CN1483668A - 一种碳纳米管阵列生长方法 - Google Patents

一种碳纳米管阵列生长方法 Download PDF

Info

Publication number
CN1483668A
CN1483668A CNA02134776XA CN02134776A CN1483668A CN 1483668 A CN1483668 A CN 1483668A CN A02134776X A CNA02134776X A CN A02134776XA CN 02134776 A CN02134776 A CN 02134776A CN 1483668 A CN1483668 A CN 1483668A
Authority
CN
China
Prior art keywords
pipe array
carbon nano
nano pipe
carbon
growth method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA02134776XA
Other languages
English (en)
Other versions
CN1248959C (zh
Inventor
姜开利
范守善
李群庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongfujin Precision Industry Shenzhen Co Ltd
Beijing Funate Innovation Technology Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CNB02134776XA priority Critical patent/CN1248959C/zh
Priority to US10/334,547 priority patent/US7754182B2/en
Priority to JP2003076542A priority patent/JP3850380B2/ja
Publication of CN1483668A publication Critical patent/CN1483668A/zh
Application granted granted Critical
Publication of CN1248959C publication Critical patent/CN1248959C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种碳纳米管阵列生长方法,包括以下步骤:提供一平滑基底,将催化剂沉积于该基底表面,将沉积有催化剂的基底在气体保护下加热至一特定温度后通入碳源气与保护气体的混合气体,控制该混合气体的流速及流量比,使催化剂温度与环境温度温差在50℃以上,且使碳源气的分压低于20%,反应5-30分钟使碳纳米管阵列从基底长出。该碳纳米管阵列中的碳纳米管呈束状。

Description

一种碳纳米管阵列生长方法
【技术领域】
本发明涉及一种碳纳米管生长方法,尤指一种碳纳米管阵列生长方法。
【背景技术】
碳纳米管是一种由碳原子组成的直径为纳米量级的碳管,在碳纳米管石墨层中央部份都是六元环,而在末端或转折部份则有五元环或七元环。碳纳米管是在1991年由Iijiima在电弧放电的产物中首次发现的,发表在1991年出版的Nature 354,56。碳纳米管的特殊结构决定了其具有优良的综合力学性能,如高弹性模量、高杨氏模量和低密度,以及优异的电学性能、热学性能和吸附性能。随着碳纳米管的长度、直径和螺旋方式的变化,碳纳米管可呈现出金属性或半导体性质。由于碳纳米管的优异特性,因此可望其在纳米电子学、材料科学、生物学、化学等领域中发挥重要作用。
目前制备碳纳米管的方法主要有电弧放电法、脉冲激光蒸发法及化学气相沉积法几种。电弧放电及脉冲激光蒸发法形成碳纳米管有以下几个缺点:(1)碳纳米管产量较低;(2)碳纳米管是和其他碳纳米颗粒混杂在一起,因此造成碳纳米管的纯度很低,还需要复杂的净化工艺,增加制造成本;(3)碳纳米管的生长方向无法控制,所形成的碳纳米管是无序混乱的,难于工业上应用。而形成有序碳纳米管阵列的方法目前主要是化学气相沉积法。化学气相沉积主要是运用纳米尺度的过渡金属或其氧化物作为催化剂,在相对低的温度下热解含碳的源气体来制备碳纳米管阵列。
范守善等人在文献Science 283,512-514(1999),Self-orientedregular arrays of carbon nanotubes and their field emission properties中所描述的制备方法是:首先提供一多孔硅基底,其孔径大约为3纳米,然后通过掩模板用电子束蒸发法在基底上形成一层具有规则图案的催化剂层-铁层,然后将沉积有铁的基底在空气中300℃退火,然后将基底放在石英反应舟里送入石英管反应炉的中央反应室中,在氩气的保护下,将反应炉加热到700℃后,以流量1000sccm通入乙烯气,反应15-60分钟,然后将反应炉冷却到室温,有序碳纳米管阵列即沉积在基底上有铁的区域,并垂直于基底。但是因为碳纳米管生长过程中,无定型碳会同时沉积在碳纳米管的外表面,使碳纳米管之间的范德华力降低,故依该法生长出的碳纳米管阵列中的碳纳米管之间范德华力较弱。图1即为将依该法生长出的碳纳米管阵列放入二氯乙烷中超声作用10分钟后的透射电子显微镜(TEM,transmission electron microscope)照片,由图1可看到,超声作用后,碳纳米管阵列中碳纳米管已基本分散在二氯乙烷中。
【发明内容】
本发明的目的在于提供一种碳纳米管阵列生长方法,其生长出碳纳米管阵列中的碳纳米管表面干净平滑,通过范德华力结合成稳定的束状,即为束状碳纳米管阵列。
本发明的目的是这样实现的:提供一平滑基底,将催化剂沉积于该基底上,将沉积有催化剂的基底在气体保护下加热至一特定温度后通入碳源气与保护气体的混合气体,控制该混合气体的流速,使催化剂温度与环境温度的温差在50℃以上,控制该混合气体的流量比,使碳源气的分压低于20%,反应5-30分钟使碳纳米管阵列从基底长出。该生长出的碳纳米管阵列为束状碳纳米管阵列。
与现有技术相比较,本发明通过控制混合气体的流速使催化剂与环境产生温差,使碳纳米管生长速度提高;通过控制混合气体流量比使碳源气的分压较低,使无定性碳的沉积速度减慢,从而使生长出的碳纳米管具有干净光滑的表面,碳纳米管之间的范德华力增加,又因采用平滑基底,生长出的碳纳米管更密集易于通过范德华力聚集呈束状,形成束状碳纳米管阵列。
【附图说明】
图1是现有技术生长出的碳纳米管阵列在二氯乙烷中超声作用10分钟后的TEM照片。
图2是以本发明碳纳米管阵列生长方法生长出的碳纳米管阵列的扫描电子显微镜(SEM,scanning electron microscope)照片,其中***的SEM照片为放大的碳纳米管阵列。
图3是以本发明碳纳米管阵列生长方法生长出的碳纳米管阵列中一束碳纳米管的TEM照片。
图4是以本发明碳纳米管阵列生长方法生长出的碳纳米管阵列在二氯乙烷中超声作用10分钟后的TEM照片。
【具体实施方式】
首先提供一平滑基底,可选用P型或N型或本征硅晶片或表面有一层氧化硅的硅晶片为基底,本发明中选用P型硅晶片或表面有一层氧化硅的硅晶片作为基底,其直径为5.08厘米,厚350微米,将该基底抛光获得平滑基底。将金属催化剂利用电子束蒸发沉积、热沉积或溅射法等方法形成于基底上,其厚度为几纳米到几百纳米,其中金属催化剂可为铁(Fe)、钴(Co)、镍(Ni)或其合金之一,本发明选用铁为催化剂,沉积厚度为5纳米。
将沉积有催化剂的基底在空气中,在300-400℃热处理约10小时,使催化剂氧化成颗粒,然后再将其用氢气或氨气还原形成纳米级颗粒,再将处理后的基底切割成矩形基底。
将其中一片矩形基底装入一反应舟中,一般为石英反应舟,将舟装入管状石英炉中央的反应室里,在气体保护下加热至一预定温度,其中,该保护气体为惰性气体或氮气,本发明选用氩气,该预定温度因催化剂不同而不同,当选用催化剂为铁,则一般加热到500-700℃,优选为650℃。
通入碳源气与保护气体的混合气体,其中碳源气为碳氢化合物,可为乙炔、乙烯等,本发明选用乙炔;该保护气体为惰性气体或氮气,本发明选用氩气。通过控制碳源气的流速来控制催化剂的局部温度TC,环境温度TL直接通过控制炉子来调节,使催化剂的温度TC与反应炉中环境温度TL形成一温差ΔT至少在50℃以上,控制碳源气与保护气体的流量比,使碳源气的分压至少在20%以下,优选为分压在10%以下,反应5-30分钟使碳纳米管阵列从基底长出,如图2所示。因为碳纳米管生长速度和催化剂温度与环境温度的温差成正比,温差越大,碳纳米管生长越快;而无定性碳的沉积速度与碳源气分压成正比,碳源气分压越低,无定型碳的沉积速度越慢。故,本发明通过控制催化剂的温度TC与环境温度TL的温差ΔT至少在50℃以上,使碳纳米管的生长速度提高;通过调节碳源气与混合气体的流量比,使碳源气的分压至少在20%以下,使无定型碳的沉积速度减慢。采用此工艺条件后生长出的碳纳米管具干净光滑的表面,且碳纳米管之间范德华力较大,又因基底为平滑基底,生长出的碳纳米管较在多孔基底上生长出的碳纳米管更紧密,故碳纳米管易于因范德华力聚集形成束状,如图3所示。
故采用本发明的方法制备的碳纳米管阵列为束状碳纳米管阵列,且该束状结构很稳定,将以本发明的方法生长出的碳纳米管阵列在二氯乙烷中超声作用10分钟,拍得TEM照片,如图4所示,该阵列中的碳纳米管没有分散在二氯乙烷中,仍然成束状结构。

Claims (9)

1.一种碳纳米管阵列生长方法,其特征在于包括以下步骤:
(1)提供一平滑基底;
(2)将催化剂沉积于该基底表面;
(3)通入碳源气与保护气体的混合气体反应,使碳源气的分压低于20%,并且使催化剂的温度与环境温度的温差为50℃以上,使碳纳米管从基底上长出。
2.如权利要求1所述的碳纳米管阵列生长方法,其特征在于步骤(1)中的平滑基底为硅晶片或具氧化硅层的硅晶片。
3.如权利要求1所述的碳纳米管阵列生长方法,其特征在于催化剂与环境温度的温差是通过控制混合气体的流速实现的。
4.如权利要求1所述的碳纳米管阵列生长方法,其特征在于碳源气的分压通过控制碳源气与保护气体的流量比实现的。
5.如权利要求4所述的碳纳米管阵列生长方法,其特征在于该碳源气分压为10%。
6.如权利要求1所述的碳纳米管阵列生长方法,其特征在于步骤(2)中所用催化剂为铁、钴、镍或其合金之一。
7.如权利要求1所述的碳纳米管阵列生长方法,其特征在于在通入碳源气与保护气体的混合气体反应前还包括将沉积有催化剂的基底在空气中于300-400℃热处理10小时。
8.如权利要求7所述的碳纳米管阵列生长方法,其特征在于热处理后,通入混合气体反应之前还包括将基底在气体保护下,预加热到650℃。
9.如权利要求5所述的碳纳米管阵列生长方法,其特征在于步骤(3)中,通入的碳源气为乙炔,保护气体为氩气。
CNB02134776XA 2002-09-17 2002-09-17 一种碳纳米管阵列生长方法 Expired - Lifetime CN1248959C (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CNB02134776XA CN1248959C (zh) 2002-09-17 2002-09-17 一种碳纳米管阵列生长方法
US10/334,547 US7754182B2 (en) 2002-09-17 2002-12-31 Carbon nanotube array and method for forming same
JP2003076542A JP3850380B2 (ja) 2002-09-17 2003-03-19 炭素ナノチューブのマトリックスの成長方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB02134776XA CN1248959C (zh) 2002-09-17 2002-09-17 一种碳纳米管阵列生长方法

Publications (2)

Publication Number Publication Date
CN1483668A true CN1483668A (zh) 2004-03-24
CN1248959C CN1248959C (zh) 2006-04-05

Family

ID=31983682

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB02134776XA Expired - Lifetime CN1248959C (zh) 2002-09-17 2002-09-17 一种碳纳米管阵列生长方法

Country Status (3)

Country Link
US (1) US7754182B2 (zh)
JP (1) JP3850380B2 (zh)
CN (1) CN1248959C (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337981C (zh) * 2005-03-24 2007-09-19 清华大学 热界面材料及其制造方法
CN100337910C (zh) * 2005-03-31 2007-09-19 清华大学 一种碳纳米管阵列的生长方法
US7301232B2 (en) 2004-08-13 2007-11-27 Hon Hai Precision Industry Co., Ltd. Integrated circuit package with carbon nanotube array heat conductor
CN100376478C (zh) * 2005-04-22 2008-03-26 清华大学 碳纳米管阵列结构的制备装置
CN100395887C (zh) * 2004-08-14 2008-06-18 鸿富锦精密工业(深圳)有限公司 集成电路封装结构及其制造方法
CN100462301C (zh) * 2005-12-09 2009-02-18 清华大学 一种碳纳米管阵列的制备方法
CN1948142B (zh) * 2005-10-12 2010-09-08 王洋 碳纳米管阵列其制备方法及在制备天线阵列中的应用
CN101205059B (zh) * 2006-12-20 2010-09-29 清华大学 碳纳米管阵列的制备方法
CN101857460A (zh) * 2010-05-20 2010-10-13 中国科学院苏州纳米技术与纳米仿生研究所 纺丝用碳纳米管阵列的制备方法
CN1964918B (zh) * 2004-06-08 2010-12-29 住友电气工业株式会社 制备碳纳米结构体的方法
CN101205060B (zh) * 2006-12-20 2011-05-04 清华大学 碳纳米管阵列的制备方法
CN101365650B (zh) * 2006-01-06 2012-07-18 独立行政法人产业技术综合研究所 定向碳纳米管整体集合体
CN1891780B (zh) * 2005-07-01 2013-04-24 清华大学 热界面材料及其制备方法
CN101365830B (zh) * 2005-06-28 2013-06-12 俄克拉荷马州大学评议会 生长和收获碳纳米管的方法
CN101636436B (zh) * 2007-02-22 2014-04-16 道康宁公司 制备导电薄膜的方法和由该方法制得的制品
CN105568248A (zh) * 2015-12-23 2016-05-11 北京控制工程研究所 一种在钛合金基底上控制碳纳米管生长定向性的方法
CN107597118A (zh) * 2017-09-01 2018-01-19 哈尔滨万鑫石墨谷科技有限公司 一种制备束丛状碳纳米管用催化剂、其制备方法及束丛状碳纳米管
CN109650832A (zh) * 2019-01-12 2019-04-19 张永华 一种耐压烧结砖
TWI694127B (zh) * 2017-12-28 2020-05-21 鴻海精密工業股份有限公司 一種黏結方法

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1282216C (zh) * 2002-09-16 2006-10-25 清华大学 一种灯丝及其制备方法
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US7273095B2 (en) 2003-03-11 2007-09-25 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Nanoengineered thermal materials based on carbon nanotube array composites
US7109581B2 (en) * 2003-08-25 2006-09-19 Nanoconduction, Inc. System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler
US7477527B2 (en) * 2005-03-21 2009-01-13 Nanoconduction, Inc. Apparatus for attaching a cooling structure to an integrated circuit
US7538422B2 (en) 2003-08-25 2009-05-26 Nanoconduction Inc. Integrated circuit micro-cooler having multi-layers of tubes of a CNT array
US8048688B2 (en) * 2006-10-24 2011-11-01 Samsung Electronics Co., Ltd. Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays
US7732918B2 (en) * 2003-08-25 2010-06-08 Nanoconduction, Inc. Vapor chamber heat sink having a carbon nanotube fluid interface
US8075863B2 (en) 2004-05-26 2011-12-13 Massachusetts Institute Of Technology Methods and devices for growth and/or assembly of nanostructures
DE102004048201B4 (de) * 2004-09-30 2009-05-20 Infineon Technologies Ag Halbleiterbauteil mit Haftvermittlerschicht, sowie Verfahren zu deren Herstellung
TWI388042B (zh) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg 基於奈米管基板之積體電路
TW200633171A (en) * 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
US8926933B2 (en) 2004-11-09 2015-01-06 The Board Of Regents Of The University Of Texas System Fabrication of twisted and non-twisted nanofiber yarns
KR100647303B1 (ko) * 2004-12-18 2006-11-23 삼성에스디아이 주식회사 전기영동법을 이용한 탄소나노튜브의 수직 정렬방법
CN100337909C (zh) 2005-03-16 2007-09-19 清华大学 一种碳纳米管阵列的生长方法
CN100376477C (zh) * 2005-03-18 2008-03-26 清华大学 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法
CN100344532C (zh) * 2005-03-25 2007-10-24 清华大学 一种碳纳米管阵列的生长装置
CN1951799A (zh) * 2005-10-20 2007-04-25 鸿富锦精密工业(深圳)有限公司 一种金属纳米线阵列的制备方法
CN100500556C (zh) 2005-12-16 2009-06-17 清华大学 碳纳米管丝及其制作方法
CN101097829B (zh) * 2006-06-30 2010-05-26 清华大学 二极型场发射像素管
CN102207574B (zh) * 2007-03-30 2013-04-10 清华大学 偏光元件及其制备方法
CN102207575B (zh) * 2007-03-30 2013-08-21 清华大学 偏光元件及其制备方法
CN101285960B (zh) * 2007-04-13 2012-03-14 清华大学 场发射背光源
CN101314464B (zh) * 2007-06-01 2012-03-14 北京富纳特创新科技有限公司 碳纳米管薄膜的制备方法
CN101409962B (zh) * 2007-10-10 2010-11-10 清华大学 面热光源及其制备方法
CN101465434B (zh) * 2007-12-19 2010-09-29 清华大学 燃料电池膜电极及其制备方法
CN101635362B (zh) * 2008-07-25 2012-03-28 清华大学 膜电极及采用该膜电极的燃料电池
EP2056383A1 (en) * 2007-11-02 2009-05-06 Tsing Hua University Membrane electrode assembly and method for making the same
US20100126985A1 (en) * 2008-06-13 2010-05-27 Tsinghua University Carbon nanotube heater
CN101752568B (zh) * 2008-12-17 2012-06-20 清华大学 膜电极及采用该膜电极的生物燃料电池
US9077042B2 (en) * 2008-07-25 2015-07-07 Tsinghua University Membrane electrode assembly and biofuel cell using the same
CN101752567B (zh) * 2008-12-17 2012-09-19 清华大学 膜电极及采用该膜电极的燃料电池
WO2010014107A1 (en) * 2008-07-31 2010-02-04 William Marsh Rice University Method for producing aligned carbon nanotube sheets, ribbons and films from aligned arrays of carbon nanotube carpets/forests and direct transfer to host surfaces
CA2758694C (en) 2009-04-17 2017-05-23 Seerstone Llc Method for producing solid carbon by reducing carbon oxides
JP5636337B2 (ja) * 2011-06-22 2014-12-03 株式会社デンソー カーボンナノチューブ膜の製造方法
WO2013039156A1 (ja) * 2011-09-14 2013-03-21 株式会社フジクラ カーボンナノファイバ形成用構造体、カーボンナノファイバ構造体及びその製造方法並びにカーボンナノファイバ電極
CN103172044B (zh) 2011-12-21 2015-07-01 清华大学 碳纳米管纸的制备方法
CN103178026B (zh) 2011-12-21 2016-03-09 清华大学 散热结构及应用该散热结构的电子设备
CN103178027B (zh) 2011-12-21 2016-03-09 清华大学 散热结构及应用该散热结构的电子设备
MX2014012548A (es) 2012-04-16 2015-04-10 Seerstone Llc Metodos y estructuras para reducir oxidos de carbono con catalizadores no ferrosos.
NO2749379T3 (zh) 2012-04-16 2018-07-28
US9221685B2 (en) 2012-04-16 2015-12-29 Seerstone Llc Methods of capturing and sequestering carbon
MX354529B (es) 2012-04-16 2018-03-07 Seerstone Llc Métodos para producir carbono sólido mediante la reducción de dióxido de carbono.
WO2013158158A1 (en) 2012-04-16 2013-10-24 Seerstone Llc Methods for treating an offgas containing carbon oxides
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
CN103481381B (zh) * 2012-06-12 2016-03-30 清华大学 脆性片状结构的切割方法
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
CN107651667A (zh) 2012-07-12 2018-02-02 赛尔斯通股份有限公司 包含碳纳米管的固体碳产物以及其形成方法
MX2015000580A (es) 2012-07-13 2015-08-20 Seerstone Llc Metodos y sistemas para formar productos de carbono solido y amoniaco.
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
WO2014039509A2 (en) 2012-09-04 2014-03-13 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
MX2015006893A (es) 2012-11-29 2016-01-25 Seerstone Llc Reactores y metodos para producir materiales de carbono solido.
WO2014151144A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
WO2014151138A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Reactors, systems, and methods for forming solid products
US9783416B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Methods of producing hydrogen and solid carbon
US10115844B2 (en) 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
EP3129133A4 (en) 2013-03-15 2018-01-10 Seerstone LLC Systems for producing solid carbon by reducing carbon oxides
WO2018022999A1 (en) 2016-07-28 2018-02-01 Seerstone Llc. Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
CN114624798B (zh) * 2020-12-14 2023-05-16 清华大学 光吸收体及其制备方法
CN115806287A (zh) * 2021-09-15 2023-03-17 江苏天奈科技股份有限公司 阵列碳纳米管及制备阵列碳纳米管和片层状催化剂的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445006B1 (en) * 1995-12-20 2002-09-03 Advanced Technology Materials, Inc. Microelectronic and microelectromechanical devices comprising carbon nanotube components, and methods of making same
US6232706B1 (en) * 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
US6361861B2 (en) * 1999-06-14 2002-03-26 Battelle Memorial Institute Carbon nanotubes on a substrate
US6582673B1 (en) * 2000-03-17 2003-06-24 University Of Central Florida Carbon nanotube with a graphitic outer layer: process and application
KR100382879B1 (ko) * 2000-09-22 2003-05-09 일진나노텍 주식회사 탄소 나노튜브 합성 방법 및 이에 이용되는 탄소 나노튜브합성장치.
US6858197B1 (en) * 2002-03-13 2005-02-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled patterning and growth of single wall and multi-wall carbon nanotubes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964918B (zh) * 2004-06-08 2010-12-29 住友电气工业株式会社 制备碳纳米结构体的方法
US7301232B2 (en) 2004-08-13 2007-11-27 Hon Hai Precision Industry Co., Ltd. Integrated circuit package with carbon nanotube array heat conductor
CN100395887C (zh) * 2004-08-14 2008-06-18 鸿富锦精密工业(深圳)有限公司 集成电路封装结构及其制造方法
CN100337981C (zh) * 2005-03-24 2007-09-19 清华大学 热界面材料及其制造方法
CN100337910C (zh) * 2005-03-31 2007-09-19 清华大学 一种碳纳米管阵列的生长方法
CN100376478C (zh) * 2005-04-22 2008-03-26 清华大学 碳纳米管阵列结构的制备装置
CN101365830B (zh) * 2005-06-28 2013-06-12 俄克拉荷马州大学评议会 生长和收获碳纳米管的方法
CN1891780B (zh) * 2005-07-01 2013-04-24 清华大学 热界面材料及其制备方法
CN1948142B (zh) * 2005-10-12 2010-09-08 王洋 碳纳米管阵列其制备方法及在制备天线阵列中的应用
CN100462301C (zh) * 2005-12-09 2009-02-18 清华大学 一种碳纳米管阵列的制备方法
CN101365650B (zh) * 2006-01-06 2012-07-18 独立行政法人产业技术综合研究所 定向碳纳米管整体集合体
CN101205060B (zh) * 2006-12-20 2011-05-04 清华大学 碳纳米管阵列的制备方法
CN101205059B (zh) * 2006-12-20 2010-09-29 清华大学 碳纳米管阵列的制备方法
CN101636436B (zh) * 2007-02-22 2014-04-16 道康宁公司 制备导电薄膜的方法和由该方法制得的制品
CN101857460A (zh) * 2010-05-20 2010-10-13 中国科学院苏州纳米技术与纳米仿生研究所 纺丝用碳纳米管阵列的制备方法
CN105568248A (zh) * 2015-12-23 2016-05-11 北京控制工程研究所 一种在钛合金基底上控制碳纳米管生长定向性的方法
CN105568248B (zh) * 2015-12-23 2018-08-07 北京控制工程研究所 一种在钛合金基底上控制碳纳米管生长定向性的方法
CN107597118A (zh) * 2017-09-01 2018-01-19 哈尔滨万鑫石墨谷科技有限公司 一种制备束丛状碳纳米管用催化剂、其制备方法及束丛状碳纳米管
CN107597118B (zh) * 2017-09-01 2020-07-17 哈尔滨万鑫石墨谷科技有限公司 一种制备束丛状碳纳米管用催化剂、其制备方法及束丛状碳纳米管
TWI694127B (zh) * 2017-12-28 2020-05-21 鴻海精密工業股份有限公司 一種黏結方法
CN109650832A (zh) * 2019-01-12 2019-04-19 张永华 一种耐压烧结砖

Also Published As

Publication number Publication date
US7754182B2 (en) 2010-07-13
JP3850380B2 (ja) 2006-11-29
JP2004250306A (ja) 2004-09-09
CN1248959C (zh) 2006-04-05
US20040053053A1 (en) 2004-03-18

Similar Documents

Publication Publication Date Title
CN1248959C (zh) 一种碳纳米管阵列生长方法
CN100462301C (zh) 一种碳纳米管阵列的制备方法
CN100411979C (zh) 一种碳纳米管绳及其制造方法
JP4116031B2 (ja) 炭素ナノチューブのマトリックスの成長装置及び多層の炭素ナノチューブのマトリックスの成長方法
KR101110409B1 (ko) 카본나노구조체의 제조방법
CN100337909C (zh) 一种碳纳米管阵列的生长方法
US7744440B2 (en) Method of growing carbon nanotubes and method of manufacturing field emission device using the same
US20040265212A1 (en) Synthesis of coiled carbon nanotubes by microwave chemical vapor deposition
CN100526217C (zh) 一种准一维氮化硼纳米结构的制备方法
Lai et al. Straight β-SiC nanorods synthesized by using C–Si–SiO 2
US20080131351A1 (en) Method of preparing single-wall carbon nanotubes
Zhang et al. Synthesis of SiC nanorods using floating catalyst
US20050106093A1 (en) Method for preparing monolayer carbon nanotube
WO2003018474A1 (en) Nanostructure synthesis
Zhou et al. Growth and emission properties of β-SiC nanorods
US8246743B2 (en) Single crystal silicon carbide nanowire, method of preparation thereof, and filter comprising the same
Jou et al. Preparation of carbon nanotubes from vacuum pyrolysis of polycarbosilane
CN1275851C (zh) 一种碳纳米管的制备方法
US20080132410A1 (en) Catalyst for catalyzing growth of single-wall carbon nanotubes
US20080131602A1 (en) Method of preparing catalyst for catalyzing growth of single-wall carbon nanotubes
Chen et al. The formation conditions of carbon nanotubes array based on FeNi alloy island films
CN1166826C (zh) 一种制备鱼骨状纳米碳纤维的方法
JP2002105765A (ja) カーボンナノファイバー複合体およびカーボンナノファイバーの製造方法
Niu et al. An approach to the synthesis of silicon carbide nanowires by simple thermal evaporation of ferrocene onto silicon wafers
TWI286534B (en) A method for controlling the growth density of carbon nanotubes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: QINGHUA UNIVERSITY

Effective date: 20090515

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090515

Address after: 1115, block B, research and research complex, Tsinghua University, Haidian District, Beijing. Zip code: 100084

Co-patentee after: HONG FU JIN PRECISION INDUSTRY (SHENZHEN) Co.,Ltd.

Patentee after: Beijing FUNATE Innovation Technology Co.,Ltd.

Address before: Department of physics, Tsinghua University, Haidian District, Beijing, China: 100084

Co-patentee before: HONG FU JIN PRECISION INDUSTRY (SHENZHEN) Co.,Ltd.

Patentee before: Tsinghua University

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20060405