EP1097248A1 - Acier de cementation a temperature de revenu elevee, procede pour son obtention et pieces formees avec cet acier - Google Patents

Acier de cementation a temperature de revenu elevee, procede pour son obtention et pieces formees avec cet acier

Info

Publication number
EP1097248A1
EP1097248A1 EP99926549A EP99926549A EP1097248A1 EP 1097248 A1 EP1097248 A1 EP 1097248A1 EP 99926549 A EP99926549 A EP 99926549A EP 99926549 A EP99926549 A EP 99926549A EP 1097248 A1 EP1097248 A1 EP 1097248A1
Authority
EP
European Patent Office
Prior art keywords
weight
steel
composition
temperature
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99926549A
Other languages
German (de)
English (en)
Other versions
EP1097248B1 (fr
Inventor
Philippe Dubois
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Publication of EP1097248A1 publication Critical patent/EP1097248A1/fr
Application granted granted Critical
Publication of EP1097248B1 publication Critical patent/EP1097248B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising

Definitions

  • the present invention relates to a composition of case-hardening steel, parts formed with this steel, as well as a method for manufacturing parts made from this steel.
  • Case hardening is a surface thermochemical treatment generally intended to obtain parts combining good core ductility and a hard, hardened and wear resistant surface.
  • the cementing steels usually used for these applications are, in particular, 17CrNiMo6, 16NiCr6, 14NiCr12, 10NiCrMo13, 16NiCrMo13 or 17NiCrMo17. These steels can be used up to operating temperatures in the region of 130 ° C, but have neither a softening resistance nor a hot hardness of the cemented layer sufficient for operating temperatures exceeding 190 ° C.
  • the cemented layer allows a tempering temperature up to about 260 ° C.
  • the maximum operating temperature is around 230 ° C.
  • none of the cementation steel compositions of the prior art makes it possible to achieve a tempering temperature of the cemented layer of up to 350 ° C., as well as good hot hardness for operating temperatures of up to 'at 280 ° C, while retaining satisfactory core characteristics.
  • the main object of the present invention is therefore to provide a cementation steel composition making it possible to achieve all of the above characteristics.
  • a first object of the invention is thus a composition of case-hardening steel comprising, expressed by weight,
  • Sulfur is preferably limited to 0.010% and phosphorus to 0.020% by weight for high-end applications, but higher contents are however acceptable for other applications, insofar as they do not cause reduction of the ductility, toughness and fatigue resistance properties of steel.
  • Elements such as aluminum, cerium, titanium, zirconium, calcium, niobium, which serve either to deoxidize or to refine the grain size are preferably limited to 0.1% by weight each.
  • the low contents of carbon, silicon, molybdenum, chromium and vanadium, as well as the high contents of manganese, nickel, cobalt and copper allow improve the ductility and toughness properties of steel.
  • the high contents of carbon, silicon, molybdenum, chromium and vanadium as well as the low contents of manganese, nickel, cobalt and copper make it possible to improve the resistance to tempering of steel.
  • the role of carbon is essentially to contribute to obtaining hardness, tensile strength and hardenability.
  • the hardness and the tensile strength obtained at the core of the case-hardened and treated parts are insufficient.
  • the minimum tensile strength sought is approximately 1000 MPa, or approximately 320 HV (Vickers hardness).
  • Silicon contributes to a large extent to the resistance to tempering of this steel and its minimum content is 0.5% by weight. In order to avoid the formation of delta ferrite and to maintain sufficient toughness, the silicon content is limited to a maximum of 1.5% by weight. The optimal range is 0.7-1.3% by weight, but the range 1.3-3.5% is also interesting.
  • Chromium contributes in part to the hardenability of the core and to the good resistance to tempering of the cemented layer, its minimum content is 0.2% by weight. To avoid embrittlement of the cemented layer by excess of networked carbides, the chromium content must be limited to a maximum value of 1.5% by weight. The optimal range is 0.5-1.2%, but the 0.2-0.8% and 0.8-1.5% ranges are also attractive. Molydbene plays a role identical to that of chromium, and it also makes it possible to maintain a high hot hardness, in particular by the formation of intragranular carbides in the cemented layer. Its minimum content is 1.1% by weight. However, its embrittling effect on this steel leads to limiting its maximum content to 3.5% by weight. The optimal range is 1.5-2.5%, but the ranges 1, 1-2.3% and 2.3-3.5% are also interesting.
  • Vanadium helps limit grain magnification during the case hardening and processing cycles. Because of its embrittling effect and its influence on the formation of ferrite, its content must be limited to a maximum value of 0.4% by weight. The optimal range is 0.15-0.35% but the ranges 0.05-0.25% and 0.25-0.4% are also interesting.
  • Manganese, nickel and copper are gamma elements necessary to balance the chemical composition, avoid the formation of ferrite and limit the temperature of the ⁇ ⁇ transformation points. They also greatly contribute to increasing the hardenability, resilience and toughness but, in too high a content, they deteriorate the income resistance, the hot hardness and the wear resistance and increase the amount of residual austenite in the layer. case-hardened.
  • Manganese is therefore limited to a maximum of 1.6% by weight.
  • the optimal range is 0.2-0.7% by weight, but the range 0.7-1.5% is also interesting.
  • nickel is limited to the range 1-3.5% by weight, the optimal range is 2-3%, but the ranges 1-2% and 2-3.5% are also interesting.
  • copper is limited to a maximum of 2% by weight, the optimal range is 0.3-1.1%, but the range 1.1-2% can also be interesting.
  • Cobalt contributes to the income resistance of the steel and makes it possible to lower the transformation point on heating. Its effect is noticeable even at low contents. For high contents this element, by its gammagenic character, stabilizes the residual austenite in the cemented layer.
  • the maximum limit is 4% by weight, contents of less than 1.5% by weight being recommended.
  • a second object of the invention is a method of manufacturing cemented and treated parts comprising the following operations: a - constitution of a charge intended to obtain a composition in accordance with the present invention, as described above, b - fusion of said charge in an arc furnace, c - thermomechanical heating and transformation of the ingot, d - heat treatment for homogenizing the structure and refining of the grain, e - carburizing, and f - heat treatment for use.
  • the steel according to the invention can be obtained by conventional production techniques but, to obtain better results in resilience, tenacity and fatigue, it is recommended to carry out a reflow by a consumable electrode, either under slag (ESR) or under reduced pressure (VAR), following melting in the arc furnace.
  • ESR slag
  • VAR reduced pressure
  • VIM reduced pressure
  • thermomechanical transformations aiming to confer on the product produced in this alloy a sufficient rate of wrinkling which one prefer greater than or equal to 3 (step c of the method according to the invention). Lower working rates may however be allowed for large parts.
  • thermomechanical transformations are based on conventional procedures, such as rolling, forging, stamping or spinning.
  • step d of the method according to the invention can simply be softened at a temperature below the critical point (AC-i), or annealed at a temperature above the critical point (AC-i), which then assumes a sufficiently slow start of cooling.
  • the critical point temperature (AC-i) is generally in the range from 700 to 800 ° C, while the critical point temperature (AC 3 ) is generally in the range from 900 to 980 ° C.
  • the case hardening, step e of the process according to the invention can be carried out using conventional means, the case hardening cycle being to be defined by the skilled person as a function of the depth hardening sought, in a completely conventional manner.
  • stage f of the heat treatment of the use of the parts numerous alternative embodiments are possible. It is possible to go directly from the case temperature to the austenitization temperature, then to soak the parts, but it is preferable to allow the parts to cool to room temperature after case hardening, then to heat them up to the temperature austenitization, above the critical point (AC 3 ) before soaking.
  • the austenitization temperature range is, for information, 900-1050 ° C.
  • tempering In order to obtain the maximum values of hardness of the cemented layer, and of resilience and toughness of the sub-layer, it is preferable to carry out tempering at the lowest possible temperature, compatible with the temperature of use. A difference of 50 ° C. between tempering temperature and use temperature is more particularly preferred, the tempering temperature possibly reaching up to 350 ° C.
  • the continuous casting technique can be used in order to reduce the production costs and we must then expect a lowering of the characteristics of ductility, resilience and toughness, especially.
  • a third object of the invention is constituted by the case-hardened and treated parts produced with the case-hardening steel according to the invention and which exhibit, at ambient temperature, a hardness with a core close to 320 to 460 HV, an resilience ISO V d '' at least 50 Joules, and more particularly from 70 to 150 Joules, a toughness close to 100 MPaVm, a surface hardness of the cemented layer close to 750 HV, and which, at 250 ° C, has a surface hardness of the cemented layer close to 650 HV.
  • These parts can advantageously be manufactured by means of the manufacturing method according to the invention, but also by any other method chosen according to the final application.
  • FIG. 1 represents the variations in microhardness as a function of the depth for two samples, the preparation of which is described in example 1,
  • FIG. 2 represents the variations in microhardness as a function of the depth for two samples, the preparation of which is described in example 2
  • FIG. 3 represents the variations in microhardness as a function of the depth for two samples, the preparation of which is described in example 3,
  • FIG. 4 represents the variations in microhardness as a function of the depth for two samples, the preparation of which is described in example 4,
  • FIG. 7 represents the variations in microhardness as a function of the depth for three samples, the preparation of which is described in Example 8.
  • a 35 kg ingot was produced in the chemical composition indicated in percentage by weight below, in accordance with the indications of the present invention:
  • This ingot was produced by arc fusion, it was then homogenized at high temperature to give a uniform structure, then it was forged.
  • the forged products were slowly cooled in the oven. They have been standardized in order to dissolve carbides, to homogenize the austenitic structure and to refine the grain.
  • Bars resulting from this invention were austenitized at 940 ° C., soaked in oil, passed through the cold in a cryogenic enclosure regulated at -75 ° C., then returned to a temperature of 250 ° C.
  • a 35 kg ingot was produced in the chemical composition indicated in percentage by weight below, in accordance with the indications of the present invention:
  • This ingot was produced by arc fusion and was then homogenized at high temperature to obtain a uniform structure, then it was forged.
  • the forged products were slowly cooled in the oven. They have been standardized in order to dissolve the carbides, to homogenize the austenitic structure and to refine the grain.
  • Bars from these treatments were austenitized at 940 ° C, soaked in oil, cold passed in a cryogenic chamber regulated to -75 ° C, then returned to a temperature of 250 ° C.
  • Figure 2 shows the results obtained for tempering temperatures of 150 ° C and 350 ° C.
  • a 35 kg ingot was produced in the chemical composition indicated in percentage by weight below, in accordance with the indications of the present invention:
  • This ingot was produced by arc fusion, it was then homogenized at high temperature to obtain a uniform structure, then it was forged.
  • the forged products were slowly cooled in the oven. they have have been standardized to dissolve carbides, homogenize the austenitic structure and refine the grain.
  • Bars resulting from this invention were austenitized at 940 ° C., soaked in oil, passed through the cold in a cryogenic enclosure regulated at -75 ° C., then returned to a temperature of 250 ° C.
  • a 35 kg ingot was produced in the chemical composition indicated in percentage by weight below, in accordance with the indications of the present invention:
  • This ingot was produced by arc fusion, it was then homogenized at high temperature to obtain a uniform structure, then it was forged.
  • the forged products were slowly cooled in the oven. They have been standardized in order to dissolve the carbides, to homogenize the austenitic structure and to refine the grain.
  • Bars from these treatments were austenitized at 940 ° C, soaked in oil, cold passed in a cryogenic chamber regulated to -75 ° C, then returned to a temperature of 250 ° C.
  • Figure 4 shows the results obtained for tempering temperatures of 150 ° C and 350 ° C.
  • a 35 kg ingot was produced in the chemical composition indicated in percentage by weight below, in accordance with the indications of the present invention:
  • This ingot was produced by arc fusion, it was then homogenized at high temperature to obtain a uniform structure, then it was forged.
  • the forged products were slowly cooled in the oven. they have have been standardized in order to dissolve the carbides, to homogenize the austenitic structure and to refine the grain.
  • Bars from these treatments were austenitized at 960 ° C, soaked in oil, passed through the cold in a cryogenic chamber regulated at -75 ° C, then returned to a temperature of 250 ° C.
  • a 35 kg ingot was produced in the chemical composition indicated in percentage by weight below, in accordance with the indications of the present invention:
  • This ingot was produced by arc fusion, it was then homogenized at high temperature to obtain a uniform structure, then it was forged.
  • the forged products were slowly cooled in the oven. They have been standardized in order to dissolve the carbides, to homogenize the austenitic structure and to refine the grain.
  • Bars from these treatments were austenitized at 960 ° C, soaked in oil, passed through the cold in a cryogenic chamber regulated at -75 ° C, then returned to a temperature of 250 ° C.
  • a 1000 kg ingot was prepared in accordance with the present invention, its chemical composition, expressed as a percentage by weight, being as follows:
  • This ingot was obtained by partial pressure induction melting (VIM), then reflow by consumable electrode, it was then reheated to high temperature, in order to homogenize the structure, then it was laminated. to end up with 90 mm diameter cylindrical bars. These bars have undergone a standardization treatment, in order to dissolve the carbides, homogenize the austenitic structure and refine the grain size.
  • VIP partial pressure induction melting
  • Samples taken from these bars were cemented using a low pressure process at a temperature of around 900 ° C for 8 hours, the samples intended to characterize the core properties underwent an identical thermal cycle, but in a neutral atmosphere , so as not to modify their chemical composition.
  • the following table indicates the evolution of the surface hardness of the cemented layer as a function of the test temperature, on a sample which has undergone tempering at 300 ° C.
  • Figure 7 shows the results obtained for tempering temperatures of 150 ° C, 200 ° C and 300 ° C.
  • the preceding eight examples show, on the one hand, that the steels according to the invention exhibit an excellent compromise between the characteristics of traction, resilience and toughness and, on the other hand, that the cemented layer has a high resistance to tempering. , as well as high values of hot hardness, significantly higher than those obtained with traditional case hardening steels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

L'invention concerne une composition d'acier de cémentation comprenant, exprimés en poids: 0,06 à 0,18 % de C; 0,5 à 1,5 % de Si; 0,2 à 1,5 % de Cr; 1 à 3,5 % de Ni; 1,1 à 3,5 % de Mo; et, le cas échéant, au plus 1,6 % de Mn; et/ou au plus 0,4 % de V; et/ou au plus 2 % de Cu, et/ou au plus 4 % de Co, le complément étant constitué de fer et d'impuretés résiduelles, les teneurs de cette composition en Ni, Mn, Cu, Co, Cr, Mo et V, exprimées en poids, satisfaisant aux relations suivantes: (1) 2,5</=Ni+Mn+1,5Cu+0,5Co</=5; (2) 2,4</=Cr+Mo+V</=3,7; ainsi qu'un procédé de fabrication de pièces cémentées et traitées, réalisées dans ces compositions.

Description

Acier de cémentation à température de revenu élevée, procédé pour son obtention et pièces formées avec cet acier
La présente invention concerne une composition d'acier de cémentation, des pièces formées avec cet acier, ainsi qu'un procédé de fabrication de pièces réalisées dans cet acier.
La cémentation est un traitement thermochimique superficiel ayant généralement pour but d'obtenir des pièces combinant une bonne ductilité à coeur et une surface cémentée dure et résistante à l'usure.
De nombreuses applications nécessitent l'utilisation d'un acier présentant une bonne résistance à l'adoucissement aux températures de fonctionnement. On peut citer, à titre d'exemple, les pignons, roulements et arbres de boîte de transmission pour hélicoptère ou pour des véhicules destinés à la compétition automobile, les pignons, arbres à cames et autres pièces utilisées dans les systèmes de distribution des moteurs thermiques, les injecteurs de carburant et les compresseurs.
Les aciers de cémentation habituellement utilisés pour ces applications sont, notamment, le 17CrNiMo6, le 16NiCr6, le 14NiCr12, le 10NiCrMo13, le 16NiCrMo13 ou le 17NiCrMo17. Ces aciers peuvent être utilisés jusqu'à des températures de fonctionnement voisines de 130°C, mais ne présentent ni une résistance à l'adoucissement, ni une dureté à chaud de la couche cémentée suffisantes pour des températures de fonctionnement dépassant 190°C.
Le brevet US n° 3 713 905 délivré à T.V. Philip et R.L. Vedder le 30 janvier 1973 décrit les propriétés obtenues pour un acier dont la composition chimique, en pourcentage en poids, est la suivante :
0,07-0,8% de C, au plus 1% de Mn, 0,5-2% de Si, 0,5-1 ,5% de Cr, 2-5% de Ni,
0,65-4% de Cu, 0,25-1,5% de Mo, au plus 0,5% de V, le complément étant du fer. Les valeurs de traction et de resilience obtenues avec cet acier sont compatibles pour les applications envisagées, en revanche la résistance au revenu et la dureté à chaud de la couche cémentée sont insuffisantes pour les applications précitées et pour des températures de fonctionnement allant jusqu'à 220°C.
Le brevet US n° 4 157 258 délivré à T.V. Philip et R.W. Krieble le 5 juin 1979 décrit un acier dont la composition chimique en pourcentage en poids est la suivante :
0,06-0,16% de C 0,2-0,7% de Mn 0,5-1 ,5% de Si 0,5-1 ,5% de Cr 1 ,5-3% de Ni
1-4% de Cu 2,5-4% de Mo ≤ 0,4% de V < 0,05% de P ≤ 0,05% de S
≤ 0,03% de N ≤ 0,25% de Al ≤ 0,25% de Nb ≤ 0,25% de Ti ≤ 0,25% de Zr
≤ 0,25% de Ca, le complément étant du fer. Cet acier présente un bon compromis entre les caractéristiques de traction et de resilience. La couche cémentée permet une température de revenu jusqu'à environ 260°C. La température de fonctionnement maximale est d'environ 230°C. Cependant, aucune des compositions d'acier de cémentation de la technique antérieure ne permet d'atteindre une température de revenu de la couche cémentée allant jusqu'à 350°C, ainsi qu'une bonne dureté à chaud pour des températures de fonctionnement allant jusqu'à 280°C, tout en conservant des caractéristiques à coeur satisfaisantes.
Or, un besoin pour de tels aciers existe à l'heure actuelle dans de nombreux domaines. En ce qui concerne, par exemple, la fabrication de pièces d'engrenage pour hélicoptères, les réglementations prévoient qu'un hélicoptère doit pouvoir fonctionner pendant trente minutes après avoir perdu l'huile de sa boîte de transmission à la suite d'un incident. Cela suppose que les matériaux utilisés pour fabriquer ces engrenages aient subi un revenu à une température minimale d'environ 280°C.
Dans le domaine des moteurs thermiques, les concepteurs s'orientent vers une augmentation des températures de fonctionnement des organes moteur et des organes liés telles les boîtes de vitesse, afin d'accroître les rendements et/ou de simplifier les circuits d'extraction de calories. Or, suivant la localisation des pièces dans ces organes, les températures de fonctionnement peuvent atteindre jusqu'à 280°C, ce qui impose une température de revenu minimale de 330°C pour garantir la stabilité des propriétés en utilisation.
La présente invention a donc essentiellement pour but de mettre à disposition une composition d'acier de cémentation permettant d'atteindre l'ensemble des caractéristiques susmentionnées.
Un premier objet de l'invention est ainsi une composition d'acier de cémentation comprenant, exprimés en poids,
0,06 à 0,18% de C, 0,5 à 1 ,5% de Si, 0,2 à 1 ,5% de Cr, 1 à 3,5% de Ni, 1 ,1 à 3,5% de Mo, et, le cas échéant, au plus 1 ,6% de Mn, et/ou au plus 0,4% de V, et/ou au plus 2% de Cu, et/ou au plus 4% de Co, le complément étant constitué de fer et d'impuretés résiduelles, les teneurs de cette composition en Ni, Mn, Cu, Co, Cr, Mo et V, exprimées en poids, satisfaisant aux relations suivantes :
2,5 ≤ Ni + Mn + 1 ,5 Cu + 0,5 Co ≤ 5 (1)
2,4 < Cr + Mo + V < 3,7 (2)
Le soufre est, de préférence, limité à 0,010% et le phosphore à 0,020% en poids, pour des applications haut de gamme, mais des teneurs plus élevées sont cependant acceptables pour d'autres applications, dans la mesure où elles ne provoquent pas de réduction des propriétés de ductilité, de ténacité et de résistance à la fatigue de l'acier.
Les éléments tels que l'aluminium, le cérium, le titane, le zirconium, le calcium, le niobium, qui servent soit à désoxyder soit à affiner la taille de grain sont, de préférence, limités à 0,1% en poids chacun.
En ce qui concerne les principaux éléments de la composition, on constate, d'une façon générale que les basses teneurs en carbone, silicium, molybdène, chrome et vanadium, ainsi que les hautes teneurs en manganèse, nickel, cobalt et cuivre permettent d'améliorer les propriétés de ductilité et de ténacité de l'acier.
A contrario, les hautes teneurs en carbone, silicium, molybdène, chrome et vanadium ainsi que les basses teneurs en manganèse, nickel, cobalt et cuivre permettent d'améliorer la résistance au revenu de l'acier. Le rôle du carbone est essentiellement de contribuer à l'obtention de la dureté, de la résistance à la traction et de la trempabilité. Pour des teneurs en carbone inférieures à 0,06% en poids, la dureté et la résistance à la traction obtenues à coeur des pièces cémentées et traitées sont insuffisantes. En pratique, la résistance minimale à la traction recherchée est d'environ 1000 MPa, soit environ 320 HV (dureté Vickers). Plus la teneur en carbone augmente, plus la dureté, la résistance à la traction et la trempabilité augmentent mais, dans le même temps, la resilience et la ténacité décroissent. C'est pour cette raison que la teneur en carbone est limitée à une valeur maximale de 0,18% en poids.
La fourchette la plus intéressante pour le compromis entre résistance à la traction et ténacité est 0,09-0,16% en poids en carbone. Mais, les fourchettes 0,06-0,12% et 0,12-0,18% sont elles aussi intéressantes pour des applications nécessitant différents niveaux de dureté à coeur.
Le silicium contribue pour une large part à la résistance au revenu de cet acier et sa teneur minimale est de 0,5% en poids. Afin d'éviter la formation de ferrite delta et pour conserver une ténacité suffisante, la teneur en silicium est limitée à un maximum de 1 ,5% en poids. La fourchette optimale est de 0,7-1 ,3% en poids, mais la fourchette 1 ,3-1 ,5% est aussi intéressante.
Le chrome contribue pour une part à la trempabilité du coeur et à la bonne résistance au revenu de la couche cémentée, sa teneur minimale est de 0,2% en poids. Pour éviter une fragilisation de la couche cémentée par excès de carbures en réseau, la teneur en chrome doit être limitée à une valeur maximale de 1 ,5% en poids. La fourchette optimale est de 0,5-1 ,2%, mais les fourchettes 0,2-0,8% et 0,8-1 ,5% sont elles aussi intéressantes. Le molydbène joue un rôle identique à celui du chrome, et il permet de plus de conserver une dureté à chaud élevée, notamment par la formation de carbures intragranulaires dans la couche cémentée. Sa teneur minimale est de 1 ,1% en poids. Mais, son effet fragilisant sur cet acier conduit à limiter sa teneur maximale à 3,5% en poids. La fourchette optimale est de 1,5-2,5%, mais les fourchettes 1 ,1-2,3% et 2,3-3,5% sont elles aussi intéressantes.
Le vanadium contribue à limiter le grossissement du grain durant les cycles de cémentation et de traitement d'emploi. A cause de son effet fragilisant et de son influence sur la formation de ferrite, sa teneur doit être limitée à une valeur maximale de 0,4% en poids. La fourchette optimale est de 0,15-0,35% mais les fourchettes 0,05-0,25% et 0,25-0,4% sont elles aussi intéressantes. Le manganèse, le nickel et le cuivre sont des éléments gammagènes nécessaires pour équilibrer la composition chimique, éviter la formation de ferrite et limiter la température des points de transformation α γ. Ils contribuent aussi fortement à augmenter la trempabilité, la resilience et la ténacité mais, en trop forte teneur, ils détériorent la résistance au revenu, la dureté à chaud et la résistance à l'usure et augmentent la quantité d'austénite résiduelle dans la couche cémentée.
Le manganèse est pour ces raisons limité au maximum à 1 ,6% en poids. La fourchette optimale est de 0,2-0,7% en poids, mais la fourchette 0,7-1 ,5% est aussi intéressante. De même, le nickel est limité à la fourchette 1-3,5% en poids, la fourchette optimale est 2-3%, mais les fourchettes 1-2% et 2-3,5% sont aussi intéressantes. Enfin le cuivre est limité au maximum à 2% en poids, la fourchette optimale est de 0,3-1 ,1%, mais la fourchette 1,1-2% peut aussi être intéressante. Le cobalt contribue à la résistance au revenu de l'acier et permet d'abaisser le point de transformation au chauffage. Son effet est sensible même pour de faibles teneurs. Pour des teneurs élevées cet élément, par son caractère gammagène, stabilise l'austénite résiduelle dans la couche cémentée. La limite maximale est de 4% en poids, des teneurs inférieures à 1,5% en poids étant recommandées.
Un second objet de l'invention est un procédé de fabrication de pièces cémentées et traitées comprenant les opérations suivantes : a - constitution d'une charge destinée à obtenir une composition conforme à la présente invention, telle que décrite plus haut, b - fusion de ladite charge dans un four à arc, c - réchauffage et transformation thermomécanique du lingot, d - traitement thermique d'homogénéisation de la structure et d'affinement du grain, e - cémentation, et f - traitement thermique d'emploi.
L'acier selon l'invention peut être obtenu par les techniques conventionnelles d'élaboration mais, pour obtenir de meilleurs résultats en resilience, ténacité et fatigue, il est recommandé d'effectuer une refusion par électrode consommable, soit sous laitier (ESR), soit sous pression réduite (VAR), à la suite de la fusion dans le four à arc.
Pour augmenter encore ces performances, il est également possible d'effectuer la première fusion par induction sous pression réduite (VIM) et de poursuivre avec une refusion par électrode consommable.
Les lingots obtenus par l'une quelconque des voies précédentes subissent un réchauffage à des températures d'environ 1100°C pour homogénéiser la structure, suivi de transformations thermomécaniques visant à conférer au produit réalisé dans cet alliage un taux de corroyage suffisant que l'on préférera supérieur ou égal à 3 (étape c du procédé selon l'invention). Des taux de corroyage inférieurs peuvent cependant être admis pour des pièces de grandes dimensions. Ces transformations thermomécaniques s'appuient sur des modes opératoires classiques, tels que le laminage, le forgeage, le matriçage ou le filage.
Plusieurs variantes de réalisation sont envisageables en ce qui concerne l'étape d du procédé selon l'invention. Les produits transformés peuvent être simplement adoucis à une température inférieure au point critique (AC-i), ou recuits à une température supérieure au point critique (AC-i), ce qui suppose alors un début de refroidissement suffisamment lent.
Lorsqu'on recherche les meilleures caractéristiques possibles, il est cependant préférable d'effectuer une normalisation à partir d'une température supérieure au point critique (AC3), suivie d'un refroidissement à l'air et d'un revenu d'adoucissement à une température inférieure au point critique (ACi).
A titre indicatif, la température du point critique (AC-i) se situe généralement dans la gamme allant de 700 à 800°C, tandis que la température du point critique (AC3) se situe généralement dans la gamme allant de 900 à 980°C. La cémentation, étape e du procédé selon l'invention, peut être effectuée en utilisant des moyens conventionnels, le cycle de cémentation étant à définir par l'homme du métier en fonction de la profondeur de durcissement recherchée, d'une façon tout à fait classique. On peut notamment utiliser un procédé à basse pression.
En ce qui concerne l'étape f de traitement thermique d'emploi des pièces, de nombreuses variantes de réalisation sont envisageables. Il est possible de passer directement de la température de cémentation à la température d'austénitisation, puis de tremper les pièces, mais il est préférable de laisser refroidir les pièces jusqu'à température ambiante après cémentation, puis de les réchauffer jusqu'à la température d'austénitisation, au dessus du point critique (AC3) avant de les tremper. La plage de températures d'austénitisation est, à titre indicatif, de 900-1050°C.
Les meilleures caractéristiques de traction, resilience, ténacité du coeur et de dureté superficielle de la couche cémentée sont obtenues en effectuant une trempe à l'huile après austénitisation, mais un bon compromis de ces mêmes caractéristiques peut être atteint en effectuant une trempe au gaz qui présente l'avantage de réduire la déformation des pièces lors de cette opération et donc de minimiser les usinages ultérieurs.
Afin d'obtenir les valeurs maximales de dureté de la couche cémentée, et de resilience et de ténacité de la sous-couche, il est préférable d'effectuer un revenu à la température la plus basse possible, compatible avec la température d'utilisation. Un écart de 50°C entre température de revenu et température d'utilisation est plus particulièrement préféré, la température de revenu pouvant atteindre jusqu'à 350°C.
Dans le cas de la fabrication de cet acier en grande quantité, la technique de la coulée continue peut être utilisée afin de réduire les coûts de production et il faut alors s'attendre à un abaissement des caractéristiques de ductilité, de resilience et de ténacité, notamment.
Un troisième objet de l'invention est constitué par les pièces cémentées et traitées réalisées avec l'acier de cémentation selon l'invention et qui présentent, à température ambiante, une dureté à coeur voisine de 320 à 460 HV, une resilience ISO V d'au moins 50 Joules, et plus particulièrement de 70 à 150 Joules, une ténacité voisine de 100 MPaVm, une dureté superficielle de la couche cémentée voisine de 750 HV, et qui, à 250°C, présente une dureté superficielle de la couche cémentée voisine de 650 HV. Ces pièces peuvent être fabriquées avantageusement au moyen du procédé de fabrication selon l'invention, mais également par tout autre procédé choisi en fonction de l'application finale. Les exemples de réalisation de l'invention qui suivent montrent que la combinaison des éléments carbone, manganèse, silicium, chrome, nickel, molybdène, vanadium, cuivre et cobalt, dans les proportions en poids indiquées précédemment, conduit à un acier ayant simultanément d'excellentes caractéristiques de dureté, traction, resilience, transition de resilience et ténacité du coeur, associées à une excellente résistance au revenu et à d'excellentes duretés à chaud de la couche cémentée jusqu'à des températures d'utilisation de 280°C. Exemples
Les symboles utilisés dans la suite ont les significations suivantes : Rm = résistance maximale
R po,2 = limite élastique conventionnelle à 0,2% de déformation
Asd = allongement en % sur la base 5 d (d = diamètre de l'éprouvette) Z = striction HV = dureté Vickers
HRC = dureté Rockwell
KV = Energie de rupture en flexion par choc sur éprouvette à entaille en V Les exemples sont complétés par les figures des planches de dessins annexées, dans lesquelles :
• la figure 1 représente les variations de la microdureté en fonction de la profondeur pour deux échantillons dont la préparation est décrite dans l'exemple 1 ,
• la figure 2 représente les variations de la microdureté en fonction de la profondeur pour deux échantillons dont la préparation est décrite dans l'exemple 2, • la figure 3 représente les variations de la microdureté en fonction de la profondeur pour deux échantillons dont la préparation est décrite dans l'exemple 3,
• la figure 4 représente les variations de la microdureté en fonction de la profondeur pour deux échantillons dont la préparation est décrite dans l'exemple 4,
• la figure 5 représente les variations de la microdureté en fonction de la profondeur pour deux échantillons dont la préparation est décrite dans l'exemple 5, • la figure 6 représente les variations de la microdureté en fonction de la profondeur pour deux échantillons dont la préparation est décrite dans l'exemple 6,
• la figure 7 représente les variations de la microdureté en fonction de la profondeur pour trois échantillons dont la préparation est décrite dans l'exemple 8.
Exemple n° 1
Un lingot de 35 kg a été élaboré dans la composition chimique indiquée en pourcentage en poids ci-dessous, conformément aux indications de la présente invention :
C 0,15% Si 1 ,11 % Mn 0,43% Cr 0,92% Ni 2,51%
Mo 1 ,96% V 0,28% le reste étant constitué de fer et d'impuretés résiduelles.
Ce lingot a été élaboré par fusion à l'arc, il a ensuite été homogénéisé à haute température pour donner une structure uniforme, puis il a été forgé. Les produits forgés ont été refroidis lentement au four. Ils ont été normalisés afin de mettre en solution les carbures, d'homogénéiser la structure austénitique et d'affiner le grain.
Des barres issues de cette invention ont été austénitisées à 940°C, trempées à l'huile, passées par le froid dans une enceinte cryogénique régulée à -75°C, puis revenues à une température de 250°C.
Les caractéristiques mécaniques obtenues sont indiquées dans le tableau suivant :
D'autres échantillons de cet acier ont été cémentés en utilisant un procédé à basse pression à une température d'environ 900°C pendant 8 heures, puis austénitisés à 940°C, passés par le froid dans une enceinte cryogénique régulée à -75°C et enfin revenus à des températures comprises entre 150 et 350°C. Les duretés superficielles de la couche cémentée et les duretés à coeur obtenues pour différentes températures de revenu sont indiquées dans le tableau suivant :
Des mesures de duretés sur coupes polies ont aussi été effectuées, afin de déterminer le gradient de dureté dans la couche cémentée. La figure 1 montre les résultats obtenus pour des températures de revenu de 150°C et de 350°C. Exemple n" 2
Un lingot de 35 kg a été élaboré dans la composition chimique indiquée en pourcentage en poids ci-dessous, conformément aux indications de la présente invention :
C 0,146% Si 1 ,12% Mn 1% Cr 0,92% Ni 1 ,54%
Mo 1 ,97% V 0,284% le reste étant constitué de fer et d'impuretés résiduelles.
Ce lingot a été élaboré par fusion à l'arc et a ensuite été homogénéisé à haute température pour obtenir une structure uniforme, puis il a été forgé. Les produits forgés ont été refroidis lentement au four. Ils ont été normalisés afin de mettre en solution les carbures, d'homogénéiser la structure austénitique et d'affiner le grain.
Des barres issues de ces traitements ont été austénitisées à 940°C, trempées à l'huile, passées par le froid dans une enceinte cryogénique régulée à -75°C, puis revenues à une température de 250°C.
Les caractéristiques mécaniques obtenues sont indiquées dans le tableau suivant :
D'autres échantillons de cet acier ont été cémentés en utilisant un procédé à basse pression à une température d'environ 900°C pendant 8 heures, puis austénitisés à 940°C, passés par le froid dans une enceinte cryogénique régulée à -75°C et enfin revenus à des températures comprises entre 150 et 350°C.
Les duretés superficielles de la couche cémentée et les duretés à coeur obtenues pour différentes températures de revenu, sont indiquées dans le tableau suivant :
Des mesures de duretés sur coupes polies ont aussi été effectuées, afin de déterminer le gradient de dureté dans la couche cémentée. La figure 2 montre les résultats obtenus pour des températures de revenu de 150°C et de 350°C.
Exemple n° 3
Un lingot de 35 kg a été élaboré dans la composition chimique indiquée en pourcentage en poids ci-dessous, conformément aux indications de la présente invention :
C 0,14% Si 1 ,49% Mn 0,98% Cr 0,914%
Ni 1 ,53% Mo 1 ,99% V 0,284% Cu 0,801% le reste étant constitué de fer et d'impuretés résiduelles.
Ce lingot a été élaboré par fusion à l'arc, il a ensuite été homogénéisé à haute température pour obtenir une structure uniforme, puis il a été forgé. Les produits forgés ont été refroidis lentement au four. Ils ont été normalisés afin de mettre en solution les carbures, d'homogénéiser la structure austénitique et d'affiner le grain.
Des barres issues de cette invention ont été austénitisées à 940°C, trempées à l'huile, passées par le froid dans une enceinte cryogénique régulée à -75°C, puis revenues à une température de 250°C.
Les caractéristiques mécaniques obtenues sont indiquées dans le tableau suivant :
D'autres échantillons de cet acier ont été cémentés en utilisant un procédé à basse pression à une température d'environ 900°C pendant 8 heures, puis austénitisés à 940°C, passés par le froid dans une enceinte cryogénique régulée à -75°C et enfin revenus à des températures comprises entre 150 et 350°C. Les duretés superficielles de la couche cémentée et les duretés à coeur obtenues pour différentes températures de revenu, sont indiquées dans le tableau suivant :
Des mesures de duretés sur coupes polies ont aussi été effectuées, afin de déterminer le gradient de dureté dans la couche cémentée. La figure 3 montre les résultats obtenus pour des températures de revenu de 150°C et de 350°C. Exemple n° 4
Un lingot de 35 kg a été élaboré dans la composition chimique indiquée en pourcentage en poids ci-dessous, conformément aux indications de la présente invention :
C 0,11% Si 0,52% Mn 0,49% Cr 0,99% Ni 1 ,23%
Mo 1 ,96% Co 3,96% le reste étant constitué de fer et d'impuretés résiduelles.
Ce lingot a été élaboré par fusion à l'arc, il a ensuite été homogénéisé à haute température pour obtenir une structure uniforme, puis il a été forgé. Les produits forgés ont été refroidis lentement au four. Ils ont été normalisés, afin de mettre en solution les carbures, d'homogénéiser la structure austénitique et d'affiner le grain.
Des barres issues de ces traitements ont été austénitisées à 940°C, trempées à l'huile, passées par le froid dans une enceinte cryogénique régulée à -75°C, puis revenues à une température de 250°C.
Les caractéristiques mécaniques obtenues sont indiquées dans le tableau suivant :
D'autres échantillons de cet acier ont été cémentés en utilisant un procédé à basse pression à une température d'environ 900°C pendant 8 heures, puis austénitisés à 940°C, passés par le froid dans une enceinte cryogénique régulée à -75°C et enfin revenus à des températures comprises entre 150 et 350°C.
Les duretés superficielles de la couche cémentée et les duretés à coeur obtenues pour différentes températures de revenu sont indiquées dans le tableau suivant :
Des mesures de duretés sur coupes polies ont aussi été effectuées, afin de déterminer le gradient de dureté dans la couche cémentée. La figure 4 montre les résultats obtenus pour des températures de revenu de 150°C et de 350°C.
Exemple n° 5
Un lingot de 35 kg a été élaboré dans la composition chimique indiquée en pourcentage en poids ci-dessous, conformément aux indications de la présente invention :
C 0,12%
Si 0,52%
Mn 1 ,47% Cr 0,54%
Ni 1 ,05% Mo 3% V 0,01% le reste étant constitué de fer et d'impuretés résiduelles. Ce lingot a été élaboré par fusion à l'arc, il a ensuite été homogénéisé à haute température pour obtenir une structure uniforme, puis il a été forgé. Les produits forgés ont été refroidis lentement au four. Ils ont été normalisés, afin de mettre en solution les carbures, d'homogénéiser la structure austénitique et d'affiner le grain.
Des barres issues de ces traitements ont été austénitisées à 960°C, trempées à l'huile, passées par le froid dans une enceinte cryogénique régulée à -75°C, puis revenues à une température de 250°C.
Les caractéristiques mécaniques obtenues sont indiquées dans le tableau suivant :
D'autres échantillons de cet acier ont été cémentés en utilisant un procédé à basse pression à une température d'environ 900°C pendant 8 heures, puis austénitisés à 960°C, passés par le froid dans une enceinte cryogénique régulée à -75°C et enfin revenus à des températures comprises entre 150 et 350°C. Les duretés superficielles de la couche cémentée et les duretés à coeur obtenues pour différentes températures de revenu sont indiquées dans le tableau suivant :
Des mesures de duretés sur coupes polies ont aussi été effectuées, afin de déterminer le gradient de dureté dans la couche cémentée. La figure 5 montre les résultats obtenus pour des températures de revenu de 150°C et de 300°C. Exemple n° 6
Un lingot de 35 kg a été élaboré dans la composition chimique indiquée en pourcentage en poids ci-dessous, conformément aux indications de la présente invention :
C 0,12% Si 0,71% Mn 1 ,57% Cr 1,02% Ni 1 ,01%
Mo 2,02% V 0,01% le reste étant constitué de fer et d'impuretés résiduelles.
Ce lingot a été élaboré par fusion à l'arc, il a ensuite été homogénéisé à haute température pour obtenir une structure uniforme, puis il a été forgé. Les produits forgés ont été refroidis lentement au four. Ils ont été normalisés afin de mettre en solution les carbures, d'homogénéiser la structure austénitique et d'affiner le grain.
Des barres issues de ces traitements ont été austénitisées à 960°C, trempées à l'huile, passées par le froid dans une enceinte cryogénique régulée à -75°C, puis revenues à une température de 250°C.
Les caractéristiques mécaniques obtenues sont indiquées dans le tableau suivant :
D'autres échantillons de cet acier ont été cémentés en utilisant un procédé à basse pression à une température d'environ 900°C pendant 8 heures, puis austénitisés à 960°C, passés par le froid dans une enceinte cryogénique régulée à -75°C et enfin revenus à des températures comprises entre 150 et 350°C.
Les duretés superficielles de la couche cémentée et les duretés à coeur obtenues pour différentes températures de revenu sont indiquées dans le tableau suivant :
Des mesures de duretés sur coupes polies ont aussi été effectuées, afin de déterminer le gradient de dureté dans la couche cémentée. La figure 6 montre les résultats obtenus pour des températures de revenu de 150°C et de 300°C.
Exemple n° 7
Un lingot de 1000 kg a été élaboré conformément à la présente invention, sa composition chimique, exprimée en pourcentage en poids, étant la suivante :
C 0,14%
Si 1 ,12%
Mn 0,44% Cr 0,95%
Ni 2,52% Mo 1 ,93% V 0,27% Cu 0,88% le reste étant constitué de fer et d'impuretés résiduelles.
Ce lingot a été obtenu par fusion par induction sous pression partielle (VIM), puis refusion par électrode consommable, il a ensuite été réchauffé à haute température, afin d'homogénéiser la structure, puis il a été laminé pour aboutir à des barres cylindriques de diamètre 90 mm. Ces barres ont subi un traitement de normalisation, afin de mettre en solution les carbures, homogénéiser la structure austénitique et affiner la taille de grain.
Des échantillons prélevés dans ces barres ont été cémentés en utilisant un procédé à basse pression à une température d'environ 900°C pendant 8 heures, les échantillons destinés à caractériser les propriétés à coeur ont subi un cycle thermique identique, mais dans une atmosphère neutre, afin de ne pas modifier leur composition chimique.
L'ensemble des échantillons a ensuite été austénitisé à 940°C, trempé à l'huile, passé par le froid dans une enceinte cryogénique régulée à -75°C et revenu à une température de 300°C.
Les caractéristiques mécaniques obtenues sont indiquées dans le tableau suivant :
L'essai réalisé suivant ASTM E 399-90 sur éprouvette type CT de 20 mm d'épaisseur a conduit à une ténacité KQ de 107 MPaVm .
L'évolution de la dureté superficielle de la couche cémentée en fonction de la température de revenu est indiquée dans le tableau ci-après :
Le tableau suivant indique l'évolution de la dureté superficielle de la couche cémentée en fonction de la température d'essai, sur un échantillon ayant subi un revenu à 300°C.
Exemple 8 (comparatif)
Des échantillons similaires ont été usinés dans un acier 16NiCrMo13 et cémentés dans les mêmes conditions que celles décrites dans l'exemple 7. L'ensemble des échantillons a ensuite été austénitisé à 825°C et trempé à l'huile.
Des mesures de duretés sur coupes polies ont été effectuées, afin de déterminer le gradient de dureté dans la couche cémentée. La figure 7 montre les résultats obtenus pour des températures de revenu de 150°C, 200°C et 300°C.
Les huit exemples précédents montrent, d'une part, que les aciers selon l'invention présentent un excellent compromis entre les caractéristiques de traction, de resilience et de ténacité et, d'autre part, que la couche cémentée présente une résistance au revenu élevée, ainsi que des valeurs élevées de dureté à chaud, nettement supérieures à celles obtenues avec des aciers traditionnels de cémentation.
Il va de soi que les formes de réalisation de l'invention qui ont été décrites ci-dessus ont été données à titre purement indicatif et nullement limitatif, et que de nombreuses modifications peuvent être facilement apportées par l'homme de l'art sans pour autant sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Composition d'acier de cémentation comprenant, exprimés en poids,
0,06 à 0,18% de C,
0,5 à 1,5% de Si,
0,2 à 1 ,5% de Cr, 1 à 3,5% de Ni,
1,1 à 3,5% de Mo, et, le cas échéant, au plus 1,6% de Mn, et/ou au plus 0,4% de V, et/ou au plus 2% de Cu, et/ou au plus 4% de Co, le complément étant constitué de fer et d'impuretés résiduelles, les teneurs de cette composition en Ni, Mn, Cu, Co, Cr, Mo et V, exprimées en poids, satisfaisant aux relations suivantes : 2,5<Ni+Mn + 1,5Cu-t-0,5Co<5 (1)
2,4<Cr + Mo+V<3,7 (2)
2. Composition d'acier de cémentation selon la revendication 1 comprenant, exprimés en poids
0,09 à 0,16% de C, 0,7 à 1,3% de Si,
0,5 à 1,2% de Cr,
2 à 3% de Ni,
1,5 à 2,5% de Mo,
0,2 à 0,7% de Mn, 0,15 à 0,35% de V,
0,
3 à 1,1% de Cu, et, le cas échéant, au plus 1,5% de Co, le complément étant constitué de fer et d'impuretés résiduelles, les teneurs de cette composition en Ni, Mn, Cu, Co, Cr, Mo et V, exprimées en poids, satisfaisant aux relations suivantes :
2,5 < Ni + Mn + 1,5 Cu + 0,5 Co < 5 (1)
2,4 < Cr + Mo + V < 3,7 (2) 3. Composition d'acier de cémentation selon l'une des revendications 1 ou 2, comprenant en outre au plus 0,020% en poids de P et au plus 0,010% en poids de S.
4. Composition d'acier de cémentation selon l'une quelconque des revendications 1 à 3, contenant en outre au plus 0,1% en poids de chaque élément Al, Ce, Ti, Zr, Ca, Nb.
5. Procédé de fabrication de pièces cémentées et traitées, comprenant les opérations suivantes : a - constitution d'une charge destinée à obtenir une composition chimique selon l'une quelconque des revendications 1 à 4, b - fusion de ladite charge dans un four à arc, c - réchauffage et transformation à chaud du lingot, d - traitement thermique d'homogénéisation de la structure et d'affinement du grain, e - cémentation, et f - traitement thermique d'emploi.
6. Procédé de fabrication selon la revendication 5, dans lequel la fusion dans un four à arc (étape b) est suivie d'une refusion par électrode consommable.
7. Procédé de fabrication selon la revendication 6, dans lequel la fusion dans un four à arc (étape b) est effectuée par induction sous pression réduite.
8. Procédé de fabrication selon l'une quelconque des revendications 5 à 7, dans lequel l'étape d comprend une normalisation à une température supérieure à celle du point critique AC3, un refroidissement à l'air et un revenu d'adoucissement à une température inférieure à celle du point critique ACT.
9. Procédé de fabrication selon l'une quelconque des revendications 5 à 8, dans lequel l'étape e est effectuée selon un procédé à basse pression.
10. Procédé de fabrication selon l'une quelconque des revendications 5 à 9 dans lequel l'étape f comprend un refroidissement à température ambiante, puis un réchauffage à 900-1050°C, une trempe à l'huile ou au gaz, et un revenu à des températures allant jusqu'à 350°C.
11. Pièce d'acier ayant une composition selon l'une quelconque des revendications 1 à 4.
12. Pièce d'acier selon la revendication 11 , caractérisée en ce qu'elle est obtenue par un procédé selon l'une quelconque des revendications 5 à 10.
EP99926549A 1998-06-29 1999-06-28 Acier de cementation a temperature de revenu elevee, procede pour son obtention et pieces formees avec cet acier Expired - Lifetime EP1097248B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9808247 1998-06-29
FR9808247A FR2780418B1 (fr) 1998-06-29 1998-06-29 Acier de cementation a temperature de revenu eleve, procede pour son obtention et pieces formees avec cet acier
PCT/FR1999/001543 WO2000000658A1 (fr) 1998-06-29 1999-06-28 Acier de cementation a temperature de revenu elevee, procede pourson obtention et pieces formees avec cet acier

Publications (2)

Publication Number Publication Date
EP1097248A1 true EP1097248A1 (fr) 2001-05-09
EP1097248B1 EP1097248B1 (fr) 2002-04-24

Family

ID=9528000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99926549A Expired - Lifetime EP1097248B1 (fr) 1998-06-29 1999-06-28 Acier de cementation a temperature de revenu elevee, procede pour son obtention et pieces formees avec cet acier

Country Status (11)

Country Link
US (1) US6699333B1 (fr)
EP (1) EP1097248B1 (fr)
AR (1) AR019175A1 (fr)
AT (1) ATE216739T1 (fr)
BR (1) BR9912226A (fr)
CA (1) CA2335911C (fr)
DE (1) DE69901345T2 (fr)
DK (1) DK1097248T3 (fr)
ES (1) ES2175985T3 (fr)
FR (1) FR2780418B1 (fr)
WO (1) WO2000000658A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110578086A (zh) * 2018-06-07 2019-12-17 株式会社电装 制造燃料喷射部件的方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112604A (en) * 1989-09-01 1992-05-12 Riker Laboratories, Inc. Oral suspension formulation
JP3838480B2 (ja) * 2000-05-17 2006-10-25 大同特殊鋼株式会社 被削性に優れた耐高面圧部材用鋼材および耐高面圧部材
FR2813892B1 (fr) * 2000-09-13 2003-09-26 Peugeot Citroen Automobiles Sa Procede de traitement thermique d'aciers d'outillages hypoeutectoides
US7081174B2 (en) * 2002-04-30 2006-07-25 Sanyo Special Steel Co., Ltd. Process for producing steel products having improved grain size properties and machinability
US7067019B1 (en) * 2003-11-24 2006-06-27 Malltech, L.L.C. Alloy steel and article made therefrom
CN100351419C (zh) * 2004-09-15 2007-11-28 玉门石油管理局 抗腐蚀抽油杆及其制造方法
JP2006170192A (ja) * 2004-11-17 2006-06-29 Denso Corp 燃料噴射ノズル及びその製造方法
US20060207690A1 (en) * 2005-03-21 2006-09-21 Amsted High strength steel and method of making same
EP1757711B1 (fr) * 2005-08-24 2013-03-27 Daido Steel Co.,Ltd. Portions de machines carburées
CN100434543C (zh) * 2005-10-26 2008-11-19 万向钱潮股份有限公司 Sae8620渗碳钢的正火热处理工艺
US20080145264A1 (en) * 2006-12-19 2008-06-19 The Timken Company Mo-V-Ni high temperature steels, articles made therefrom and method of making
CN100463997C (zh) * 2007-05-30 2009-02-25 太原理工大学 一种超饱和渗碳钢
EP2313535B8 (fr) * 2008-07-24 2021-09-29 CRS Holdings, LLC Alliage d'acier à haute résistance et haute ténacité
US20110165011A1 (en) * 2008-07-24 2011-07-07 Novotny Paul M High strength, high toughness steel alloy
CN101905244B (zh) * 2010-08-05 2012-01-04 中原特钢股份有限公司 一种利用28NiCrMoV号钢为原料生产芯棒的方法
CN104289873A (zh) * 2012-10-22 2015-01-21 宁波吉威熔模铸造有限公司 一种汽车前轴的制造方法
CN103436806A (zh) * 2013-07-25 2013-12-11 上海锐迈重工有限公司 A694f70高屈服值芯部取样法兰锻件的生产方法
CN103834875B (zh) * 2014-03-13 2016-01-06 安徽菲茵特电梯有限公司 一种耐腐蚀弹性合金材料及其制备方法
CN104032121A (zh) * 2014-06-17 2014-09-10 无锡市崇安区科技创业服务中心 一种钢棒的热处理方法
CN106755863A (zh) * 2016-12-15 2017-05-31 通裕重工股份有限公司 解决大截面方块类锻件产生探伤粗晶的工艺方法
CN112714799A (zh) * 2018-09-18 2021-04-27 Ezm不锈钢精拔有限公司 具有高边缘硬度和精细延展性芯结构的用于表面硬化的钢
CN111519001A (zh) * 2020-05-14 2020-08-11 山东理工大学 一种小尺寸强韧性偏心电机轴的制造方法
CN111893403B (zh) * 2020-07-30 2021-09-24 舞阳钢铁有限责任公司 一种提高中碳合金钢锭致密性的方法
CN111719111A (zh) * 2020-08-03 2020-09-29 苏州亚太金属有限公司 一种提高齿轮渗碳用钢综合性能的热处理方法
CN113481356B (zh) * 2021-07-02 2022-05-27 重庆长征重工有限责任公司 用于改善42CrMo合金钢锻件粗大晶粒的方法
CN116262963A (zh) * 2022-12-22 2023-06-16 杭州汽轮动力集团股份有限公司 一种燃气轮机压气机用轮盘锻件及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110798A (en) * 1959-07-10 1963-11-12 Lukens Steel Co Submerged arc weld metal composition
US3362811A (en) * 1965-03-22 1968-01-09 Westinghouse Electric Corp Wire for arc welding
FR1489566A (fr) * 1965-08-17 1967-07-21 Union Carbide Corp Fil de métal d'apport améliorant la limite d'élasticité des soudures d'alliages d'acier
GB1172672A (en) * 1965-12-02 1969-12-03 Padley & Venables Ltd Improvements relating to the Manufacture of Percussive Drill Rods.
PL79950B1 (fr) * 1968-01-31 1975-08-30 Mitsubishi Jukogyo Kabushiki Kaisha
US3661565A (en) * 1969-08-04 1972-05-09 Metaltronics Inc Precipitation hardening steel
FR2166585A5 (en) * 1971-12-30 1973-08-17 Creusot Loire Steel alloy - for use in pressurised hydrogen or during hydrogen production
SU425968A1 (ru) * 1972-10-09 1974-04-30 В. М. Степанов, В. К. Маликов, Э. Н. Абросимов, М. М. нова, Г. П. Алексеева, Г. А. Бабаков , Ю. Ю. Черкис Литейная. сталь
SU516727A1 (ru) 1974-10-08 1976-06-05 Всесоюзный научно-исследовательский и проектный институт химической промышленности Раствор дл удалени покрытий
SU516757A1 (ru) * 1974-10-21 1976-06-05 Институт Проблем Литья Ан Украинской Сср Лита цементуема сталь
JPS6254064A (ja) * 1985-09-02 1987-03-09 Aichi Steel Works Ltd 高品質肌焼鋼の製造法
JPH09271806A (ja) * 1996-04-02 1997-10-21 Nippon Steel Corp 密着性の良い均一なスケールを有する厚鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0000658A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110578086A (zh) * 2018-06-07 2019-12-17 株式会社电装 制造燃料喷射部件的方法

Also Published As

Publication number Publication date
EP1097248B1 (fr) 2002-04-24
US6699333B1 (en) 2004-03-02
FR2780418B1 (fr) 2000-09-08
ATE216739T1 (de) 2002-05-15
ES2175985T3 (es) 2002-11-16
CA2335911C (fr) 2009-09-01
FR2780418A1 (fr) 1999-12-31
BR9912226A (pt) 2001-05-08
DE69901345T2 (de) 2002-12-19
CA2335911A1 (fr) 2000-01-06
AR019175A1 (es) 2001-12-26
WO2000000658A1 (fr) 2000-01-06
DE69901345D1 (de) 2002-05-29
DK1097248T3 (da) 2002-07-01

Similar Documents

Publication Publication Date Title
CA2335911C (fr) Acier de cementation a temperature de revenu elevee, procede pour son obtention et pieces formees avec cet acier
EP2310546B1 (fr) Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d&#39;une pièce à partir de cet acier, et pièce ainsi obtenue
CA2607446C (fr) Acier martensitique durci, procede de fabrication d&#39;une piece a partir de cet acier, et piece ainsi obtenue
CA2694844C (fr) Acier martensitique durci a teneur faible ou nulle en cobalt, procede de fabrication d&#39;une piece a partir de cet acier, et piece ainsi obtenue
JP5530763B2 (ja) 低サイクル曲げ疲労強度に優れた浸炭鋼部品
EP3765646B1 (fr) Composition d&#39;acier
EP1979583B1 (fr) Procédé de fabrication d&#39;une soupape de moteur à explosion, et soupape ainsi obtenue
WO2015098106A1 (fr) Procédé de production de constituant en acier cémenté et constituant en acier cémenté
WO2017216500A1 (fr) Composition d&#39;acier
FR2885141A1 (fr) Acier martensitique durci, procede de fabrication d&#39;une piece a partir de cet acier, et piece ainsi obtenue
WO2011065593A1 (fr) Lingot pour roulement, et procédé de production d&#39;acier à roulements
WO2019244503A1 (fr) Composant mécanique
JP6481802B1 (ja) Cr−Fe−Ni系合金製造物およびその製造方法
JP2007530780A (ja) 機械的部品用の鋼材、該鋼材から機械的部品を製造する方法、および該鋼材を用いて得られる機械的部品
JP2004285384A (ja) 高強度浸炭部品
CA2312034C (fr) Acier de nitruration, procede pour son obtention et pieces formees avec cet acier
JP2007113034A (ja) 軸受鋼
WO2000023632A1 (fr) Acier de construction cementable, procede pour son obtention et pieces formees avec cet acier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IT LI LU SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010601

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IT LI LU SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020424

REF Corresponds to:

Ref document number: 216739

Country of ref document: AT

Date of ref document: 20020515

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69901345

Country of ref document: DE

Date of ref document: 20020529

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020718

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2175985

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030127

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: AUBERT & DUVAL

Free format text: AUBERT & DUVAL#41, RUE DE VILLIERS#F-92200 NEUILLY-SUR-SEINE (FR) -TRANSFER TO- AUBERT & DUVAL#41, RUE DE VILLIERS#F-92200 NEUILLY-SUR-SEINE (FR)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20080604

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20080704

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090628

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180625

Year of fee payment: 20

Ref country code: CH

Payment date: 20180621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180620

Year of fee payment: 20

Ref country code: BE

Payment date: 20180620

Year of fee payment: 20

Ref country code: AT

Payment date: 20180621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180620

Year of fee payment: 20

Ref country code: ES

Payment date: 20180720

Year of fee payment: 20

Ref country code: IT

Payment date: 20180627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20180620

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69901345

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20190628

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20190628

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190627

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 216739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190627

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190629