EP1155229B1 - Verfahren und system zur druckregelung einer hochdruckkraftstoffpumpe für die kraftstoffversorgung eines verbrennungsmotors - Google Patents

Verfahren und system zur druckregelung einer hochdruckkraftstoffpumpe für die kraftstoffversorgung eines verbrennungsmotors Download PDF

Info

Publication number
EP1155229B1
EP1155229B1 EP00907712A EP00907712A EP1155229B1 EP 1155229 B1 EP1155229 B1 EP 1155229B1 EP 00907712 A EP00907712 A EP 00907712A EP 00907712 A EP00907712 A EP 00907712A EP 1155229 B1 EP1155229 B1 EP 1155229B1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
pump
solenoid valve
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00907712A
Other languages
English (en)
French (fr)
Other versions
EP1155229A1 (de
Inventor
Henri Mazet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli France SAS
Original Assignee
Magneti Marelli France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli France SAS filed Critical Magneti Marelli France SAS
Publication of EP1155229A1 publication Critical patent/EP1155229A1/de
Application granted granted Critical
Publication of EP1155229B1 publication Critical patent/EP1155229B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3818Common rail control systems for petrol engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system

Definitions

  • the invention relates to the control of the pressure in a high-pressure fuel system for the supply, by at least one injector, of an internal combustion engine, in particular direct injection, in particular with positive ignition, but without excluding ignition engines by compression (diesel type).
  • the internal combustion engine drives mechanically a high pressure pump, of the type with at least one reciprocating piston in a corresponding cylinder, the drive mechanical piston being for example ensured by a camshaft driven from or belonging to the engine, and the high pressure pump discharging into the high pressure circuit, which is of the type without permanent return of fuel from downstream to upstream of the pump, the fuel pressure in the high pressure circuit being measured by at least one pressure sensor, and the pump being equipped, for each piston, with a solenoid valve, operating all or nothing, to control the fuel supply to the cylinder corresponding pump.
  • Document DE 197 31 201 A describes a control of a high pressure pump motor supplying a high pressure fuel system (common-rail), this control consisting in controlling the flow rate of the pump so that the mass delivered by the pump is equal to the sum of the mass of fuel injected and of a quantity determined by a function of the difference between the fuel pressure measured in the circuit and a desired pressure.
  • the problem underlying the invention is to remedy this drawback and to propose a pressure control method and system providing better control accuracy by establishing fuel pressure substantially equal to an objective pressure per action on a parameter of command which is not directly related to the quantity to be controlled, i.e. the fuel pressure in the high pressure circuit, the control parameter being, in this case, the sequence of control of the solenoid valve to the inlet of each cylinder of the high pressure pump.
  • the pressure control method according to the invention is characterized in that it comprises the step consisting in control the fuel pressure by controlling the solenoid valve so that the mass of fuel delivered by said pump in said high pressure circuit is equal to the algebraic sum of a mass of fuel intended for be injected into the internal combustion engine (and known by a unit of engine control controlling at least the injection of fuel into the engine), and a required fuel mass, or a quantity determined from of said necessary mass, to at least partially correct the deviation of pressure between the fuel pressure measured in the high pressure circuit using said pressure sensor and an objective pressure, desired in said high pressure circuit.
  • said mass of fuel required is determined to at least partially correct the difference between the measured and objective pressures using at least one relationship between mass or mass change of fuel and the pressure or variation of fuel pressure in said circuit at high pressure, in order to take into account the operating mode of the circuit at high pressure, and in particular its behavior and that of the fuel that this circuit contains in the operating conditions of the circuit and taking into account the quantities of fuel discharged by the pump in this circuit.
  • the determination of this relationship between the mass or change in mass and pressure or change in fuel pressure in the high pressure circuit is carried out taking into account at least one of operating parameters such as measured pressure and temperature fuel, and / or the compressibility law of the fuel used, and / or one at less geometric parameters of the high pressure circuit and / or one at less mechanical and / or physical characteristics of organ materials constituting said high pressure circuit.
  • control method advantageously further comprises a step of weighting the mass of fuel necessary to correct the deviation between the measured and objective pressures by a proportional-integral-derivative correction, this correction being ensured for example by an algorithm of well-known type.
  • the method of the invention After calculating the mass of fuel to be delivered by the pump, the method of the invention also proposes a determination of the instants of control of the solenoid valve taking into account the operation of the pump and the operation of the solenoid valve.
  • the method of the invention advantageously comprises further a step consisting in controlling the solenoid valve by taking takes into account at least one relation between the pump flow and the angular position of the engine, which drives it mechanically, during closed periods of said solenoid valve. More generally, the method of the invention takes into account a relation indicating the quantity of fuel delivered by the pump to the high pressure circuit according to the opening sequence and closing the solenoid valve located on the intake circuit of said pump.
  • this relationship expressing the flow of the the pump advantageously takes into account at least one operating parameter such as fuel pressure, speed and / or temperature pump operation.
  • the method of the invention advantageously further comprises a step consisting in controlling said solenoid valve taking into account at least one relation between the delay of effective opening and closing of the solenoid valve in relation to orders electrical control on opening and closing, on the one hand, and, on the other share, at least one of the parameters and operating conditions of said solenoid valve, so preferably at least one parameter relating to fuel.
  • this relative relationship at the delay of the solenoid valve takes into account at least one of the parameters that are the supply voltage and the operating temperature of the solenoid valve as well as the difference in fuel pressure between the inlet and the outlet of said solenoid valve.
  • the invention also relates to a pressure control system.
  • a pressure control system in a high pressure fuel system for the supply, by at minus an injector, of an internal combustion engine, in particular with injection direct, and in particular with spark ignition, system in which said engine provides mechanical drive for a high pressure pump, of the at least one reciprocating piston in a corresponding cylinder, said piston pump delivering in said high pressure circuit, which is of the type without permanent return of fuel from downstream to upstream of said pump, and in which the fuel pressure is measured by at least one pressure sensor of the system, said pump being equipped, for each piston, with a solenoid valve, all or nothing operation, to control the supply of fuel of the corresponding pump cylinder, and, according to the invention, this system is characterized in that it comprises at least one electronic unit of pressure control, in connection with or integrated into an electronic control unit engine control, controlling injection and, if necessary, engine ignition, and determining in particular the mass of fuel intended to be injected in the engine, said electronic pressure control unit driving the solenoid valve for controlling the supply
  • FIG 1 there is shown schematically at 1 a motor with internal combustion of a motor vehicle, for example a cycle engine four-stroke, four-cylinder in-line, spark-ignition and injection direct gasoline.
  • a motor with internal combustion of a motor vehicle for example a cycle engine four-stroke, four-cylinder in-line, spark-ignition and injection direct gasoline.
  • This direct fuel injection is ensured in each cylinder of the engine 1 by one respectively of four injectors shown diagrammatically in 2, and all supplied with high pressure fuel by a common fuel rail 3, in which the high fuel pressure is measured by a pressure sensor 4 transmitting the measured pressure signal to a unit of electronic control 5.
  • This unit 5 is simultaneously a unit of engine control, controlling the ignition in the cylinders of engine 1 as well that, via line 6, the times and durations of opening of the electro-injectors 2, in order to control the quantity of fuel injected by each of the injectors 2 in each of the corresponding cylinders of engine 1, as a function of time engine in each cylinder, operating parameters and conditions the engine, in particular its speed, its load, its temperature, ect .... and the fuel demand depending in particular on the flow air intake to engine 1, the arrangement of unit 5 for this purpose not being further described in this specification, as well known.
  • the settings of motor operation are introduced into unit 5 by the inputs shown schematically in 7.
  • the fuel rail 3 is supplied with fuel by a line shown diagrammatically at 8 at outlet 9, on which a non-return valve is mounted shown schematically at 10, a single piston pump 11, the piston 12 of which is driven of a reciprocating movement in a cylinder 13 by a rotary cam 14 with a camshaft 15, itself rotated mechanically from the motor 1 by a connection shown diagrammatically at 16, which may be a belt connection between a pulley integral in rotation with the camshaft 15 and another pulley driven in rotation by the crankshaft of the engine 1.
  • the pumping chamber essentially delimited by the piston 12 in the cylinder 13 of the pump 11, thus mechanically driven by the motor 1, is also in communication with an input 17, on which is mounted a solenoid valve 18, the operation of which is all or nothing controlled by its electrical control stage 19, comprising, so classic, a solenoid, and itself controlled by unit 5 through from line 20.
  • the solenoid valve 18 for controlling the fuel intake at the pump 11 is itself supplied with fuel at low pressure by an upstream circuit low pressure of conventional structure (not shown), comprising a reservoir fuel, from which fuel is drawn by a fuel pump low pressure and transmitted, through a filter and a schematic pipe by arrow 21, to the solenoid valve 18.
  • the installation for supplying the engine 1 with fuel thus comprises a low pressure circuit (not shown) upstream of the solenoid valve 18, and a high pressure circuit, downstream of the non-return valve 10 on the discharge 9 of the pump 11, this high pressure circuit 22 essentially comprising the fuel rail 3 and the line 8 connecting the discharge 9 of the pump 11 and this ramp 3.
  • the ramp 3 can be equipped with a pressure relief valve, in communication with line 21 upstream of the solenoid valve 18, to discharge ramp 3 when the fuel pressure in this ramp 3 exceeds a critical threshold.
  • the high pressure circuit 22 is, moreover, a circuit without permanent return or without fuel recirculation upstream high pressure pump 11 and inlet solenoid valve 18.
  • This solenoid valve 18 for controlling the fuel admission to the pump 11 can be a normally closed solenoid valve, and kept closed by the pressure forces inside the pump 11 and an internal spring (not shown) of the solenoid valve 18, which is only open on receipt, by its electric control stage 19, an electric control command from unit 5.
  • This unit 5 is, according to the invention, also a unit for controlling pressure, which controls the fuel pressure in the circuit at high pressure 22, downstream of the single piston pump 11, by modulating the quantity gasoline pumped by this pump 11, and therefore its pressure in the circuit at high pressure 22, by controlling the opening and closing sequencing solenoid valve 18 by unit 5.
  • This pressure control in the high pressure circuit 22 is ensured as follows.
  • the control unit 5 determines an objective pressure Po desired in the. high pressure circuit 22, as a function of operating parameters of the engine 1 such as the speed and the load of the engine and its temperature, which are transmitted from appropriate sensors to the unit 5 by the inputs 7. This determination of the pressure objective Po is obtained for example by the implementation in unit 5 of an algorithm taking into account these operating parameters of the engine 1.
  • Unit 5 determines the objective fuel pressure Po and knows at all times, thanks to pressure sensor 4, the measured fuel pressure Pm in the high-pressure circuit 22, and the unit 5 can deduce therefrom the pressure difference ⁇ P between the measured pressure Pm and the objective pressure Po.
  • the pressure control controlled by l unit 5 consists in controlling the sequence of opening and closing of the solenoid valve 18, by the line 20 and the electrical stage 19 for controlling this solenoid valve 18, so that the pump 11 pumps back into the high pressure circuit 22 a mass of fuel sufficient to compensate for the pressure difference ⁇ P as well as the mass of fuel which will be transmitted from the ramp 3 to the engine 1 by injection by the injectors 2.
  • This mass Qm of fuel intended to be consumed by the engine 1, that is to say the mass leaving the ramp 3, is known to the unit 5, the part of which forming the engine control unit is precisely responsible for determining this quantity Qm of fuel consumed by the engine 1.
  • the control of the solenoid valve 18 by the control unit 5 is therefore ensured to correct the error between the fuel pressure Pm, measured in the ramp 3 by the sensor 4, and the objective pressure Po, determined by the unit 5, by acting on the mass of fuel present inside the upper circuit pressure 22.
  • the unit 5 determines, by calculation and by reading maps, as explained below, the mass of fuel which pump 11 must supply as being the algebraic sum, on the one hand, the mass of fuel Qm which must leave the circuit high pressure 22, i.e.
  • the quantity of fuel to be injected into the engine 1 by injectors 2 and, on the other hand, the required mass variation Q ⁇ p to compensate for the pressure error ⁇ P taking into account the behavior of the high pressure circuit 22 as a container, and of the amount of fuel it contains, as a content, under the effect of pressurization.
  • control unit 5 in addition to the module 23 which it contains for determining the objective pressure and comparing it to the pressure measured to determine the pressure difference ⁇ P, contains another module 24, determining a model of “stiffness” or “rigidity” of the circuit high pressure 22.
  • This module 24 determines a relationship expressing the mass or variation in mass of fuel contained in the high pressure circuit 22 as a function of the pressure or of a pressure difference in this circuit 22, taking into account the geometry of this circuit 22, that is to say the geometry of line 8 and ramp 3, as well as the mechanical characteristics and physical, and in particular the elastic modulus E, of the constituent materials of this pipe 8 and this ramp 3, to take into account the fact that the internal volume of the high pressure circuit 22 increases significantly under the effect of the high fuel pressure inside this circuit 22.
  • this relation between mass and fuel pressure in circuit 22 or between variation of mass and pressure variation takes into account the behavior of the fuel, and in particular its compressibility law depending on the conditions such as fuel temperature and measured pressure Pm fuel in the circuit 22.
  • the module 24 therefore determines a stiffness or stiffness coefficient K, calibrated and read in cartographic tables established taking into account the parameters geometric, physical and mechanical characteristics as well as of the aforementioned conditions of use, this corresponding stiffness coefficient K substantially at the slope of a characteristic curve expressing a variation mass of fuel in the high pressure circuit 22 as a function of a variation pressure in this circuit.
  • the process implemented by the check 5 does not take into account the exact mass of fuel Q ⁇ P required to compensate for the pressure difference ⁇ P, but a value calculated at from this exact mass and equal to a percentage less than or equal to 100 % of this exact mass, for example using a proportional-integral-derivative type algorithm to make a corresponding correction.
  • the proportional term of this correction takes into account a proportion of this exact mass which only corresponds to a proportion of the difference of pressure, while the derivative term takes into account the direction of evolution, increasing or decreasing, of this pressure difference, and that the integral term integrates consecutive small variations over time to deduce a evolutionary trend.
  • PID Proportional-Integral-Derivative
  • control unit 5 After calculating the mass of fuel that pump 11 must pump in the high pressure circuit 22, the control unit 5 determines the instants of control of the solenoid valve 18 on opening and closing based on a functional model of the pump 11, implemented in module 25 of unit 5, and on a functional model of the solenoid valve 18, implemented in a module 26 of unit 5.
  • the functional model of pump 11, implemented in the module 25, determines a law of quantity of fuel delivered by the pump 11 in the high pressure circuit 22 according to the opening sequence and closing of the solenoid valve 18 on the intake circuit of the pump 11, and taking into account the angular position of the motor 1, i.e. the position angular of its rotary member, for example its mechanically driven crankshaft the camshaft 15 for actuating the piston 12 of the pump 11, and therefore determining the angular position of this cam 14, and thus the phases pump inlet and outlet 11.
  • FIG. 2a This functional model of the pump 11 is described with reference to the figure. 2, in which the diagrams of FIG. 2a) successively represent, from the left to right, piston 12 of pump 11 in bottom dead center, at the end an intake phase, then the piston 12 at top dead center, at the end of the discharge phase or consecutive compression, then piston 12 at point next bottom dead, and finally to the next top dead center.
  • the curve of figure 2b represents the stroke X of the piston 12 in the cylinder 13 as a function of the angle ⁇ of rotation of the crankshaft of the engine 1, and therefore also of the shaft 15 with cam 14 actuating the pump 11, and this curve represents the successive passages at low dead center PMB and high dead center TDC of piston 12, one phase of discharge taking place between a PMB and the next TDC, while a Admission phase takes place between a TDC and the next PMB.
  • the curve of Figure 2c) represents the succession of closing states F and opening O of the solenoid valve EV 18 operating in all or nothing, in function of the angle ⁇ indicated above, and the approximation of the curves of the Figures 2b) and 2c) shows that the closings of the solenoid valve 18 during the delivery phases of the pump 11 cause an instantaneous flow of fuel delivery D from pump 11 in the upper circuit pressure 22 as shown in Figure 2d) during angular strokes A (see Figure 2c) corresponding to the closings of the solenoid valve 18.
  • This results a mass Q of transferred fuel which corresponds to the integration of the instantaneous flow curve D, i.e.
  • the functional model of the pump 11, as implemented by the module 25 of unit 5, takes into account not only the geometric characteristics pump 11 but also its conditions of use, such as the temperature and the speed of rotation of the pump 11, as well as the pressure fuel, in particular downstream of the pump 11, that is to say in the circuit 22 at high pressure, but also upstream of the pump 11, when the solenoid valve 18 is open.
  • the control unit 5 also includes a module 26 implementing an operating model of the solenoid valve 18 and its control stage electric 19, this model determining the delay between the electric control upon closing and opening of the pilot stage 19 and the opening and effective closing of the hydraulic circuit by solenoid valve 18.
  • This model of the solenoid valve 18 takes into account the specific characteristics of this solenoid valve 18 as well as the conditions of use such as electrical voltage supplying its electrical control stage 19, its temperature, and fuel-related parameters, in particular the pressure difference between the input and output of the solenoid valve 18.
  • These different parameters and conditions of use are calibrated and stored in maps, including reading allows to obtain effective instants of electrical control of the solenoid valve 18 from instant objectives of opening or closing the hydraulic circuit by solenoid valve 18, taking account of the indicative model delay of the solenoid valve 18.
  • the different modules 23 to 26 of the control unit 5 include thus calculation means and storage means in tables or maps which are well known and need not be described further.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (9)

  1. Verfahren zur Regelung des Druckes in einem Hochdruck-Treibstoffkreis (22) zur über wenigstens eine Einspritzdüse (2) erfolgenden Speisung eines Verbrennungsmotors (1), vor allem mit Direkteinspritzung und insbesondere mit gesteuerter Zündung, der eine Hochdruckpumpe (11) vom Typ mit wenigstens einem Kolben (12) mit Umkehrbewegung in einem entsprechenden Zylinder (13) mechanisch antreibt, die im Hochdruckkreis (22) fördert, der vom Typ ohne Treibstoffdauerrücklauf von der Strömungsunterseite zur Strömungsoberseite der Pumpe (11) ist und in dem der Treibstoffdruck durch wenigstens einen Drucksensor (4) gemessen wird, wobei die Pumpe (11) für jeden Kolben (12) mit einem Elektroventil (18) mit Ein- oder Aus-Wirkungsweise ausgestattet ist, um die Speisung des entsprechenden Pumpenzylinders (13) zu steuern,
    dadurch gekennzeichnet, daß es den Schritt umfaßt, der darin besteht, den Treibstoffdruck dadurch zu regeln, daß das Elektroventil (18) so gesteuert wird, daß die in den Hochdruckkreis (22) durch die Pumpe (11) geförderte Treibstoffmenge gleich der algebraischen Summe aus einer Treibstoffmenge, die in den Motor (1) eingespritzt werden soll, und einer notwendigen Treibstoffmenge oder einer ausgehend von der genannten notwendigen Menge ermittelten Größe ist, um wenigstens teilweise die Druckabweichung zwischen dem im Hochdruckkreis (22) mittels des Drucksensors (4) gemessenen Treibstoffdruck und einem objektiven, im Treibstoffkreis (22) gewünschten Druck zu korrigieren.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es den Schritt umfaßt, der darin besteht, die notwendige Treibstoffmenge zu ermitteln, um wenigstens teilweise die Abweichung zwischen dem gemessenen und objektiven Druck mittels wenigstens einer Beziehung zwischen der Treibstoffmenge oder -mengenänderung und dem Treibstoffdruck oder der Treibstoffdruckänderung im Hochdruckkreis (22) zu korrigieren.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß es den Schritt umfaßt, der darin besteht, die Beziehung zwischen der Treibstoffmenge oder -mengenänderung und dem Treibstoffdruck oder der Treibstoffdruckänderung im Hochdruckkreis (22) zu ermitteln, indem zumindest einer der Betriebsparameter wie z.B. der gemessene Druck und die Treibstofftemperatur und/oder die Verdichtbarkeitsregel des Treibstoffs und/oder mindestens ein geometrischer Parameter des Hochdruckkreises (22) und/oder wenigstens eine der mechanischen und/oder physikalischen Eigenschaften der Materialien der wesentlichen Organe (8, 3) der Hochdruckschaltung (22) berücksichtigt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es darüber hinaus den Schritt umfaßt, der darin besteht, die notwendige Treibstoffmenge zu gewichten, um die Abweichung zwischen dem gemessenen und objektiven Druck durch eine Korrektur der Art mit Proportional-, Integral- und Differentialanteil zu korrigieren.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es darüber hinaus den Schritt umfaßt, der darin besteht, das genannte Elektroventil (18) zu steuern, indem wenigstens eine Beziehung zwischen der Förderleistung der Pumpe (11) und der Winkelposition des Motors (1) während den Schließperioden des Elektroventils (18) berücksichtigt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die die Förderleistung der Pumpe (11) ausdrückende Beziehung wenigstens einen Betriebsparameter wie z.B. den Treibstoffdruck, die Drehgeschwindigkeit und/oder die Betriebstemperatur der Pumpe (11) berücksichtigt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es darüber hinaus einen Schritt umfaßt, der darin besteht, das Elektroventil (18) zu steuern, indem wenigstens eine Beziehung zwischen der Verzögerung der effektiven Öffnungen und Schließungen des Elektroventils (18) in bezug auf die elektrischen Steuerbefehle zum Öffnen und Schließen einerseits und zumindest einem/r der Betriebsparameter und -bedingungen des Elektroventils (18) andererseits berücksichtigt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Beziehung, die sich auf die Verzögerung des Elektroventils (18) bezieht, wenigstens einen der Parameter berücksichtigt, welche die elektrische Speisespannung und die Betriebstemperatur des Elektroventils (18) und die Treibstoffdruckdifferenz zwischen dem Einlaß und dem Auslaß des Elektroventils (18) sind.
  9. System zur Regelung des Druckes in einem Hochdruck-Treibstoffkreis (22) zur über wenigstens eine Einspritzdüse (2) erfolgenden Speisung eines Verbrennungsmotors (1), vor allem mit Direkteinspritzung und insbesondere mit gesteuerter Zündung, wobei darin der Motor (1) den mechanischen Antrieb (14, 5, 16) einer Hochdruckpumpe (11) vom Typ mit wenigstens einem Kolben (12) mit Umkehrbewegung in einem entsprechenden Zylinder (13) sicherstellt, wobei die Pumpe (11) im Hochdruckkreis (22) fördert, der vom Typ ohne Treibstoffdauerrücklauf von der Strömungsunterseite zur Strömungsoberseite der Pumpe (11) ist, und wobei darin der Treibstoffdruck durch wenigstens einen Drucksensor (4) gemessen wird, wobei die Pumpe (11) für jeden Kolben (12) mit einem Elektroventil (18) mit Ein- oder Aus-Wirkungsweise ausgestattet ist, um die Speisung des entsprechenden Pumpenzylinders (13) zu steuern, dadurch gekennzeichnet, daß es wenigstens eine elektronische Druckregelungseinheit (5) umfaßt, die mit einer elektronischen Motorregelungseinheit, welche die Einspritzung und gegebenenfalls die Zündung des Motors (1) steuert, in Beziehung steht oder integriert ist und insbesondere die Treibstoffmenge ermittelt, die in den Motor (1) eingespritzt werden soll, wobei die genannte elektronische Druckregelungseinheit (5) das Elektroventil steuert, um die Speisung des Zylinders der Pumpe zu steuern, und Rechenmittel und Speichermittel umfaßt und zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8 ausgelegt ist und wenigstens einen Modul (24) zur Ermittlung der möglicherweise gewichteten Beziehung zwischen Treibstoffmenge oder -mengenänderung und Treibstoffdruck bzw. -druckänderung im Hochdruckkreis (22), wenigstens einen Modul (23) zur Ermittlung des gewünschten objektiven Druckes in diesem Hochdruckkreis (22) in Abhängigkeit von Betriebsparametern und/oder -bedingungen des Motors (1), wenigstens einen Modul zur Ermittlung der durch die Pumpe (11) im Hochdruckkreis (22) zu fördernden Treibstoffmenge in Abhängigkeit von einem von der Motorregelungseinheit empfangenen Signal für die Treibstoffmenge, die in den Motor (1) eingespritzt werden soll, und von der Treibstoffmenge, welche die Druckdifferenz zwischen dem vom Sensor (4) gemessenen Druck und dem objektiven Druck kompensieren soll, wenigstens einen Modul (26) zur Ermittlung der Verzögerung des genannten Elektroventils (18) und wenigstens einen Modul (25) zur Ermittlung der Förderleistung der Pumpe (11) in Abhängigkeit von der Winkelposition des Motors (1) und der Öffnungs- und Schließfolge des Elektroventils (18) umfaßt.
EP00907712A 1999-02-26 2000-02-24 Verfahren und system zur druckregelung einer hochdruckkraftstoffpumpe für die kraftstoffversorgung eines verbrennungsmotors Expired - Lifetime EP1155229B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9902424A FR2790283B1 (fr) 1999-02-26 1999-02-26 Procede et systeme de controle de la pression d'une pompe a carburant a haute pression pour l'alimentation d'un moteur a combustion interne
FR9902424 1999-02-26
PCT/FR2000/000459 WO2000050757A1 (fr) 1999-02-26 2000-02-24 Procede et systeme de controle de la pression d'une pompe a carburant a haute pression pour l'alimentation d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1155229A1 EP1155229A1 (de) 2001-11-21
EP1155229B1 true EP1155229B1 (de) 2002-09-25

Family

ID=9542586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00907712A Expired - Lifetime EP1155229B1 (de) 1999-02-26 2000-02-24 Verfahren und system zur druckregelung einer hochdruckkraftstoffpumpe für die kraftstoffversorgung eines verbrennungsmotors

Country Status (6)

Country Link
US (1) US6446610B1 (de)
EP (1) EP1155229B1 (de)
DE (1) DE60000509T2 (de)
ES (1) ES2182788T3 (de)
FR (1) FR2790283B1 (de)
WO (1) WO2000050757A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19908678C5 (de) * 1999-02-26 2006-12-07 Robert Bosch Gmbh Steuerung einer Kraftstoff direkteinspritzenden Brennkraftmaschine eines Kraftfahrzeugs insbesondere im Startbetrieb
US7052252B2 (en) * 2003-06-13 2006-05-30 Suntec Industries Incorporated Port configuration for fuel pump unit for facilitating pressure feedback
DE10351914A1 (de) 2003-11-07 2005-09-15 Volkswagen Ag Verfahren zum Vorsteuern einer Hub Kolben Kraftstoffpumpe einer Brennkraftmaschine
US7287516B2 (en) * 2005-07-29 2007-10-30 Caterpillar Inc. Pump control system
US7370635B2 (en) * 2006-01-20 2008-05-13 Caterpillar Inc. System and method for resolving electrical leads
US7392790B2 (en) * 2006-01-20 2008-07-01 Caterpillar Inc. System and method for resolving crossed electrical leads
DE102007013772B4 (de) * 2007-03-22 2015-06-25 Continental Automotive Gmbh Verfahren zur Regelung eines Einspritzsystems einer Brennkraftmaschine
DE102007035316B4 (de) * 2007-07-27 2019-12-24 Robert Bosch Gmbh Verfahren zur Steuerung eines Magnetventils einer Mengensteuerung in einer Brennkraftmaschine
US8328158B2 (en) * 2008-12-15 2012-12-11 Continental Automotive Systems Us, Inc. Automotive high pressure pump solenoid valve with limp home calibration
US8317157B2 (en) * 2008-12-15 2012-11-27 Continental Automotive Systems Us, Inc. Automobile high pressure pump solenoid valve
GB2473278B (en) * 2009-09-08 2014-06-18 Gm Global Tech Operations Inc Method and system for controlling fuel pressure
KR101241594B1 (ko) * 2010-12-01 2013-03-11 기아자동차주식회사 Gdi엔진의 연료공급시스템 및 그 제어방법
FR2996600B1 (fr) 2012-10-05 2014-11-21 Continental Automotive France Procede de gestion de la masse de combustible injectee dans un moteur
US9671033B2 (en) * 2012-12-11 2017-06-06 Hitachi, Ltd. Method and apparatus for controlling a solenoid actuated inlet valve
US20150345446A1 (en) * 2015-08-11 2015-12-03 Caterpillar Inc. Method of mitigating axial loads on plunger of fuel pumps
US10161370B2 (en) * 2016-04-13 2018-12-25 GM Global Technology Operations LLC Systems and methods for performing prognosis of fuel delivery systems
US11371459B2 (en) * 2018-11-29 2022-06-28 Hitachi Astemo, Ltd. Control device for internal combustion engine
JP7054716B2 (ja) * 2020-03-18 2022-04-14 本田技研工業株式会社 内燃機関の過給圧制御装置
DE102021202000A1 (de) * 2021-03-02 2022-09-08 Hyundai Motor Company Kraftstoffeinspritzsystem für einen verbrennungsmotor und verfahren sowie steuerungsvorrichtung zur steuerung eines kraftstoffeinspritzsystems eines verbrennungsmotors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153979A (en) * 1981-03-18 1982-09-22 Hitachi Constr Mach Co Ltd Limiting control method and device for input horsepower into hydraulic pump
US4790277A (en) * 1987-06-03 1988-12-13 Ford Motor Company Self-adjusting fuel injection system
US5848583A (en) * 1994-05-03 1998-12-15 Ford Global Technologies, Inc. Determining fuel injection pressure
JPH08210209A (ja) * 1995-02-06 1996-08-20 Zexel Corp 高圧燃料噴射装置
US5771861A (en) * 1996-07-01 1998-06-30 Cummins Engine Company, Inc. Apparatus and method for accurately controlling fuel injection flow rate
DE19731201C2 (de) * 1997-07-21 2002-04-11 Siemens Ag Verfahren zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
DE19757655C2 (de) * 1997-12-23 2002-09-26 Siemens Ag Verfahren und Vorrichtung zur Funktionsüberwachung eines Drucksensors
FR2776020B1 (fr) * 1998-03-11 2000-05-05 Renault Procede de controle de l'injection dans un moteur a combustion interne et allumage commande, alimente par du carburant gazeux liquefie ou par un carburant gazeux sous des conditions soniques
DE19909955B4 (de) * 1999-03-06 2014-01-23 Robert Bosch Gmbh Verfahren und Vorrichtung zum transienten Betrieb einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
JP3465641B2 (ja) * 1999-07-28 2003-11-10 トヨタ自動車株式会社 燃料ポンプの制御装置

Also Published As

Publication number Publication date
FR2790283A1 (fr) 2000-09-01
US6446610B1 (en) 2002-09-10
WO2000050757A1 (fr) 2000-08-31
EP1155229A1 (de) 2001-11-21
DE60000509T2 (de) 2003-05-22
ES2182788T3 (es) 2003-03-16
FR2790283B1 (fr) 2002-01-04
DE60000509D1 (de) 2002-10-31

Similar Documents

Publication Publication Date Title
EP1155229B1 (de) Verfahren und system zur druckregelung einer hochdruckkraftstoffpumpe für die kraftstoffversorgung eines verbrennungsmotors
EP0113510B1 (de) Dieselkraftstoff-Einspritzpumpe mit adaptiver Momentausgleichssteuerung
EP0651150B1 (de) Kraftstoffeinspritzgerät für Brennkraftmaschine
FR2658244A1 (fr) Dispositif de commande numerique de carburant pour un petit moteur thermique et procede de commande de carburant pour un moteur thermique.
FR2862712A1 (fr) Systeme de regulation du cognement et procede pour un moteur a combustion interne utilisant des carburants multiples
FR2786820A1 (fr) Systeme de controle de pompe a carburant pour un moteur a combustion interne
FR2627809A1 (de)
FR2787511A1 (fr) Procede et dispositif d'egalisation des couples de chaque cylindre d'un moteur
EP0705381B1 (de) Verfahren und vorrichtung zur optimierung der luftfüllung in einem zylinder einer brennkraftmaschine
FR2832763A1 (fr) Systeme d'alimentation en carburant et d'injection de carburant et procede de commande
FR2698129A1 (fr) Dispositif d'injection de carburant pour moteurs à combustion interne.
FR2787512A1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
FR2524564A1 (fr) Pompe d'injection de carburant
US4426983A (en) Liquid fuel pumping apparatus
FR2812345A1 (fr) Procede et dispositif de mise en oeuvre d'un systeme de dosage de carburant d'un moteur a combustion interne a injection directe
GB2086080A (en) Control of fuel supply in i.c. engines
FR2822195A1 (fr) Systeme d'injection de carburant pour un moteur a combustion interne equipe d'un module a pompe a haute pression
FR2465892A1 (fr) Pompe a injection pour moteur a combustion interne
FR2850710A1 (fr) Procede de commande d'un moteur a combustion interne
FR2864165A1 (fr) Procede et dispositif pour determiner un intervalle de transfert d'une pompe a haute pression dans un systeme d'injection a haute pression
FR2894626A1 (fr) Procede de gestion d'un moteur a combustion interne
FR2834000A1 (fr) Moteur a combustion interne avec une injection directe
FR2857057A1 (fr) Procede et dispositif de commande avec compensation de l'onde de pression d'un systeme d'injection d'un moteur a combustion interne
FR2783572A1 (fr) Dispositif de dosage de carburant dans un cylindre d'un moteur a combustion interne
FR2585079A1 (fr) Procede d'injection de carburant pour moteurs a combustion interne permettant l'injection de quantites dosees dans la chambre de combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020308

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60000509

Country of ref document: DE

Date of ref document: 20021031

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2182788

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1155229E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190321

Year of fee payment: 20

Ref country code: GB

Payment date: 20190215

Year of fee payment: 20

Ref country code: IT

Payment date: 20190208

Year of fee payment: 20

Ref country code: DE

Payment date: 20190211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190214

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60000509

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200223

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200225