EP1155229B1 - Method and system for controlling pressure in a high pressure fuel pump supplying an internal combustion engine - Google Patents

Method and system for controlling pressure in a high pressure fuel pump supplying an internal combustion engine Download PDF

Info

Publication number
EP1155229B1
EP1155229B1 EP00907712A EP00907712A EP1155229B1 EP 1155229 B1 EP1155229 B1 EP 1155229B1 EP 00907712 A EP00907712 A EP 00907712A EP 00907712 A EP00907712 A EP 00907712A EP 1155229 B1 EP1155229 B1 EP 1155229B1
Authority
EP
European Patent Office
Prior art keywords
pressure
fuel
pump
solenoid valve
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00907712A
Other languages
German (de)
French (fr)
Other versions
EP1155229A1 (en
Inventor
Henri Mazet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli France SAS
Original Assignee
Magneti Marelli France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli France SAS filed Critical Magneti Marelli France SAS
Publication of EP1155229A1 publication Critical patent/EP1155229A1/en
Application granted granted Critical
Publication of EP1155229B1 publication Critical patent/EP1155229B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3818Common rail control systems for petrol engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system

Definitions

  • the invention relates to the control of the pressure in a high-pressure fuel system for the supply, by at least one injector, of an internal combustion engine, in particular direct injection, in particular with positive ignition, but without excluding ignition engines by compression (diesel type).
  • the internal combustion engine drives mechanically a high pressure pump, of the type with at least one reciprocating piston in a corresponding cylinder, the drive mechanical piston being for example ensured by a camshaft driven from or belonging to the engine, and the high pressure pump discharging into the high pressure circuit, which is of the type without permanent return of fuel from downstream to upstream of the pump, the fuel pressure in the high pressure circuit being measured by at least one pressure sensor, and the pump being equipped, for each piston, with a solenoid valve, operating all or nothing, to control the fuel supply to the cylinder corresponding pump.
  • Document DE 197 31 201 A describes a control of a high pressure pump motor supplying a high pressure fuel system (common-rail), this control consisting in controlling the flow rate of the pump so that the mass delivered by the pump is equal to the sum of the mass of fuel injected and of a quantity determined by a function of the difference between the fuel pressure measured in the circuit and a desired pressure.
  • the problem underlying the invention is to remedy this drawback and to propose a pressure control method and system providing better control accuracy by establishing fuel pressure substantially equal to an objective pressure per action on a parameter of command which is not directly related to the quantity to be controlled, i.e. the fuel pressure in the high pressure circuit, the control parameter being, in this case, the sequence of control of the solenoid valve to the inlet of each cylinder of the high pressure pump.
  • the pressure control method according to the invention is characterized in that it comprises the step consisting in control the fuel pressure by controlling the solenoid valve so that the mass of fuel delivered by said pump in said high pressure circuit is equal to the algebraic sum of a mass of fuel intended for be injected into the internal combustion engine (and known by a unit of engine control controlling at least the injection of fuel into the engine), and a required fuel mass, or a quantity determined from of said necessary mass, to at least partially correct the deviation of pressure between the fuel pressure measured in the high pressure circuit using said pressure sensor and an objective pressure, desired in said high pressure circuit.
  • said mass of fuel required is determined to at least partially correct the difference between the measured and objective pressures using at least one relationship between mass or mass change of fuel and the pressure or variation of fuel pressure in said circuit at high pressure, in order to take into account the operating mode of the circuit at high pressure, and in particular its behavior and that of the fuel that this circuit contains in the operating conditions of the circuit and taking into account the quantities of fuel discharged by the pump in this circuit.
  • the determination of this relationship between the mass or change in mass and pressure or change in fuel pressure in the high pressure circuit is carried out taking into account at least one of operating parameters such as measured pressure and temperature fuel, and / or the compressibility law of the fuel used, and / or one at less geometric parameters of the high pressure circuit and / or one at less mechanical and / or physical characteristics of organ materials constituting said high pressure circuit.
  • control method advantageously further comprises a step of weighting the mass of fuel necessary to correct the deviation between the measured and objective pressures by a proportional-integral-derivative correction, this correction being ensured for example by an algorithm of well-known type.
  • the method of the invention After calculating the mass of fuel to be delivered by the pump, the method of the invention also proposes a determination of the instants of control of the solenoid valve taking into account the operation of the pump and the operation of the solenoid valve.
  • the method of the invention advantageously comprises further a step consisting in controlling the solenoid valve by taking takes into account at least one relation between the pump flow and the angular position of the engine, which drives it mechanically, during closed periods of said solenoid valve. More generally, the method of the invention takes into account a relation indicating the quantity of fuel delivered by the pump to the high pressure circuit according to the opening sequence and closing the solenoid valve located on the intake circuit of said pump.
  • this relationship expressing the flow of the the pump advantageously takes into account at least one operating parameter such as fuel pressure, speed and / or temperature pump operation.
  • the method of the invention advantageously further comprises a step consisting in controlling said solenoid valve taking into account at least one relation between the delay of effective opening and closing of the solenoid valve in relation to orders electrical control on opening and closing, on the one hand, and, on the other share, at least one of the parameters and operating conditions of said solenoid valve, so preferably at least one parameter relating to fuel.
  • this relative relationship at the delay of the solenoid valve takes into account at least one of the parameters that are the supply voltage and the operating temperature of the solenoid valve as well as the difference in fuel pressure between the inlet and the outlet of said solenoid valve.
  • the invention also relates to a pressure control system.
  • a pressure control system in a high pressure fuel system for the supply, by at minus an injector, of an internal combustion engine, in particular with injection direct, and in particular with spark ignition, system in which said engine provides mechanical drive for a high pressure pump, of the at least one reciprocating piston in a corresponding cylinder, said piston pump delivering in said high pressure circuit, which is of the type without permanent return of fuel from downstream to upstream of said pump, and in which the fuel pressure is measured by at least one pressure sensor of the system, said pump being equipped, for each piston, with a solenoid valve, all or nothing operation, to control the supply of fuel of the corresponding pump cylinder, and, according to the invention, this system is characterized in that it comprises at least one electronic unit of pressure control, in connection with or integrated into an electronic control unit engine control, controlling injection and, if necessary, engine ignition, and determining in particular the mass of fuel intended to be injected in the engine, said electronic pressure control unit driving the solenoid valve for controlling the supply
  • FIG 1 there is shown schematically at 1 a motor with internal combustion of a motor vehicle, for example a cycle engine four-stroke, four-cylinder in-line, spark-ignition and injection direct gasoline.
  • a motor with internal combustion of a motor vehicle for example a cycle engine four-stroke, four-cylinder in-line, spark-ignition and injection direct gasoline.
  • This direct fuel injection is ensured in each cylinder of the engine 1 by one respectively of four injectors shown diagrammatically in 2, and all supplied with high pressure fuel by a common fuel rail 3, in which the high fuel pressure is measured by a pressure sensor 4 transmitting the measured pressure signal to a unit of electronic control 5.
  • This unit 5 is simultaneously a unit of engine control, controlling the ignition in the cylinders of engine 1 as well that, via line 6, the times and durations of opening of the electro-injectors 2, in order to control the quantity of fuel injected by each of the injectors 2 in each of the corresponding cylinders of engine 1, as a function of time engine in each cylinder, operating parameters and conditions the engine, in particular its speed, its load, its temperature, ect .... and the fuel demand depending in particular on the flow air intake to engine 1, the arrangement of unit 5 for this purpose not being further described in this specification, as well known.
  • the settings of motor operation are introduced into unit 5 by the inputs shown schematically in 7.
  • the fuel rail 3 is supplied with fuel by a line shown diagrammatically at 8 at outlet 9, on which a non-return valve is mounted shown schematically at 10, a single piston pump 11, the piston 12 of which is driven of a reciprocating movement in a cylinder 13 by a rotary cam 14 with a camshaft 15, itself rotated mechanically from the motor 1 by a connection shown diagrammatically at 16, which may be a belt connection between a pulley integral in rotation with the camshaft 15 and another pulley driven in rotation by the crankshaft of the engine 1.
  • the pumping chamber essentially delimited by the piston 12 in the cylinder 13 of the pump 11, thus mechanically driven by the motor 1, is also in communication with an input 17, on which is mounted a solenoid valve 18, the operation of which is all or nothing controlled by its electrical control stage 19, comprising, so classic, a solenoid, and itself controlled by unit 5 through from line 20.
  • the solenoid valve 18 for controlling the fuel intake at the pump 11 is itself supplied with fuel at low pressure by an upstream circuit low pressure of conventional structure (not shown), comprising a reservoir fuel, from which fuel is drawn by a fuel pump low pressure and transmitted, through a filter and a schematic pipe by arrow 21, to the solenoid valve 18.
  • the installation for supplying the engine 1 with fuel thus comprises a low pressure circuit (not shown) upstream of the solenoid valve 18, and a high pressure circuit, downstream of the non-return valve 10 on the discharge 9 of the pump 11, this high pressure circuit 22 essentially comprising the fuel rail 3 and the line 8 connecting the discharge 9 of the pump 11 and this ramp 3.
  • the ramp 3 can be equipped with a pressure relief valve, in communication with line 21 upstream of the solenoid valve 18, to discharge ramp 3 when the fuel pressure in this ramp 3 exceeds a critical threshold.
  • the high pressure circuit 22 is, moreover, a circuit without permanent return or without fuel recirculation upstream high pressure pump 11 and inlet solenoid valve 18.
  • This solenoid valve 18 for controlling the fuel admission to the pump 11 can be a normally closed solenoid valve, and kept closed by the pressure forces inside the pump 11 and an internal spring (not shown) of the solenoid valve 18, which is only open on receipt, by its electric control stage 19, an electric control command from unit 5.
  • This unit 5 is, according to the invention, also a unit for controlling pressure, which controls the fuel pressure in the circuit at high pressure 22, downstream of the single piston pump 11, by modulating the quantity gasoline pumped by this pump 11, and therefore its pressure in the circuit at high pressure 22, by controlling the opening and closing sequencing solenoid valve 18 by unit 5.
  • This pressure control in the high pressure circuit 22 is ensured as follows.
  • the control unit 5 determines an objective pressure Po desired in the. high pressure circuit 22, as a function of operating parameters of the engine 1 such as the speed and the load of the engine and its temperature, which are transmitted from appropriate sensors to the unit 5 by the inputs 7. This determination of the pressure objective Po is obtained for example by the implementation in unit 5 of an algorithm taking into account these operating parameters of the engine 1.
  • Unit 5 determines the objective fuel pressure Po and knows at all times, thanks to pressure sensor 4, the measured fuel pressure Pm in the high-pressure circuit 22, and the unit 5 can deduce therefrom the pressure difference ⁇ P between the measured pressure Pm and the objective pressure Po.
  • the pressure control controlled by l unit 5 consists in controlling the sequence of opening and closing of the solenoid valve 18, by the line 20 and the electrical stage 19 for controlling this solenoid valve 18, so that the pump 11 pumps back into the high pressure circuit 22 a mass of fuel sufficient to compensate for the pressure difference ⁇ P as well as the mass of fuel which will be transmitted from the ramp 3 to the engine 1 by injection by the injectors 2.
  • This mass Qm of fuel intended to be consumed by the engine 1, that is to say the mass leaving the ramp 3, is known to the unit 5, the part of which forming the engine control unit is precisely responsible for determining this quantity Qm of fuel consumed by the engine 1.
  • the control of the solenoid valve 18 by the control unit 5 is therefore ensured to correct the error between the fuel pressure Pm, measured in the ramp 3 by the sensor 4, and the objective pressure Po, determined by the unit 5, by acting on the mass of fuel present inside the upper circuit pressure 22.
  • the unit 5 determines, by calculation and by reading maps, as explained below, the mass of fuel which pump 11 must supply as being the algebraic sum, on the one hand, the mass of fuel Qm which must leave the circuit high pressure 22, i.e.
  • the quantity of fuel to be injected into the engine 1 by injectors 2 and, on the other hand, the required mass variation Q ⁇ p to compensate for the pressure error ⁇ P taking into account the behavior of the high pressure circuit 22 as a container, and of the amount of fuel it contains, as a content, under the effect of pressurization.
  • control unit 5 in addition to the module 23 which it contains for determining the objective pressure and comparing it to the pressure measured to determine the pressure difference ⁇ P, contains another module 24, determining a model of “stiffness” or “rigidity” of the circuit high pressure 22.
  • This module 24 determines a relationship expressing the mass or variation in mass of fuel contained in the high pressure circuit 22 as a function of the pressure or of a pressure difference in this circuit 22, taking into account the geometry of this circuit 22, that is to say the geometry of line 8 and ramp 3, as well as the mechanical characteristics and physical, and in particular the elastic modulus E, of the constituent materials of this pipe 8 and this ramp 3, to take into account the fact that the internal volume of the high pressure circuit 22 increases significantly under the effect of the high fuel pressure inside this circuit 22.
  • this relation between mass and fuel pressure in circuit 22 or between variation of mass and pressure variation takes into account the behavior of the fuel, and in particular its compressibility law depending on the conditions such as fuel temperature and measured pressure Pm fuel in the circuit 22.
  • the module 24 therefore determines a stiffness or stiffness coefficient K, calibrated and read in cartographic tables established taking into account the parameters geometric, physical and mechanical characteristics as well as of the aforementioned conditions of use, this corresponding stiffness coefficient K substantially at the slope of a characteristic curve expressing a variation mass of fuel in the high pressure circuit 22 as a function of a variation pressure in this circuit.
  • the process implemented by the check 5 does not take into account the exact mass of fuel Q ⁇ P required to compensate for the pressure difference ⁇ P, but a value calculated at from this exact mass and equal to a percentage less than or equal to 100 % of this exact mass, for example using a proportional-integral-derivative type algorithm to make a corresponding correction.
  • the proportional term of this correction takes into account a proportion of this exact mass which only corresponds to a proportion of the difference of pressure, while the derivative term takes into account the direction of evolution, increasing or decreasing, of this pressure difference, and that the integral term integrates consecutive small variations over time to deduce a evolutionary trend.
  • PID Proportional-Integral-Derivative
  • control unit 5 After calculating the mass of fuel that pump 11 must pump in the high pressure circuit 22, the control unit 5 determines the instants of control of the solenoid valve 18 on opening and closing based on a functional model of the pump 11, implemented in module 25 of unit 5, and on a functional model of the solenoid valve 18, implemented in a module 26 of unit 5.
  • the functional model of pump 11, implemented in the module 25, determines a law of quantity of fuel delivered by the pump 11 in the high pressure circuit 22 according to the opening sequence and closing of the solenoid valve 18 on the intake circuit of the pump 11, and taking into account the angular position of the motor 1, i.e. the position angular of its rotary member, for example its mechanically driven crankshaft the camshaft 15 for actuating the piston 12 of the pump 11, and therefore determining the angular position of this cam 14, and thus the phases pump inlet and outlet 11.
  • FIG. 2a This functional model of the pump 11 is described with reference to the figure. 2, in which the diagrams of FIG. 2a) successively represent, from the left to right, piston 12 of pump 11 in bottom dead center, at the end an intake phase, then the piston 12 at top dead center, at the end of the discharge phase or consecutive compression, then piston 12 at point next bottom dead, and finally to the next top dead center.
  • the curve of figure 2b represents the stroke X of the piston 12 in the cylinder 13 as a function of the angle ⁇ of rotation of the crankshaft of the engine 1, and therefore also of the shaft 15 with cam 14 actuating the pump 11, and this curve represents the successive passages at low dead center PMB and high dead center TDC of piston 12, one phase of discharge taking place between a PMB and the next TDC, while a Admission phase takes place between a TDC and the next PMB.
  • the curve of Figure 2c) represents the succession of closing states F and opening O of the solenoid valve EV 18 operating in all or nothing, in function of the angle ⁇ indicated above, and the approximation of the curves of the Figures 2b) and 2c) shows that the closings of the solenoid valve 18 during the delivery phases of the pump 11 cause an instantaneous flow of fuel delivery D from pump 11 in the upper circuit pressure 22 as shown in Figure 2d) during angular strokes A (see Figure 2c) corresponding to the closings of the solenoid valve 18.
  • This results a mass Q of transferred fuel which corresponds to the integration of the instantaneous flow curve D, i.e.
  • the functional model of the pump 11, as implemented by the module 25 of unit 5, takes into account not only the geometric characteristics pump 11 but also its conditions of use, such as the temperature and the speed of rotation of the pump 11, as well as the pressure fuel, in particular downstream of the pump 11, that is to say in the circuit 22 at high pressure, but also upstream of the pump 11, when the solenoid valve 18 is open.
  • the control unit 5 also includes a module 26 implementing an operating model of the solenoid valve 18 and its control stage electric 19, this model determining the delay between the electric control upon closing and opening of the pilot stage 19 and the opening and effective closing of the hydraulic circuit by solenoid valve 18.
  • This model of the solenoid valve 18 takes into account the specific characteristics of this solenoid valve 18 as well as the conditions of use such as electrical voltage supplying its electrical control stage 19, its temperature, and fuel-related parameters, in particular the pressure difference between the input and output of the solenoid valve 18.
  • These different parameters and conditions of use are calibrated and stored in maps, including reading allows to obtain effective instants of electrical control of the solenoid valve 18 from instant objectives of opening or closing the hydraulic circuit by solenoid valve 18, taking account of the indicative model delay of the solenoid valve 18.
  • the different modules 23 to 26 of the control unit 5 include thus calculation means and storage means in tables or maps which are well known and need not be described further.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

L'invention concerne un procédé et un système de contrôle de la pression d'une pompe de carburant à haute pression pour l'alimentation d'un moteur à combustion interne.A method and system for monitoring pressure a high pressure fuel pump for supplying an engine internal combustion.

Plus précisément, l'invention se rapporte au contrôle de la pression dans un circuit de carburant à haute pression pour l'alimentation, par au moins un injecteur, d'un moteur à combustion interne, en particulier à injection directe, notamment à allumage commandé, mais sans exclure les moteurs à allumage par compression (de type diesel).More specifically, the invention relates to the control of the pressure in a high-pressure fuel system for the supply, by at least one injector, of an internal combustion engine, in particular direct injection, in particular with positive ignition, but without excluding ignition engines by compression (diesel type).

Dans un système selon l'invention, le moteur à combustion interne entraíne mécaniquement une pompe à haute pression, du type à au moins un piston à mouvement alternatif dans un cylindre correspondant, l'entraínement mécanique du piston étant par exemple assuré par un arbre à cames entraíné à partir du moteur ou appartenant à ce dernier, et la pompe à haute pression débitant dans le circuit à haute pression, qui est du type sans retour permanent de carburant de l'aval vers l'amont de la pompe, la pression de carburant dans le circuit à haute pression étant mesurée par au moins un capteur de pression, et la pompe étant équipée, pour chaque piston, d'une électrovanne, à fonctionnement en tout ou rien, pour commander l'alimentation en carburant du cylindre de pompe correspondant.In a system according to the invention, the internal combustion engine drives mechanically a high pressure pump, of the type with at least one reciprocating piston in a corresponding cylinder, the drive mechanical piston being for example ensured by a camshaft driven from or belonging to the engine, and the high pressure pump discharging into the high pressure circuit, which is of the type without permanent return of fuel from downstream to upstream of the pump, the fuel pressure in the high pressure circuit being measured by at least one pressure sensor, and the pump being equipped, for each piston, with a solenoid valve, operating all or nothing, to control the fuel supply to the cylinder corresponding pump.

Dans des systèmes connus de ce type, assurant une pressurisation de carburant en utilisant une pompe à haute pression, entraínée mécaniquement par le moteur à combustion interne alimenté par la pompe, dont la quantité de carburant délivrée par cycle de pompage de chaque piston est pilotée par une électrovanne d'entrée fonctionnant en tout ou rien, et qui détermine le rendement volumétrique de la pompe par le contrôle du circuit d'admission du carburant à la pompe, il est connu de chercher à établir, dans le circuit à haute pression entre la pompe et le moteur, une pression de carburant égale à une pression objective, déterminée en fonction de paramètres et/ou conditions de fonctionnement du moteur à combustion interne, en effectuant un contrôle direct, agissant directement sur la quantité de carburant délivrée par la pompe de façon à augmenter ou respectivement diminuer cette quantité par cycle de pompage selon que la pression de carburant mesurée dans le circuit à haute pression par le capteur de pression est inférieure ou respectivement supérieure à la pression objective.In known systems of this type, ensuring pressurization of fuel using a high pressure pump, mechanically driven by the internal combustion engine powered by the pump, the amount of fuel delivered by the pumping cycle of each piston is controlled by a all-or-nothing input solenoid valve that determines efficiency displacement of the pump by checking the fuel intake circuit at the pump, it is known to seek to establish, in the high pressure circuit between the pump and the motor, a fuel pressure equal to a pressure objective, determined according to operating parameters and / or conditions of the internal combustion engine, by carrying out a direct control, acting directly on the quantity of fuel delivered by the pump so to increase or respectively decrease this quantity per pumping cycle depending on whether the fuel pressure measured in the high pressure circuit by the pressure sensor is less than or respectively greater than the objective pressure.

Le document DE 197 31 201 A décrit
un contrôle d'un moteur d'une pompe à haute pression alimentant un circuit de carburant à haute pression (common-rail),
ce contrôle consistant à contrôler le débit de la pompe de sorte que la masse délivrée par la pompe est égale à la somme de la masse de carburant injectée et d'une grandeur déterminée d'une fonction de l'écart entre la pression du carburant mesurée dans le circuit et d'une pression souhaitée.
Document DE 197 31 201 A describes
a control of a high pressure pump motor supplying a high pressure fuel system (common-rail),
this control consisting in controlling the flow rate of the pump so that the mass delivered by the pump is equal to the sum of the mass of fuel injected and of a quantity determined by a function of the difference between the fuel pressure measured in the circuit and a desired pressure.

L'inconvénient de ces systèmes de pressurisation connus est de procurer un contrôle simplifié, qui ne prend pas en compte les modes de fonctionnement des différents constituants du système, et en particulier des circuits de carburant à haute pression.The disadvantage of these known pressurization systems is that they provide simplified control, which does not take into account the operating modes of the various components of the system, and in particular of the high pressure fuel.

Le problème à la base de l'invention est de remédier à cet inconvénient et de proposer un procédé et un système de contrôle de pression procurant une meilleure précision de contrôle en établissant une pression de carburant sensiblement égale à une pression objective par action sur un paramètre de commande qui n'est pas directement lié à la grandeur à contrôler, c'est-à-dire la pression de carburant dans le circuit haute pression, le paramètre de commande étant, en l'occurrence, la séquence de commande de l'électrovanne à l'entrée de chaque cylindre de la pompe haute pression.The problem underlying the invention is to remedy this drawback and to propose a pressure control method and system providing better control accuracy by establishing fuel pressure substantially equal to an objective pressure per action on a parameter of command which is not directly related to the quantity to be controlled, i.e. the fuel pressure in the high pressure circuit, the control parameter being, in this case, the sequence of control of the solenoid valve to the inlet of each cylinder of the high pressure pump.

A cet effet, le procédé de contrôle de pression selon l'invention, du type présenté ci-dessus, se caractérise en ce qu'il comprend l'étape consistant à contrôler la pression de carburant en pilotant l'électrovanne de sorte que la masse de carburant délivrée par ladite pompe dans ledit circuit à haute pression est égale à la somme algébrique d'une masse de carburant destinée à être injectée dans le moteur à combustion interne (et connue par une unité de contrôle moteur commandant au moins l'injection de carburant dans le moteur), et d'une masse de carburant nécessaire, ou d'une grandeur déterminée à partir de ladite masse nécessaire, pour corriger au moins partiellement l'écart de pression entre la pression de carburant mesurée dans le circuit à haute pression à l'aide dudit capteur de pression et une pression objective, souhaitée dans ledit circuit à haute pression.To this end, the pressure control method according to the invention, of the type presented above, is characterized in that it comprises the step consisting in control the fuel pressure by controlling the solenoid valve so that the mass of fuel delivered by said pump in said high pressure circuit is equal to the algebraic sum of a mass of fuel intended for be injected into the internal combustion engine (and known by a unit of engine control controlling at least the injection of fuel into the engine), and a required fuel mass, or a quantity determined from of said necessary mass, to at least partially correct the deviation of pressure between the fuel pressure measured in the high pressure circuit using said pressure sensor and an objective pressure, desired in said high pressure circuit.

Ainsi, on contrôle la pression de carburant dans le circuit à haute pression, notamment pour une injection directe, en utilisant une électrovanne de régulation de l'admission de carburant à la pompe haute pression, cette électrovanne permettant de moduler la quantité de carburant refoulée par la pompe dans le circuit à haute pression, et ainsi de moduler la pression de carburant dans ce circuit pour qu'elle s'aligne sur la pression objective.Thus, we control the fuel pressure in the high pressure circuit, especially for direct injection, using a solenoid valve regulation of the fuel admission to the high pressure pump, this solenoid valve allowing to modulate the quantity of fuel delivered by the pump in the high pressure circuit, and thus to modulate the fuel pressure in this circuit so that it aligns with the objective pressure.

Avantageusement, on détermine ladite masse de carburant nécessaire pour corriger au moins partiellement l'écart entre les pressions mesurée et objective à l'aide d'au moins une relation entre la masse ou variation de masse de carburant et la pression ou variation de pression du carburant dans ledit circuit à haute pression, afin de prendre en compte le mode de fonctionnement du circuit à haute pression, et en particulier son comportement et celui du carburant que ce circuit contient dans les conditions de fonctionnement du circuit et compte tenu des quantités de carburant refoulées par la pompe dans ce circuit.Advantageously, said mass of fuel required is determined to at least partially correct the difference between the measured and objective pressures using at least one relationship between mass or mass change of fuel and the pressure or variation of fuel pressure in said circuit at high pressure, in order to take into account the operating mode of the circuit at high pressure, and in particular its behavior and that of the fuel that this circuit contains in the operating conditions of the circuit and taking into account the quantities of fuel discharged by the pump in this circuit.

Avantageusement, la détermination de cette relation entre la masse ou variation de masse et la pression ou variation de pression du carburant dans le circuit à haute pression est effectuée en prenant en compte l'un au moins de paramètres de fonctionnement tels que la pression mesurée et la température du carburant, et/ou la loi de compressibilité du carburant utilisé, et/ou l'un au moins de paramètres géométriques du circuit à haute pression et/ou l'une au moins des caractéristiques mécaniques et/ou physiques des matériaux des organes constitutifs dudit circuit à haute pression.Advantageously, the determination of this relationship between the mass or change in mass and pressure or change in fuel pressure in the high pressure circuit is carried out taking into account at least one of operating parameters such as measured pressure and temperature fuel, and / or the compressibility law of the fuel used, and / or one at less geometric parameters of the high pressure circuit and / or one at less mechanical and / or physical characteristics of organ materials constituting said high pressure circuit.

Afin d'adapter la qualité du contrôle en terme de rapidité, stabilité et précision, le procédé de contrôle comprend avantageusement de plus une étape consistant à pondérer la masse de carburant nécessaire pour corriger l'écart entre les pressions mesurée et objective par une correction de type proportionnelle-intégrale-dérivée, cette correction étant assurée par exemple par un algorithme de type bien connu.In order to adapt the quality of the control in terms of speed, stability and precision, the control method advantageously further comprises a step of weighting the mass of fuel necessary to correct the deviation between the measured and objective pressures by a proportional-integral-derivative correction, this correction being ensured for example by an algorithm of well-known type.

Après avoir calculé la masse de carburant que doit délivrer la pompe, le procédé de l'invention propose également une détermination des instants de commande de l'électrovanne en prenant en compte le fonctionnement de la pompe et le fonctionnement de l'électrovanne. A cet effet, et concernant le fonctionnement de la pompe, le procédé de l'invention comprend avantageusement de plus une étape consistant à commander l'électrovanne en prenant en compte au moins une relation entre le débit de la pompe et la position angulaire du moteur, qui l'entraíne mécaniquement, pendant les périodes de fermeture de ladite électrovanne. Plus généralement, le procédé de l'invention prend en compte une relation indiquant la quantité de carburant délivrée par la pompe au circuit à haute pression en fonction du séquencement d'ouverture et de fermeture de l'électrovanne située sur le circuit d'admission de ladite pompe.After calculating the mass of fuel to be delivered by the pump, the method of the invention also proposes a determination of the instants of control of the solenoid valve taking into account the operation of the pump and the operation of the solenoid valve. To this end, and concerning the operation of the pump, the method of the invention advantageously comprises further a step consisting in controlling the solenoid valve by taking takes into account at least one relation between the pump flow and the angular position of the engine, which drives it mechanically, during closed periods of said solenoid valve. More generally, the method of the invention takes into account a relation indicating the quantity of fuel delivered by the pump to the high pressure circuit according to the opening sequence and closing the solenoid valve located on the intake circuit of said pump.

Pour une meilleure précision, cette relation exprimant le débit de la pompe prend avantageusement en compte au moins un paramètre de fonctionnement tel que la pression de carburant, la vitesse de rotation et/ou la température de fonctionnement de la pompe.For better accuracy, this relationship expressing the flow of the the pump advantageously takes into account at least one operating parameter such as fuel pressure, speed and / or temperature pump operation.

Concemant le comportement de l'électrovanne, le procédé de l'invention comprend avantageusement de plus une étape consistant à commander ladite électrovanne en prenant en compte au moins une relation entre le retard des ouvertures et fermetures effectives de l'électrovanne par rapport aux ordres électriques de commande à l'ouverture et à la fermeture, d'une part, et, d'autre part, l'un au moins de paramètres et conditions de fonctionnement de ladite électrovanne, ainsi de préférence qu'au moins un paramètre relatif au carburant.Regarding the behavior of the solenoid valve, the method of the invention advantageously further comprises a step consisting in controlling said solenoid valve taking into account at least one relation between the delay of effective opening and closing of the solenoid valve in relation to orders electrical control on opening and closing, on the one hand, and, on the other share, at least one of the parameters and operating conditions of said solenoid valve, so preferably at least one parameter relating to fuel.

De préférence, pour atteindre une bonne précision, cette relation relative au retard de l'électrovanne prend en compte l'un au moins des paramètres que sont la tension électrique d'alimentation et la température de fonctionnement de l'électrovanne ainsi que la différence de pression de carburant entre l'entrée et la sortie de ladite électrovanne.Preferably, to achieve good accuracy, this relative relationship at the delay of the solenoid valve takes into account at least one of the parameters that are the supply voltage and the operating temperature of the solenoid valve as well as the difference in fuel pressure between the inlet and the outlet of said solenoid valve.

L'invention se rapporte également à un système de contrôle de la pression dans un circuit de carburant à haute pression pour l'alimentation, par au moins un injecteur, d'un moteur à combustion interne, en particulier à injection directe, et notamment à allumage commandé, système dans lequel ledit moteur assure l'entraínement mécanique d'une pompe à haute pression, du type à au moins un piston à mouvement alternatif dans un cylindre correspondant, ladite pompe débitant dans ledit circuit à haute pression, qui est du type sans retour permanent de carburant de l'aval vers l'amont de ladite pompe, et dans lequel la pression de carburant est mesurée par au moins un capteur de pression du système, ladite pompe étant équipée, pour chaque piston, dune électrovanne, à fonctionnement en tout ou rien, pour commander l'alimentation en carburant du cylindre de pompe correspondant, et, selon l'invention, ce système se caractérise en ce qu'il comprend au moins une unité électronique de contrôle de pression, en relation avec ou intégrée à une unité électronique de contrôle moteur, commandant l'injection et, le cas échéant, l'allumage du moteur, et déterminant notamment la masse de carburant destinée à être injectée dans le moteur, ladite unité électronique de contrôle de pression pilotant l'électrovanne pour commander l'alimentation dudit cylindre de la pompe et comprenant des moyens de calcul et des moyens de mémoire et étant agencée pour la mise en oeuvre du procédé selon l'invention tel que défini ci-dessus, et l'unité électronique de contrôle de pression comprenant au moins un module de détermination de la relation, éventuellement pondérée, entre masse ou variation de masse et respectivement pression ou variation de pression de carburant dans le circuit à haute pression, au moins un module de détermination de la pression objective souhaitée dans ledit circuit à haute pression en fonction de paramètres et/ou conditions de fonctionnement du moteur, au moins un module de détermination de la masse de carburant à délivrer par la pompe dans le circuit à haute pression, en fonction d'un signal de masse de carburant destinée à être injectée dans le moteur et reçu de l'unité de contrôle moteur, et de la masse de carburant destinée à compenser la différence de pression entre la pression mesurée par le capteur de pression et la pression objective, au moins un module de détermination du retard de ladite électrovanne, et au moins un module de détermination du débit de la pompe en fonction de la position angulaire du moteur et du séquencement d'ouverfure et de fermeture de ladite électrovanne.The invention also relates to a pressure control system. in a high pressure fuel system for the supply, by at minus an injector, of an internal combustion engine, in particular with injection direct, and in particular with spark ignition, system in which said engine provides mechanical drive for a high pressure pump, of the at least one reciprocating piston in a corresponding cylinder, said piston pump delivering in said high pressure circuit, which is of the type without permanent return of fuel from downstream to upstream of said pump, and in which the fuel pressure is measured by at least one pressure sensor of the system, said pump being equipped, for each piston, with a solenoid valve, all or nothing operation, to control the supply of fuel of the corresponding pump cylinder, and, according to the invention, this system is characterized in that it comprises at least one electronic unit of pressure control, in connection with or integrated into an electronic control unit engine control, controlling injection and, if necessary, engine ignition, and determining in particular the mass of fuel intended to be injected in the engine, said electronic pressure control unit driving the solenoid valve for controlling the supply of said pump cylinder and comprising calculation means and memory means and being arranged for implementing the method according to the invention as defined above, and the electronic pressure control unit comprising at least one module for determining the relationship, possibly weighted, between mass or variation of mass and respectively pressure or variation of pressure of fuel in the high pressure circuit, at least one determination module of the desired objective pressure in said high pressure circuit in function of engine operating parameters and / or conditions, at minus a module for determining the mass of fuel to be delivered by the pump in the high pressure circuit, based on a ground signal of fuel to be injected into the engine and received from the control unit engine, and the mass of fuel intended to compensate for the difference in pressure between the pressure measured by the pressure sensor and the pressure objective, at least one module for determining the delay of said solenoid valve, and at least one module for determining the flow rate of the pump as a function the angular position of the motor and the sequencing of opening and closing of said solenoid valve.

D'autres avantages et caractéristiques de l'invention ressortiront de la description donnée ci-dessous, à titre non limitatif, d'un exemple de réalisation décrit en référence aux dessins annexés sur lesquels :

  • la figure 1 est un schéma du système de contrôle de pression de l'invention implanté sur le circuit d'alimentation de carburant d'un moteur à combustion interne d'automobile, et
  • la figure 2 représente en superposition des chronogrammes représentant un modèle de fonctionnement de la pompe à haute pression, en fonction de la position angulaire du moteur à combustion inteme et du séquencement d'ouverture et de fermeture de l'électrovanne, pour la détermination de la quantité de carburant délivrée par la pompe au circuit à haute pression.
Other advantages and characteristics of the invention will emerge from the description given below, without implied limitation, of an exemplary embodiment described with reference to the appended drawings in which:
  • FIG. 1 is a diagram of the pressure control system of the invention installed on the fuel supply circuit of an automobile internal combustion engine, and
  • FIG. 2 is a superimposed timing diagram representing an operating model of the high pressure pump, as a function of the angular position of the internal combustion engine and of the opening and closing sequence of the solenoid valve, for determining the quantity of fuel delivered by the pump to the high pressure circuit.

Sur la figure 1, on a représenté schématiquement en 1 un moteur à combustion interne de véhicule automobile, par exemple un moteur à cycle à quatre temps, à quatre cylindres en ligne, à allumage commandé et à injection directe d'essence.In Figure 1, there is shown schematically at 1 a motor with internal combustion of a motor vehicle, for example a cycle engine four-stroke, four-cylinder in-line, spark-ignition and injection direct gasoline.

Cette injection directe de carburant est assurée dans chaque cylindre du moteur 1 par l'un respectivement de quatre injecteurs schématisés en 2, et tous alimentés en carburant à haute pression par une rampe commune de carburant 3, dans laquelle la haute pression de carburant est mesurée par un capteur de pression 4 transmettant le signal de pression mesurée à une unité de contrôle électronique 5. Cette unité 5 est simultanément une unité de contrôle moteur, commandant l'allumage dans les cylindres du moteur 1 ainsi que, par la ligne 6, les instants et durées d'ouverture des électro-injecteurs 2, afin de contrôler la quantité de carburant injectée par chacun des injecteurs 2 dans chacun des cylindres correspondants du moteur 1, en fonction des temps moteur dans chacun des cylindres, des paramètres et conditions de fonctionnement du moteur, en particulier de son régime, de sa charge, de sa température, ect .... et de la demande en carburant en fonction notamment du débit d'admission d'air au moteur 1, l'agencement de l'unité 5 à cet effet n'étant pas davantage décrit dans le présent mémoire descriptif, car bien connu. Les paramètres de fonctionnement du moteur sont introduits dans l'unité 5 par les entrées schématisées en 7.This direct fuel injection is ensured in each cylinder of the engine 1 by one respectively of four injectors shown diagrammatically in 2, and all supplied with high pressure fuel by a common fuel rail 3, in which the high fuel pressure is measured by a pressure sensor 4 transmitting the measured pressure signal to a unit of electronic control 5. This unit 5 is simultaneously a unit of engine control, controlling the ignition in the cylinders of engine 1 as well that, via line 6, the times and durations of opening of the electro-injectors 2, in order to control the quantity of fuel injected by each of the injectors 2 in each of the corresponding cylinders of engine 1, as a function of time engine in each cylinder, operating parameters and conditions the engine, in particular its speed, its load, its temperature, ect .... and the fuel demand depending in particular on the flow air intake to engine 1, the arrangement of unit 5 for this purpose not being further described in this specification, as well known. The settings of motor operation are introduced into unit 5 by the inputs shown schematically in 7.

La rampe de carburant 3 est alimentée en carburant par une conduite schématisée en 8 à la sortie 9, sur laquelle est monté un clapet anti-retour schématisé en 10, d'une pompe 11 monopiston, dont le piston 12 est animé d'un mouvement alternatif dans un cylindre 13 par une came 14 rotative avec un arbre à cames 15, lui-même entraíné en rotation mécaniquement à partir du moteur 1 par une liaison schématisée en 16, et qui peut être une liaison à courroie entre une poulie solidaire en rotation de l'arbre à cames 15 et une autre poulie entraínée en rotation par le vilebrequin du moteur 1.The fuel rail 3 is supplied with fuel by a line shown diagrammatically at 8 at outlet 9, on which a non-return valve is mounted shown schematically at 10, a single piston pump 11, the piston 12 of which is driven of a reciprocating movement in a cylinder 13 by a rotary cam 14 with a camshaft 15, itself rotated mechanically from the motor 1 by a connection shown diagrammatically at 16, which may be a belt connection between a pulley integral in rotation with the camshaft 15 and another pulley driven in rotation by the crankshaft of the engine 1.

La chambre de pompage, délimitée essentiellement par le piston 12 dans le cylindre 13 de la pompe 11, ainsi mécaniquement entraínée par le moteur 1, est également en communication avec une entrée 17, sur laquelle est montée une électrovanne 18, dont le fonctionnement en tout ou rien est commandé par son étage électrique de commande 19, comprenant, de manière classique, un solénoïde, et lui-même commandé par l'unité 5 au travers de la ligne 20.The pumping chamber, essentially delimited by the piston 12 in the cylinder 13 of the pump 11, thus mechanically driven by the motor 1, is also in communication with an input 17, on which is mounted a solenoid valve 18, the operation of which is all or nothing controlled by its electrical control stage 19, comprising, so classic, a solenoid, and itself controlled by unit 5 through from line 20.

L'électrovanne 18 de contrôle de l'admission de carburant à la pompe 11 est elle-même alimentée en carburant à basse pression par un circuit amont à basse pression de structure classique (non représenté), comprenant un réservoir de carburant, dans lequel du carburant est prélevé par une pompe à basse pression et transmis, au travers d'un filtre et d'une conduite schématisée par la flèche 21, à l'électrovanne 18.The solenoid valve 18 for controlling the fuel intake at the pump 11 is itself supplied with fuel at low pressure by an upstream circuit low pressure of conventional structure (not shown), comprising a reservoir fuel, from which fuel is drawn by a fuel pump low pressure and transmitted, through a filter and a schematic pipe by arrow 21, to the solenoid valve 18.

L'installation d'alimentation du moteur 1 en carburant comprend ainsi un circuit basse pression (non représenté) en amont de l'électrovanne 18, et un circuit haute pression, en aval du clapet anti-retour 10 sur le refoulement 9 de la pompe 11, ce circuit à haute pression 22 comprenant essentiellement la rampe de carburant 3 et la conduite 8 de liaison entre le refoulement 9 de la pompe 11 et cette rampe 3.The installation for supplying the engine 1 with fuel thus comprises a low pressure circuit (not shown) upstream of the solenoid valve 18, and a high pressure circuit, downstream of the non-return valve 10 on the discharge 9 of the pump 11, this high pressure circuit 22 essentially comprising the fuel rail 3 and the line 8 connecting the discharge 9 of the pump 11 and this ramp 3.

En variante, la rampe 3 peut être équipée d'un clapet de surpression, en communication avec la conduite 21 en amont de l'électrovanne 18, pour décharger la rampe 3 lorsque la pression de carburant dans cette rampe 3 dépasse un seuil critique. Mais le circuit haute pression 22 est, par ailleurs, un circuit sans retour permanent ou sans recirculation de carburant vers l'amont de la pompe à haute pression 11 et de l'électrovanne d'entrée 18.Alternatively, the ramp 3 can be equipped with a pressure relief valve, in communication with line 21 upstream of the solenoid valve 18, to discharge ramp 3 when the fuel pressure in this ramp 3 exceeds a critical threshold. But the high pressure circuit 22 is, moreover, a circuit without permanent return or without fuel recirculation upstream high pressure pump 11 and inlet solenoid valve 18.

Cette électrovanne 18 de contrôle de l'admission de carburant à la pompe 11 peut être une électrovanne normalement fermée, et maintenue fermée par les forces de pression à l'intérieur de la pompe 11 et d'un ressort interne (non représenté) de l'électrovanne 18, laquelle n'est ouverte qu'à la réception, par son étage de pilotage électrique 19, d'un ordre électrique de commande d'ouverture provenant de l'unité 5.This solenoid valve 18 for controlling the fuel admission to the pump 11 can be a normally closed solenoid valve, and kept closed by the pressure forces inside the pump 11 and an internal spring (not shown) of the solenoid valve 18, which is only open on receipt, by its electric control stage 19, an electric control command from unit 5.

Cette unité 5 est, selon l'invention, également une unité de contrôle de pression, qui permet de contrôler la pression du carburant dans le circuit à haute pression 22, en aval de la pompe monopiston 11, en modulant la quantité d'essence refoulée par cette pompe 11, et donc sa pression dans le circuit à haute pression 22, par le pilotage du séquencement d'ouverture et de fermeture de l'électrovanne 18 par l'unité 5.This unit 5 is, according to the invention, also a unit for controlling pressure, which controls the fuel pressure in the circuit at high pressure 22, downstream of the single piston pump 11, by modulating the quantity gasoline pumped by this pump 11, and therefore its pressure in the circuit at high pressure 22, by controlling the opening and closing sequencing solenoid valve 18 by unit 5.

Ce contrôle de pression dans le circuit à haute pression 22 est assuré de la manière suivante.This pressure control in the high pressure circuit 22 is ensured as follows.

L'unité de contrôle 5 détermine une pression objective Po souhaitée dans le. circuit haute pression 22, en fonction de paramètres de fonctionnement du moteur 1 tels que la vitesse et la charge du moteur et sa température, qui sont transmis à partir de capteurs appropriés à l'unité 5 par les entrées 7. Cette détermination de la pression objective Po est obtenue par exemple par la mise en oeuvre dans l'unité 5 d'un algorithme prenant en compte ces paramètres de fonctionnement du moteur 1. L'unité 5 détermine la pression de carburant objective Po et connaít à tout instant, grâce au capteur de pression 4, la pression de carburant mesurée Pm dans le circuit à haute pression 22, et l'unité 5 peut en déduire la différence de pression ΔP entre la pression mesurée Pm et la pression objective Po. Le contrôle de pression commandé par l'unité 5 consiste à piloter le séquencement d'ouverture et de fermeture de l'électrovanne 18, par la ligne 20 et l'étage électrique 19 de pilotage de cette électrovanne 18, de sorte que la pompe 11 refoule dans le circuit à haute pression 22 une masse de carburant suffisante pour compenser la différence de pression ΔP ainsi que la masse de carburant qui va être transmise de la rampe 3 au moteur 1 par injection par les injecteurs 2. Cette masse Qm de carburant destinée à être consommée par le moteur 1, c'est-à-dire la masse sortant de la rampe 3, est connue de l'unité 5, dont la partie formant l'unité de contrôle moteur a précisément pour tâche de déterminer cette quantité Qm de carburant consommée par le moteur 1. Si on appelle QΔP la masse de carburant qu'il est nécessaire de refouler par la pompe 11 dans le circuit à haute pression 22 pour compenser la différence de pression ΔP, on comprend que la masse de carburant Qp refoulée par la pompe 11 vers le circuit haute pression 22 est donnée par la formule (1): (1)   Qp = Qm + Q Δp The control unit 5 determines an objective pressure Po desired in the. high pressure circuit 22, as a function of operating parameters of the engine 1 such as the speed and the load of the engine and its temperature, which are transmitted from appropriate sensors to the unit 5 by the inputs 7. This determination of the pressure objective Po is obtained for example by the implementation in unit 5 of an algorithm taking into account these operating parameters of the engine 1. Unit 5 determines the objective fuel pressure Po and knows at all times, thanks to pressure sensor 4, the measured fuel pressure Pm in the high-pressure circuit 22, and the unit 5 can deduce therefrom the pressure difference ΔP between the measured pressure Pm and the objective pressure Po. The pressure control controlled by l unit 5 consists in controlling the sequence of opening and closing of the solenoid valve 18, by the line 20 and the electrical stage 19 for controlling this solenoid valve 18, so that the pump 11 pumps back into the high pressure circuit 22 a mass of fuel sufficient to compensate for the pressure difference ΔP as well as the mass of fuel which will be transmitted from the ramp 3 to the engine 1 by injection by the injectors 2. This mass Qm of fuel intended to be consumed by the engine 1, that is to say the mass leaving the ramp 3, is known to the unit 5, the part of which forming the engine control unit is precisely responsible for determining this quantity Qm of fuel consumed by the engine 1. If we call QΔP the mass of fuel that must be pumped back by the pump 11 into the high-pressure circuit 22 to compensate for the pressure difference ΔP, we understand that the mass of fuel Qp driven by the pump 11 to the high pressure circuit 22 is given by the formula (1): (1) Qp = Qm + Q Δp

Le pilotage de l'électrovanne 18 par l'unité de contrôle 5 est donc assuré pour corriger l'erreur entre la pression de carburant Pm, mesurée dans la rampe 3 par le capteur 4, et la pression objective Po, déterminée par l'unité 5, en agissant sur la masse de carburant présente à l'intérieur du circuit haute pression 22. Ainsi, avant chaque commande de l'électrovanne 18, l'unité 5 détermine, par calcul et par lecture de cartographies, comme expliqué ci-dessous, la masse de carburant que doit fournir la pompe 11 comme étant la somme algébrique, d'une part, de la masse de carburant Qm qui doit sortir du circuit haute pression 22, c'est-à-dire de la quantité de carburant à injecter dans le moteur 1 par les injecteurs 2, et, d'autre part, de la variation de masse QΔp nécessaire pour compenser l'erreur de pression ΔP compte tenu du comportement du circuit haute pression 22 en tant que contenant, et de la quantité de carburant qu'il contient, en tant que contenu, sous l'effet de la pressurisation.The control of the solenoid valve 18 by the control unit 5 is therefore ensured to correct the error between the fuel pressure Pm, measured in the ramp 3 by the sensor 4, and the objective pressure Po, determined by the unit 5, by acting on the mass of fuel present inside the upper circuit pressure 22. Thus, before each command of the solenoid valve 18, the unit 5 determines, by calculation and by reading maps, as explained below, the mass of fuel which pump 11 must supply as being the algebraic sum, on the one hand, the mass of fuel Qm which must leave the circuit high pressure 22, i.e. the quantity of fuel to be injected into the engine 1 by injectors 2, and, on the other hand, the required mass variation QΔp to compensate for the pressure error ΔP taking into account the behavior of the high pressure circuit 22 as a container, and of the amount of fuel it contains, as a content, under the effect of pressurization.

A cet effet, l'unité de contrôle 5, en plus du module 23 qu'elle contient pour la détermination de la pression objective et la comparaison à la pression mesurée pour déterminer la différence de pression ΔP, renferme un autre module 24, déterminant un modèle de « raideur » ou de « rigidité » du circuit haute pression 22. Ce module 24 détermine une relation exprimant la masse ou variation de masse de carburant contenue dans le circuit haute pression 22 en fonction de la pression ou d'une différence de pression dans ce circuit 22, en prenant en compte la géométrie de ce circuit 22, c'est-à-dire la géométrie de la conduite 8 et de la rampe 3, ainsi que les caractéristiques mécaniques et physiques, et en particulier le module d'élasticité E, des matériaux constitutifs de cette conduite 8 et de cette rampe 3, pour prendre en compte le fait que le volume interne au circuit haute pression 22 augmente sensiblement sous l'effet de la haute pression de carburant à l'intérieur de ce circuit 22. En outre, cette relation entre masse et pression de carburant dans le circuit 22 ou entre variation de masse et variation de pression prend en compte le comportement du carburant, et en particulier sa loi de compressibilité en fonction des conditions d'utilisation telles que la température du carburant et la pression mesurée Pm du carburant dans le circuit 22.To this end, the control unit 5, in addition to the module 23 which it contains for determining the objective pressure and comparing it to the pressure measured to determine the pressure difference ΔP, contains another module 24, determining a model of “stiffness” or “rigidity” of the circuit high pressure 22. This module 24 determines a relationship expressing the mass or variation in mass of fuel contained in the high pressure circuit 22 as a function of the pressure or of a pressure difference in this circuit 22, taking into account the geometry of this circuit 22, that is to say the geometry of line 8 and ramp 3, as well as the mechanical characteristics and physical, and in particular the elastic modulus E, of the constituent materials of this pipe 8 and this ramp 3, to take into account the fact that the internal volume of the high pressure circuit 22 increases significantly under the effect of the high fuel pressure inside this circuit 22. In addition, this relation between mass and fuel pressure in circuit 22 or between variation of mass and pressure variation takes into account the behavior of the fuel, and in particular its compressibility law depending on the conditions such as fuel temperature and measured pressure Pm fuel in the circuit 22.

Le module 24 détermine donc un coefficient de raideur ou rigidité K, calibré et lu dans des tables cartographiques établies en tenant compte des paramètres géométriques, caractéristiques physiques et mécaniques ainsi que des conditions d'utilisation précitées, ce coefficient de raideur K correspondant sensiblement à la pente d'une courbe caractéristique exprimant une variation de masse de carburant dans le circuit haute pression 22 en fonction d'une variation de pression dans ce circuit.The module 24 therefore determines a stiffness or stiffness coefficient K, calibrated and read in cartographic tables established taking into account the parameters geometric, physical and mechanical characteristics as well as of the aforementioned conditions of use, this corresponding stiffness coefficient K substantially at the slope of a characteristic curve expressing a variation mass of fuel in the high pressure circuit 22 as a function of a variation pressure in this circuit.

Connaissant le coefficient de raideur K déterminé par le module 24 et connaissant la différence de pression ΔP entre la pression mesurée Pm et la pression objective Po, par le module 23, l'unité de contrôle 5 peut calculer la masse de carburant QΔP à refouler dans le circuit haute pression 22 pour compenser la différence de pression ΔP, par la formule (2) : (2)   QΔP = K x (Pm - Po) de sorte que la masse de carburant à refouler par la pompe 11 à chaque cycle de pompage de son piston 12 est, en tenant compte de la formule (1), donnée par la formule (3) : (3)   Qp = Qm + K x (Pm - Po) Knowing the stiffness coefficient K determined by the module 24 and knowing the pressure difference ΔP between the measured pressure Pm and the objective pressure Po, by the module 23, the control unit 5 can calculate the mass of fuel QΔP to be pumped into the high pressure circuit 22 to compensate for the pressure difference ΔP, by formula (2): (2) QΔP = K x (Pm - Po) so that the mass of fuel to be pumped by the pump 11 at each pumping cycle of its piston 12 is, taking into account the formula (1), given by the formula (3): (3) Qp = Qm + K x (Pm - Po)

Cependant, afin d'adapter la qualité du contrôle de pression en termes de rapidité, exactitude et stabilité, le procédé mis en oeuvre par l'unité de contrôle 5 prend en compte non pas la masse exacte de carburant QΔP nécessaire pour compenser la différence de pression ΔP, mais une valeur calculée à partir de cette masse exacte et égale à un pourcentage inférieur ou égal à 100 % de cette masse exacte, par exemple au moyen d'un algorithme de type proportionnel-intégral-dérivé pour pratiquer une correction correspondante.However, in order to adapt the quality of the pressure control in terms speed, accuracy and stability, the process implemented by the check 5 does not take into account the exact mass of fuel QΔP required to compensate for the pressure difference ΔP, but a value calculated at from this exact mass and equal to a percentage less than or equal to 100 % of this exact mass, for example using a proportional-integral-derivative type algorithm to make a corresponding correction.

Le terme proportionnel de cette correction tient compte d'une proportion de cette masse exacte qui ne correspond qu'à une proportion de la différence de pression, tandis que le terme dérivé tient compte du sens d'évolution, croissant ou décroissant, de cette différence de pression, et que le terme intégral intègre dans le temps des variations faibles consécutives pour en déduire une tendance d'évolution. De tels algorithmes dits de type PID (Proportionnel-Intégral-Dérivé) sont bien connus de l'homme du métier et ne sont donc pas davantage précisés dans le présent mémoire descriptif.The proportional term of this correction takes into account a proportion of this exact mass which only corresponds to a proportion of the difference of pressure, while the derivative term takes into account the direction of evolution, increasing or decreasing, of this pressure difference, and that the integral term integrates consecutive small variations over time to deduce a evolutionary trend. Such PID (Proportional-Integral-Derivative) algorithms are well known to those skilled in the art and are therefore not more detailed in this specification.

Après avoir calculé la masse de carburant que la pompe 11 doit refouler dans le circuit haute pression 22, l'unité de contrôle 5 détermine les instants de commande de l'électrovanne 18 à l'ouverture et à la fermeture en se basant sur un modèle fonctionnel de la pompe 11, mis en oeuvre dans le module 25 de l'unité 5, et sur un modèle fonctionnel de l'électrovanne 18, mis en oeuvre dans un module 26 de l'unité 5.After calculating the mass of fuel that pump 11 must pump in the high pressure circuit 22, the control unit 5 determines the instants of control of the solenoid valve 18 on opening and closing based on a functional model of the pump 11, implemented in module 25 of unit 5, and on a functional model of the solenoid valve 18, implemented in a module 26 of unit 5.

Le modèle fonctionnel de la pompe 11, mis en oeuvre dans le module 25, détermine une loi de quantité de carburant refoulée par la pompe 11 dans le circuit haute pression 22 en fonction du séquencement d'ouverture et de fermeture de l'électrovanne 18 sur le circuit d'admission de la pompe 11, et en tenant compte de la position angulaire du moteur 1, c'est-à-dire de la position angulaire de son organe rotatif, par exemple son vilebrequin entraínant mécaniquement l'arbre 15 à came 14 d'actionnement du piston 12 de la pompe 11, et donc déterminant la position angulaire de cette came 14, et ainsi les phases d'admission et de refoulement de la pompe 11.The functional model of pump 11, implemented in the module 25, determines a law of quantity of fuel delivered by the pump 11 in the high pressure circuit 22 according to the opening sequence and closing of the solenoid valve 18 on the intake circuit of the pump 11, and taking into account the angular position of the motor 1, i.e. the position angular of its rotary member, for example its mechanically driven crankshaft the camshaft 15 for actuating the piston 12 of the pump 11, and therefore determining the angular position of this cam 14, and thus the phases pump inlet and outlet 11.

Ce modèle fonctionnel de la pompe 11 est décrit en référence à la figure 2, sur laquelle les schémas de la figure 2a) représentent successivement, de la gauche vers la droite, le piston 12 de la pompe 11 au point mort bas, en fin d'une phase d'admission, puis le piston 12 au point mort haut, en fin de la phase de refoulement ou compression consécutive, puis le piston 12 au point mort bas suivant, et enfin au point mort haut suivant. La courbe de la figure 2b représente la course X du piston 12 dans le cylindre 13 en fonction de l'angle α de rotation du vilebrequin du moteur 1, et donc aussi de l'arbre 15 à came 14 actionnant la pompe 11, et cette courbe représente les passages successifs aux points morts bas PMB et points morts hauts PMH du piston 12, une phase de refoulement se déroulant entre un PMB et le PMH suivant, tandis qu'une phase d'admission se déroule entre un PMH et le PMB suivant. This functional model of the pump 11 is described with reference to the figure. 2, in which the diagrams of FIG. 2a) successively represent, from the left to right, piston 12 of pump 11 in bottom dead center, at the end an intake phase, then the piston 12 at top dead center, at the end of the discharge phase or consecutive compression, then piston 12 at point next bottom dead, and finally to the next top dead center. The curve of figure 2b represents the stroke X of the piston 12 in the cylinder 13 as a function of the angle α of rotation of the crankshaft of the engine 1, and therefore also of the shaft 15 with cam 14 actuating the pump 11, and this curve represents the successive passages at low dead center PMB and high dead center TDC of piston 12, one phase of discharge taking place between a PMB and the next TDC, while a Admission phase takes place between a TDC and the next PMB.

La courbe de la figure 2c) représente la succession des états de fermeture F et d'ouverture O de l'électrovanne EV 18 fonctionnant en tout ou rien, en fonction de l'angle α indiqué ci-dessus, et le rapprochement des courbes des figures 2b) et 2c) permet de constater que les fermetures de l'électrovanne 18 au cours des phases de refoulement de la pompe 11 entraínent un débit instantané de refoulement D de carburant de la pompe 11 dans le circuit haute pression 22 comme indiqué sur la figure 2d) pendant les courses angulaires A (voir figure 2c) correspondant aux fermetures de l'électrovanne 18. Il en résulte une masse Q de carburant transféré, qui correspond à l'intégration de la courbe de débit instantané D, c'est-à-dire à la surface hachurée délimitée par cette courbe D, l'évolution de cette masse Q refoulée en fonction de la plage angulaire de fermeture A étant indiquée sur la figure 2e). Ces valeurs de Q en fonction des valeurs de A et de α sont également calibrées et mémorisées en cartographies, établies en tenant compte de paramètres mentionnés ci-dessous.The curve of Figure 2c) represents the succession of closing states F and opening O of the solenoid valve EV 18 operating in all or nothing, in function of the angle α indicated above, and the approximation of the curves of the Figures 2b) and 2c) shows that the closings of the solenoid valve 18 during the delivery phases of the pump 11 cause an instantaneous flow of fuel delivery D from pump 11 in the upper circuit pressure 22 as shown in Figure 2d) during angular strokes A (see Figure 2c) corresponding to the closings of the solenoid valve 18. This results a mass Q of transferred fuel, which corresponds to the integration of the instantaneous flow curve D, i.e. the hatched area delimited by this curve D, the evolution of this repressed mass Q as a function of the range closing angle A being shown in Figure 2e). These values of Q in function of the values of A and α are also calibrated and stored in maps, established taking into account the parameters mentioned below.

Le modèle fonctionnel de la pompe 11, tel que mis en oeuvre par le module 25 de l'unité 5, prend en compte non seulement les caractéristiques géométriques de la pompe 11 mais également ses conditions d'utilisation, comme la température et la vitesse de rotation de la pompe 11, ainsi que la pression du carburant, en particulier vers l'aval de la pompe 11, c'est-à-dire dans le circuit 22 à haute pression, mais aussi vers l'amont de la pompe 11, lorsque l'électrovanne 18 est ouverte.The functional model of the pump 11, as implemented by the module 25 of unit 5, takes into account not only the geometric characteristics pump 11 but also its conditions of use, such as the temperature and the speed of rotation of the pump 11, as well as the pressure fuel, in particular downstream of the pump 11, that is to say in the circuit 22 at high pressure, but also upstream of the pump 11, when the solenoid valve 18 is open.

L'unité de contrôle 5 comporte également un module 26 mettant en oeuvre un modèle de fonctionnement de l'électrovanne 18 et de son étage de pilotage électrique 19, ce modèle déterminant le retard entre la commande électrique à la fermeture et à l'ouverture de l'étage de pilotage 19 et l'ouverture et la fermeture effective du circuit hydraulique par l'électrovanne 18. Ce modèle de l'électrovanne 18 prend en compte les caractéristiques propres de cette électrovanne 18 ainsi que les conditions d'utilisation comme la tension électrique d'alimentation de son étage électrique de pilotage 19, sa température, et des paramètres liés au carburant, en particulier la différence de pression entre l'entrée et la sortie de l'électrovanne 18. Ces différents paramètres et conditions d'utilisation sont calibrés et mémorisés en cartographies, dont la lecture permet d'obtenir des instants effectifs de commande électrique de l'électrovanne 18 à partir d'instants objectifs d'ouverture ou de fermeture du circuit hydraulique par l'électrovanne 18, en tenant compte du modèle indicatif du retard de l'électrovanne 18.The control unit 5 also includes a module 26 implementing an operating model of the solenoid valve 18 and its control stage electric 19, this model determining the delay between the electric control upon closing and opening of the pilot stage 19 and the opening and effective closing of the hydraulic circuit by solenoid valve 18. This model of the solenoid valve 18 takes into account the specific characteristics of this solenoid valve 18 as well as the conditions of use such as electrical voltage supplying its electrical control stage 19, its temperature, and fuel-related parameters, in particular the pressure difference between the input and output of the solenoid valve 18. These different parameters and conditions of use are calibrated and stored in maps, including reading allows to obtain effective instants of electrical control of the solenoid valve 18 from instant objectives of opening or closing the hydraulic circuit by solenoid valve 18, taking account of the indicative model delay of the solenoid valve 18.

Les différents modules 23 à 26 de l'unité de contrôle 5 comprennent ainsi des moyens de calcul et des moyens de mémorisation en tables ou cartographiques qui sont bien connus et qu'il est inutile de décrire davantage.The different modules 23 to 26 of the control unit 5 include thus calculation means and storage means in tables or maps which are well known and need not be described further.

Dans le contrôle décrit ci-dessus, il n'a pas été tenu compte des fuites de carburant hors du circuit haute pression 22, mais ceci peut être réalisé en modélisant ces fuites, qui peuvent aussi être calibrées et cartographiées. De plus, il n'a pas été tenu compte des phénomènes de cavitation, au moment de la fermeture de l'électrovanne 18, non plus que des fluctuations de pression d'origine diverse (excitations des injecteurs 2, du piston 12 et réponse du circuit 22) pouvant se produire dans le circuit haute pression 22, et seules des pressions mesurée et objective moyennes ont été considérées, dans une rampe 3 considérée comme étant toujours remplie de carburant.In the control described above, no account was taken of the leaks of fuel outside the high pressure circuit 22, but this can be done by modeling these leaks, which can also be calibrated and mapped. Of more, cavitation phenomena were not taken into account at the time of the closing of the solenoid valve 18, no more than pressure fluctuations of various origin (excitations of injectors 2, piston 12 and response of the circuit 22) which can occur in the high pressure circuit 22, and only pressures measured and objective averages were considered, in a ramp 3 considered to be always full of fuel.

Claims (9)

  1. Method for controlling the pressure in a high-pressure fuel circuit (22) for feeding, through at least one injector (2), an internal combustion engine (1), in particular with direct injection, and especially with externally supplied ignition, that mechanically drives a high-pressure pump (11) of the type with at least one reciprocating piston (12) in a corresponding cylinder (13) that discharges into said high-pressure circuit (22), which is OF the type without a continuous return of the fuel from the downstream end to the upstream end of said pump (11), and wherein the fuel pressure is measured by at least one pressure sensor (4), said pump (11) being equipped, for each piston (12), with an on-off solenoid valve (18) for controlling the fuel supply of said corresponding pump cylinder (13), characterized in that it includes the step that consists of controlling the fuel pressure by operating said solenoid valve (18) so that the fuel mass delivered by said pump (11) into said high-pressure circuit (22) is equal to the algebraic sum of a fuel mass to be injected into said engine (1) and of a required fuel mass, or a quantity determined from said required mass, for at least partially correcting the pressure difference between the fuel pressure measured in the high-pressure circuit (22) by means of said pressure sensor (4) and a target pressure desired in said high-pressure circuit (22).
  2. Method according to claim 1, characterized in that it includes the step that consists of determining said required fuel mass for at least partially correcting the difference between the measured and target pressures by means of at least one relation between the fuel mass or fuel mass variation and the fuel pressure or fuel pressure variation in said high-pressure circuit (22).
  3. Method according to claim 2, characterized in that it includes the step that consists of determining said relation between the fuel mass or fuel mass variation and the fuel pressure or fuel pressure variation in the high-pressure circuit (22), taking into account at least one of the operating parameters, such as the measured pressure and the temperature of the fuel, and/or the compressibility law of the fuel, and/or at least one of the geometric parameters of the high-pressure circuit (22) and/or at least one of the mechanical and/or physical properties of the materials of the elements (8, 3) constituting said high-pressure circuit (22).
  4. Method according to any of claims 1 through 3, characterized in that it also comprises the step consisting of weighting said required fuel mass for correcting said difference between the measured and target pressures with a correction of the proportional-integral-derived type.
  5. Method according to any of claims 1 through 4, characterized in that it also comprises the step that consists of controlling said solenoid valve (18), taking into account at least one relation between the delivery quantity of the pump (11) and the angular position of the engine (1) during the closed periods of this solenoid valve (18).
  6. Method according to claim 5, characterized in that said relation expressing the delivery quantity of the pump (11) takes into account at least one operating parameter such as the fuel pressure, the rotation speed and/or the operating temperature of the pump (11).
  7. Method according to any of claims 1 through 6, characterized in that it also comprises a step that consists of controlling said solenoid valve (18), taking into account at least one relation between the delay of the actual openings and closings of the solenoid valve (18) relative to the electric commands for controlling the opening and the closing, and at least one of the operating parameters and conditions of said solenoid valve (18).
  8. Method according to claim 7, characterized in that said relation relative to the delay of the solenoid valve (18) takes into account at least one of the parameters that include the supply voltage and the operating temperature of the solenoid valve (18) and the difference in fuel pressure between the inlet and the outlet of said solenoid valve (18).
  9. System for controlling the pressure in a high-pressure fuel circuit (22) for feeding, through at least one injector (2), an internal combustion engine (1), in particular with direct injection, and especially with externally supplied ignition, wherein said engine (1) mechanically drives (14, 15, 16) a high-pressure pump (11), of the type with at least one reciprocal piston (12) in a corresponding cylinder (13), said pump (11) discharging into said high-pressure circuit (22), which is of the type without a continuous return of the fuel from the downstream end to the upstream end of said pump (11), and wherein the fuel pressure is measured by at least one pressure sensor (4) of the system, said pump (11) being equipped, for each piston (12), with an on-off solenoid valve (18) for controlling the fuel supply of the corresponding pump cylinder (13), characterized in that it includes at least one electronic pressure control unit (5), in connection with or integrated into an electronic engine control unit, which controls the injection and, if necessary, the ignition of the engine (1), and determines, in particular, the fuel mass to be injected into the engine (1), said electronic pressure control unit (5) operating the solenoid valve in order to control the feeding of said cylinder of the pump and including computing means and storage means and being equipped to implement the method according to any of claims 1 through 8, and comprising at least one module (24) for determining the relation, possibly weighted, between the mass or mass variation and respectively the pressure or pressure variation of the fuel in the high-pressure circuit (22), at least one module (23) for determining the target pressure desired in said high-pressure circuit (22) as a function of operating parameters and/or conditions of the engine (1), at least one module for determining the fuel mass to be delivered by the pump (11) into the high-pressure circuit (22), as a function of a signal of the fuel mass to be injected into the engine (1) and received from the engine control unit, and of the fuel mass for compensating the pressure difference between the pressure measured by the pressure sensor (4) and the target pressure, at least one module (26) for determining the delay of said solenoid valve (18), and at least one module (25) for determining the delivery rate of the pump (11) as a function of the angular position of the engine (1) and of the sequencing of the opening and closing of said solenoid valve (18).
EP00907712A 1999-02-26 2000-02-24 Method and system for controlling pressure in a high pressure fuel pump supplying an internal combustion engine Expired - Lifetime EP1155229B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9902424A FR2790283B1 (en) 1999-02-26 1999-02-26 METHOD AND SYSTEM FOR CONTROLLING THE PRESSURE OF A HIGH PRESSURE FUEL PUMP FOR FEEDING AN INTERNAL COMBUSTION ENGINE
FR9902424 1999-02-26
PCT/FR2000/000459 WO2000050757A1 (en) 1999-02-26 2000-02-24 Method and system for controlling pressure in a high pressure fuel pump supplying an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1155229A1 EP1155229A1 (en) 2001-11-21
EP1155229B1 true EP1155229B1 (en) 2002-09-25

Family

ID=9542586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00907712A Expired - Lifetime EP1155229B1 (en) 1999-02-26 2000-02-24 Method and system for controlling pressure in a high pressure fuel pump supplying an internal combustion engine

Country Status (6)

Country Link
US (1) US6446610B1 (en)
EP (1) EP1155229B1 (en)
DE (1) DE60000509T2 (en)
ES (1) ES2182788T3 (en)
FR (1) FR2790283B1 (en)
WO (1) WO2000050757A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19908678C5 (en) * 1999-02-26 2006-12-07 Robert Bosch Gmbh Control of a direct injection fuel internal combustion engine of a motor vehicle, in particular during startup operation
US7052252B2 (en) * 2003-06-13 2006-05-30 Suntec Industries Incorporated Port configuration for fuel pump unit for facilitating pressure feedback
DE10351914A1 (en) 2003-11-07 2005-09-15 Volkswagen Ag Method for piloting a stroke piston fuel pump of an internal combustion engine
US7287516B2 (en) * 2005-07-29 2007-10-30 Caterpillar Inc. Pump control system
US7370635B2 (en) * 2006-01-20 2008-05-13 Caterpillar Inc. System and method for resolving electrical leads
US7392790B2 (en) * 2006-01-20 2008-07-01 Caterpillar Inc. System and method for resolving crossed electrical leads
DE102007013772B4 (en) * 2007-03-22 2015-06-25 Continental Automotive Gmbh Method for controlling an injection system of an internal combustion engine
DE102007035316B4 (en) * 2007-07-27 2019-12-24 Robert Bosch Gmbh Method for controlling a solenoid valve of a quantity control in an internal combustion engine
US8328158B2 (en) * 2008-12-15 2012-12-11 Continental Automotive Systems Us, Inc. Automotive high pressure pump solenoid valve with limp home calibration
US8317157B2 (en) * 2008-12-15 2012-11-27 Continental Automotive Systems Us, Inc. Automobile high pressure pump solenoid valve
GB2473278B (en) * 2009-09-08 2014-06-18 Gm Global Tech Operations Inc Method and system for controlling fuel pressure
KR101241594B1 (en) * 2010-12-01 2013-03-11 기아자동차주식회사 Fuel Supply System for GDI Engine and Control Method thereof
FR2996600B1 (en) 2012-10-05 2014-11-21 Continental Automotive France METHOD FOR MANAGING THE FUEL MASS INJECTED IN AN ENGINE
US9671033B2 (en) * 2012-12-11 2017-06-06 Hitachi, Ltd. Method and apparatus for controlling a solenoid actuated inlet valve
US20150345446A1 (en) * 2015-08-11 2015-12-03 Caterpillar Inc. Method of mitigating axial loads on plunger of fuel pumps
US10161370B2 (en) * 2016-04-13 2018-12-25 GM Global Technology Operations LLC Systems and methods for performing prognosis of fuel delivery systems
JP7212064B2 (en) * 2018-11-29 2023-01-24 日立Astemo株式会社 Control device for internal combustion engine
JP7054716B2 (en) * 2020-03-18 2022-04-14 本田技研工業株式会社 Internal combustion engine boost pressure control device
DE102021202000A1 (en) * 2021-03-02 2022-09-08 Hyundai Motor Company FUEL INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE AND METHOD AND CONTROL DEVICE FOR CONTROLLING A FUEL INJECTION SYSTEM OF AN INTERNAL COMBUSTION ENGINE

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153979A (en) * 1981-03-18 1982-09-22 Hitachi Constr Mach Co Ltd Limiting control method and device for input horsepower into hydraulic pump
US4790277A (en) * 1987-06-03 1988-12-13 Ford Motor Company Self-adjusting fuel injection system
US5848583A (en) * 1994-05-03 1998-12-15 Ford Global Technologies, Inc. Determining fuel injection pressure
JPH08210209A (en) * 1995-02-06 1996-08-20 Zexel Corp High pressure fuel injector
US5771861A (en) * 1996-07-01 1998-06-30 Cummins Engine Company, Inc. Apparatus and method for accurately controlling fuel injection flow rate
DE19731201C2 (en) * 1997-07-21 2002-04-11 Siemens Ag Method for regulating the fuel pressure in a fuel accumulator
DE19757655C2 (en) * 1997-12-23 2002-09-26 Siemens Ag Method and device for monitoring the function of a pressure sensor
FR2776020B1 (en) * 1998-03-11 2000-05-05 Renault METHOD FOR CONTROLLING THE INJECTION IN AN INTERNAL COMBUSTION ENGINE AND CONTROLLED IGNITION, SUPPLIED BY LIQUEFIED GAS FUEL OR BY GAS FUEL UNDER SOUND CONDITIONS
DE19909955B4 (en) * 1999-03-06 2014-01-23 Robert Bosch Gmbh Method and device for the transient operation of an internal combustion engine, in particular of a motor vehicle
JP3465641B2 (en) * 1999-07-28 2003-11-10 トヨタ自動車株式会社 Fuel pump control device

Also Published As

Publication number Publication date
FR2790283A1 (en) 2000-09-01
FR2790283B1 (en) 2002-01-04
DE60000509D1 (en) 2002-10-31
ES2182788T3 (en) 2003-03-16
EP1155229A1 (en) 2001-11-21
DE60000509T2 (en) 2003-05-22
US6446610B1 (en) 2002-09-10
WO2000050757A1 (en) 2000-08-31

Similar Documents

Publication Publication Date Title
EP1155229B1 (en) Method and system for controlling pressure in a high pressure fuel pump supplying an internal combustion engine
EP0113510B1 (en) Diesel fuel injection pump with adaptive torque balance control
EP0651150B1 (en) Fuel injection apparatus for engine
FR2658244A1 (en) DEVICE FOR DIGITAL FUEL CONTROL FOR A SMALL HEAT ENGINE AND FUEL CONTROL METHOD FOR A THERMAL ENGINE.
FR2862712A1 (en) Knocking control system for internal combustion engine, has electronic control unit increasing low octane fuel supply quantity without advancing ignition timing if low octane fuel remaining quantity is larger than high octane fuel
FR2786820A1 (en) FUEL PUMP CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
FR2787511A1 (en) METHOD AND DEVICE FOR EQUALIZING THE TORQUES OF EACH CYLINDER OF AN ENGINE
EP0705381B1 (en) Method and device for optimizing air filling in an internal combustion motor cylinder
FR2832763A1 (en) Fuel supply and injection system, for engine of vehicle, comprises fuel tank, single electrical pump unit, fuel injection valves, and pipes
FR2698129A1 (en) Fuel injection device for internal combustion engines.
FR2787512A1 (en) METHOD AND DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
FR2524564A1 (en) FUEL INJECTION PUMP
US4426983A (en) Liquid fuel pumping apparatus
FR2812345A1 (en) Method of fuel metering to motor vehicle internal combustion engine has high pressure injection tank with pressure regulated by controlling feed pumps
GB2086080A (en) Control of fuel supply in i.c. engines
FR2822195A1 (en) Injection of fuel into internal combustion engine with a high-pressure pump module, uses module integrated with pump to include pressure sensor and injection pressure regulator
FR2465892A1 (en) INJECTION PUMP FOR INTERNAL COMBUSTION ENGINE
FR2850710A1 (en) Internal combustion/thermal engine control process for vehicle, involves combining preliminary control set point with charge regulation of quantity of charge supplied to peizo-electric actuator
FR2864165A1 (en) High lift pump transfer interval determining method for heat engine, involves determining pressure gradient of high lift pump, during starting of fuel metering unit, and determining transfer interval of pump with help of gradient
FR2894626A1 (en) METHOD FOR MANAGING AN INTERNAL COMBUSTION ENGINE
FR2834000A1 (en) Dosing fuel for direct injection internal combustion engine, involves controlling all injectors according to difference between mean injected fuel and stored desired quantity for operating point
FR2857057A1 (en) Fuel injection system controlling method for internal combustion engine, involves transforming one correction function, by using individual quality characteristics of injectors, to another function to correct injector control signals
FR2783572A1 (en) DEVICE FOR DOSING FUEL INTO A CYLINDER OF AN INTERNAL COMBUSTION ENGINE
EP1013914B1 (en) Fuel injection system for an internal combustion engine
FR2585079A1 (en) FUEL INJECTION METHOD FOR INTERNAL COMBUSTION ENGINES FOR INJECTING DOSE QUANTITIES IN THE COMBUSTION CHAMBER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020308

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60000509

Country of ref document: DE

Date of ref document: 20021031

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2182788

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1155229E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190321

Year of fee payment: 20

Ref country code: GB

Payment date: 20190215

Year of fee payment: 20

Ref country code: IT

Payment date: 20190208

Year of fee payment: 20

Ref country code: DE

Payment date: 20190211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190214

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60000509

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200223

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200225