-24 2012-08-08 アイシン高丘株式会社 ダイクエンチ方法
US20110151271A1 (en) * 2008-07-10 2011-06-23 Shiloh Industries, Inc. Metal forming process and welded coil assembly
TWI365088B (en) * 2008-08-27 2012-06-01 Her Chang Elaborate Co Ltd Method for making golf club head
DE102008049178B4 (de) * 2008-09-26 2018-02-22 Bilstein Gmbh & Co. Kg Verfahren zur Herstellung eines Formbauteils mit Bereichen unterschiedlicher Festigkeit aus Kaltband
US9554826B2 (en) 2008-10-03 2017-01-31 Femasys, Inc. Contrast agent injection system for sonographic imaging
US10070888B2 (en) 2008-10-03 2018-09-11 Femasys, Inc. Methods and devices for sonographic imaging
KR100902857B1 (ko) * 2008-10-16 2009-06-16 현대하이스코 주식회사 형상이 복잡한 성형품 제조를 위한 초고강도 강철성형체 제조방법
DE102008043401B4 (de) * 2008-11-03 2017-09-21 Volkswagen Ag Verfahren und Vorrichtung zur Herstellung von Blechbauteilen mittels Warmumformung sowie dadurch hergestellte Blechbauteile
US8459084B2 (en) * 2009-02-05 2013-06-11 Usamp Elevated temperature forming method and preheater apparatus
DE102009003508B4 (de) * 2009-02-19 2013-01-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines pressgehärteten Metallbauteils
DE102009017326A1 (de) * 2009-04-16 2010-10-21 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von pressgehärteten Bauteilen
DE102009021307A1 (de) * 2009-05-14 2011-01-05 Diehl Metall Stiftung & Co. Kg Verfahren zur Herstellung eines Bestandteils einer Synchronisierungseinrichtung für ein Schaltgetriebe
DE102009032651A1 (de) 2009-07-09 2011-01-13 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung einer Karosserie für ein Kraftfahrzeug und Karosserie
DE102009050533A1 (de) * 2009-10-23 2011-04-28 Thyssenkrupp Sofedit S.A.S Verfahren und Warmumformanlage zur Herstellung eines gehärteten, warm umgeformten Werkstücks
EP2369020B1 (de) * 2010-03-16 2016-10-05 Thermission AG Verfahren zur Behandlung eines Metallelements für ein Automobil
JP5740099B2 (ja) * 2010-04-23 2015-06-24 東プレ株式会社 熱間プレス製品の製造方法
KR101033361B1 (ko) 2010-06-30 2011-05-09 현대하이스코 주식회사 생산성을 향상시킨 열간 프레스 성형체 제조방법
DE102010027179B3 (de) * 2010-07-14 2011-11-10 Benteler Automobiltechnik Gmbh Verfahren und Fertigungsanlage zur Herstellung von Kraftfahrzeugbauteilen
US20130189539A1 (en) * 2010-10-11 2013-07-25 Tata Steel Ijmuiden B.V. Steel strip composite and a method for making the same
US8561450B2 (en) * 2011-03-11 2013-10-22 GM Global Technology Operations LLC System and method for annealing of a pre-formed panel
JP2012211527A (ja) 2011-03-30 2012-11-01 Mitsubishi Heavy Ind Ltd ガスタービン
JP5729213B2 (ja) * 2011-08-18 2015-06-03 新日鐵住金株式会社 熱間プレス部材の製造方法
DE102011113675A1 (de) * 2011-09-20 2013-03-21 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Verstärkungsstruktur zum Verstärken einer Seitenwandstruktur für ein Kraftfahrzeug im Bereich eines Türausschnittes
US9089886B2 (en) 2011-09-23 2015-07-28 Thermission Ag Method of treating a metal element for an automobile
DE102011054865B4 (de) * 2011-10-27 2016-05-12 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Kraftfahrzeugkarosseriebauteils sowie Kraftfahrzeugkarosseriebauteil
CN102728708A (zh) * 2012-07-17 2012-10-17 吉林省瑞恒机械有限公司 一种超高强度钢板的冷-热复合冲压成形法
DE102012215512A1 (de) 2012-08-31 2014-05-28 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Fertigungsanlage zum Herstellen eines warmumgeformten oder pressgehärteten Blechformteils mit einer metallischen Korrosionsschutzbeschichtung sowie hiermit hergestelltes Blechformteil und Fahrzeugkarosserie mit solchem Blechformteil
WO2015152263A1 (ja) 2014-03-31 2015-10-08 新日鐵住金株式会社 ホットスタンプ鋼材
TWI534272B (zh) * 2014-03-31 2016-05-21 新日鐵住金股份有限公司 熱壓印鋼材
CN106163688A (zh) * 2014-05-23 2016-11-23 约翰逊控制技术公司 车辆座椅结构和部件的方法内激光硬化/形成
CN104492918B (zh) * 2014-12-20 2016-06-15 无锡朗贤汽车组件研发中心有限公司 减小热成形钢板冲头磨损的冲孔工艺
DE102015010112A1 (de) 2015-08-04 2016-03-24 Daimler Ag Herstellung eines korrosionsgeschützten Bauteils
US10767756B2 (en) * 2015-10-13 2020-09-08 Magna Powertrain Inc. Methods of forming components utilizing ultra-high strength steel and components formed thereby
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
CN106391805B (zh) * 2016-10-11 2019-05-28 上海翼锐汽车科技有限公司 钢板间接热冲压变速成形方法
TW201925495A (zh) 2017-11-02 2019-07-01 美商Ak鋼鐵資產公司 具特製性質之加壓硬化鋼
JP2019104033A (ja) * 2017-12-13 2019-06-27 株式会社エイチアンドエフ 補強ブランク板材の製造方法
DE102018207488A1 (de) * 2018-05-15 2019-11-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Herstellung eines Blechbauteils
US11613789B2 (en) 2018-05-24 2023-03-28 GM Global Technology Operations LLC Method for improving both strength and ductility of a press-hardening steel
WO2019241902A1 (en) 2018-06-19 2019-12-26 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
CN109821951B (zh) * 2018-12-06 2020-07-21 苏州普热斯勒先进成型技术有限公司 一种耐腐蚀热冲压零件的制备方法及装置
CN111434405B (zh) * 2019-06-12 2021-10-15 苏州普热斯勒先进成型技术有限公司 一种热冲压件的制备方法及装置
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
CN112517791B (zh) * 2020-11-23 2023-06-02 天津佳宏腾翔科技有限公司 一种车门外板冲压成型装置

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1552059A (en) * 1921-12-20 1925-09-01 Charles J Kirk Apparatus for sherardizing metal articles
US1850576A (en) * 1926-06-30 1932-03-22 Western Electric Co Apparatus used in the process of heat treating metallic articles
US1920678A (en) * 1927-09-19 1933-08-01 Cowper-Coles Sherard Osborn Protection of metallic surfaces from corrosion
US2748037A (en) * 1951-03-23 1956-05-29 Rohr Aircraft Corp Method of treating articles requiring annealing
US2814578A (en) * 1953-12-07 1957-11-26 United States Steel Corp Process of fabricating coated steel products
US2707629A (en) * 1954-03-25 1955-05-03 Frank J Kennedy Method and apparatus for heating metal parts
US3133829A (en) * 1959-02-02 1964-05-19 Du Pont Method of applying protective coatings to metals
US3297469A (en) * 1963-08-02 1967-01-10 Chrysler Corp Process for preparing sheet metal surfaces with dry lubricant coatings
US3558460A (en) * 1966-01-26 1971-01-26 Nippon Steel Corp Process for surface treatment of steel strip
US4029478A (en) * 1976-01-05 1977-06-14 Inland Steel Company Zn-Al hot-dip coated ferrous sheet
JPS52120219A (en) * 1976-04-02 1977-10-08 Honda Motor Co Ltd Production of brake disk
FR2366376A1 (fr) * 1976-10-01 1978-04-28 Dreulle Noel Alliage destine a la galvanisation au trempe d'aciers, y compris aciers contenant du silicium, et procede de galvanisation adapte a cet alliage
CA1132011A (en) * 1978-11-09 1982-09-21 Bernard Schoeps Process and apparatus for producing a sheet or strip which is lightly galvanized on one or both sides and products obtained by said process
US4730870A (en) * 1986-03-14 1988-03-15 American Motors Corporation Modular vehicle construction and assembly method
US5089551A (en) * 1988-06-16 1992-02-18 The United States Of America As Represented By The Secretary Of The Navy Corrosion-resistant alkyd coatings
SE467829B (sv) * 1988-09-02 1992-09-21 Ovako Steel Ab Foerfarande foer framstaellning av element av staal med eutektoid sammansaettning
US5100942A (en) * 1990-12-14 1992-03-31 The United States Of America As Represented By The Secretary Of The Navy Corrosion-resistant acrylic coatings
GB9112499D0 (en) * 1991-06-11 1991-07-31 Sprayforming Dev Ltd Improved corrosion protection of marine structures
US5494706A (en) * 1993-06-29 1996-02-27 Nkk Corporation Method for producing zinc coated steel sheet
US5616189A (en) * 1993-07-28 1997-04-01 Alcan International Limited Aluminum alloys and process for making aluminum alloy sheet
WO1995020683A1 (fr) * 1994-01-26 1995-08-03 Kawasaki Steel Corporation Procede de production de tole d'acier inoxydable a haute resistance a la corrosion
KR100374104B1 (ko) * 1994-09-06 2003-04-18 알칸 인터내셔널 리미티드 알루미늄합금시이트제조방법
JP3796286B2 (ja) * 1996-01-22 2006-07-12 関西ペイント株式会社 塗装方法
CA2246310C (en) * 1996-02-12 2004-11-16 Thyssen Transrapid System Gmbh Process for producing an electromagnetic subassembly for a magnetic levitation railway
JP3407562B2 (ja) * 1996-09-20 2003-05-19 住友金属工業株式会社 高炭素薄鋼板の製造方法および部品の製造方法
DE19743802C2 (de) * 1996-10-07 2000-09-14 Benteler Werke Ag Verfahren zur Herstellung eines metallischen Formbauteils
EP0968066B1 (de) * 1997-03-17 2004-02-25 Levinski, Leonid Pulvermischung zum thermischen diffusionsbeschichten
JPH11140540A (ja) * 1997-09-05 1999-05-25 Topy Ind Ltd 熱処理部材の製造方法
SE521771C2 (sv) * 1998-03-16 2003-12-02 Ovako Steel Ab Sätt att tillverka komponenter av stål
DE19951133A1 (de) * 1999-10-23 2001-04-26 Henkel Kgaa Leitfähige, organische Beschichtungen
FR2807447B1 (fr) * 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
US20030015263A1 (en) * 2000-05-26 2003-01-23 Chikara Kami Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
US6690083B1 (en) * 2000-06-01 2004-02-10 Koninklijke Philips Electronics N.V. Use of silicide blocking layer to create high valued resistor and diode for sub-1V bandgap
TW449639B (en) * 2000-06-14 2001-08-11 Huang Chieh Metal Industry Co Carbon steel louver board and its manufacture method
JP2002088595A (ja) * 2000-06-30 2002-03-27 Kanai Hiroaki 紡機用リングおよびその製造方法
DE10049660B4 (de) * 2000-10-07 2005-02-24 Daimlerchrysler Ag Verfahren zum Herstellen lokal verstärkter Blechumformteile
AUPR133100A0 (en) * 2000-11-08 2000-11-30 Bhp Innovation Pty Ltd Cold-formable metal-coated strip
JP3764380B2 (ja) * 2000-12-15 2006-04-05 株式会社神戸製鋼所 延性、めっき性、スポット溶接性および熱処理後の強度安定性に優れた溶融亜鉛めっき鋼板
US7192624B2 (en) * 2000-12-26 2007-03-20 Distek, Ltd. Method for obtaining thermal diffusion coating
US7475478B2 (en) * 2001-06-29 2009-01-13 Kva, Inc. Method for manufacturing automotive structural members
DE10134812C2 (de) * 2001-07-17 2003-06-26 Goldschmidt Ag Th Enteisende Fluxsalz-Zusammensetzung für Fluxbäder
US20030025341A1 (en) * 2001-08-01 2003-02-06 Joseph Kollaritsch Ultra high strength bumper system facebar
JP4768174B2 (ja) * 2001-09-27 2011-09-07 株式会社ジーテクト 車両用ドアの補強ビーム及びその製造方法
DE10149221C1 (de) * 2001-10-05 2002-08-08 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines gehärteten Blechprofils
US7422652B2 (en) * 2001-10-10 2008-09-09 Ford Motor Company Method of making a body panel assembly
US7115322B2 (en) * 2001-10-10 2006-10-03 Ford Global Technologies, Llc Hem flange
DE10224319B4 (de) * 2002-05-31 2006-04-27 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines beschichteten Strukturbauteils für den Fahrzeugbau
DE10254695B3 (de) * 2002-09-13 2004-04-15 Daimlerchrysler Ag Verfahren zur Herstellung eines metallischen Formbauteils
US7998289B2 (en) * 2002-09-13 2011-08-16 Daimler Ag Press-hardened part and method for the production thereof
DE10246614A1 (de) * 2002-10-07 2004-04-15 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines beschichteten Strukturbauteils für den Fahrzeugbau
DE10247372A1 (de) * 2002-10-10 2004-04-22 Rexroth Star Gmbh Verfahren zur Herstellung von gehärteten, insbesondere wälzbeanspruchten, Bauteilen aus Stahl
US7241350B2 (en) * 2002-12-03 2007-07-10 Greenkote (Israel) Ltd. Corrosion resistant poly-metal diffusion coatings and a method of applying same
DE10300371B3 (de) * 2003-01-06 2004-04-08 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Formbauteils aus härtbarem Stahl mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität
DE10305725B3 (de) * 2003-02-12 2004-04-08 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Formbauteils aus Stahl mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität
US20040163740A1 (en) * 2003-02-25 2004-08-26 The Boeing Company Surface pre-treatment method for pre-coated heat-treatable, precipitation-hardenable stainless steel ferrous-alloy components and components coated thereby
US6953509B2 (en) * 2003-06-03 2005-10-11 The Boeing Company Method for preparing pre-coated, metallic components and components prepared thereby
DE10333165A1 (de) * 2003-07-22 2005-02-24 Daimlerchrysler Ag Pressgehärtetes Bauteil und Verfahren zur Herstellung eines pressgehärteten Bauteils
DE10333166A1 (de) * 2003-07-22 2005-02-10 Daimlerchrysler Ag Pressgehärtetes Bauteil und Verfahren zur Herstellung eines pressgehärteten Bauteils
US7832242B2 (en) * 2003-07-29 2010-11-16 Voestalpine Stahl Gmbh Method for producing a hardened profile part
DE10348086A1 (de) * 2003-10-13 2005-05-19 Benteler Automobiltechnik Gmbh Hochfestes Stahlbauteil mit Korrosionschutzschicht aus Zink
DE102004038626B3 (de) * 2004-08-09 2006-02-02 Voestalpine Motion Gmbh Verfahren zum Herstellen von gehärteten Bauteilen aus Stahlblech
US7128949B2 (en) * 2004-08-31 2006-10-31 The Boeing Company Surface pre-treatment method for pre-coated precipitation-hardenable stainless-steel ferrous-alloy components and components pre-coated thereby
DE102006040893B3 (de) * 2006-08-31 2008-01-10 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Blechbauteils für Kraftfahrzeuge
DE102008034996B4 (de) * 2008-07-25 2010-11-18 Benteler Automobiltechnik Gmbh Vorrichtung zum Warmformen, Presshärten und Schneiden eines Halbzeugs aus härtbarem Stahl
EP2175041A1 (de) * 2008-10-09 2010-04-14 C.R.F. Società Consortile per Azioni Verfahren zum Warmumformen von metallischen Platten
KR100902857B1 (ko) * 2008-10-16 2009-06-16 현대하이스코 주식회사 형상이 복잡한 성형품 제조를 위한 초고강도 강철성형체 제조방법
DE102009017326A1 (de) * 2009-04-16 2010-10-21 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von pressgehärteten Bauteilen
US8499607B2 (en) * 2009-08-28 2013-08-06 GM Global Technology Operations LLC Forming of complex shapes in aluminum and magnesium alloy workpieces
DE102009053349B4 (de) * 2009-11-17 2014-07-03 Benteler Defense Gmbh & Co. Kg Panzerstahlbauteil
DE102010004081C5 (de) * 2010-01-06 2016-11-03 Benteler Automobiltechnik Gmbh Verfahren zum Warmformen und Härten einer Platine
US9593391B2 (en) * 2010-02-19 2017-03-14 Tata Steel Nederland Technology Bv Strip, sheet or blank suitable for hot forming and process for the production thereof
DE102010011368B4 (de) * 2010-03-12 2014-03-20 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von pressgehärteten Formbauteilen
US20110283851A1 (en) * 2010-05-21 2011-11-24 Thyssenkrupp Sofedit S.A.S. Method and hot forming system for producing press-hardened formed components of sheet steel
US20110315281A1 (en) * 2010-06-24 2011-12-29 Magna International Inc. Tailored Properties By Post Hot Forming Processing
CN103582531A (zh) * 2011-06-07 2014-02-12 塔塔钢铁艾默伊登有限责任公司 可热成型的带材、片材或坯料,其生产方法、热成型产品的方法和热成型的产品
US9677145B2 (en) * 2011-08-12 2017-06-13 GM Global Technology Operations LLC Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005018848A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078484A1 (de) 2016-10-26 2018-05-03 Thermission Ag Verfahren für die aufbringung einer schichtstruktur durch thermodiffusion auf eine metallische oder intermetallische oberfläche
WO2019242818A1 (de) 2018-06-20 2019-12-26 Benteler Automobiltechnik Gmbh Kraftfahrzeugbauteil aus vergütungsstahl

Also Published As

Publication number Publication date
US20060219334A1 (en) 2006-10-05
US8141230B2 (en) 2012-03-27
EP1646458B1 (de) 2016-04-06
JP2007500782A (ja) 2007-01-18
ZA200600593B (en) 2009-08-26
US20120137502A1 (en) 2012-06-07
DE10333165A1 (de) 2005-02-24
WO2005018848A1 (de) 2005-03-03

Similar Documents

Publication Publication Date Title
EP1646458B1 (de) Verfahren zur herstellung von pressgehärteten bauteilen
EP1646459B2 (de) Verfahren zur herstellung eines pressgehärteten bauteils
EP1536898B1 (de) Verfahren zur herstellung eines pressgehärteten bauteils
EP2553133B1 (de) Stahl, stahlflachprodukt, stahlbauteil und verfahren zur herstellung eines stahlbauteils
DE102009052210B4 (de) Verfahren zum Herstellen von Bauteilen mit Bereichen unterschiedlicher Duktilität
DE102013010946B3 (de) Verfahren und Anlage zum Herstellen eines pressgehärteten Stahlblechbauteils
EP2569112B1 (de) Verfahren zur herstellung eines bauteils aus einem eisen-mangan-stahlblech
DE10254695B3 (de) Verfahren zur Herstellung eines metallischen Formbauteils
EP2177641A1 (de) Stahlblech mit einer feuerverzinkten Korrosionsschutzschicht
DE102006019567B3 (de) Verfahren zum Herstellen umgeformter Stahlbauteile
DE102005014298A1 (de) Panzerung für ein Fahrzeug
DE102008030279A1 (de) Partielles Warmformen und Härten mittels Infrarotlampenerwärmung
DE102006015666B4 (de) Verfahren zur Herstellung eines metallischen Formbauteils durch Warmumformen mit simultaner Beschneideoperation
DE102016013466A1 (de) Karosseriebauteil für ein Kraftfahrzeug und Verfahren zum Herstellen eines Karosseriebauteils
DE10348086A1 (de) Hochfestes Stahlbauteil mit Korrosionschutzschicht aus Zink
DE102018101735A1 (de) Zweistufige warmumformung von stahl
EP1939308A1 (de) Verfahren zum Herstellen eines Bauteils durch Wärmepresshärten und hochfestes Bauteil mit verbesserter Bruchdehnung
WO2007028475A2 (de) Verfahren zum herstellen eines pressgehärteten bauteils
DE102013010024A1 (de) Strukturbauteil für ein Kraftfahrzeug und Verfahren zur Herstellung eines solchen Strukturbauteils
WO2018091039A1 (de) Verfahren zur herstellung von radschüsseln aus dualphasenstahl mit verbesserter kaltumformbarkeit
EP3541966A1 (de) Verfahren zur herstellung von fahrwerksteilen aus mikrolegiertem stahl mit verbesserter kaltumformbarkeit
EP3365469B1 (de) Verfahren zum herstellen eines stahlbauteils für ein fahrzeug
DE102009049398C5 (de) Verfahren zur Herstellung eines Strukturbauteils für ein Kraftfahrzeug und Strukturbauteil
DE102005055374A1 (de) Hochfestes Stahlbauteil mit Korrosionsschutzschicht aus Zink
DE102019130381A1 (de) Kraftfahrzeugbauteil mit gesteigerter Festigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WENDLER, ROLAND

Inventor name: SAMOILOV, VICTOR

Inventor name: LEVINSKI, LEONID

Inventor name: BRODT, MARTIN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

17Q First examination report despatched

Effective date: 20070508

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: Z.A.T. ZINC ANTICOROSION TECHNOLOGIES SA

19A Proceedings stayed before grant

Effective date: 20090211

19F Resumption of proceedings before grant (after stay of proceedings)

Effective date: 20150202

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THERMISSION AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015158

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015158

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200523

Year of fee payment: 17

Ref country code: DE

Payment date: 20200526

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200528

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015158

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210529

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531