CN100376477C - 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法 - Google Patents

一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法 Download PDF

Info

Publication number
CN100376477C
CN100376477C CNB2005100337336A CN200510033733A CN100376477C CN 100376477 C CN100376477 C CN 100376477C CN B2005100337336 A CNB2005100337336 A CN B2005100337336A CN 200510033733 A CN200510033733 A CN 200510033733A CN 100376477 C CN100376477 C CN 100376477C
Authority
CN
China
Prior art keywords
substrate
quartz boat
carbon nanotube
catalyst
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2005100337336A
Other languages
English (en)
Other versions
CN1834006A (zh
Inventor
姜开利
刘锴
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CNB2005100337336A priority Critical patent/CN100376477C/zh
Priority to JP2005310370A priority patent/JP4116031B2/ja
Priority to US11/371,997 priority patent/US7687109B2/en
Publication of CN1834006A publication Critical patent/CN1834006A/zh
Application granted granted Critical
Publication of CN100376477C publication Critical patent/CN100376477C/zh
Priority to US12/590,663 priority patent/US20100064973A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S427/00Coating processes
    • Y10S427/102Fullerene type base or coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

一种碳纳米管阵列生长装置,其包括一反应炉,该反应炉包括一进气口和一出气口;一石英舟设置于反应炉内;一生长碳纳米管用的基底设置于石英舟内,该基底一表面形成有一第一催化剂层,其中石英舟内进一步包括一第二催化剂粉末,该第二催化剂粉末靠近基底设置,且设置于沿反应气体流动方向基底位置的前方。一种多壁碳纳米管阵列的生长方法,其包括以下步骤:提供一基底,该基底的一表面沉积有一第一催化剂层;将上述基底设置于一石英舟内;设置一第二催化剂粉末于石英舟内,该第二催化剂粉末靠近基底设置,且设置于沿气体流动方向基底位置的前方;将上述石英舟置于一反应炉内;加热达到预定温度并通入碳源气以在基底上生长多壁碳纳米管阵列。

Description

一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法
【技术领域】
本发明涉及一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法
【背景技术】
碳纳米管是九十年代初才发现的一种新型一维纳米材料。碳纳米管的特殊结构决定了其具有特殊的性质,如高抗张强度和高热稳定性;随着碳纳米管螺旋方式的变化,碳纳米管可呈现出金属性或半导体性等。由于碳纳米管具有理想的一维结构以及在力学、电学、热学等领域优良的性质,其在材料科学、化学、物理学等交叉学科领域已展现出广阔的应用前景,包括场发射平板显示,单电子器件,原子力显微镜(Atomic Force Microscope,AFM)针尖,热传感器,光学传感器,过滤器等等。因此,实现碳纳米管的可控生长,降低碳纳米管的合成成本,是将碳纳米管推向应用的关键。
目前合成碳纳米管主要有三类方法:1991年S.Iijima在Nature,354,56,Helical microtubules of graphitic carbon上公开的电弧放电法;1992年T.W.Ebbesen等人在Nature,358,220,Large-scale Synthesis of Carbon Nanotubes上公开的激光烧蚀法及1996年W.Z.Li等人在Science,274,1701,Large-Scale Synthesis of Aligned Carbon Nanotubes上公开的化学气相沉积法。
电弧放电法和激光烧蚀法不能控制碳纳米管的直径和长度,合成方法所用设备昂贵,且碳纳米管的产量低,很难在大尺寸基片上大规模生长碳纳米管,故目前主要用于实验阶段,难以走向工业应用。
传统的化学气相沉积法是利用含碳气体作为碳源气,在多孔硅或沸石基底上生长出多壁或单壁碳纳米管,和前两种方法相比具有产量高、可控性强、与现行的集成电路工艺相兼容等优点,便于工业上进行大规模合成。但是,碳纳米管的有序性和产量通常不可兼得。
2002年2月16日公告的美国专利第6,350,488号揭示一种利用热化学气相沉积法在大尺寸基片上合成垂直排列的高纯碳纳米管的方法。所述的方法包括在基片上形成金属催化剂层;腐蚀金属催化剂层形成隔离的纳米级催化金属颗粒;利用热化学气相沉积法由每个隔离的纳米级催化金属颗粒生长碳纳米管,原位净化该碳纳米管。其中碳源气供应到热化学气相沉积设备中,碳纳米管垂直排列于基片上。
然而,该合成碳纳米管的方法尚有以下不足,其一,该方法会造成一些金属颗粒以及非晶质的碳化合物粘附于碳纳米管的表面上,因而,在合成碳纳米管后需要对碳纳米管进行净化过程,方法较为复杂,亦可能会损坏碳纳米管;其二,该方法合成温度较高,限制其工业应用的范围,不适合未来大规模生产碳纳米管的发展趋势;其三,该方法所使用的装置包括4个进气口,设备较为复杂,且合成得到的碳纳米管为多壁碳纳米管与单壁碳纳米管的混合产物,在实际应用中(如场发射显示)不易充分发挥碳纳米管的优良性能。
因此,提供一种简单可控碳纳米管阵列的生长装置十分必要。
【发明内容】
以下,将以若干实施例说明一种简单可控的碳纳米管阵列的生长装置。
以及通过这些实施例说明一种多壁碳纳米管阵列的生长方法。
为实现上述内容,提供一种碳纳米管阵列生长装置,其包括:一反应炉,该反应炉包括一进气口和一出气口;一石英舟设置于反应炉内;一生长碳纳米管用的基底设置于石英舟内,该基底一表面形成有一第一催化剂层,其中石英舟内进一步包括一第二催化剂粉末,该第二催化剂粉末靠近基底设置,且设置于沿反应气体流动方向基底位置的前方。
当石英舟为两端开口,该第二催化剂粉末设置于基底远离出气口方向的至少一侧边;当石英舟为一端开口,另一端封闭,该石英舟开口正对进气口,该第二催化剂粉末设置于基底远离进气口方向的至少一侧边。
该第二催化剂粉末材料选自金属铁粉、金属铁网、金属镍粉、金属镍网或氧化铝和金属铁的粉末混合物。
以及,提供一种多壁碳纳米管阵列的生长方法,其包括以下步骤:提供一基底,该基底的一表面沉积有一第一催化剂层;将上述基底设置于一石英舟内;设置一第二催化剂粉末于石英舟内,该第二催化剂粉末靠近基底设置,且设置于沿气体流动方向基底位置的前方;将上述石英舟置于一反应炉内,该反应炉包括一进气口;加热使得反应炉达到一预定温度并通入碳源气以在基底上生长得到多壁碳纳米管阵列。
与现有的热化学气相沉积法合成碳纳米管的技术相比较,本技术方案所提供的一种碳纳米管阵列的生长装置具有如下优点:其一生长温度低,在600~720摄氏度均能生长碳纳米管阵列,其中在620~690摄氏度的温度范围内可生长出排列非常规整的碳纳米管阵列;其二,生长速率快,产量多,生长30~60分钟所得到得碳纳米管阵列的高度均可达到几百微米,有时甚至可以达到毫米量级;其三,重复性好,本技术方案中使用的第二催化剂粉末在生长完碳纳米管阵列后可以收集并进行简单处理后重复使用,可反复使用多次,可重复性能好;其四,成本低廉,载气与碳源气可选用氩气和乙炔等廉价气体,由于第二催化剂粉末的使用,故无需使用价格昂贵的氢气,在降低了危险性的同时降低了成本,同时,第一催化剂层可采用廉价的铁,使得整个生长方法的成本进一步降低,适合工业上大批量生产。
【附图说明】
图1是第一实施例的化学气相沉积法制备碳纳米管阵列的装置示意图。
图2是第一实施例所使用的石英舟的俯视图。
图3是第二实施例的化学气相沉积法制备碳纳米管阵列的装置示意图。
图4是第二实施例所使用的石英舟的横向剖视图。
图5是第二实施例所使用的石英舟的左视图。
图6是本技术方案实施例获得的多壁碳纳米管阵列的扫描电镜照片。
图7是本技术方案实施例获得的多壁碳纳米管的透射电镜照片。
【具体实施方式】
下面将结合附图及具体实施例对本技术方案进行详细说明。
请一并参阅图1和图2,本技术方案第一实施例提供一种碳纳米管阵列的生长装置10,其包括:一反应炉19,该反应炉19包括一进气口191与一出气口193,本实施例反应炉19优选为管径为一寸的石英管。一石英舟15设置于反应炉19内,该石英舟15为两端开口形,本实施例优选为一船形。一生长碳纳米管用的基底11设置于石英舟15内,该基底11包括一第一催化剂层13形成于基底11一表面,基底11材料选用硅,也可选用其它材料,如玻璃、石英等。第一催化剂层13材料选用铁,也可选用其它材料,如钴、镍及其合金材料等。
一第二催化剂粉末17设置于石英舟15内,该第二催化剂粉末17紧靠基底11设置于远离反应炉19的出气口193的至少一侧边。该第二催化剂粉末17材料选自金属铁粉、金属铁网、金属镍粉、金属镍网或氧化铝和金属铁的粉末混合物,本实施例优选为氧化铝和金属铁的粉末混合物。本实施例第二催化剂粉末17设置于基底11正对进气口191的侧边。该第二催化剂粉末17的作用是在生长碳纳米管阵列的过程中能与通过进气口191通入的碳源气反应生成少量氢气,用来活化第一催化剂层13,使得碳纳米管生长速度较快且生长高度较高。然而,本实施例第二催化剂粉末17的设置位置不限于正对反应炉19的进气口191,其还可设置于基底11的其它侧边或其它位置,只需保证提供氢气对基底11表面的第一催化剂层13进行活化即可。
请一并参阅图3、图4和图5,本技术方案第二实施例提供一种碳纳米管阵列的生长装置20,其包括:一反应炉29,该反应炉29包括一进气口291与一出气口293,本实施例反应炉29优选为管径为一寸的石英管。一石英舟25设置于反应炉29内,该石英舟25为一端开口,一端封闭形,本实施例优选为一端开口的盒体。一基底21设置于石英舟25内,该基底21包括一第一催化剂层23形成于基底21一表面,基底21材料选用硅,也可选用其它材料,如玻璃、石英等。第一催化剂层23材料选用铁,也可选用其它材料,如钴、镍及其合金材料等。一第二催化剂粉末27设置于石英舟25内,该第二催化剂粉末27紧靠基底21设置于远离进气口291的至少一侧边。第二催化剂粉末17材料选自金属铁粉、金属铁网、金属镍粉、金属镍网或氧化铝和金属铁的粉末混合物,本实施例优选为氧化铝和金属铁的粉末混合物。该第二催化剂粉末27的作用是在生长碳纳米管阵列的过程中能与通过进气口291通入的碳源气反应生成少量氢气,用来活化第一催化剂层23,使得碳纳米管生长速度较快且生长高度较高。
本实施例第二催化剂粉末27的亦可设置于靠近基底21的其它位置,只需保证提供氢气对基底21表面的第一催化剂层23进行活化即可。
本技术方案采用第一实施例与第二实施例生长碳纳米管阵列装置的一种碳纳米管阵列的生长方法包括以下步骤:
首先提供一基底,并在该基底将要生长碳纳米管的一表面均匀形成一层第一催化剂层,该第一催化剂层的形成可利用热沉积、电子束沉积、蒸镀或溅射法来完成。
提供一石英舟,将上述具有金属催化剂层的基底放入该石英舟中,并将一第二催化剂粉末撒入该石英舟内。该第二催化剂粉末材料包括氧化铝(AL2O3)和铁(Fe)。上述基底与第二催化剂粉末均设置于该石英舟的底部,该第二催化剂粉末靠近基底设置,并进一步设置于基底的一侧边。
提供一反应炉,该反应炉包括一进气口与一出气口。将设置有基底与第二催化剂粉末的上述石英舟装入反应炉内。
在常压下从反应炉的进气口通入载气气体,并通过加热装置(图未示)对反应炉进行加热。将反应炉的温度升高到预定温度后,通入碳源气。本技术方案载气气体优选为廉价气体氩气,也可选用其它气体如氮气或其它惰性气体。本技术方案的碳源气优选为廉价气体乙炔,也可选用其它碳氢化合物如甲烷、乙烷、乙烯等。载气气体与碳源气的通气流量比例为5∶1~10∶1,本技术方案优选为通以300sccm的氩气和30sccm的乙炔。反应炉温度可为600~720摄氏度,优选为620~690摄氏度。
反应预定时间后,由于催化剂的作用,供应到反应炉的碳源气热解成碳单元(C=C或C)和氢气(H2)。碳单元吸附于第一催化剂层表面,从而生长出碳纳米管。本技术方案中,使用乙炔作为碳源气生长的碳纳米管阵列为多壁碳纳米管阵列。
本技术方案通过改变例如载气与碳源气的流量、反应温度、反应时间等条件,可以控制生长得到的多壁碳纳米管的密度、直径和长度。按照上述实施例获得的多壁碳纳米管的直径为10~30纳米。第二催化剂粉末能与碳源气反应生成少量氢气,用来活化第一催化剂层,同时降低局部乙炔的浓度,使得碳纳米管生长速度较快且生长高度较高。本实施例中,反应时间为30~60分钟,整个多壁碳纳米管阵列的高度大于100微米,甚至可以达到毫米量级。
请一并参阅图6和图7,从本技术方案的多壁碳纳米管阵列的扫描隧道显微镜照片和透射电镜照片可以看出,多壁碳纳米管阵列生长得非常规整,整个阵列的高度为几百微米。
本技术方案热化学气相沉积法中优选使用的第二催化剂粉末的制备方法包括以下步骤:将11.32克硝酸铁(Fe(NO3)3·9H2O)和8克氧化铝(Al2O3)粉末溶入100毫升的乙醇中搅拌8小时,然后将其在80摄氏度进行旋转蒸发12小时,取出后将其球磨成细粉末即可。
将生长完碳纳米管后反应炉中的该第二催化剂粉末收集,并在空气或氧气环境中将附着于其上的碳纳米管、无定形碳等烧掉后,该第二催化剂粉末还可以重复使用,具有可重复使用性。
本技术方案中使用的第二催化剂粉末亦可使用金属铁粉、铁网或金属镍粉、镍网替代。该第二催化剂粉末的主要作用在于:其在高温下会与通入的碳源气反应得到少量的氢气,在本技术方案多壁碳纳米管阵列的生长过程中,氢气能够活化第一催化剂层,同时降低局部碳源气浓度,使得整个碳纳米管阵列生长速度快且高度较高。本技术方案中碳纳米管阵列的高度能够达到几百微米甚至达到毫米量级。
本技术领域的技术人员应明白,本技术方案热化学气相沉积设备中所使用的石英舟亦可采用其它类似结构,第二催化剂粉末的摆放位置与石英舟以及气体流动方向有一定关系。当石英舟为两端开口结构时(请参阅本技术方案第一实施例的船形石英舟),可在基底远离出气口方向的至少一边设置第二催化剂粉末;当石英舟为一端开口,另一端封闭的结构时(请参阅本技术方案第二实施例的一端开口的盒体形石英舟),将该石英舟的开口正对反应炉的进气口放置,可在远离进气口的基底的至少一其余侧边设置第二催化剂粉末。进一步的,由于本技术方案中第二催化剂的作用是提供氢气给第一催化剂层,故,第二催化剂粉末摆放位置需满足以下条件:其一,该第二催化剂粉末需靠近基底设置,以保证生成的氢气能直接作用于基底上的第一催化剂层;其二,该第二催化剂粉末需设置于沿气体流动方向基底位置的前方或附近,以保证产生的氢气能随气体流动方向流动到基底第一催化剂层表面。
虽然本技术方案所采用的热化学气相沉积设备为卧式结构,但本技术方案的方法亦可应用其它如立式、流动床式热化学气相沉积设备等。
采用该热化学气相沉积方法还可以进行批量合成,即,可以同时在设备中装入大量基底进行碳纳米管阵列的生长,可以进一步提高产量。在应用于基于碳纳米管阵列的场发射器件或其它电子器件时,本技术方案的方法亦可通过设计基底第一催化剂的图案来实现碳纳米管阵列的可控生长。
另外,本技术方案中揭露的碳纳米管阵列的生长时间范围与生长温度范围仅为本技术方案的较佳实施例,本技术领域的技术人员应明白,更高的生长温度亦可同样生长出该多壁碳纳米管阵列,生长时间将决定该碳纳米管阵列的高度。
与现有的热化学气相沉积法合成碳纳米管的技术相比较,本技术方案所提供的一种碳纳米管阵列的生长装置具有如下优点:其一生长温度低,在600~720摄氏度均能生长碳纳米管阵列,其中在620~690摄氏度的温度范围内可生长出排列非常规整的碳纳米管阵列;其二,生长速率快,产量多,生长30~60分钟所得到得碳纳米管阵列的高度均可达到几百微米,有时甚至可以达到毫米量级;其三,重复性好,本技术方案中使用的第二催化剂粉末在生长完碳纳米管阵列后可以收集并进行简单处理后重复使用,可反复使用多次,可重复性能好;其四,成本低廉,载气与碳源气可选用氩气和乙炔等廉价气体,由于第二催化剂粉末的使用,故无需使用价格昂贵的氢气,在降低了危险性的同时降低了成本,同时,第一催化剂层可采用廉价的铁,使得整个生长方法的成本进一步降低,适合工业上大批量生产。

Claims (6)

1.一种碳纳米管阵列生长装置,其包括:一反应炉,该反应炉包括一进气口和一出气口;一石英舟设置于反应炉内;一生长碳纳米管用的基底设置于石英舟内,该基底一表面形成有一第一催化剂层,其特征在于石英舟进一步包括一第二催化剂粉末,该第二催化剂粉末靠近基底设置,且设置于沿反应气体流动方向基底位置的前方。
2.如权利要求1所述的生长装置,其特征在于该石英舟两端开口,该第二催化剂粉末设置于基底远离出气口方向的至少一侧边。
3.如权利要求1所述的生长装置,其特征在于该石英舟为一端开口,另一端封闭,该石英舟开口正对进气口,该第二催化剂粉末设置于基底远离进气口方向的至少一侧边。
4.如权利要求1~3任一项所述的生长装置,其特征在于该第二催化剂粉末材料选自金属铁粉、金属铁网、金属镍粉、金属镍网或氧化铝和金属铁的粉末混合物。
5.如权利要求1所述的生长装置,其特征在于该第一催化剂层材料包括铁、钴、镍或其合金。
6.如权利要求1所述的生长装置,其特征在于该反应炉为管径为一寸的石英管。
CNB2005100337336A 2005-03-18 2005-03-18 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法 Expired - Lifetime CN100376477C (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNB2005100337336A CN100376477C (zh) 2005-03-18 2005-03-18 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法
JP2005310370A JP4116031B2 (ja) 2005-03-18 2005-10-25 炭素ナノチューブのマトリックスの成長装置及び多層の炭素ナノチューブのマトリックスの成長方法
US11/371,997 US7687109B2 (en) 2005-03-18 2006-03-08 Apparatus and method for making carbon nanotube array
US12/590,663 US20100064973A1 (en) 2005-03-18 2009-11-12 Apparatus and method for making carbon nanotube array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100337336A CN100376477C (zh) 2005-03-18 2005-03-18 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法

Publications (2)

Publication Number Publication Date
CN1834006A CN1834006A (zh) 2006-09-20
CN100376477C true CN100376477C (zh) 2008-03-26

Family

ID=37001931

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100337336A Expired - Lifetime CN100376477C (zh) 2005-03-18 2005-03-18 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法

Country Status (3)

Country Link
US (2) US7687109B2 (zh)
JP (1) JP4116031B2 (zh)
CN (1) CN100376477C (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376477C (zh) * 2005-03-18 2008-03-26 清华大学 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法
CN100344532C (zh) * 2005-03-25 2007-10-24 清华大学 一种碳纳米管阵列的生长装置
CN100337910C (zh) * 2005-03-31 2007-09-19 清华大学 一种碳纳米管阵列的生长方法
CN100376478C (zh) * 2005-04-22 2008-03-26 清华大学 碳纳米管阵列结构的制备装置
US8075869B2 (en) * 2007-01-24 2011-12-13 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
US8092778B2 (en) * 2007-01-24 2012-01-10 Eden Energy Ltd. Method for producing a hydrogen enriched fuel and carbon nanotubes using microwave assisted methane decomposition on catalyst
US8021448B2 (en) * 2007-01-25 2011-09-20 Eden Energy Ltd. Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
CN101409961B (zh) * 2007-10-10 2010-06-16 清华大学 面热光源,其制备方法及应用其加热物体的方法
CN101409962B (zh) * 2007-10-10 2010-11-10 清华大学 面热光源及其制备方法
CN101400198B (zh) * 2007-09-28 2010-09-29 北京富纳特创新科技有限公司 面热光源,其制备方法及应用其加热物体的方法
US20090205254A1 (en) * 2008-02-14 2009-08-20 Zhonghua John Zhu Method And System For Converting A Methane Gas To A Liquid Fuel
CN101311371B (zh) * 2008-02-27 2010-06-02 中国科学院理化技术研究所 制备SnO2-ZnO异质纳米线的方法
CN101555029B (zh) * 2008-04-09 2011-05-04 清华大学 铝酸锌纳米材料的制备方法
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
US20100000669A1 (en) * 2008-06-13 2010-01-07 Tsinghua University Carbon nanotube heater
US20100126985A1 (en) * 2008-06-13 2010-05-27 Tsinghua University Carbon nanotube heater
US8246860B2 (en) * 2009-10-23 2012-08-21 Tsinghua University Carbon nanotube composite, method for making the same, and electrochemical capacitor using the same
JP5499643B2 (ja) * 2009-11-06 2014-05-21 住友電気工業株式会社 触媒部材、カーボンナノチューブの製造装置およびカーボンナノチューブの製造方法
US20130323157A1 (en) * 2012-05-31 2013-12-05 Xuesong Li Apparatus and Methods for the Synthesis of Graphene by Chemical Vapor Deposition
CN103896244B (zh) * 2012-12-29 2016-08-10 清华大学 反应器及生长碳纳米管的方法
TWI592509B (zh) * 2013-10-14 2017-07-21 國立清華大學 石墨烯薄膜製造方法
US10724136B2 (en) 2016-01-20 2020-07-28 Honda Motor Co., Ltd. Conducting high transparency thin films based on single-walled carbon nanotubes
CN106990266B (zh) * 2017-04-26 2019-06-11 清华大学 一种制备针尖、探针的方法以及针尖、探针
CN110357073B (zh) * 2019-08-23 2022-03-15 哈尔滨工业大学 一种梯度刚度碳纳米管海绵的制备方法
EP4493518A1 (en) * 2022-03-16 2025-01-22 Michigan Technological University Method of making boron nitride nanotubes and reactor therefore
CN115058699A (zh) * 2022-05-16 2022-09-16 西安电子科技大学 一种基于化学气相沉积的单层二硫化钼及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1168348A (zh) * 1996-06-19 1997-12-24 中国科学院金属研究所 一种气相生长纳米碳纤维的制备方法
US6350488B1 (en) * 1999-06-11 2002-02-26 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374415A (en) 1993-02-03 1994-12-20 General Motors Corporation Method for forming carbon fibers
JPH111399A (ja) 1996-12-05 1999-01-06 Lg Electron Inc 窒化ガリウム半導体単結晶基板の製造方法並びにその基板を用いた窒化ガリウムダイオード
US6143412A (en) * 1997-02-10 2000-11-07 President And Fellows Of Harvard College Fabrication of carbon microstructures
JP4043562B2 (ja) * 1997-10-15 2008-02-06 松下電器産業株式会社 水素貯蔵体とその製法
US6232706B1 (en) 1998-11-12 2001-05-15 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
FR2790750B1 (fr) 1999-03-10 2001-04-20 Air Liquide Procede et dispositif de production d'hydrogene par decomposition thermocatalytique d'hydrocarbures
US6566256B1 (en) 1999-04-16 2003-05-20 Gbl Technologies, Inc. Dual process semiconductor heterostructures and methods
EP1061554A1 (en) * 1999-06-15 2000-12-20 Iljin Nanotech Co., Ltd. White light source using carbon nanotubes and fabrication method thereof
US6569765B1 (en) 1999-08-26 2003-05-27 Cbl Technologies, Inc Hybrid deposition system and methods
CN1140448C (zh) 2000-03-07 2004-03-03 天津大学 镍催化裂解甲烷制备碳纳米管的方法
JP3946427B2 (ja) 2000-03-29 2007-07-18 株式会社東芝 エピタキシャル成長用基板の製造方法及びこのエピタキシャル成長用基板を用いた半導体装置の製造方法
US6811814B2 (en) * 2001-01-16 2004-11-02 Applied Materials, Inc. Method for growing thin films by catalytic enhancement
US20020132495A1 (en) * 2001-03-16 2002-09-19 Siegel Richard W. Flash CVD process for synthesis of carbon nanotrees
US7670435B2 (en) 2001-03-30 2010-03-02 Technologies And Devices International, Inc. Apparatus for epitaxially growing semiconductor device structures with sharp layer interfaces utilizing HVPE
US20020172767A1 (en) * 2001-04-05 2002-11-21 Leonid Grigorian Chemical vapor deposition growth of single-wall carbon nanotubes
US6613143B1 (en) 2001-07-06 2003-09-02 Technologies And Devices International, Inc. Method for fabricating bulk GaN single crystals
US6936357B2 (en) 2001-07-06 2005-08-30 Technologies And Devices International, Inc. Bulk GaN and ALGaN single crystals
US8715790B2 (en) 2001-07-27 2014-05-06 University Of Surrey Production of carbon nanotubes
US6897603B2 (en) 2001-08-24 2005-05-24 Si Diamond Technology, Inc. Catalyst for carbon nanotube growth
SG126710A1 (en) 2001-10-31 2006-11-29 Univ Singapore Carbon nanotubes fabrication and hydrogen production
US6969426B1 (en) 2002-02-26 2005-11-29 Bliss David F Forming improved metal nitrides
US7445817B2 (en) * 2002-05-08 2008-11-04 Btu International Inc. Plasma-assisted formation of carbon structures
CN1248959C (zh) * 2002-09-17 2006-04-05 清华大学 一种碳纳米管阵列生长方法
CN1239387C (zh) * 2002-11-21 2006-02-01 清华大学 碳纳米管阵列及其生长方法
CN1290763C (zh) 2002-11-29 2006-12-20 清华大学 一种生产碳纳米管的方法
CN1286715C (zh) 2002-12-21 2006-11-29 清华大学 一种碳纳米管阵列结构及其生长方法
WO2004065294A2 (en) * 2003-01-17 2004-08-05 Duke University Systems and methods for producing single-walled carbon nanotubes (swnts) on a substrate
KR100537512B1 (ko) * 2003-09-01 2005-12-19 삼성에스디아이 주식회사 카본나노튜브구조체 및 이의 제조방법 그리고 이를 응용한전계방출소자 및 표시장치
US7628974B2 (en) 2003-10-22 2009-12-08 International Business Machines Corporation Control of carbon nanotube diameter using CVD or PECVD growth
CN100376477C (zh) * 2005-03-18 2008-03-26 清华大学 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1168348A (zh) * 1996-06-19 1997-12-24 中国科学院金属研究所 一种气相生长纳米碳纤维的制备方法
US6350488B1 (en) * 1999-06-11 2002-02-26 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition

Also Published As

Publication number Publication date
JP2006256948A (ja) 2006-09-28
CN1834006A (zh) 2006-09-20
JP4116031B2 (ja) 2008-07-09
US7687109B2 (en) 2010-03-30
US20100064973A1 (en) 2010-03-18
US20060269669A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
CN100376477C (zh) 一种碳纳米管阵列生长装置及多壁碳纳米管阵列的生长方法
CN1935637B (zh) 碳纳米管制备方法
CN100337909C (zh) 一种碳纳米管阵列的生长方法
CN100337910C (zh) 一种碳纳米管阵列的生长方法
Bronikowski CVD growth of carbon nanotube bundle arrays
Terranova et al. The world of carbon nanotubes: an overview of CVD growth methodologies
CN100418876C (zh) 碳纳米管阵列制备装置及方法
WO2009110591A1 (ja) カーボンナノチューブの製造方法及びカーボンナノチューブ製造装置
US7700048B2 (en) Apparatus for making carbon nanotube array
US20110027164A1 (en) Method and apparatus for synthesizing carbon nanotubes using ultrasonic evaporation
CN101497436A (zh) 碳纳米管薄膜结构及其制备方法
Luo et al. Solvothermal preparation of amorphous carbon nanotubes and Fe/C coaxial nanocables from sulfur, ferrocene, and benzene
CN101302006A (zh) 管壁层数可控的碳纳米管的制备方法
Govindaraj et al. Organometallic precursor route to carbon nanotubes
Bai et al. Research on MWCNT growth process through on-line intermittent monitoring in a fluidized bed reactor
Somanathan et al. Catalytic influence of mesoporous Co-MCM-41 molecular sieves for the synthesis of SWNTs via CVD method
JP2003277029A (ja) カーボンナノチューブ及びその製造方法
JP2006520733A (ja) 気相成長法による二重壁炭素ナノチューブの大量合成方法
Zhang et al. Large scale production of carbon nanotube arrays on the sphere surface from liquefied petroleum gas at low cost
He et al. Study of aluminum powder as transition metal catalyst carrier for CVD synthesis of carbon nanotubes
Govindaraj et al. Synthesis, growth mechanism and processing of carbon nanotubes
Robertson et al. Controlling the catalyst during carbon nanotube growth
TWI313670B (en) Apparatus and method for fabrication of carbon nanotube array
CN201914921U (zh) 一种合成碳纳米管阵列的v型火焰燃烧器
CN109573981B (zh) 一种硅化物生长单壁碳纳米管的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant